| 1 |
578 |
markom |
/* Get info from stack frames;
|
| 2 |
|
|
convert between frames, blocks, functions and pc values.
|
| 3 |
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
| 4 |
|
|
1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GDB.
|
| 7 |
|
|
|
| 8 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
| 11 |
|
|
(at your option) any later version.
|
| 12 |
|
|
|
| 13 |
|
|
This program is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with this program; if not, write to the Free Software
|
| 20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
| 21 |
|
|
Boston, MA 02111-1307, USA. */
|
| 22 |
|
|
|
| 23 |
|
|
#include "defs.h"
|
| 24 |
|
|
#include "symtab.h"
|
| 25 |
|
|
#include "bfd.h"
|
| 26 |
|
|
#include "symfile.h"
|
| 27 |
|
|
#include "objfiles.h"
|
| 28 |
|
|
#include "frame.h"
|
| 29 |
|
|
#include "gdbcore.h"
|
| 30 |
|
|
#include "value.h" /* for read_register */
|
| 31 |
|
|
#include "target.h" /* for target_has_stack */
|
| 32 |
|
|
#include "inferior.h" /* for read_pc */
|
| 33 |
|
|
#include "annotate.h"
|
| 34 |
|
|
#include "regcache.h"
|
| 35 |
|
|
|
| 36 |
|
|
/* Prototypes for exported functions. */
|
| 37 |
|
|
|
| 38 |
|
|
void _initialize_blockframe (void);
|
| 39 |
|
|
|
| 40 |
|
|
/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
|
| 41 |
|
|
targets. If FRAME_CHAIN_VALID returns zero it means that the given
|
| 42 |
|
|
frame is the outermost one and has no caller. */
|
| 43 |
|
|
|
| 44 |
|
|
int
|
| 45 |
|
|
file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
| 46 |
|
|
{
|
| 47 |
|
|
return ((chain) != 0
|
| 48 |
|
|
&& !inside_entry_file (FRAME_SAVED_PC (thisframe)));
|
| 49 |
|
|
}
|
| 50 |
|
|
|
| 51 |
|
|
/* Use the alternate method of avoiding running up off the end of the
|
| 52 |
|
|
frame chain or following frames back into the startup code. See
|
| 53 |
|
|
the comments in objfiles.h. */
|
| 54 |
|
|
|
| 55 |
|
|
int
|
| 56 |
|
|
func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
| 57 |
|
|
{
|
| 58 |
|
|
return ((chain) != 0
|
| 59 |
|
|
&& !inside_main_func ((thisframe)->pc)
|
| 60 |
|
|
&& !inside_entry_func ((thisframe)->pc));
|
| 61 |
|
|
}
|
| 62 |
|
|
|
| 63 |
|
|
/* A very simple method of determining a valid frame */
|
| 64 |
|
|
|
| 65 |
|
|
int
|
| 66 |
|
|
nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
| 67 |
|
|
{
|
| 68 |
|
|
return ((chain) != 0);
|
| 69 |
|
|
}
|
| 70 |
|
|
|
| 71 |
|
|
/* Is ADDR inside the startup file? Note that if your machine
|
| 72 |
|
|
has a way to detect the bottom of the stack, there is no need
|
| 73 |
|
|
to call this function from FRAME_CHAIN_VALID; the reason for
|
| 74 |
|
|
doing so is that some machines have no way of detecting bottom
|
| 75 |
|
|
of stack.
|
| 76 |
|
|
|
| 77 |
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
| 78 |
|
|
|
| 79 |
|
|
int
|
| 80 |
|
|
inside_entry_file (CORE_ADDR addr)
|
| 81 |
|
|
{
|
| 82 |
|
|
if (addr == 0)
|
| 83 |
|
|
return 1;
|
| 84 |
|
|
if (symfile_objfile == 0)
|
| 85 |
|
|
return 0;
|
| 86 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
| 87 |
|
|
{
|
| 88 |
|
|
/* Do not stop backtracing if the pc is in the call dummy
|
| 89 |
|
|
at the entry point. */
|
| 90 |
|
|
/* FIXME: Won't always work with zeros for the last two arguments */
|
| 91 |
|
|
if (PC_IN_CALL_DUMMY (addr, 0, 0))
|
| 92 |
|
|
return 0;
|
| 93 |
|
|
}
|
| 94 |
|
|
return (addr >= symfile_objfile->ei.entry_file_lowpc &&
|
| 95 |
|
|
addr < symfile_objfile->ei.entry_file_highpc);
|
| 96 |
|
|
}
|
| 97 |
|
|
|
| 98 |
|
|
/* Test a specified PC value to see if it is in the range of addresses
|
| 99 |
|
|
that correspond to the main() function. See comments above for why
|
| 100 |
|
|
we might want to do this.
|
| 101 |
|
|
|
| 102 |
|
|
Typically called from FRAME_CHAIN_VALID.
|
| 103 |
|
|
|
| 104 |
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
| 105 |
|
|
|
| 106 |
|
|
int
|
| 107 |
|
|
inside_main_func (CORE_ADDR pc)
|
| 108 |
|
|
{
|
| 109 |
|
|
if (pc == 0)
|
| 110 |
|
|
return 1;
|
| 111 |
|
|
if (symfile_objfile == 0)
|
| 112 |
|
|
return 0;
|
| 113 |
|
|
|
| 114 |
|
|
/* If the addr range is not set up at symbol reading time, set it up now.
|
| 115 |
|
|
This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
|
| 116 |
|
|
it is unable to set it up and symbol reading time. */
|
| 117 |
|
|
|
| 118 |
|
|
if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
|
| 119 |
|
|
symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
|
| 120 |
|
|
{
|
| 121 |
|
|
struct symbol *mainsym;
|
| 122 |
|
|
|
| 123 |
|
|
mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
|
| 124 |
|
|
if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
|
| 125 |
|
|
{
|
| 126 |
|
|
symfile_objfile->ei.main_func_lowpc =
|
| 127 |
|
|
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
|
| 128 |
|
|
symfile_objfile->ei.main_func_highpc =
|
| 129 |
|
|
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
|
| 130 |
|
|
}
|
| 131 |
|
|
}
|
| 132 |
|
|
return (symfile_objfile->ei.main_func_lowpc <= pc &&
|
| 133 |
|
|
symfile_objfile->ei.main_func_highpc > pc);
|
| 134 |
|
|
}
|
| 135 |
|
|
|
| 136 |
|
|
/* Test a specified PC value to see if it is in the range of addresses
|
| 137 |
|
|
that correspond to the process entry point function. See comments
|
| 138 |
|
|
in objfiles.h for why we might want to do this.
|
| 139 |
|
|
|
| 140 |
|
|
Typically called from FRAME_CHAIN_VALID.
