1 |
578 |
markom |
/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
|
2 |
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "gdbcmd.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "dis-asm.h"
|
30 |
|
|
#include "symfile.h"
|
31 |
|
|
#include "objfiles.h"
|
32 |
|
|
#include "gdb_string.h"
|
33 |
|
|
#include "linespec.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
|
36 |
|
|
/* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
|
37 |
|
|
|
38 |
|
|
/* Prototypes for local functions. */
|
39 |
|
|
|
40 |
|
|
static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
|
41 |
|
|
|
42 |
|
|
static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
|
43 |
|
|
|
44 |
|
|
static CORE_ADDR heuristic_proc_start (CORE_ADDR);
|
45 |
|
|
|
46 |
|
|
static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
|
47 |
|
|
CORE_ADDR,
|
48 |
|
|
struct frame_info *);
|
49 |
|
|
|
50 |
|
|
static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
|
51 |
|
|
struct frame_info *);
|
52 |
|
|
|
53 |
|
|
#if 0
|
54 |
|
|
static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
|
55 |
|
|
#endif
|
56 |
|
|
|
57 |
|
|
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
|
58 |
|
|
|
59 |
|
|
static CORE_ADDR after_prologue (CORE_ADDR pc,
|
60 |
|
|
alpha_extra_func_info_t proc_desc);
|
61 |
|
|
|
62 |
|
|
static int alpha_in_prologue (CORE_ADDR pc,
|
63 |
|
|
alpha_extra_func_info_t proc_desc);
|
64 |
|
|
|
65 |
|
|
static int alpha_about_to_return (CORE_ADDR pc);
|
66 |
|
|
|
67 |
|
|
void _initialize_alpha_tdep (void);
|
68 |
|
|
|
69 |
|
|
/* Heuristic_proc_start may hunt through the text section for a long
|
70 |
|
|
time across a 2400 baud serial line. Allows the user to limit this
|
71 |
|
|
search. */
|
72 |
|
|
static unsigned int heuristic_fence_post = 0;
|
73 |
|
|
/* *INDENT-OFF* */
|
74 |
|
|
/* Layout of a stack frame on the alpha:
|
75 |
|
|
|
76 |
|
|
| |
|
77 |
|
|
pdr members: | 7th ... nth arg, |
|
78 |
|
|
| `pushed' by caller. |
|
79 |
|
|
| |
|
80 |
|
|
----------------|-------------------------------|<-- old_sp == vfp
|
81 |
|
|
^ ^ ^ ^ | |
|
82 |
|
|
| | | | | |
|
83 |
|
|
| |localoff | Copies of 1st .. 6th |
|
84 |
|
|
| | | | | argument if necessary. |
|
85 |
|
|
| | | v | |
|
86 |
|
|
| | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
|
87 |
|
|
| | | | |
|
88 |
|
|
| | | | Locals and temporaries. |
|
89 |
|
|
| | | | |
|
90 |
|
|
| | | |-------------------------------|
|
91 |
|
|
| | | | |
|
92 |
|
|
|-fregoffset | Saved float registers. |
|
93 |
|
|
| | | | F9 |
|
94 |
|
|
| | | | . |
|
95 |
|
|
| | | | . |
|
96 |
|
|
| | | | F2 |
|
97 |
|
|
| | v | |
|
98 |
|
|
| | -------|-------------------------------|
|
99 |
|
|
| | | |
|
100 |
|
|
| | | Saved registers. |
|
101 |
|
|
| | | S6 |
|
102 |
|
|
|-regoffset | . |
|
103 |
|
|
| | | . |
|
104 |
|
|
| | | S0 |
|
105 |
|
|
| | | pdr.pcreg |
|
106 |
|
|
| v | |
|
107 |
|
|
| ----------|-------------------------------|
|
108 |
|
|
| | |
|
109 |
|
|
frameoffset | Argument build area, gets |
|
110 |
|
|
| | 7th ... nth arg for any |
|
111 |
|
|
| | called procedure. |
|
112 |
|
|
v | |
|
113 |
|
|
-------------|-------------------------------|<-- sp
|
114 |
|
|
| |
|
115 |
|
|
*/
|
116 |
|
|
/* *INDENT-ON* */
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
|
121 |
|
|
/* These next two fields are kind of being hijacked. I wonder if
|
122 |
|
|
iline is too small for the values it needs to hold, if GDB is
|
123 |
|
|
running on a 32-bit host. */
|
124 |
|
|
#define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
|
125 |
|
|
#define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
|
126 |
|
|
#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
|
127 |
|
|
#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
|
128 |
|
|
#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
|
129 |
|
|
#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
|
130 |
|
|
#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
|
131 |
|
|
#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
|
132 |
|
|
#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
|
133 |
|
|
#define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
|
134 |
|
|
#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
|
135 |
|
|
#define _PROC_MAGIC_ 0x0F0F0F0F
|
136 |
|
|
#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
|
137 |
|
|
#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
|
138 |
|
|
|
139 |
|
|
struct linked_proc_info
|
140 |
|
|
{
|
141 |
|
|
struct alpha_extra_func_info info;
|
142 |
|
|
struct linked_proc_info *next;
|
143 |
|
|
}
|
144 |
|
|
*linked_proc_desc_table = NULL;
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
/* Under GNU/Linux, signal handler invocations can be identified by the
|
148 |
|
|
designated code sequence that is used to return from a signal
|
149 |
|
|
handler. In particular, the return address of a signal handler
|
150 |
|
|
points to the following sequence (the first instruction is quadword
|
151 |
|
|
aligned):
|
152 |
|
|
|
153 |
|
|
bis $30,$30,$16
|
154 |
|
|
addq $31,0x67,$0
|
155 |
|
|
call_pal callsys
|
156 |
|
|
|
157 |
|
|
Each instruction has a unique encoding, so we simply attempt to
|
158 |
|
|
match the instruction the pc is pointing to with any of the above
|
159 |
|
|
instructions. If there is a hit, we know the offset to the start
|
160 |
|
|
of the designated sequence and can then check whether we really are
|
161 |
|
|
executing in a designated sequence. If not, -1 is returned,
|
162 |
|
|
otherwise the offset from the start of the desingated sequence is
|
163 |
|
|
returned.
|
164 |
|
|
|
165 |
|
|
There is a slight chance of false hits: code could jump into the
|
166 |
|
|
middle of the designated sequence, in which case there is no
|
167 |
|
|
guarantee that we are in the middle of a sigreturn syscall. Don't
|
168 |
|
|
think this will be a problem in praxis, though.