|
| 141 |
|
|
|
| 142 |
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
| 143 |
|
|
|
| 144 |
|
|
int
|
| 145 |
|
|
inside_entry_func (CORE_ADDR pc)
|
| 146 |
|
|
{
|
| 147 |
|
|
if (pc == 0)
|
| 148 |
|
|
return 1;
|
| 149 |
|
|
if (symfile_objfile == 0)
|
| 150 |
|
|
return 0;
|
| 151 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
| 152 |
|
|
{
|
| 153 |
|
|
/* Do not stop backtracing if the pc is in the call dummy
|
| 154 |
|
|
at the entry point. */
|
| 155 |
|
|
/* FIXME: Won't always work with zeros for the last two arguments */
|
| 156 |
|
|
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
| 157 |
|
|
return 0;
|
| 158 |
|
|
}
|
| 159 |
|
|
return (symfile_objfile->ei.entry_func_lowpc <= pc &&
|
| 160 |
|
|
symfile_objfile->ei.entry_func_highpc > pc);
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
/* Info about the innermost stack frame (contents of FP register) */
|
| 164 |
|
|
|
| 165 |
|
|
static struct frame_info *current_frame;
|
| 166 |
|
|
|
| 167 |
|
|
/* Cache for frame addresses already read by gdb. Valid only while
|
| 168 |
|
|
inferior is stopped. Control variables for the frame cache should
|
| 169 |
|
|
be local to this module. */
|
| 170 |
|
|
|
| 171 |
|
|
static struct obstack frame_cache_obstack;
|
| 172 |
|
|
|
| 173 |
|
|
void *
|
| 174 |
|
|
frame_obstack_alloc (unsigned long size)
|
| 175 |
|
|
{
|
| 176 |
|
|
return obstack_alloc (&frame_cache_obstack, size);
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
void
|
| 180 |
|
|
frame_saved_regs_zalloc (struct frame_info *fi)
|
| 181 |
|
|
{
|
| 182 |
|
|
fi->saved_regs = (CORE_ADDR *)
|
| 183 |
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
| 184 |
|
|
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
|
| 188 |
|
|
/* Return the innermost (currently executing) stack frame. */
|
| 189 |
|
|
|
| 190 |
|
|
struct frame_info *
|
| 191 |
|
|
get_current_frame (void)
|
| 192 |
|
|
{
|
| 193 |
|
|
if (current_frame == NULL)
|
| 194 |
|
|
{
|
| 195 |
|
|
if (target_has_stack)
|
| 196 |
|
|
current_frame = create_new_frame (read_fp (), read_pc ());
|
| 197 |
|
|
else
|
| 198 |
|
|
error ("No stack.");
|
| 199 |
|
|
}
|
| 200 |
|
|
return current_frame;
|
| 201 |
|
|
}
|
| 202 |
|
|
|
| 203 |
|
|
void
|
| 204 |
|
|
set_current_frame (struct frame_info *frame)
|
| 205 |
|
|
{
|
| 206 |
|
|
current_frame = frame;
|
| 207 |
|
|
}
|
| 208 |
|
|
|
| 209 |
|
|
/* Create an arbitrary (i.e. address specified by user) or innermost frame.
|
| 210 |
|
|
Always returns a non-NULL value. */
|
| 211 |
|
|
|
| 212 |
|
|
struct frame_info *
|
| 213 |
|
|
create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
|
| 214 |
|
|
{
|
| 215 |
|
|
struct frame_info *fi;
|
| 216 |
|
|
char *name;
|
| 217 |
|
|
|
| 218 |
|
|
fi = (struct frame_info *)
|
| 219 |
|
|
obstack_alloc (&frame_cache_obstack,
|
| 220 |
|
|
sizeof (struct frame_info));
|
| 221 |
|
|
|
| 222 |
|
|
/* Zero all fields by default. */
|
| 223 |
|
|
memset (fi, 0, sizeof (struct frame_info));
|
| 224 |
|
|
|
| 225 |
|
|
fi->frame = addr;
|
| 226 |
|
|
fi->pc = pc;
|
| 227 |
|
|
find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
| 228 |
|
|
fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
|
| 229 |
|
|
|
| 230 |
|
|
#ifdef INIT_EXTRA_FRAME_INFO
|
| 231 |
|
|
INIT_EXTRA_FRAME_INFO (0, fi);
|
| 232 |
|
|
#endif
|
| 233 |
|
|
|
| 234 |
|
|
return fi;
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
/* Return the frame that FRAME calls (NULL if FRAME is the innermost
|
| 238 |
|
|
frame). */
|
| 239 |
|
|
|
| 240 |
|
|
struct frame_info *
|
| 241 |
|
|
get_next_frame (struct frame_info *frame)
|
| 242 |
|
|
{
|
| 243 |
|
|
return frame->next;
|
| 244 |
|
|
}
|
| 245 |
|
|
|
| 246 |
|
|
/* Flush the entire frame cache. */
|
| 247 |
|
|
|
| 248 |
|
|
void
|
| 249 |
|
|
flush_cached_frames (void)
|
| 250 |
|
|
{
|
| 251 |
|
|
/* Since we can't really be sure what the first object allocated was */
|
| 252 |
|
|
obstack_free (&frame_cache_obstack, 0);
|
| 253 |
|
|
obstack_init (&frame_cache_obstack);
|
| 254 |
|
|
|
| 255 |
|
|
current_frame = NULL; /* Invalidate cache */
|
| 256 |
|
|
select_frame (NULL, -1);
|
| 257 |
|
|
annotate_frames_invalid ();
|
| 258 |
|
|
}
|
| 259 |
|
|
|
| 260 |
|
|
/* Flush the frame cache, and start a new one if necessary. */
|
| 261 |
|
|
|
| 262 |
|
|
void
|
| 263 |
|
|
reinit_frame_cache (void)
|
| 264 |
|
|
{
|
| 265 |
|
|
flush_cached_frames ();
|
| 266 |
|
|
|
| 267 |
|
|
/* FIXME: The inferior_ptid test is wrong if there is a corefile. */
|
| 268 |
|
|
if (PIDGET (inferior_ptid) != 0)
|
| 269 |
|
|
{
|
| 270 |
|
|
select_frame (get_current_frame (), 0);
|
| 271 |
|
|
}
|
| 272 |
|
|
}
|
| 273 |
|
|
|
| 274 |
|
|
/* Return nonzero if the function for this frame lacks a prologue. Many
|
| 275 |
|
|
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
|
| 276 |
|
|
function. */
|
| 277 |
|
|
|
| 278 |
|
|
int
|
| 279 |
|
|
frameless_look_for_prologue (struct frame_info *frame)
|
| 280 |
|
|
{
|
| 281 |
|
|
CORE_ADDR func_start, after_prologue;
|
| 282 |
|
|
|
| 283 |
|
|
func_start = get_pc_function_start (frame->pc);
|
| 284 |
|
|
if (func_start)
|
| 285 |
|
|
{
|
| 286 |
|
|
func_start += FUNCTION_START_OFFSET;
|
| 287 |
|
|
/* This is faster, since only care whether there *is* a
|
| 288 |
|
|
prologue, not how long it is. */
|
| 289 |
|
|
return PROLOGUE_FRAMELESS_P (func_start);
|
| 290 |
|
|
}
|
| 291 |
|
|
else if (frame->pc == 0)
|
| 292 |
|
|
/* A frame with a zero PC is usually created by dereferencing a
|
| 293 |
|
|
NULL function pointer, normally causing an immediate core dump
|
| 294 |
|
|
of the inferior. Mark function as frameless, as the inferior
|
| 295 |
|
|
has no chance of setting up a stack frame. */
|
| 296 |
|
|
return 1;
|
| 297 |
|
|
else
|
| 298 |
|
|
/* If we can't find the start of the function, we don't really
|
| 299 |
|
|
know whether the function is frameless, but we should be able
|
| 300 |
|
|
to get a reasonable (i.e. best we can do under the
|
| 301 |
|
|
circumstances) backtrace by saying that it isn't. */
|
| 302 |
|
|
return 0;
|
| 303 |
|
|
}
|
| 304 |
|
|
|
| 305 |
|
|
/* Default a few macros that people seldom redefine. */
|
| 306 |
|
|
|
| 307 |
|
|
#ifndef FRAME_CHAIN_COMBINE
|
| 308 |
|
|
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
| 309 |
|
|
#endif
|
| 310 |
|
|
|
| 311 |
|
|
/* Return a structure containing various interesting information
|
| 312 |
|
|
about the frame that called NEXT_FRAME. Returns NULL
|
| 313 |
|
|
if there is no such frame. */
|
| 314 |
|
|
|
| 315 |
|
|
struct frame_info *
|
| 316 |
|
|
get_prev_frame (struct frame_info *next_frame)
|
| 317 |
|
|
{
|
| 318 |
|
|
CORE_ADDR address = 0;
|
| 319 |
|
|
struct frame_info *prev;
|
| 320 |
|
|
int fromleaf = 0;
|
| 321 |
|
|
char *name;
|
| 322 |
|
|
|
| 323 |
|
|
/* If the requested entry is in the cache, return it.
|
| 324 |
|
|
Otherwise, figure out what the address should be for the entry
|
| 325 |
|
|
we're about to add to the cache. */
|
| 326 |
|
|
|
| 327 |
|
|
if (!next_frame)
|
| 328 |
|
|
{
|
| 329 |
|
|
#if 0
|
| 330 |
|
|
/* This screws value_of_variable, which just wants a nice clean
|
| 331 |
|
|
NULL return from block_innermost_frame if there are no frames.
|
| 332 |
|
|
I don't think I've ever seen this message happen otherwise.
|
| 333 |
|
|
And returning NULL here is a perfectly legitimate thing to do. */
|
| 334 |
|
|
if (!current_frame)
|
| 335 |
|
|
{
|
| 336 |
|
|
error ("You haven't set up a process's stack to examine.");
|
| 337 |
|
|
}
|
| 338 |
|
|
#endif
|
| 339 |
|
|
|
| 340 |
|
|
return current_frame;
|
| 341 |
|
|
}
|
| 342 |
|
|
|
| 343 |
|
|
/* If we have the prev one, return it */
|
| 344 |
|
|
if (next_frame->prev)
|
| 345 |
|
|
return next_frame->prev;
|
| 346 |
|
|
|
| 347 |
|
|
/* On some machines it is possible to call a function without
|
| 348 |
|
|
setting up a stack frame for it. On these machines, we
|
| 349 |
|
|
define this macro to take two args; a frameinfo pointer
|
| 350 |
|
|
identifying a frame and a variable to set or clear if it is
|
| 351 |
|
|
or isn't leafless. */
|
| 352 |
|
|
|
| 353 |
|
|
/* Still don't want to worry about this except on the innermost
|
| 354 |
|
|
frame. This macro will set FROMLEAF if NEXT_FRAME is a
|
| 355 |
|
|
frameless function invocation. */
|
| 356 |
|
|
if (!(next_frame->next))
|
| 357 |
|
|
{
|
| 358 |
|
|
fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
|
| 359 |
|
|
if (fromleaf)
|
| 360 |
|
|
address = FRAME_FP (next_frame);
|
| 361 |
|
|
}
|
| 362 |
|
|
|
| 363 |
|
|
if (!fromleaf)
|
| 364 |
|
|
{
|
| 365 |
|
|
/* Two macros defined in tm.h specify the machine-dependent
|
| 366 |
|
|
actions to be performed here.
|
| 367 |
|
|
First, get the frame's chain-pointer.
|
| 368 |
|
|
If that is zero, the frame is the outermost frame or a leaf
|
| 369 |
|
|
called by the outermost frame. This means that if start
|
| 370 |
|
|
calls main without a frame, we'll return 0 (which is fine
|
| 371 |
|
|
anyway).
|
| 372 |
|
|
|
| 373 |
|
|
Nope; there's a problem. This also returns when the current
|
| 374 |
|
|
routine is a leaf of main. This is unacceptable. We move
|
| 375 |
|
|
this to after the ffi test; I'd rather have backtraces from
|
| 376 |
|
|
start go curfluy than have an abort called from main not show
|
| 377 |
|
|
main. */
|
| 378 |
|
|
address = FRAME_CHAIN (next_frame);
|
| 379 |
|
|
if (!FRAME_CHAIN_VALID (address, next_frame))
|
| 380 |
|
|
return 0;
|
| 381 |
|
|
address = FRAME_CHAIN_COMBINE (address, next_frame);
|
| 382 |
|
|
}
|
| 383 |
|
|
if (address == 0)
|
| 384 |
|
|
return 0;
|
| 385 |
|
|
|
| 386 |
|
|
prev = (struct frame_info *)
|
| 387 |
|
|
obstack_alloc (&frame_cache_obstack,
|
| 388 |
|
|
sizeof (struct frame_info));
|
| 389 |
|
|
|
| 390 |
|
|
/* Zero all fields by default. */
|
| 391 |
|
|
memset (prev, 0, sizeof (struct frame_info));
|
| 392 |
|
|
|
| 393 |
|
|
if (next_frame)
|
| 394 |
|
|
next_frame->prev = prev;
|
| 395 |
|
|
prev->next = next_frame;
|
| 396 |
|
|
prev->frame = address;
|
| 397 |
|
|
|
| 398 |
|
|
/* This change should not be needed, FIXME! We should
|
| 399 |
|
|
determine whether any targets *need* INIT_FRAME_PC to happen
|
| 400 |
|
|
after INIT_EXTRA_FRAME_INFO and come up with a simple way to
|
| 401 |
|
|
express what goes on here.
|
| 402 |
|
|
|
| 403 |
|
|
INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
|
| 404 |
|
|
(where the PC is already set up) and here (where it isn't).
|
| 405 |
|
|
INIT_FRAME_PC is only called from here, always after
|
| 406 |
|
|
INIT_EXTRA_FRAME_INFO.
|
| 407 |
|
|
|
| 408 |
|
|
The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
|
| 409 |
|
|
value (which hasn't been set yet). Some other machines appear to
|
| 410 |
|
|
require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
|
| 411 |
|
|
|
| 412 |
|
|
We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
|
| 413 |
|
|
an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
|
| 414 |
|
|
|
| 415 |
|
|
Assuming that some machines need INIT_FRAME_PC after
|
| 416 |
|
|
INIT_EXTRA_FRAME_INFO, one possible scheme:
|
| 417 |
|
|
|
| 418 |
|
|
SETUP_INNERMOST_FRAME()
|
| 419 |
|
|
Default version is just create_new_frame (read_fp ()),
|
| 420 |
|
|
read_pc ()). Machines with extra frame info would do that (or the
|
| 421 |
|
|
local equivalent) and then set the extra fields.
|
| 422 |
|
|
SETUP_ARBITRARY_FRAME(argc, argv)
|
| 423 |
|
|
Only change here is that create_new_frame would no longer init extra
|
| 424 |
|
|
frame info; SETUP_ARBITRARY_FRAME would have to do that.
|
| 425 |
|
|
INIT_PREV_FRAME(fromleaf, prev)
|
| 426 |
|
|
Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
|
| 427 |
|
|
also return a flag saying whether to keep the new frame, or
|
| 428 |
|
|
whether to discard it, because on some machines (e.g. mips) it
|
| 429 |
|
|
is really awkward to have FRAME_CHAIN_VALID called *before*
|
| 430 |
|
|
INIT_EXTRA_FRAME_INFO (there is no good way to get information
|
| 431 |
|
|
deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
|
| 432 |
|
|
std_frame_pc(fromleaf, prev)
|
| 433 |
|
|
This is the default setting for INIT_PREV_FRAME. It just does what
|
| 434 |
|
|
the default INIT_FRAME_PC does. Some machines will call it from
|
| 435 |
|
|
INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
|
| 436 |
|
|
Some machines won't use it.