|
169 |
|
|
*/
|
170 |
|
|
|
171 |
|
|
#ifndef TM_LINUXALPHA_H
|
172 |
|
|
/* HACK: Provide a prototype when compiling this file for non
|
173 |
|
|
linuxalpha targets. */
|
174 |
|
|
long alpha_linux_sigtramp_offset (CORE_ADDR pc);
|
175 |
|
|
#endif
|
176 |
|
|
long
|
177 |
|
|
alpha_linux_sigtramp_offset (CORE_ADDR pc)
|
178 |
|
|
{
|
179 |
|
|
unsigned int i[3], w;
|
180 |
|
|
long off;
|
181 |
|
|
|
182 |
|
|
if (read_memory_nobpt (pc, (char *) &w, 4) != 0)
|
183 |
|
|
return -1;
|
184 |
|
|
|
185 |
|
|
off = -1;
|
186 |
|
|
switch (w)
|
187 |
|
|
{
|
188 |
|
|
case 0x47de0410:
|
189 |
|
|
off = 0;
|
190 |
|
|
break; /* bis $30,$30,$16 */
|
191 |
|
|
case 0x43ecf400:
|
192 |
|
|
off = 4;
|
193 |
|
|
break; /* addq $31,0x67,$0 */
|
194 |
|
|
case 0x00000083:
|
195 |
|
|
off = 8;
|
196 |
|
|
break; /* call_pal callsys */
|
197 |
|
|
default:
|
198 |
|
|
return -1;
|
199 |
|
|
}
|
200 |
|
|
pc -= off;
|
201 |
|
|
if (pc & 0x7)
|
202 |
|
|
{
|
203 |
|
|
/* designated sequence is not quadword aligned */
|
204 |
|
|
return -1;
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
if (read_memory_nobpt (pc, (char *) i, sizeof (i)) != 0)
|
208 |
|
|
return -1;
|
209 |
|
|
|
210 |
|
|
if (i[0] == 0x47de0410 && i[1] == 0x43ecf400 && i[2] == 0x00000083)
|
211 |
|
|
return off;
|
212 |
|
|
|
213 |
|
|
return -1;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
/* Under OSF/1, the __sigtramp routine is frameless and has a frame
|
218 |
|
|
size of zero, but we are able to backtrace through it. */
|
219 |
|
|
CORE_ADDR
|
220 |
|
|
alpha_osf_skip_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
|
221 |
|
|
{
|
222 |
|
|
char *name;
|
223 |
|
|
find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
224 |
|
|
if (IN_SIGTRAMP (pc, name))
|
225 |
|
|
return frame->frame;
|
226 |
|
|
else
|
227 |
|
|
return 0;
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|
/* Dynamically create a signal-handler caller procedure descriptor for
|
232 |
|
|
the signal-handler return code starting at address LOW_ADDR. The
|
233 |
|
|
descriptor is added to the linked_proc_desc_table. */
|
234 |
|
|
|
235 |
|
|
static alpha_extra_func_info_t
|
236 |
|
|
push_sigtramp_desc (CORE_ADDR low_addr)
|
237 |
|
|
{
|
238 |
|
|
struct linked_proc_info *link;
|
239 |
|
|
alpha_extra_func_info_t proc_desc;
|
240 |
|
|
|
241 |
|
|
link = (struct linked_proc_info *)
|
242 |
|
|
xmalloc (sizeof (struct linked_proc_info));
|
243 |
|
|
link->next = linked_proc_desc_table;
|
244 |
|
|
linked_proc_desc_table = link;
|
245 |
|
|
|
246 |
|
|
proc_desc = &link->info;
|
247 |
|
|
|
248 |
|
|
proc_desc->numargs = 0;
|
249 |
|
|
PROC_LOW_ADDR (proc_desc) = low_addr;
|
250 |
|
|
PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
|
251 |
|
|
PROC_DUMMY_FRAME (proc_desc) = 0;
|
252 |
|
|
PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
|
253 |
|
|
PROC_FRAME_REG (proc_desc) = SP_REGNUM;
|
254 |
|
|
PROC_REG_MASK (proc_desc) = 0xffff;
|
255 |
|
|
PROC_FREG_MASK (proc_desc) = 0xffff;
|
256 |
|
|
PROC_PC_REG (proc_desc) = 26;
|
257 |
|
|
PROC_LOCALOFF (proc_desc) = 0;
|
258 |
|
|
SET_PROC_DESC_IS_DYN_SIGTRAMP (proc_desc);
|
259 |
|
|
return (proc_desc);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
/* Guaranteed to set frame->saved_regs to some values (it never leaves it
|
264 |
|
|
NULL). */
|
265 |
|
|
|
266 |
|
|
void
|
267 |
|
|
alpha_find_saved_regs (struct frame_info *frame)
|
268 |
|
|
{
|
269 |
|
|
int ireg;
|
270 |
|
|
CORE_ADDR reg_position;
|
271 |
|
|
unsigned long mask;
|
272 |
|
|
alpha_extra_func_info_t proc_desc;
|
273 |
|
|
int returnreg;
|
274 |
|
|
|
275 |
|
|
frame_saved_regs_zalloc (frame);
|
276 |
|
|
|
277 |
|
|
/* If it is the frame for __sigtramp, the saved registers are located
|
278 |
|
|
in a sigcontext structure somewhere on the stack. __sigtramp
|
279 |
|
|
passes a pointer to the sigcontext structure on the stack.
|
280 |
|
|
If the stack layout for __sigtramp changes, or if sigcontext offsets
|
281 |
|
|
change, we might have to update this code. */
|
282 |
|
|
#ifndef SIGFRAME_PC_OFF
|
283 |
|
|
#define SIGFRAME_PC_OFF (2 * 8)
|
284 |
|
|
#define SIGFRAME_REGSAVE_OFF (4 * 8)
|
285 |
|
|
#define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
|
286 |
|
|
#endif
|
287 |
|
|
if (frame->signal_handler_caller)
|
288 |
|
|
{
|
289 |
|
|
CORE_ADDR sigcontext_addr;
|
290 |
|
|
|
291 |
|
|
sigcontext_addr = SIGCONTEXT_ADDR (frame);
|
292 |
|
|
for (ireg = 0; ireg < 32; ireg++)
|
293 |
|
|
{
|
294 |
|
|
reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
|
295 |
|
|
frame->saved_regs[ireg] = reg_position;
|
296 |
|
|
}
|
297 |
|
|
for (ireg = 0; ireg < 32; ireg++)
|
298 |
|
|
{
|
299 |
|
|
reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
|
300 |
|
|
frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
|
301 |
|
|
}
|
302 |
|
|
frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
|
303 |
|
|
return;
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
proc_desc = frame->proc_desc;
|
307 |
|
|
if (proc_desc == NULL)
|
308 |
|
|
/* I'm not sure how/whether this can happen. Normally when we can't
|
309 |
|
|
find a proc_desc, we "synthesize" one using heuristic_proc_desc
|
310 |
|
|
and set the saved_regs right away. */
|
311 |
|
|
return;
|
312 |
|
|
|
313 |
|
|
/* Fill in the offsets for the registers which gen_mask says
|
314 |
|
|
were saved. */
|
315 |
|
|
|
316 |
|
|
reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
|
317 |
|
|
mask = PROC_REG_MASK (proc_desc);
|
318 |
|
|
|
319 |
|
|
returnreg = PROC_PC_REG (proc_desc);
|
320 |
|
|
|
321 |
|
|
/* Note that RA is always saved first, regardless of its actual
|
322 |
|
|
register number. */
|
323 |
|
|
if (mask & (1 << returnreg))
|
324 |
|
|
{
|
325 |
|
|
frame->saved_regs[returnreg] = reg_position;
|
326 |
|
|
reg_position += 8;
|
327 |
|
|
mask &= ~(1 << returnreg); /* Clear bit for RA so we
|
328 |
|
|
don't save again later. */
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
for (ireg = 0; ireg <= 31; ++ireg)
|
332 |
|
|
if (mask & (1 << ireg))
|
333 |
|
|
{
|
334 |
|
|
frame->saved_regs[ireg] = reg_position;
|
335 |
|
|
reg_position += 8;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
/* Fill in the offsets for the registers which float_mask says
|
339 |
|
|
were saved. */
|
340 |
|
|
|
341 |
|
|
reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
|
342 |
|
|
mask = PROC_FREG_MASK (proc_desc);
|
343 |
|
|
|
344 |
|
|
for (ireg = 0; ireg <= 31; ++ireg)
|
345 |
|
|
if (mask & (1 << ireg))
|
346 |
|
|
{
|
347 |
|
|
frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
|
348 |
|
|
reg_position += 8;
|
349 |
|
|
}
|
350 |
|
|
|
351 |
|
|
frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
static CORE_ADDR
|
355 |
|
|
read_next_frame_reg (struct frame_info *fi, int regno)
|
356 |
|
|
{
|
357 |
|
|
for (; fi; fi = fi->next)
|
358 |
|
|
{
|
359 |
|
|
/* We have to get the saved sp from the sigcontext
|
360 |
|
|
if it is a signal handler frame. */
|
361 |
|
|
if (regno == SP_REGNUM && !fi->signal_handler_caller)
|
362 |
|
|
return fi->frame;
|
363 |
|
|
else
|
364 |
|
|
{
|
365 |
|
|
if (fi->saved_regs == NULL)
|
366 |
|