|
| 437 |
|
|
kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
|
| 438 |
|
|
|
| 439 |
|
|
INIT_FRAME_PC_FIRST (fromleaf, prev);
|
| 440 |
|
|
|
| 441 |
|
|
#ifdef INIT_EXTRA_FRAME_INFO
|
| 442 |
|
|
INIT_EXTRA_FRAME_INFO (fromleaf, prev);
|
| 443 |
|
|
#endif
|
| 444 |
|
|
|
| 445 |
|
|
/* This entry is in the frame queue now, which is good since
|
| 446 |
|
|
FRAME_SAVED_PC may use that queue to figure out its value
|
| 447 |
|
|
(see tm-sparc.h). We want the pc saved in the inferior frame. */
|
| 448 |
|
|
INIT_FRAME_PC (fromleaf, prev);
|
| 449 |
|
|
|
| 450 |
|
|
/* If ->frame and ->pc are unchanged, we are in the process of getting
|
| 451 |
|
|
ourselves into an infinite backtrace. Some architectures check this
|
| 452 |
|
|
in FRAME_CHAIN or thereabouts, but it seems like there is no reason
|
| 453 |
|
|
this can't be an architecture-independent check. */
|
| 454 |
|
|
if (next_frame != NULL)
|
| 455 |
|
|
{
|
| 456 |
|
|
if (prev->frame == next_frame->frame
|
| 457 |
|
|
&& prev->pc == next_frame->pc)
|
| 458 |
|
|
{
|
| 459 |
|
|
next_frame->prev = NULL;
|
| 460 |
|
|
obstack_free (&frame_cache_obstack, prev);
|
| 461 |
|
|
return NULL;
|
| 462 |
|
|
}
|
| 463 |
|
|
}
|
| 464 |
|
|
|
| 465 |
|
|
find_pc_partial_function (prev->pc, &name,
|
| 466 |
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
| 467 |
|
|
if (IN_SIGTRAMP (prev->pc, name))
|
| 468 |
|
|
prev->signal_handler_caller = 1;
|
| 469 |
|
|
|
| 470 |
|
|
return prev;
|
| 471 |
|
|
}
|
| 472 |
|
|
|
| 473 |
|
|
CORE_ADDR
|
| 474 |
|
|
get_frame_pc (struct frame_info *frame)
|
| 475 |
|
|
{
|
| 476 |
|
|
return frame->pc;
|
| 477 |
|
|
}
|
| 478 |
|
|
|
| 479 |
|
|
|
| 480 |
|
|
#ifdef FRAME_FIND_SAVED_REGS
|
| 481 |
|
|
/* XXX - deprecated. This is a compatibility function for targets
|
| 482 |
|
|
that do not yet implement FRAME_INIT_SAVED_REGS. */
|
| 483 |
|
|
/* Find the addresses in which registers are saved in FRAME. */
|
| 484 |
|
|
|
| 485 |
|
|
void
|
| 486 |
|
|
get_frame_saved_regs (struct frame_info *frame,
|
| 487 |
|
|
struct frame_saved_regs *saved_regs_addr)
|
| 488 |
|
|
{
|
| 489 |
|
|
if (frame->saved_regs == NULL)
|
| 490 |
|
|
{
|
| 491 |
|
|
frame->saved_regs = (CORE_ADDR *)
|
| 492 |
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
| 493 |
|
|
}
|
| 494 |
|
|
if (saved_regs_addr == NULL)
|
| 495 |
|
|
{
|
| 496 |
|
|
struct frame_saved_regs saved_regs;
|
| 497 |
|
|
FRAME_FIND_SAVED_REGS (frame, saved_regs);
|
| 498 |
|
|
memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
|
| 499 |
|
|
}
|
| 500 |
|
|
else
|
| 501 |
|
|
{
|
| 502 |
|
|
FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
|
| 503 |
|
|
memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
|
| 504 |
|
|
}
|
| 505 |
|
|
}
|
| 506 |
|
|
#endif
|
| 507 |
|
|
|
| 508 |
|
|
/* Return the innermost lexical block in execution
|
| 509 |
|
|
in a specified stack frame. The frame address is assumed valid. */
|
| 510 |
|
|
|
| 511 |
|
|
struct block *
|
| 512 |
|
|
get_frame_block (struct frame_info *frame)
|
| 513 |
|
|
{
|
| 514 |
|
|
CORE_ADDR pc;
|
| 515 |
|
|
|
| 516 |
|
|
pc = frame->pc;
|
| 517 |
|
|
if (frame->next != 0 && frame->next->signal_handler_caller == 0)
|
| 518 |
|
|
/* We are not in the innermost frame and we were not interrupted
|
| 519 |
|
|
by a signal. We need to subtract one to get the correct block,
|
| 520 |
|
|
in case the call instruction was the last instruction of the block.
|
| 521 |
|
|
If there are any machines on which the saved pc does not point to
|
| 522 |
|
|
after the call insn, we probably want to make frame->pc point after
|
| 523 |
|
|
the call insn anyway. */
|
| 524 |
|
|
--pc;
|
| 525 |
|
|
return block_for_pc (pc);
|
| 526 |
|
|
}
|
| 527 |
|
|
|
| 528 |
|
|
struct block *
|
| 529 |
|
|
get_current_block (void)
|
| 530 |
|
|
{
|
| 531 |
|
|
return block_for_pc (read_pc ());
|
| 532 |
|
|
}
|
| 533 |
|
|
|
| 534 |
|
|
CORE_ADDR
|
| 535 |
|
|
get_pc_function_start (CORE_ADDR pc)
|
| 536 |
|
|
{
|
| 537 |
|
|
register struct block *bl;
|
| 538 |
|
|
register struct symbol *symbol;
|
| 539 |
|
|
register struct minimal_symbol *msymbol;
|
| 540 |
|
|
CORE_ADDR fstart;
|
| 541 |
|
|
|
| 542 |
|
|
if ((bl = block_for_pc (pc)) != NULL &&
|
| 543 |
|
|
(symbol = block_function (bl)) != NULL)
|
| 544 |
|
|
{
|
| 545 |
|
|
bl = SYMBOL_BLOCK_VALUE (symbol);
|
| 546 |
|
|
fstart = BLOCK_START (bl);
|
| 547 |
|
|
}
|
| 548 |
|
|
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
|
| 549 |
|
|
{
|
| 550 |
|
|
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
| 551 |
|
|
}
|
| 552 |
|
|
else
|
| 553 |
|
|
{
|
| 554 |
|
|
fstart = 0;
|
| 555 |
|
|
}
|
| 556 |
|
|
return (fstart);
|
| 557 |
|
|
}
|
| 558 |
|
|
|
| 559 |
|
|
/* Return the symbol for the function executing in frame FRAME. */
|
| 560 |
|
|
|
| 561 |
|
|
struct symbol *
|
| 562 |
|
|
get_frame_function (struct frame_info *frame)
|
| 563 |
|
|
{
|
| 564 |
|
|
register struct block *bl = get_frame_block (frame);
|
| 565 |
|
|
if (bl == 0)
|
| 566 |
|
|
return 0;
|
| 567 |
|
|
return block_function (bl);
|
| 568 |
|
|
}
|
| 569 |
|
|
|
| 570 |
|
|
|
| 571 |
|
|
/* Return the blockvector immediately containing the innermost lexical block
|
| 572 |
|
|
containing the specified pc value and section, or 0 if there is none.
|
| 573 |
|
|
PINDEX is a pointer to the index value of the block. If PINDEX
|
| 574 |
|
|
is NULL, we don't pass this information back to the caller. */
|
| 575 |
|
|
|
| 576 |
|
|
struct blockvector *
|
| 577 |
|
|
blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
|
| 578 |
|
|
int *pindex, struct symtab *symtab)
|
| 579 |
|
|
{
|
| 580 |
|
|
register struct block *b;
|
| 581 |
|
|
register int bot, top, half;
|
| 582 |
|
|
struct blockvector *bl;
|
| 583 |
|
|
|
| 584 |
|
|
if (symtab == 0) /* if no symtab specified by caller */
|
| 585 |
|
|
{
|
| 586 |
|
|
/* First search all symtabs for one whose file contains our pc */
|
| 587 |
|
|
if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
|
| 588 |
|
|
return 0;
|
| 589 |
|
|
}
|
| 590 |
|
|
|
| 591 |
|
|
bl = BLOCKVECTOR (symtab);
|
| 592 |
|
|
b = BLOCKVECTOR_BLOCK (bl, 0);
|
| 593 |
|
|
|
| 594 |
|
|
/* Then search that symtab for the smallest block that wins. */
|
| 595 |
|
|
/* Use binary search to find the last block that starts before PC. */
|
| 596 |
|
|
|
| 597 |
|
|
bot = 0;
|
| 598 |
|
|
top = BLOCKVECTOR_NBLOCKS (bl);
|
| 599 |
|
|
|
| 600 |
|
|
while (top - bot > 1)
|
| 601 |
|
|
{
|
| 602 |
|
|
half = (top - bot + 1) >> 1;
|
| 603 |
|
|
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
| 604 |
|
|
if (BLOCK_START (b) <= pc)
|
| 605 |
|
|
bot += half;
|
| 606 |
|
|
else
|
| 607 |
|
|
top = bot + half;
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
/* Now search backward for a block that ends after PC. */
|
| 611 |
|
|
|
| 612 |
|
|
while (bot >= 0)
|
| 613 |
|
|
{
|
| 614 |
|
|
b = BLOCKVECTOR_BLOCK (bl, bot);
|
| 615 |
|
|
if (BLOCK_END (b) > pc)
|
| 616 |
|
|
{
|
| 617 |
|
|
if (pindex)
|
| 618 |
|
|
*pindex = bot;
|
| 619 |
|
|
return bl;
|
| 620 |
|
|
}
|
| 621 |
|
|
bot--;
|
| 622 |
|
|
}
|
| 623 |
|
|
return 0;
|
| 624 |
|
|
}
|
| 625 |
|
|
|
| 626 |
|
|
/* Return the blockvector immediately containing the innermost lexical block
|
| 627 |
|
|
containing the specified pc value, or 0 if there is none.
|
| 628 |
|
|
Backward compatibility, no section. */
|
| 629 |
|
|
|
| 630 |
|
|
struct blockvector *
|
| 631 |
|
|
blockvector_for_pc (register CORE_ADDR pc, int *pindex)
|
| 632 |
|
|
{
|
| 633 |
|
|
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
| 634 |
|
|
pindex, NULL);
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
/* Return the innermost lexical block containing the specified pc value
|
| 638 |
|
|
in the specified section, or 0 if there is none. */
|
| 639 |
|
|
|
| 640 |
|
|
struct block *
|
| 641 |
|
|
block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
|
| 642 |
|
|
{
|
| 643 |
|
|
register struct blockvector *bl;
|
| 644 |
|
|
int index;
|
| 645 |
|
|
|
| 646 |
|
|
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
|
| 647 |
|
|
if (bl)
|
| 648 |
|
|
return BLOCKVECTOR_BLOCK (bl, index);
|
| 649 |
|
|
return 0;
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
/* Return the innermost lexical block containing the specified pc value,
|
| 653 |
|
|
or 0 if there is none. Backward compatibility, no section. */
|
| 654 |
|
|
|
| 655 |
|
|
struct block *
|
| 656 |
|
|
block_for_pc (register CORE_ADDR pc)
|
| 657 |
|
|
{
|
| 658 |
|
|
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
| 659 |
|
|
}
|
| 660 |
|
|
|
| 661 |
|
|
/* Return the function containing pc value PC in section SECTION.
|
| 662 |
|
|
Returns 0 if function is not known. */
|
| 663 |
|
|
|
| 664 |
|
|
struct symbol *
|
| 665 |
|
|
find_pc_sect_function (CORE_ADDR pc, struct sec *section)
|
| 666 |
|
|
{
|
| 667 |
|
|
register struct block *b = block_for_pc_sect (pc, section);
|
| 668 |
|
|
if (b == 0)
|
| 669 |
|
|
return 0;
|
| 670 |
|
|
return block_function (b);
|
| 671 |
|
|
}
|
| 672 |
|
|
|
| 673 |
|
|
/* Return the function containing pc value PC.
|
| 674 |
|
|
Returns 0 if function is not known. Backward compatibility, no section */
|
| 675 |
|
|
|
| 676 |
|
|
struct symbol *
|
| 677 |
|
|
find_pc_function (CORE_ADDR pc)
|
| 678 |
|
|
{
|
| 679 |
|
|
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
| 680 |
|
|
}
|
| 681 |
|
|
|
| 682 |
|
|
/* These variables are used to cache the most recent result
|
| 683 |
|
|
* of find_pc_partial_function. */
|
| 684 |
|
|
|
| 685 |
|
|
static CORE_ADDR cache_pc_function_low = 0;
|
| 686 |
|
|
static CORE_ADDR cache_pc_function_high = 0;
|
| 687 |
|
|
static char *cache_pc_function_name = 0;
|
| 688 |
|
|
static struct sec *cache_pc_function_section = NULL;
|
| 689 |
|
|
|
| 690 |
|
|
/* Clear cache, e.g. when symbol table is discarded. */
|
| 691 |
|
|
|
| 692 |
|
|
void
|
| 693 |
|
|
clear_pc_function_cache (void)
|
| 694 |
|
|
{
|
| 695 |
|
|
cache_pc_function_low = 0;
|
| 696 |
|
|
cache_pc_function_high = 0;
|
| 697 |
|
|
cache_pc_function_name = (char *) 0;
|
| 698 |
|
|
cache_pc_function_section = NULL;
|
| 699 |
|
|
}
|
| 700 |
|
|
|
| 701 |
|
|
/* Finds the "function" (text symbol) that is smaller than PC but
|
| 702 |
|
|
greatest of all of the potential text symbols in SECTION. Sets
|
| 703 |
|
|
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
| 704 |
|
|
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
| 705 |
|
|
function (exclusive), but passing ENDADDR as non-null means that
|
| 706 |
|
|
the function might cause symbols to be read. This function either
|
| 707 |
|
|
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
| 708 |
|
|
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
| 709 |
|
|
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
| 710 |
|
|
returns 0. */
|
| 711 |
|
|
|
| 712 |
|
|
int
|
| 713 |
|
|
find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
|
| 714 |
|
|
CORE_ADDR *address, CORE_ADDR *endaddr)
|
| 715 |
|
|
{
|
| 716 |
|
|
struct partial_symtab *pst;
|
| 717 |
|
|
struct symbol *f;
|
| 718 |
|
|
struct minimal_symbol *msymbol;
|
| 719 |
|
|
struct partial_symbol *psb;
|
| 720 |
|
|
struct obj_section *osect;
|
| 721 |
|
|
int i;
|
| 722 |
|
|
CORE_ADDR mapped_pc;
|
| 723 |
|
|
|
| 724 |
|
|
mapped_pc = overlay_mapped_address (pc, section);
|
| 725 |
|
|
|
| 726 |
|
|
if (mapped_pc >= cache_pc_function_low &&
|
| 727 |
|
|
mapped_pc < cache_pc_function_high &&
|
| 728 |
|
|
section == cache_pc_function_section)
|
| 729 |
|
|
goto return_cached_value;
|
| 730 |
|
|
|
| 731 |
|
|
/* If sigtramp is in the u area, it counts as a function (especially
|
| 732 |
|
|
important for step_1). */
|
| 733 |
|
|
#if defined SIGTRAMP_START
|
| 734 |
|
|
if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
|
| 735 |
|
|
{
|
| 736 |
|
|
cache_pc_function_low = SIGTRAMP_START (mapped_pc);
|
| 737 |
|
|
cache_pc_function_high = SIGTRAMP_END (mapped_pc);
|
| 738 |
|
|
cache_pc_function_name = "<sigtramp>";
|
| 739 |
|
|
cache_pc_function_section = section;
|
| 740 |
|
|
goto return_cached_value;
|
| 741 |
|
|
}
|
| 742 |
|
|
#endif
|
| 743 |
|
|
|
| 744 |
|
|
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
| 745 |
|
|
pst = find_pc_sect_psymtab (mapped_pc, section);
|
| 746 |
|
|
if (pst)
|
| 747 |
|
|
{
|
| 748 |
|
|
/* Need to read the symbols to get a good value for the end address. */
|
| 749 |
|
|
if (endaddr != NULL && !pst->readin)
|
| 750 |
|
|
{
|
| 751 |
|
|
/* Need to get the terminal in case symbol-reading produces
|
| 752 |
|
|
output. */
|
| 753 |
|
|
target_terminal_ours_for_output ();
|
| 754 |
|
|
PSYMTAB_TO_SYMTAB (pst);
|
| 755 |
|
|
}
|
| 756 |
|
|
|
| 757 |
|
|
if (pst->readin)
|
| 758 |
|
|
{
|
| 759 |
|
|
/* Checking whether the msymbol has a larger value is for the
|
| 760 |
|
|
"pathological" case mentioned in print_frame_info. */
|
| 761 |
|
|
f = find_pc_sect_function (mapped_pc, section);
|
| 762 |
|
|
if (f != NULL
|
| 763 |
|
|
&& (msymbol == NULL
|
| 764 |
|
|
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
| 765 |
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
| 766 |
|
|
{
|
| 767 |
|
|
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
| 768 |
|
|