|
alpha_find_saved_regs (fi);
|
367 |
|
|
if (fi->saved_regs[regno])
|
368 |
|
|
return read_memory_integer (fi->saved_regs[regno], 8);
|
369 |
|
|
}
|
370 |
|
|
}
|
371 |
|
|
return read_register (regno);
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
CORE_ADDR
|
375 |
|
|
alpha_frame_saved_pc (struct frame_info *frame)
|
376 |
|
|
{
|
377 |
|
|
alpha_extra_func_info_t proc_desc = frame->proc_desc;
|
378 |
|
|
/* We have to get the saved pc from the sigcontext
|
379 |
|
|
if it is a signal handler frame. */
|
380 |
|
|
int pcreg = frame->signal_handler_caller ? PC_REGNUM : frame->pc_reg;
|
381 |
|
|
|
382 |
|
|
if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
|
383 |
|
|
return read_memory_integer (frame->frame - 8, 8);
|
384 |
|
|
|
385 |
|
|
return read_next_frame_reg (frame, pcreg);
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
CORE_ADDR
|
389 |
|
|
alpha_saved_pc_after_call (struct frame_info *frame)
|
390 |
|
|
{
|
391 |
|
|
CORE_ADDR pc = frame->pc;
|
392 |
|
|
CORE_ADDR tmp;
|
393 |
|
|
alpha_extra_func_info_t proc_desc;
|
394 |
|
|
int pcreg;
|
395 |
|
|
|
396 |
|
|
/* Skip over shared library trampoline if necessary. */
|
397 |
|
|
tmp = SKIP_TRAMPOLINE_CODE (pc);
|
398 |
|
|
if (tmp != 0)
|
399 |
|
|
pc = tmp;
|
400 |
|
|
|
401 |
|
|
proc_desc = find_proc_desc (pc, frame->next);
|
402 |
|
|
pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
|
403 |
|
|
|
404 |
|
|
if (frame->signal_handler_caller)
|
405 |
|
|
return alpha_frame_saved_pc (frame);
|
406 |
|
|
else
|
407 |
|
|
return read_register (pcreg);
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
|
411 |
|
|
static struct alpha_extra_func_info temp_proc_desc;
|
412 |
|
|
static struct frame_saved_regs temp_saved_regs;
|
413 |
|
|
|
414 |
|
|
/* Nonzero if instruction at PC is a return instruction. "ret
|
415 |
|
|
$zero,($ra),1" on alpha. */
|
416 |
|
|
|
417 |
|
|
static int
|
418 |
|
|
alpha_about_to_return (CORE_ADDR pc)
|
419 |
|
|
{
|
420 |
|
|
return read_memory_integer (pc, 4) == 0x6bfa8001;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
/* This fencepost looks highly suspicious to me. Removing it also
|
426 |
|
|
seems suspicious as it could affect remote debugging across serial
|
427 |
|
|
lines. */
|
428 |
|
|
|
429 |
|
|
static CORE_ADDR
|
430 |
|
|
heuristic_proc_start (CORE_ADDR pc)
|
431 |
|
|
{
|
432 |
|
|
CORE_ADDR start_pc = pc;
|
433 |
|
|
CORE_ADDR fence = start_pc - heuristic_fence_post;
|
434 |
|
|
|
435 |
|
|
if (start_pc == 0)
|
436 |
|
|
return 0;
|
437 |
|
|
|
438 |
|
|
if (heuristic_fence_post == UINT_MAX
|
439 |
|
|
|| fence < VM_MIN_ADDRESS)
|
440 |
|
|
fence = VM_MIN_ADDRESS;
|
441 |
|
|
|
442 |
|
|
/* search back for previous return */
|
443 |
|
|
for (start_pc -= 4;; start_pc -= 4)
|
444 |
|
|
if (start_pc < fence)
|
445 |
|
|
{
|
446 |
|
|
/* It's not clear to me why we reach this point when
|
447 |
|
|
stop_soon_quietly, but with this test, at least we
|
448 |
|
|
don't print out warnings for every child forked (eg, on
|
449 |
|
|
decstation). 22apr93 rich@cygnus.com. */
|
450 |
|
|
if (!stop_soon_quietly)
|
451 |
|
|
{
|
452 |
|
|
static int blurb_printed = 0;
|
453 |
|
|
|
454 |
|
|
if (fence == VM_MIN_ADDRESS)
|
455 |
|
|
warning ("Hit beginning of text section without finding");
|
456 |
|
|
else
|
457 |
|
|
warning ("Hit heuristic-fence-post without finding");
|
458 |
|
|
|
459 |
|
|
warning ("enclosing function for address 0x%s", paddr_nz (pc));
|
460 |
|
|
if (!blurb_printed)
|
461 |
|
|
{
|
462 |
|
|
printf_filtered ("\
|
463 |
|
|
This warning occurs if you are debugging a function without any symbols\n\
|
464 |
|
|
(for example, in a stripped executable). In that case, you may wish to\n\
|
465 |
|
|
increase the size of the search with the `set heuristic-fence-post' command.\n\
|
466 |
|
|
\n\
|
467 |
|
|
Otherwise, you told GDB there was a function where there isn't one, or\n\
|
468 |
|
|
(more likely) you have encountered a bug in GDB.\n");
|
469 |
|
|
blurb_printed = 1;
|
470 |
|
|
}
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
return 0;
|
474 |
|
|
}
|
475 |
|
|
else if (alpha_about_to_return (start_pc))
|
476 |
|
|
break;
|
477 |
|
|
|
478 |
|
|
start_pc += 4; /* skip return */
|
479 |
|
|
return start_pc;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
static alpha_extra_func_info_t
|
483 |
|
|
heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
484 |
|
|
struct frame_info *next_frame)
|
485 |
|
|
{
|
486 |
|
|
CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
|
487 |
|
|
CORE_ADDR cur_pc;
|
488 |
|
|
int frame_size;
|
489 |
|
|
int has_frame_reg = 0;
|
490 |
|
|
unsigned long reg_mask = 0;
|
491 |
|
|
int pcreg = -1;
|
492 |
|
|
|
493 |
|
|
if (start_pc == 0)
|
494 |
|
|
return NULL;
|
495 |
|
|
memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
|
496 |
|
|
memset (&temp_saved_regs, '\0', sizeof (struct frame_saved_regs));
|
497 |
|
|
PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
|
498 |
|
|
|
499 |
|
|
if (start_pc + 200 < limit_pc)
|
500 |
|
|
limit_pc = start_pc + 200;
|
501 |
|
|
frame_size = 0;
|
502 |
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
|
503 |
|
|
{
|
504 |
|
|
char buf[4];
|
505 |
|
|
unsigned long word;
|
506 |
|
|
int status;
|
507 |
|
|
|
508 |
|
|
status = read_memory_nobpt (cur_pc, buf, 4);
|
509 |
|
|
if (status)
|
510 |
|
|
memory_error (status, cur_pc);
|
511 |
|
|
word = extract_unsigned_integer (buf, 4);
|
512 |
|
|
|
513 |
|
|
if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
|
514 |
|
|
{
|
515 |
|
|
if (word & 0x8000)
|
516 |
|
|
frame_size += (-word) & 0xffff;
|
517 |
|
|
else
|
518 |
|
|
/* Exit loop if a positive stack adjustment is found, which
|
519 |
|
|
usually means that the stack cleanup code in the function
|
520 |
|
|
epilogue is reached. */
|
521 |
|
|
break;
|
522 |
|
|
}
|
523 |
|
|
else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
|
524 |
|
|
&& (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
|
525 |
|
|
{
|
526 |
|
|
int reg = (word & 0x03e00000) >> 21;
|
527 |
|
|
reg_mask |= 1 << reg;
|
528 |
|
|
temp_saved_regs.regs[reg] = sp + (short) word;
|
529 |
|
|
|
530 |
|
|
/* Starting with OSF/1-3.2C, the system libraries are shipped
|
531 |
|
|
without local symbols, but they still contain procedure
|
532 |
|
|
descriptors without a symbol reference. GDB is currently
|
533 |
|
|
unable to find these procedure descriptors and uses
|
534 |
|
|
heuristic_proc_desc instead.
|
535 |
|
|
As some low level compiler support routines (__div*, __add*)
|
536 |
|
|
use a non-standard return address register, we have to
|
537 |
|
|
add some heuristics to determine the return address register,
|
538 |
|
|
or stepping over these routines will fail.
|
539 |
|
|
Usually the return address register is the first register
|
540 |
|
|
saved on the stack, but assembler optimization might
|
541 |
|
|
rearrange the register saves.
|
542 |
|
|
So we recognize only a few registers (t7, t9, ra) within
|
543 |
|
|
the procedure prologue as valid return address registers.
|
544 |
|
|
If we encounter a return instruction, we extract the
|
545 |
|
|
the return address register from it.