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
| 769 |
|
|
cache_pc_function_name = SYMBOL_NAME (f);
|
| 770 |
|
|
cache_pc_function_section = section;
|
| 771 |
|
|
goto return_cached_value;
|
| 772 |
|
|
}
|
| 773 |
|
|
}
|
| 774 |
|
|
else
|
| 775 |
|
|
{
|
| 776 |
|
|
/* Now that static symbols go in the minimal symbol table, perhaps
|
| 777 |
|
|
we could just ignore the partial symbols. But at least for now
|
| 778 |
|
|
we use the partial or minimal symbol, whichever is larger. */
|
| 779 |
|
|
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
| 780 |
|
|
|
| 781 |
|
|
if (psb
|
| 782 |
|
|
&& (msymbol == NULL ||
|
| 783 |
|
|
(SYMBOL_VALUE_ADDRESS (psb)
|
| 784 |
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
| 785 |
|
|
{
|
| 786 |
|
|
/* This case isn't being cached currently. */
|
| 787 |
|
|
if (address)
|
| 788 |
|
|
*address = SYMBOL_VALUE_ADDRESS (psb);
|
| 789 |
|
|
if (name)
|
| 790 |
|
|
*name = SYMBOL_NAME (psb);
|
| 791 |
|
|
/* endaddr non-NULL can't happen here. */
|
| 792 |
|
|
return 1;
|
| 793 |
|
|
}
|
| 794 |
|
|
}
|
| 795 |
|
|
}
|
| 796 |
|
|
|
| 797 |
|
|
/* Not in the normal symbol tables, see if the pc is in a known section.
|
| 798 |
|
|
If it's not, then give up. This ensures that anything beyond the end
|
| 799 |
|
|
of the text seg doesn't appear to be part of the last function in the
|
| 800 |
|
|
text segment. */
|
| 801 |
|
|
|
| 802 |
|
|
osect = find_pc_sect_section (mapped_pc, section);
|
| 803 |
|
|
|
| 804 |
|
|
if (!osect)
|
| 805 |
|
|
msymbol = NULL;
|
| 806 |
|
|
|
| 807 |
|
|
/* Must be in the minimal symbol table. */
|
| 808 |
|
|
if (msymbol == NULL)
|
| 809 |
|
|
{
|
| 810 |
|
|
/* No available symbol. */
|
| 811 |
|
|
if (name != NULL)
|
| 812 |
|
|
*name = 0;
|
| 813 |
|
|
if (address != NULL)
|
| 814 |
|
|
*address = 0;
|
| 815 |
|
|
if (endaddr != NULL)
|
| 816 |
|
|
*endaddr = 0;
|
| 817 |
|
|
return 0;
|
| 818 |
|
|
}
|
| 819 |
|
|
|
| 820 |
|
|
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
| 821 |
|
|
cache_pc_function_name = SYMBOL_NAME (msymbol);
|
| 822 |
|
|
cache_pc_function_section = section;
|
| 823 |
|
|
|
| 824 |
|
|
/* Use the lesser of the next minimal symbol in the same section, or
|
| 825 |
|
|
the end of the section, as the end of the function. */
|
| 826 |
|
|
|
| 827 |
|
|
/* Step over other symbols at this same address, and symbols in
|
| 828 |
|
|
other sections, to find the next symbol in this section with
|
| 829 |
|
|
a different address. */
|
| 830 |
|
|
|
| 831 |
|
|
for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
|
| 832 |
|
|
{
|
| 833 |
|
|
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
| 834 |
|
|
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
|
| 835 |
|
|
break;
|
| 836 |
|
|
}
|
| 837 |
|
|
|
| 838 |
|
|
if (SYMBOL_NAME (msymbol + i) != NULL
|
| 839 |
|
|
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
| 840 |
|
|
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
| 841 |
|
|
else
|
| 842 |
|
|
/* We got the start address from the last msymbol in the objfile.
|
| 843 |
|
|
So the end address is the end of the section. */
|
| 844 |
|
|
cache_pc_function_high = osect->endaddr;
|
| 845 |
|
|
|
| 846 |
|
|
return_cached_value:
|
| 847 |
|
|
|
| 848 |
|
|
if (address)
|
| 849 |
|
|
{
|
| 850 |
|
|
if (pc_in_unmapped_range (pc, section))
|
| 851 |
|
|
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
| 852 |
|
|
else
|
| 853 |
|
|
*address = cache_pc_function_low;
|
| 854 |
|
|
}
|
| 855 |
|
|
|
| 856 |
|
|
if (name)
|
| 857 |
|
|
*name = cache_pc_function_name;
|
| 858 |
|
|
|
| 859 |
|
|
if (endaddr)
|
| 860 |
|
|
{
|
| 861 |
|
|
if (pc_in_unmapped_range (pc, section))
|
| 862 |
|
|
{
|
| 863 |
|
|
/* Because the high address is actually beyond the end of
|
| 864 |
|
|
the function (and therefore possibly beyond the end of
|
| 865 |
|
|
the overlay), we must actually convert (high - 1)
|
| 866 |
|
|
and then add one to that. */
|
| 867 |
|
|
|
| 868 |
|
|
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
| 869 |
|
|
section);
|
| 870 |
|
|
}
|
| 871 |
|
|
else
|
| 872 |
|
|
*endaddr = cache_pc_function_high;
|
| 873 |
|
|
}
|
| 874 |
|
|
|
| 875 |
|
|
return 1;
|
| 876 |
|
|
}
|
| 877 |
|
|
|
| 878 |
|
|
/* Backward compatibility, no section argument */
|
| 879 |
|
|
|
| 880 |
|
|
int
|
| 881 |
|
|
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
|
| 882 |
|
|
CORE_ADDR *endaddr)
|
| 883 |
|
|
{
|
| 884 |
|
|
asection *section;
|
| 885 |
|
|
|
| 886 |
|
|
section = find_pc_overlay (pc);
|
| 887 |
|
|
return find_pc_sect_partial_function (pc, section, name, address, endaddr);
|
| 888 |
|
|
}
|
| 889 |
|
|
|
| 890 |
|
|
/* Return the innermost stack frame executing inside of BLOCK,
|
| 891 |
|
|
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
| 892 |
|
|
|
| 893 |
|
|
struct frame_info *
|
| 894 |
|
|
block_innermost_frame (struct block *block)
|
| 895 |
|
|
{
|
| 896 |
|
|
struct frame_info *frame;
|
| 897 |
|
|
register CORE_ADDR start;
|
| 898 |
|
|
register CORE_ADDR end;
|
| 899 |
|
|
|
| 900 |
|
|
if (block == NULL)
|
| 901 |
|
|
return NULL;
|
| 902 |
|
|
|
| 903 |
|
|
start = BLOCK_START (block);
|
| 904 |
|
|
end = BLOCK_END (block);
|
| 905 |
|
|
|
| 906 |
|
|
frame = NULL;
|
| 907 |
|
|
while (1)
|
| 908 |
|
|
{
|
| 909 |
|
|
frame = get_prev_frame (frame);
|
| 910 |
|
|
if (frame == NULL)
|
| 911 |
|
|
return NULL;
|
| 912 |
|
|
if (frame->pc >= start && frame->pc < end)
|
| 913 |
|
|
return frame;
|
| 914 |
|
|
}
|
| 915 |
|
|
}
|
| 916 |
|
|
|
| 917 |
|
|
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
| 918 |
|
|
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
| 919 |
|
|
|
| 920 |
|
|
struct frame_info *
|
| 921 |
|
|
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
| 922 |
|
|
{
|
| 923 |
|
|
struct frame_info *frame = NULL;
|
| 924 |
|
|
|
| 925 |
|
|
if (frame_addr == (CORE_ADDR) 0)
|
| 926 |
|
|
return NULL;
|
| 927 |
|
|
|
| 928 |
|
|
while (1)
|
| 929 |
|
|
{
|
| 930 |
|
|
frame = get_prev_frame (frame);
|
| 931 |
|
|
if (frame == NULL)
|
| 932 |
|
|
return NULL;
|
| 933 |
|
|
if (FRAME_FP (frame) == frame_addr)
|
| 934 |
|
|
return frame;
|
| 935 |
|
|
}
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
#ifdef SIGCONTEXT_PC_OFFSET
|
| 939 |
|
|
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
|
| 940 |
|
|
|
| 941 |
|
|
CORE_ADDR
|
| 942 |
|
|
sigtramp_saved_pc (struct frame_info *frame)
|
| 943 |
|
|
{
|
| 944 |
|
|
CORE_ADDR sigcontext_addr;
|
| 945 |
|
|
char *buf;
|
| 946 |
|
|
int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
| 947 |
|
|
int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
|
| 948 |
|
|
|
| 949 |
|
|
buf = alloca (ptrbytes);
|
| 950 |
|
|
/* Get sigcontext address, it is the third parameter on the stack. */
|
| 951 |
|
|
if (frame->next)
|
| 952 |
|
|
sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
|
| 953 |
|
|
+ FRAME_ARGS_SKIP
|
| 954 |
|
|
+ sigcontext_offs,
|
| 955 |
|
|
ptrbytes);
|
| 956 |
|
|
else
|
| 957 |
|
|
sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
|
| 958 |
|
|
+ sigcontext_offs,
|
| 959 |
|
|
ptrbytes);
|
| 960 |
|
|
|
| 961 |
|
|
/* Don't cause a memory_error when accessing sigcontext in case the stack
|
| 962 |
|
|
layout has changed or the stack is corrupt. */
|
| 963 |
|
|
target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
|
| 964 |
|
|
return extract_unsigned_integer (buf, ptrbytes);
|
| 965 |
|
|
}
|
| 966 |
|
|
#endif /* SIGCONTEXT_PC_OFFSET */
|
| 967 |
|
|
|
| 968 |
|
|
|
| 969 |
|
|
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
|
| 970 |
|
|
below is for infrun.c, which may give the macro a pc without that
|
| 971 |
|
|
subtracted out. */
|
| 972 |
|
|
|
| 973 |
|
|
extern CORE_ADDR text_end;
|
| 974 |
|
|
|
| 975 |
|
|
int
|
| 976 |
|
|
pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
| 977 |
|
|
CORE_ADDR frame_address)
|
| 978 |
|
|
{
|
| 979 |
|
|
return ((pc) >= text_end - CALL_DUMMY_LENGTH
|
| 980 |
|
|
&& (pc) <= text_end + DECR_PC_AFTER_BREAK);
|
| 981 |
|
|
}
|
| 982 |
|
|
|
| 983 |
|
|
int
|
| 984 |
|
|
pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
| 985 |
|
|
CORE_ADDR frame_address)
|
| 986 |
|
|
{
|
| 987 |
|
|
return ((pc) >= text_end
|
| 988 |
|
|
&& (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
|
| 989 |
|
|
}
|
| 990 |
|
|
|
| 991 |
|
|
/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
|
| 992 |
|
|
top of the stack frame which we are checking, where "bottom" and
|
| 993 |
|
|
"top" refer to some section of memory which contains the code for
|
| 994 |
|
|
the call dummy. Calls to this macro assume that the contents of
|
| 995 |
|
|
SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
|
| 996 |
|
|
are the things to pass.
|
| 997 |
|
|
|
| 998 |
|
|
This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
|
| 999 |
|
|
have that meaning, but the 29k doesn't use ON_STACK. This could be
|
| 1000 |
|
|
fixed by generalizing this scheme, perhaps by passing in a frame
|
| 1001 |
|
|
and adding a few fields, at least on machines which need them for
|
| 1002 |
|
|
PC_IN_CALL_DUMMY.
|
| 1003 |
|
|
|
| 1004 |
|
|
Something simpler, like checking for the stack segment, doesn't work,
|
| 1005 |
|
|
since various programs (threads implementations, gcc nested function
|
| 1006 |
|
|
stubs, etc) may either allocate stack frames in another segment, or
|
| 1007 |
|
|
allocate other kinds of code on the stack. */
|
| 1008 |
|
|
|
| 1009 |
|
|
int
|
| 1010 |
|
|
pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
|
| 1011 |
|
|
{
|
| 1012 |
|
|
return (INNER_THAN ((sp), (pc))
|
| 1013 |
|
|
&& (frame_address != 0)
|
| 1014 |
|
|
&& INNER_THAN ((pc), (frame_address)));
|
| 1015 |
|
|
}
|
| 1016 |
|
|
|
| 1017 |
|
|
int
|
| 1018 |
|
|
pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
|
| 1019 |
|
|
CORE_ADDR frame_address)
|
| 1020 |
|
|
{
|
| 1021 |
|
|
return ((pc) >= CALL_DUMMY_ADDRESS ()
|
| 1022 |
|
|
&& (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
|
| 1023 |
|
|
}
|
| 1024 |
|
|
|
| 1025 |
|
|
|
| 1026 |
|
|
/*
|
| 1027 |
|
|
* GENERIC DUMMY FRAMES
|
| 1028 |
|
|
*
|
| 1029 |
|
|
* The following code serves to maintain the dummy stack frames for
|
| 1030 |
|
|
* inferior function calls (ie. when gdb calls into the inferior via
|
| 1031 |
|
|
* call_function_by_hand). This code saves the machine state before
|
| 1032 |
|
|
* the call in host memory, so we must maintain an independent stack
|
| 1033 |
|
|
* and keep it consistant etc. I am attempting to make this code
|
| 1034 |
|
|
* generic enough to be used by many targets.
|
| 1035 |
|
|
*
|
| 1036 |
|
|
* The cheapest and most generic way to do CALL_DUMMY on a new target
|
| 1037 |
|
|
* is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
|
| 1038 |
|
|
* zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
|
| 1039 |
|
|
* to define PUSH_RETURN_ADDRESS, because no call instruction will be
|
| 1040 |
|
|
* being executed by the target. Also FRAME_CHAIN_VALID as
|
| 1041 |
|
|
* generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
|
| 1042 |
|
|
* generic_fix_call_dummy. */
|
| 1043 |
|
|
|
| 1044 |
|
|
/* Dummy frame. This saves the processor state just prior to setting
|
| 1045 |
|
|
up the inferior function call. Older targets save the registers
|
| 1046 |
|
|
on the target stack (but that really slows down function calls). */
|
| 1047 |
|
|
|
| 1048 |
|
|
struct dummy_frame
|
| 1049 |
|
|
{
|
| 1050 |
|
|
struct dummy_frame *next;
|
| 1051 |
|
|
|
| 1052 |
|
|
CORE_ADDR pc;
|
| 1053 |
|
|
CORE_ADDR fp;
|
| 1054 |
|
|
CORE_ADDR sp;
|
| 1055 |
|
|
CORE_ADDR top;
|
| 1056 |
|
|
char *registers;
|
| 1057 |
|
|
};
|
| 1058 |
|
|
|
| 1059 |
|
|
static struct dummy_frame *dummy_frame_stack = NULL;
|
| 1060 |
|
|
|
| 1061 |
|
|
/* Function: find_dummy_frame(pc, fp, sp)
|
| 1062 |
|
|
Search the stack of dummy frames for one matching the given PC, FP and SP.