|
546 |
|
|
|
547 |
|
|
FIXME: Rewriting GDB to access the procedure descriptors,
|
548 |
|
|
e.g. via the minimal symbol table, might obviate this hack. */
|
549 |
|
|
if (pcreg == -1
|
550 |
|
|
&& cur_pc < (start_pc + 80)
|
551 |
|
|
&& (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM))
|
552 |
|
|
pcreg = reg;
|
553 |
|
|
}
|
554 |
|
|
else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
|
555 |
|
|
pcreg = (word >> 16) & 0x1f;
|
556 |
|
|
else if (word == 0x47de040f) /* bis sp,sp fp */
|
557 |
|
|
has_frame_reg = 1;
|
558 |
|
|
}
|
559 |
|
|
if (pcreg == -1)
|
560 |
|
|
{
|
561 |
|
|
/* If we haven't found a valid return address register yet,
|
562 |
|
|
keep searching in the procedure prologue. */
|
563 |
|
|
while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
|
564 |
|
|
{
|
565 |
|
|
char buf[4];
|
566 |
|
|
unsigned long word;
|
567 |
|
|
|
568 |
|
|
if (read_memory_nobpt (cur_pc, buf, 4))
|
569 |
|
|
break;
|
570 |
|
|
cur_pc += 4;
|
571 |
|
|
word = extract_unsigned_integer (buf, 4);
|
572 |
|
|
|
573 |
|
|
if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
|
574 |
|
|
&& (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
|
575 |
|
|
{
|
576 |
|
|
int reg = (word & 0x03e00000) >> 21;
|
577 |
|
|
if (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM)
|
578 |
|
|
{
|
579 |
|
|
pcreg = reg;
|
580 |
|
|
break;
|
581 |
|
|
}
|
582 |
|
|
}
|
583 |
|
|
else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
|
584 |
|
|
{
|
585 |
|
|
pcreg = (word >> 16) & 0x1f;
|
586 |
|
|
break;
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
if (has_frame_reg)
|
592 |
|
|
PROC_FRAME_REG (&temp_proc_desc) = GCC_FP_REGNUM;
|
593 |
|
|
else
|
594 |
|
|
PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
|
595 |
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
|
596 |
|
|
PROC_REG_MASK (&temp_proc_desc) = reg_mask;
|
597 |
|
|
PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? RA_REGNUM : pcreg;
|
598 |
|
|
PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
|
599 |
|
|
return &temp_proc_desc;
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/* This returns the PC of the first inst after the prologue. If we can't
|
603 |
|
|
find the prologue, then return 0. */
|
604 |
|
|
|
605 |
|
|
static CORE_ADDR
|
606 |
|
|
after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
|
607 |
|
|
{
|
608 |
|
|
struct symtab_and_line sal;
|
609 |
|
|
CORE_ADDR func_addr, func_end;
|
610 |
|
|
|
611 |
|
|
if (!proc_desc)
|
612 |
|
|
proc_desc = find_proc_desc (pc, NULL);
|
613 |
|
|
|
614 |
|
|
if (proc_desc)
|
615 |
|
|
{
|
616 |
|
|
if (PROC_DESC_IS_DYN_SIGTRAMP (proc_desc))
|
617 |
|
|
return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
|
618 |
|
|
|
619 |
|
|
/* If function is frameless, then we need to do it the hard way. I
|
620 |
|
|
strongly suspect that frameless always means prologueless... */
|
621 |
|
|
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
|
622 |
|
|
&& PROC_FRAME_OFFSET (proc_desc) == 0)
|
623 |
|
|
return 0;
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
627 |
|
|
return 0; /* Unknown */
|
628 |
|
|
|
629 |
|
|
sal = find_pc_line (func_addr, 0);
|
630 |
|
|
|
631 |
|
|
if (sal.end < func_end)
|
632 |
|
|
return sal.end;
|
633 |
|
|
|
634 |
|
|
/* The line after the prologue is after the end of the function. In this
|
635 |
|
|
case, tell the caller to find the prologue the hard way. */
|
636 |
|
|
|
637 |
|
|
return 0;
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
/* Return non-zero if we *might* be in a function prologue. Return zero if we
|
641 |
|
|
are definitively *not* in a function prologue. */
|
642 |
|
|
|
643 |
|
|
static int
|
644 |
|
|
alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
|
645 |
|
|
{
|
646 |
|
|
CORE_ADDR after_prologue_pc;
|
647 |
|
|
|
648 |
|
|
after_prologue_pc = after_prologue (pc, proc_desc);
|
649 |
|
|
|
650 |
|
|
if (after_prologue_pc == 0
|
651 |
|
|
|| pc < after_prologue_pc)
|
652 |
|
|
return 1;
|
653 |
|
|
else
|
654 |
|
|
return 0;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
static alpha_extra_func_info_t
|
658 |
|
|
find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
|
659 |
|
|
{
|
660 |
|
|
alpha_extra_func_info_t proc_desc;
|
661 |
|
|
struct block *b;
|
662 |
|
|
struct symbol *sym;
|
663 |
|
|
CORE_ADDR startaddr;
|
664 |
|
|
|
665 |
|
|
/* Try to get the proc_desc from the linked call dummy proc_descs
|
666 |
|
|
if the pc is in the call dummy.
|
667 |
|
|
This is hairy. In the case of nested dummy calls we have to find the
|
668 |
|
|
right proc_desc, but we might not yet know the frame for the dummy
|
669 |
|
|
as it will be contained in the proc_desc we are searching for.
|
670 |
|
|
So we have to find the proc_desc whose frame is closest to the current
|
671 |
|
|
stack pointer. */
|
672 |
|
|
|
673 |
|
|
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
674 |
|
|
{
|
675 |
|
|
struct linked_proc_info *link;
|
676 |
|
|
CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
|
677 |
|
|
alpha_extra_func_info_t found_proc_desc = NULL;
|
678 |
|
|
long min_distance = LONG_MAX;
|
679 |
|
|
|
680 |
|
|
for (link = linked_proc_desc_table; link; link = link->next)
|
681 |
|
|
{
|
682 |
|
|
long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
|
683 |
|
|
if (distance > 0 && distance < min_distance)
|
684 |
|
|
{
|
685 |
|
|
min_distance = distance;
|
686 |
|
|
found_proc_desc = &link->info;
|
687 |
|
|
}
|
688 |
|
|
}
|
689 |
|
|
if (found_proc_desc != NULL)
|
690 |
|
|
return found_proc_desc;
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
b = block_for_pc (pc);
|
694 |
|
|
|
695 |
|
|
find_pc_partial_function (pc, NULL, &startaddr, NULL);
|
696 |
|
|
if (b == NULL)
|
697 |
|
|
sym = NULL;
|
698 |
|
|
else
|
699 |
|
|
{
|
700 |
|
|
if (startaddr > BLOCK_START (b))
|
701 |
|
|
/* This is the "pathological" case referred to in a comment in
|
702 |
|
|
print_frame_info. It might be better to move this check into
|
703 |
|
|
symbol reading. */
|
704 |
|
|
sym = NULL;
|
705 |
|
|
else
|
706 |
|
|
sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
|
707 |
|
|
0, NULL);
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
/* If we never found a PDR for this function in symbol reading, then
|
711 |
|
|
examine prologues to find the information. */
|
712 |
|
|
if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
|
713 |
|
|
sym = NULL;
|
714 |
|
|
|
715 |
|
|
if (sym)
|
716 |
|
|
{
|
717 |
|
|
/* IF this is the topmost frame AND
|
718 |
|
|
* (this proc does not have debugging information OR
|
719 |
|
|
* the PC is in the procedure prologue)
|
720 |
|
|
* THEN create a "heuristic" proc_desc (by analyzing
|
721 |
|
|
* the actual code) to replace the "official" proc_desc.
|
722 |
|
|
*/
|
723 |
|
|
proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
|
724 |
|
|
if (next_frame == NULL)
|
725 |
|
|
{
|
726 |
|
|
if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
|
727 |
|
|
{
|
728 |
|
|
alpha_extra_func_info_t found_heuristic =
|
729 |
|
|
heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
|
730 |
|
|
pc, next_frame);
|
731 |
|
|
if (found_heuristic)
|
732 |
|
|
{
|
733 |
|
|
PROC_LOCALOFF (found_heuristic) =
|
734 |
|
|
PROC_LOCALOFF (proc_desc);
|
735 |
|
|
PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
|
736 |
|
|
proc_desc = found_heuristic;
|
737 |
|
|
}
|
738 |
|
|
}
|
739 |
|
|
}
|
740 |
|
|
}
|
741 |
|
|
else
|
742 |
|
|
{
|
743 |
|
|
long offset;
|
744 |
|
|
|
745 |
|
|
/* Is linked_proc_desc_table really necessary? It only seems to be used
|
746 |
|
|
by procedure call dummys. However, the procedures being called ought
|
747 |
|
|
to have their own proc_descs, and even if they don't,
|
748 |
|
|
heuristic_proc_desc knows how to create them! */
|
749 |
|
|
|
750 |
|
|
register struct linked_proc_info *link;
|
751 |
|
|
for (link = linked_proc_desc_table; link; link = link->next)
|
752 |
|
|
if (PROC_LOW_ADDR (&link->info) <= pc
|
753 |
|
|
&& PROC_HIGH_ADDR (&link->info) > pc)
|
754 |
|
|
return &link->info;
|
755 |
|
|
|
756 |
|
|
/* If PC is inside a dynamically generated sigtramp handler,
|
757 |
|
|
create and push a procedure descriptor for that code: */
|
758 |
|
|
offset = DYNAMIC_SIGTRAMP_OFFSET (pc);
|
759 |
|
|
if (offset >= 0)
|
760 |
|
|
return push_sigtramp_desc (pc - offset);
|
761 |
|
|
|
762 |
|
|
/* If heuristic_fence_post is non-zero, determine the procedure
|
763 |
|
|
start address by examining the instructions.
|
764 |
|
|
This allows us to find the start address of static functions which
|
765 |
|
|
have no symbolic information, as startaddr would have been set to
|
766 |
|
|
the preceding global function start address by the
|
767 |
|
|
find_pc_partial_function call above. */
|
768 |
|
|
if (startaddr == 0 || heuristic_fence_post != 0)
|
769 |
|
|
startaddr = heuristic_proc_start (pc);
|
770 |
|
|
|
771 |
|
|
proc_desc =
|
772 |
|
|
heuristic_proc_desc (startaddr, pc, next_frame);
|
773 |
|
|
}
|
774 |
|
|
return proc_desc;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
alpha_extra_func_info_t cached_proc_desc;
|
778 |
|
|
|
779 |
|
|
CORE_ADDR
|
780 |
|
|
alpha_frame_chain (struct frame_info *frame)
|
781 |
|
|
{
|
782 |
|
|
alpha_extra_func_info_t proc_desc;
|
783 |
|
|
CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
|
784 |
|
|
|
785 |
|
|
if (saved_pc == 0 || inside_entry_file (saved_pc))
|
786 |
|
|
return 0;
|
787 |
|
|
|
788 |
|
|
proc_desc = find_proc_desc (saved_pc, frame);
|
789 |
|
|
if (!proc_desc)
|
790 |
|
|
return 0;
|
791 |
|
|
|
792 |
|
|
cached_proc_desc = proc_desc;
|
793 |
|
|
|
794 |
|
|
/* Fetch the frame pointer for a dummy frame from the procedure
|
795 |
|
|
descriptor. */
|
796 |
|
|
if (PROC_DESC_IS_DUMMY (proc_desc))
|
797 |
|
|
return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
|
798 |
|
|
|
799 |
|
|
/* If no frame pointer and frame size is zero, we must be at end
|
800 |
|
|
of stack (or otherwise hosed). If we don't check frame size,
|
801 |
|
|
we loop forever if we see a zero size frame. */
|
802 |
|
|
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
|
803 |
|
|
&& PROC_FRAME_OFFSET (proc_desc) == 0
|
804 |
|
|
/* The previous frame from a sigtramp frame might be frameless
|
805 |
|
|
and have frame size zero. */
|
806 |
|
|
&& !frame->signal_handler_caller)
|
807 |
|
|
return FRAME_PAST_SIGTRAMP_FRAME (frame, saved_pc);
|
808 |
|
|
else
|
809 |
|
|
return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
|
810 |
|
|
+ PROC_FRAME_OFFSET (proc_desc);
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
void
|
814 |
|
|
init_extra_frame_info (struct frame_info *frame)
|
815 |
|
|
{
|
816 |
|
|
/* Use proc_desc calculated in frame_chain */
|
817 |
|
|
alpha_extra_func_info_t proc_desc =
|
818 |
|
|
frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
|
819 |
|
|
|
820 |
|
|
frame->saved_regs = NULL;
|
821 |
|
|
frame->localoff = 0;
|
822 |
|
|
frame->pc_reg = RA_REGNUM;
|
823 |
|
|
frame->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
|
824 |
|
|
if (proc_desc)
|
825 |
|
|
{
|
826 |
|
|
/* Get the locals offset and the saved pc register from the
|
827 |
|
|
procedure descriptor, they are valid even if we are in the
|
828 |
|
|
middle of the prologue. */
|
829 |
|
|
frame->localoff = PROC_LOCALOFF (proc_desc);
|
830 |
|
|
frame->pc_reg = PROC_PC_REG (proc_desc);
|
831 |
|
|
|
832 |
|
|
/* Fixup frame-pointer - only needed for top frame */
|
833 |
|
|
|
834 |
|
|
/* Fetch the frame pointer for a dummy frame from the procedure
|
835 |
|
|
descriptor. */
|
836 |
|
|
if (PROC_DESC_IS_DUMMY (proc_desc))
|
837 |
|
|
frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
|
838 |
|
|
|
839 |
|
|
/* This may not be quite right, if proc has a real frame register.
|
840 |
|
|
Get the value of the frame relative sp, procedure might have been
|
841 |
|
|
interrupted by a signal at it's very start. */
|
842 |
|
|
else if (frame->pc == PROC_LOW_ADDR (proc_desc)
|
843 |
|
|
&& !PROC_DESC_IS_DYN_SIGTRAMP (proc_desc))
|
844 |
|
|
frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
|
845 |
|
|
else
|
846 |
|
|
frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
|
847 |
|
|
+ PROC_FRAME_OFFSET (proc_desc);
|
848 |
|
|
|
849 |
|
|
if (proc_desc == &temp_proc_desc)
|
850 |
|
|
{
|
851 |
|
|
char *name;
|
852 |
|
|
|
853 |
|
|
/* Do not set the saved registers for a sigtramp frame,
|
854 |
|
|
alpha_find_saved_registers will do that for us.
|
855 |
|
|
We can't use frame->signal_handler_caller, it is not yet set. */
|
856 |
|
|
find_pc_partial_function (frame->pc, &name,
|
857 |
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
858 |
|
|
if (!IN_SIGTRAMP (frame->pc, name))
|
859 |
|
|
{
|
860 |
|
|
frame->saved_regs = (CORE_ADDR *)
|
861 |
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
862 |
|
|
memcpy (frame->saved_regs, temp_saved_regs.regs, SIZEOF_FRAME_SAVED_REGS);
|
863 |
|
|
frame->saved_regs[PC_REGNUM]
|
864 |
|
|
= frame->saved_regs[RA_REGNUM];
|
865 |
|
|
}
|
866 |
|
|
}
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
/* ALPHA stack frames are almost impenetrable. When execution stops,
|
871 |
|
|
we basically have to look at symbol information for the function
|
872 |
|
|
that we stopped in, which tells us *which* register (if any) is
|
873 |
|
|
the base of the frame pointer, and what offset from that register
|
874 |
|
|
the frame itself is at.
|
875 |
|
|
|
876 |
|
|
This presents a problem when trying to examine a stack in memory
|
877 |
|
|
(that isn't executing at the moment), using the "frame" command. We
|
878 |
|
|
don't have a PC, nor do we have any registers except SP.
|
879 |
|
|
|
880 |
|
|
This routine takes two arguments, SP and PC, and tries to make the
|
881 |
|
|
cached frames look as if these two arguments defined a frame on the
|
882 |
|
|
cache. This allows the rest of info frame to extract the important
|
883 |
|
|
arguments without difficulty. */
|
884 |
|
|
|
885 |
|
|
struct frame_info *
|
886 |
|
|
setup_arbitrary_frame (int argc, CORE_ADDR *argv)
|
887 |
|
|
{
|
888 |
|
|
if (argc != 2)
|
889 |
|
|
error ("ALPHA frame specifications require two arguments: sp and pc");
|
890 |
|
|
|
891 |
|
|
return create_new_frame (argv[0], argv[1]);
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
/* The alpha passes the first six arguments in the registers, the rest on
|
895 |
|
|
the stack. The register arguments are eventually transferred to the
|
896 |
|
|
argument transfer area immediately below the stack by the called function
|
897 |
|
|
anyway. So we `push' at least six arguments on the stack, `reload' the
|
898 |
|
|
argument registers and then adjust the stack pointer to point past the
|
899 |
|
|
sixth argument. This algorithm simplifies the passing of a large struct
|
900 |
|
|
which extends from the registers to the stack.
|
901 |
|
|
If the called function is returning a structure, the address of the
|
902 |
|
|
structure to be returned is passed as a hidden first argument. */
|
903 |
|
|
|
904 |
|
|
CORE_ADDR
|
905 |
|
|
alpha_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
906 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
907 |
|
|
{
|
908 |
|
|
int i;
|
909 |
|
|
int accumulate_size = struct_return ? 8 : 0;
|
910 |
|
|
int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
|
911 |
|
|
struct alpha_arg
|
912 |
|
|
{
|
913 |
|
|
char *contents;
|
914 |
|
|
int len;
|
915 |
|
|
int offset;
|
916 |
|
|
};
|
917 |
|
|
struct alpha_arg *alpha_args =
|
918 |
|
|
(struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
|
919 |
|
|
register struct alpha_arg *m_arg;
|
920 |
|
|
char raw_buffer[sizeof (CORE_ADDR)];
|
921 |
|
|
int required_arg_regs;
|
922 |
|
|
|
923 |
|
|
for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
|
924 |
|
|
{
|
925 |
|
|
value_ptr arg = args[i];
|
926 |
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
927 |
|
|
/* Cast argument to long if necessary as the compiler does it too. */
|
928 |
|
|
switch (TYPE_CODE (arg_type))
|
929 |
|
|
{
|
930 |
|
|
case TYPE_CODE_INT:
|
931 |
|
|
case TYPE_CODE_BOOL:
|
932 |
|
|
case TYPE_CODE_CHAR:
|
933 |
|
|
case TYPE_CODE_RANGE:
|
934 |
|
|
case TYPE_CODE_ENUM:
|
935 |
|
|
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
|
936 |
|
|
{
|
937 |
|
|
arg_type = builtin_type_long;
|
938 |
|
|
arg = value_cast (arg_type, arg);
|
939 |
|
|
}
|
940 |
|
|
break;
|
941 |
|
|
default:
|
942 |
|
|
break;
|
943 |
|
|
}
|
944 |
|
|
m_arg->len = TYPE_LENGTH (arg_type);
|
945 |
|
|
m_arg->offset = accumulate_size;
|
946 |
|
|
accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
|
947 |
|
|
m_arg->contents = VALUE_CONTENTS (arg);
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
/* Determine required argument register loads, loading an argument register
|
951 |
|
|
is expensive as it uses three ptrace calls. */
|
952 |
|
|
required_arg_regs = accumulate_size / 8;
|
953 |
|
|
if (required_arg_regs > ALPHA_NUM_ARG_REGS)
|
954 |
|
|
required_arg_regs = ALPHA_NUM_ARG_REGS;
|
955 |
|
|
|
956 |
|
|
/* Make room for the arguments on the stack. */
|
957 |
|
|
if (accumulate_size < arg_regs_size)
|
958 |
|
|
accumulate_size = arg_regs_size;
|
959 |
|
|
sp -= accumulate_size;
|
960 |
|
|
|
961 |
|
|
/* Keep sp aligned to a multiple of 16 as the compiler does it too. */
|
962 |
|
|
sp &= ~15;
|
963 |
|
|
|
964 |
|
|
/* `Push' arguments on the stack. */
|
965 |
|
|
for (i = nargs; m_arg--, --i >= 0;)
|
966 |
|
|
write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
|
967 |
|
|
if (struct_return)
|
968 |
|
|
{
|
969 |
|
|
store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
|
970 |
|
|
write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
/* Load the argument registers. */
|
974 |
|
|
for (i = 0; i < required_arg_regs; i++)
|
975 |
|
|
{
|
976 |
|
|
LONGEST val;
|
977 |
|
|
|
978 |
|
|
val = read_memory_integer (sp + i * 8, 8);
|
979 |
|
|
write_register (A0_REGNUM + i, val);
|
980 |
|
|
write_register (FPA0_REGNUM + i, val);
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
return sp + arg_regs_size;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
void
|
987 |
|
|
alpha_push_dummy_frame (void)
|
988 |
|
|
{
|
989 |
|
|
int ireg;
|
990 |
|
|
struct linked_proc_info *link;
|
991 |
|
|
alpha_extra_func_info_t proc_desc;
|
992 |
|
|
CORE_ADDR sp = read_register (SP_REGNUM);
|
993 |
|
|
CORE_ADDR save_address;
|
994 |
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
995 |
|
|
unsigned long mask;
|
996 |
|
|
|
997 |
|
|
link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
|
998 |
|
|
link->next = linked_proc_desc_table;
|
999 |
|
|
linked_proc_desc_table = link;
|
1000 |
|
|
|
1001 |
|
|
proc_desc = &link->info;
|
1002 |
|
|
|
1003 |
|
|
/*
|
1004 |
|
|
* The registers we must save are all those not preserved across
|
1005 |
|
|
* procedure calls.
|
1006 |
|
|
* In addition, we must save the PC and RA.
|
1007 |
|
|
*
|
1008 |
|
|
* Dummy frame layout:
|
1009 |
|
|
* (high memory)
|
1010 |
|
|
* Saved PC
|
1011 |
|
|
* Saved F30
|
1012 |
|
|
* ...
|
1013 |
|
|
* Saved F0
|
1014 |
|
|
* Saved R29
|
1015 |
|
|
* ...
|
1016 |
|
|
* Saved R0
|
1017 |
|
|
* Saved R26 (RA)
|
1018 |
|
|
* Parameter build area
|
1019 |
|
|
* (low memory)
|
1020 |
|
|
*/
|
1021 |
|
|
|
1022 |
|
|
/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
|
1023 |
|
|
#define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
|
1024 |
|
|
#define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
|
1025 |
|
|
#define GEN_REG_SAVE_COUNT 24
|
1026 |
|
|
#define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
|
1027 |
|
|
#define FLOAT_REG_SAVE_COUNT 23
|
1028 |
|
|
/* The special register is the PC as we have no bit for it in the save masks.
|
1029 |
|
|
alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
|
1030 |
|
|
#define SPECIAL_REG_SAVE_COUNT 1
|
1031 |
|
|
|
1032 |
|
|
PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
|
1033 |
|
|
PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
|
1034 |
|
|
/* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
|
1035 |
|
|
but keep SP aligned to a multiple of 16. */
|
1036 |
|
|
PROC_REG_OFFSET (proc_desc) =
|
1037 |
|
|
-((8 * (SPECIAL_REG_SAVE_COUNT
|
1038 |
|
|
+ GEN_REG_SAVE_COUNT
|
1039 |
|
|
+ FLOAT_REG_SAVE_COUNT)
|
1040 |
|
|
+ 15) & ~15);
|
1041 |
|
|
PROC_FREG_OFFSET (proc_desc) =
|
1042 |
|
|
PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
|
1043 |
|
|
|
1044 |
|
|
/* Save general registers.
|
1045 |
|
|
The return address register is the first saved register, all other
|
1046 |
|
|
registers follow in ascending order.
|
1047 |
|
|
The PC is saved immediately below the SP. */
|
1048 |
|
|
save_address = sp + PROC_REG_OFFSET (proc_desc);
|
1049 |
|
|
store_address (raw_buffer, 8, read_register (RA_REGNUM));
|
1050 |
|
|
write_memory (save_address, raw_buffer, 8);
|
1051 |
|
|
save_address += 8;
|
1052 |
|
|
mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
|
1053 |
|
|
for (ireg = 0; mask; ireg++, mask >>= 1)
|
1054 |
|
|
if (mask & 1)
|
1055 |
|
|
{
|
1056 |
|
|
if (ireg == RA_REGNUM)
|
1057 |
|
|
continue;
|
1058 |
|
|
store_address (raw_buffer, 8, read_register (ireg));
|
1059 |
|
|
write_memory (save_address, raw_buffer, 8);
|
1060 |
|
|
save_address += 8;
|
1061 |
|
|
}
|
1062 |
|
|
|
1063 |
|
|
store_address (raw_buffer, 8, read_register (PC_REGNUM));
|
1064 |
|
|
write_memory (sp - 8, raw_buffer, 8);
|
1065 |
|
|
|
1066 |
|
|
/* Save floating point registers. */
|
1067 |
|
|
save_address = sp + PROC_FREG_OFFSET (proc_desc);
|
1068 |
|
|
mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
|
1069 |
|
|
for (ireg = 0; mask; ireg++, mask >>= 1)
|
1070 |
|
|
if (mask & 1)
|
1071 |
|
|
{
|
1072 |
|
|
store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
|
1073 |
|
|
write_memory (save_address, raw_buffer, 8);
|
1074 |
|
|
save_address += 8;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Set and save the frame address for the dummy.
|
1078 |
|
|
This is tricky. The only registers that are suitable for a frame save
|
1079 |
|
|
are those that are preserved across procedure calls (s0-s6). But if
|
1080 |
|
|
a read system call is interrupted and then a dummy call is made
|
1081 |
|
|
(see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
|
1082 |
|
|
is satisfied. Then it returns with the s0-s6 registers set to the values
|
1083 |
|
|
on entry to the read system call and our dummy frame pointer would be
|
1084 |
|
|
destroyed. So we save the dummy frame in the proc_desc and handle the
|
1085 |
|
|
retrieval of the frame pointer of a dummy specifically. The frame register
|
1086 |
|
|
is set to the virtual frame (pseudo) register, it's value will always
|
1087 |
|
|
be read as zero and will help us to catch any errors in the dummy frame
|
1088 |
|
|
retrieval code. */
|
1089 |
|
|
PROC_DUMMY_FRAME (proc_desc) = sp;
|
1090 |
|
|
PROC_FRAME_REG (proc_desc) = FP_REGNUM;
|
1091 |
|
|
PROC_FRAME_OFFSET (proc_desc) = 0;
|
1092 |
|
|
sp += PROC_REG_OFFSET (proc_desc);
|
1093 |
|
|
write_register (SP_REGNUM, sp);
|
1094 |
|
|
|
1095 |
|
|
PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
|
1096 |
|
|
PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
|
1097 |
|
|
|
1098 |
|
|
SET_PROC_DESC_IS_DUMMY (proc_desc);
|
1099 |
|
|
PROC_PC_REG (proc_desc) = RA_REGNUM;
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
void
|
1103 |
|
|
alpha_pop_frame (void)
|
1104 |
|
|
{
|
1105 |
|
|
register int regnum;
|
1106 |
|
|
struct frame_info *frame = get_current_frame ();
|
1107 |
|
|
CORE_ADDR new_sp = frame->frame;
|
1108 |
|
|
|
1109 |
|
|
alpha_extra_func_info_t proc_desc = frame->proc_desc;
|
1110 |
|
|
|
1111 |
|
|
/* we need proc_desc to know how to restore the registers;
|
1112 |
|
|
if it is NULL, construct (a temporary) one */
|
1113 |
|
|
if (proc_desc == NULL)
|
1114 |
|
|
proc_desc = find_proc_desc (frame->pc, frame->next);
|
1115 |
|
|
|
1116 |
|
|
/* Question: should we copy this proc_desc and save it in
|
1117 |
|
|
frame->proc_desc? If we do, who will free it?
|
1118 |
|
|
For now, we don't save a copy... */
|
1119 |
|
|
|
1120 |
|
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
1121 |
|
|
if (frame->saved_regs == NULL)
|
1122 |
|
|
alpha_find_saved_regs (frame);
|
1123 |
|
|
if (proc_desc)
|
1124 |
|
|
{
|
1125 |
|
|
for (regnum = 32; --regnum >= 0;)
|
1126 |
|
|
if (PROC_REG_MASK (proc_desc) & (1 << regnum))
|
1127 |
|
|
write_register (regnum,
|
1128 |
|
|
read_memory_integer (frame->saved_regs[regnum],
|
1129 |
|
|
8));
|
1130 |
|
|
for (regnum = 32; --regnum >= 0;)
|
1131 |
|
|
if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
|
1132 |
|
|
write_register (regnum + FP0_REGNUM,
|
1133 |
|
|
read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
|
1134 |
|
|
}
|
1135 |
|
|
write_register (SP_REGNUM, new_sp);
|
1136 |
|
|
flush_cached_frames ();
|
1137 |
|
|
|
1138 |
|
|
if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
|
1139 |
|
|
|| PROC_DESC_IS_DYN_SIGTRAMP (proc_desc)))
|
1140 |
|
|
{
|
1141 |
|
|
struct linked_proc_info *pi_ptr, *prev_ptr;
|
1142 |
|
|
|
1143 |
|
|
for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
|
1144 |
|
|
pi_ptr != NULL;
|
1145 |
|
|
prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
|
1146 |
|
|
{
|
1147 |
|
|
if (&pi_ptr->info == proc_desc)
|
1148 |
|
|
break;
|
1149 |
|
|
}
|
1150 |
|
|
|
1151 |
|
|
if (pi_ptr == NULL)
|
1152 |
|
|
error ("Can't locate dummy extra frame info\n");
|
1153 |
|
|
|
1154 |
|
|
if (prev_ptr != NULL)
|
1155 |
|
|
prev_ptr->next = pi_ptr->next;
|
1156 |
|
|
else
|
1157 |
|
|
linked_proc_desc_table = pi_ptr->next;
|
1158 |
|
|
|
1159 |
|
|
xfree (pi_ptr);
|
1160 |
|
|
}
|
1161 |
|
|
}
|
1162 |
|
|
|
1163 |
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
1164 |
|
|
if the code at PC does not look like a function prologue; otherwise
|
1165 |
|
|
returns an address that (if we're lucky) follows the prologue. If
|
1166 |
|
|
LENIENT, then we must skip everything which is involved in setting
|
1167 |
|
|
up the frame (it's OK to skip more, just so long as we don't skip
|
1168 |
|
|
anything which might clobber the registers which are being saved.
|
1169 |
|
|
Currently we must not skip more on the alpha, but we might need the
|
1170 |
|
|
lenient stuff some day. */
|
1171 |
|
|
|
1172 |
|
|
CORE_ADDR
|
1173 |
|
|
alpha_skip_prologue (CORE_ADDR pc, int lenient)
|
1174 |
|
|
{
|
1175 |
|
|
unsigned long inst;
|
1176 |
|
|
int offset;
|
1177 |
|
|
CORE_ADDR post_prologue_pc;
|
1178 |
|
|
char buf[4];
|
1179 |
|
|
|
1180 |
|
|
#ifdef GDB_TARGET_HAS_SHARED_LIBS
|
1181 |
|
|
/* Silently return the unaltered pc upon memory errors.
|
1182 |
|
|
This could happen on OSF/1 if decode_line_1 tries to skip the
|
1183 |
|
|
prologue for quickstarted shared library functions when the
|
1184 |
|
|
shared library is not yet mapped in.
|
1185 |
|
|
Reading target memory is slow over serial lines, so we perform
|
1186 |
|
|
this check only if the target has shared libraries. */
|
1187 |
|
|
if (target_read_memory (pc, buf, 4))
|
1188 |
|
|
return pc;
|
1189 |
|
|
#endif
|
1190 |
|
|
|
1191 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
1192 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
1193 |
|
|
is greater. */
|
1194 |
|
|
|
1195 |
|
|
post_prologue_pc = after_prologue (pc, NULL);
|
1196 |
|
|
|
1197 |
|
|
if (post_prologue_pc != 0)
|
1198 |
|
|
return max (pc, post_prologue_pc);
|
1199 |
|
|
|
1200 |
|
|
/* Can't determine prologue from the symbol table, need to examine
|
1201 |
|
|
instructions. */
|
1202 |
|
|
|
1203 |
|
|
/* Skip the typical prologue instructions. These are the stack adjustment
|
1204 |
|
|
instruction and the instructions that save registers on the stack
|
1205 |
|
|
or in the gcc frame. */
|
1206 |
|
|
for (offset = 0; offset < 100; offset += 4)
|
1207 |
|
|
{
|
1208 |
|
|
int status;
|
1209 |
|
|
|
1210 |
|
|
status = read_memory_nobpt (pc + offset, buf, 4);
|
1211 |
|
|
if (status)
|
1212 |
|
|
memory_error (status, pc + offset);
|
1213 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
1214 |
|
|
|
1215 |
|
|
/* The alpha has no delay slots. But let's keep the lenient stuff,
|
1216 |
|
|
we might need it for something else in the future. */
|
1217 |
|
|
if (lenient && 0)
|
1218 |
|
|
continue;
|
1219 |
|
|
|
1220 |
|
|
if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
|
1221 |
|
|
continue;
|
1222 |
|
|
if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
|
1223 |
|
|
continue;
|
1224 |
|
|
if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
|
1225 |
|
|
continue;
|
1226 |
|
|
if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
|
1227 |
|
|
continue;
|
1228 |
|
|
|
1229 |
|
|
if ((inst & 0xfc1f0000) == 0xb41e0000
|
1230 |
|
|
&& (inst & 0xffff0000) != 0xb7fe0000)
|
1231 |
|
|
continue; /* stq reg,n($sp) */
|
1232 |
|
|
/* reg != $zero */
|
1233 |
|
|
if ((inst & 0xfc1f0000) == 0x9c1e0000
|
1234 |
|
|
&& (inst & 0xffff0000) != 0x9ffe0000)
|
1235 |
|
|
continue; /* stt reg,n($sp) */
|
1236 |
|
|
/* reg != $zero */
|
1237 |
|
|
if (inst == 0x47de040f) /* bis sp,sp,fp */
|
1238 |
|
|
continue;
|
1239 |
|
|
|
1240 |
|
|
break;
|
1241 |
|
|
}
|
1242 |
|
|
return pc + offset;
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
#if 0
|
1246 |
|
|
/* Is address PC in the prologue (loosely defined) for function at
|
1247 |
|
|
STARTADDR? */
|
1248 |
|
|
|
1249 |
|
|
static int
|
1250 |
|
|
alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
|
1251 |
|
|
{
|
1252 |
|
|
CORE_ADDR end_prologue = alpha_skip_prologue (startaddr, 1);
|
1253 |
|
|
return pc >= startaddr && pc < end_prologue;
|
1254 |
|
|
}
|
1255 |
|
|
#endif
|
1256 |
|
|
|
1257 |
|
|
/* The alpha needs a conversion between register and memory format if
|
1258 |
|
|
the register is a floating point register and
|
1259 |
|
|
memory format is float, as the register format must be double
|
1260 |
|
|
or
|
1261 |
|
|
memory format is an integer with 4 bytes or less, as the representation
|
1262 |
|
|
of integers in floating point registers is different. */
|
1263 |
|
|
void
|
1264 |
|
|
alpha_register_convert_to_virtual (int regnum, struct type *valtype,
|
1265 |
|
|
char *raw_buffer, char *virtual_buffer)
|
1266 |
|
|
{
|
1267 |
|
|
if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
|
1268 |
|
|
{
|
1269 |
|
|
memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
|
1270 |
|
|
return;
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
1274 |
|
|
{
|
1275 |
|
|
double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
|
1276 |
|
|
store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
|
1277 |
|
|
}
|
1278 |
|
|
else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
|
1279 |
|
|
{
|
1280 |
|
|
ULONGEST l;
|
1281 |
|
|
l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
|
1282 |
|
|
l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
|
1283 |
|
|
store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
|
1284 |
|
|
}
|
1285 |
|
|
else
|
1286 |
|
|
error ("Cannot retrieve value from floating point register");
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
void
|
1290 |
|
|
alpha_register_convert_to_raw (struct type *valtype, int regnum,
|
1291 |
|
|
char *virtual_buffer, char *raw_buffer)
|
1292 |
|
|
{
|
1293 |
|
|
if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
|
1294 |
|
|
{
|
1295 |
|
|
memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
|
1296 |
|
|
return;
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
1300 |
|
|
{
|
1301 |
|
|
double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
|
1302 |
|
|
store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
|
1303 |
|
|
}
|
1304 |
|
|
else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
|
1305 |
|
|
{
|
1306 |
|
|
ULONGEST l;
|
1307 |
|
|
if (TYPE_UNSIGNED (valtype))
|
1308 |
|
|
l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
|
1309 |
|
|
else
|
1310 |
|
|
l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
|
1311 |
|
|
l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
|
1312 |
|
|
store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
|
1313 |
|
|
}
|
1314 |
|
|
else
|
1315 |
|
|
error ("Cannot store value in floating point register");
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
1319 |
|
|
extract and copy its value into `valbuf'. */
|
1320 |
|
|
|
1321 |
|
|
void
|
1322 |
|
|
alpha_extract_return_value (struct type *valtype,
|
1323 |
|
|
char regbuf[REGISTER_BYTES], char *valbuf)
|
1324 |
|
|
{
|
1325 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
1326 |
|
|
alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
|
1327 |
|
|
regbuf + REGISTER_BYTE (FP0_REGNUM),
|
1328 |
|
|
valbuf);
|
1329 |
|
|
else
|
1330 |
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (V0_REGNUM), TYPE_LENGTH (valtype));
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
1334 |
|
|
write its value into the appropriate register. */
|
1335 |
|
|
|
1336 |
|
|
void
|
1337 |
|
|
alpha_store_return_value (struct type *valtype, char *valbuf)
|
1338 |
|
|
{
|
1339 |
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
1340 |
|
|
int regnum = V0_REGNUM;
|
1341 |
|
|
int length = TYPE_LENGTH (valtype);
|
1342 |
|
|
|
1343 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
1344 |
|
|
{
|
1345 |
|
|
regnum = FP0_REGNUM;
|
1346 |
|
|
length = REGISTER_RAW_SIZE (regnum);
|
1347 |
|
|
alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
|
1348 |
|
|
}
|
1349 |
|
|
else
|
1350 |
|
|
memcpy (raw_buffer, valbuf, length);
|
1351 |
|
|
|
1352 |
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
|
1353 |
|
|
}
|
1354 |
|
|
|
1355 |
|
|
/* Just like reinit_frame_cache, but with the right arguments to be
|
1356 |
|
|
callable as an sfunc. */
|
1357 |
|
|
|
1358 |
|
|
static void
|
1359 |
|
|
reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
|
1360 |
|
|
{
|
1361 |
|
|
reinit_frame_cache ();
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
/* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
|
1365 |
|
|
to find a convenient place in the text segment to stick a breakpoint to
|
1366 |
|
|
detect the completion of a target function call (ala call_function_by_hand).
|
1367 |
|
|
*/
|
1368 |
|
|
|
1369 |
|
|
CORE_ADDR
|
1370 |
|
|
alpha_call_dummy_address (void)
|
1371 |
|
|
{
|
1372 |
|
|
CORE_ADDR entry;
|
1373 |
|
|
struct minimal_symbol *sym;
|
1374 |
|
|
|
1375 |
|
|
entry = entry_point_address ();
|
1376 |
|
|
|
1377 |
|
|
if (entry != 0)
|
1378 |
|
|
return entry;
|
1379 |
|
|
|
1380 |
|
|
sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
|
1381 |
|
|
|
1382 |
|
|
if (!sym || MSYMBOL_TYPE (sym) != mst_text)
|
1383 |
|
|
return 0;
|
1384 |
|
|
else
|
1385 |
|
|
return SYMBOL_VALUE_ADDRESS (sym) + 4;
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
void
|
1389 |
|
|
_initialize_alpha_tdep (void)
|
1390 |
|
|
{
|
1391 |
|
|
struct cmd_list_element *c;
|
1392 |
|
|
|
1393 |
|
|
tm_print_insn = print_insn_alpha;
|
1394 |
|
|
|
1395 |
|
|
/* Let the user set the fence post for heuristic_proc_start. */
|
1396 |
|
|
|
1397 |
|
|
/* We really would like to have both "0" and "unlimited" work, but
|
1398 |
|
|
command.c doesn't deal with that. So make it a var_zinteger
|
1399 |
|
|
because the user can always use "999999" or some such for unlimited. */
|
1400 |
|
|
c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
|
1401 |
|
|
(char *) &heuristic_fence_post,
|
1402 |
|
|
"\
|
1403 |
|
|
Set the distance searched for the start of a function.\n\
|
1404 |
|
|
If you are debugging a stripped executable, GDB needs to search through the\n\
|
1405 |
|
|
program for the start of a function. This command sets the distance of the\n\
|
1406 |
|
|
search. The only need to set it is when debugging a stripped executable.",
|
1407 |
|
|
&setlist);
|
1408 |
|
|
/* We need to throw away the frame cache when we set this, since it
|
1409 |
|
|
might change our ability to get backtraces. */
|
1410 |
|
|
c->function.sfunc = reinit_frame_cache_sfunc;
|
1411 |
|
|
add_show_from_set (c, &showlist);
|
1412 |
|
|
}
|