|
| 1063 |
|
|
This is the work-horse for pc_in_call_dummy and read_register_dummy */
|
| 1064 |
|
|
|
| 1065 |
|
|
char *
|
| 1066 |
|
|
generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
|
| 1067 |
|
|
{
|
| 1068 |
|
|
struct dummy_frame *dummyframe;
|
| 1069 |
|
|
|
| 1070 |
|
|
if (pc != entry_point_address ())
|
| 1071 |
|
|
return 0;
|
| 1072 |
|
|
|
| 1073 |
|
|
for (dummyframe = dummy_frame_stack; dummyframe != NULL;
|
| 1074 |
|
|
dummyframe = dummyframe->next)
|
| 1075 |
|
|
if (fp == dummyframe->fp
|
| 1076 |
|
|
|| fp == dummyframe->sp
|
| 1077 |
|
|
|| fp == dummyframe->top)
|
| 1078 |
|
|
/* The frame in question lies between the saved fp and sp, inclusive */
|
| 1079 |
|
|
return dummyframe->registers;
|
| 1080 |
|
|
|
| 1081 |
|
|
return 0;
|
| 1082 |
|
|
}
|
| 1083 |
|
|
|
| 1084 |
|
|
/* Function: pc_in_call_dummy (pc, fp)
|
| 1085 |
|
|
Return true if this is a dummy frame created by gdb for an inferior call */
|
| 1086 |
|
|
|
| 1087 |
|
|
int
|
| 1088 |
|
|
generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
|
| 1089 |
|
|
{
|
| 1090 |
|
|
/* if find_dummy_frame succeeds, then PC is in a call dummy */
|
| 1091 |
|
|
/* Note: SP and not FP is passed on. */
|
| 1092 |
|
|
return (generic_find_dummy_frame (pc, sp) != 0);
|
| 1093 |
|
|
}
|
| 1094 |
|
|
|
| 1095 |
|
|
/* Function: read_register_dummy
|
| 1096 |
|
|
Find a saved register from before GDB calls a function in the inferior */
|
| 1097 |
|
|
|
| 1098 |
|
|
CORE_ADDR
|
| 1099 |
|
|
generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
|
| 1100 |
|
|
{
|
| 1101 |
|
|
char *dummy_regs = generic_find_dummy_frame (pc, fp);
|
| 1102 |
|
|
|
| 1103 |
|
|
if (dummy_regs)
|
| 1104 |
|
|
return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
|
| 1105 |
|
|
REGISTER_RAW_SIZE (regno));
|
| 1106 |
|
|
else
|
| 1107 |
|
|
return 0;
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
/* Save all the registers on the dummy frame stack. Most ports save the
|
| 1111 |
|
|
registers on the target stack. This results in lots of unnecessary memory
|
| 1112 |
|
|
references, which are slow when debugging via a serial line. Instead, we
|
| 1113 |
|
|
save all the registers internally, and never write them to the stack. The
|
| 1114 |
|
|
registers get restored when the called function returns to the entry point,
|
| 1115 |
|
|
where a breakpoint is laying in wait. */
|
| 1116 |
|
|
|
| 1117 |
|
|
void
|
| 1118 |
|
|
generic_push_dummy_frame (void)
|
| 1119 |
|
|
{
|
| 1120 |
|
|
struct dummy_frame *dummy_frame;
|
| 1121 |
|
|
CORE_ADDR fp = (get_current_frame ())->frame;
|
| 1122 |
|
|
|
| 1123 |
|
|
/* check to see if there are stale dummy frames,
|
| 1124 |
|
|
perhaps left over from when a longjump took us out of a
|
| 1125 |
|
|
function that was called by the debugger */
|
| 1126 |
|
|
|
| 1127 |
|
|
dummy_frame = dummy_frame_stack;
|
| 1128 |
|
|
while (dummy_frame)
|
| 1129 |
|
|
if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
|
| 1130 |
|
|
{
|
| 1131 |
|
|
dummy_frame_stack = dummy_frame->next;
|
| 1132 |
|
|
xfree (dummy_frame->registers);
|
| 1133 |
|
|
xfree (dummy_frame);
|
| 1134 |
|
|
dummy_frame = dummy_frame_stack;
|
| 1135 |
|
|
}
|
| 1136 |
|
|
else
|
| 1137 |
|
|
dummy_frame = dummy_frame->next;
|
| 1138 |
|
|
|
| 1139 |
|
|
dummy_frame = xmalloc (sizeof (struct dummy_frame));
|
| 1140 |
|
|
dummy_frame->registers = xmalloc (REGISTER_BYTES);
|
| 1141 |
|
|
|
| 1142 |
|
|
dummy_frame->pc = read_pc ();
|
| 1143 |
|
|
dummy_frame->sp = read_sp ();
|
| 1144 |
|
|
dummy_frame->top = dummy_frame->sp;
|
| 1145 |
|
|
dummy_frame->fp = fp;
|
| 1146 |
|
|
read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
|
| 1147 |
|
|
dummy_frame->next = dummy_frame_stack;
|
| 1148 |
|
|
dummy_frame_stack = dummy_frame;
|
| 1149 |
|
|
}
|
| 1150 |
|
|
|
| 1151 |
|
|
void
|
| 1152 |
|
|
generic_save_dummy_frame_tos (CORE_ADDR sp)
|
| 1153 |
|
|
{
|
| 1154 |
|
|
dummy_frame_stack->top = sp;
|
| 1155 |
|
|
}
|
| 1156 |
|
|
|
| 1157 |
|
|
/* Restore the machine state from either the saved dummy stack or a
|
| 1158 |
|
|
real stack frame. */
|
| 1159 |
|
|
|
| 1160 |
|
|
void
|
| 1161 |
|
|
generic_pop_current_frame (void (*popper) (struct frame_info * frame))
|
| 1162 |
|
|
{
|
| 1163 |
|
|
struct frame_info *frame = get_current_frame ();
|
| 1164 |
|
|
|
| 1165 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
| 1166 |
|
|
generic_pop_dummy_frame ();
|
| 1167 |
|
|
else
|
| 1168 |
|
|
(*popper) (frame);
|
| 1169 |
|
|
}
|
| 1170 |
|
|
|
| 1171 |
|
|
/* Function: pop_dummy_frame
|
| 1172 |
|
|
Restore the machine state from a saved dummy stack frame. */
|
| 1173 |
|
|
|
| 1174 |
|
|
void
|
| 1175 |
|
|
generic_pop_dummy_frame (void)
|
| 1176 |
|
|
{
|
| 1177 |
|
|
struct dummy_frame *dummy_frame = dummy_frame_stack;
|
| 1178 |
|
|
|
| 1179 |
|
|
/* FIXME: what if the first frame isn't the right one, eg..
|
| 1180 |
|
|
because one call-by-hand function has done a longjmp into another one? */
|
| 1181 |
|
|
|
| 1182 |
|
|
if (!dummy_frame)
|
| 1183 |
|
|
error ("Can't pop dummy frame!");
|
| 1184 |
|
|
dummy_frame_stack = dummy_frame->next;
|
| 1185 |
|
|
write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
|
| 1186 |
|
|
flush_cached_frames ();
|
| 1187 |
|
|
|
| 1188 |
|
|
xfree (dummy_frame->registers);
|
| 1189 |
|
|
xfree (dummy_frame);
|
| 1190 |
|
|
}
|
| 1191 |
|
|
|
| 1192 |
|
|
/* Function: frame_chain_valid
|
| 1193 |
|
|
Returns true for a user frame or a call_function_by_hand dummy frame,
|
| 1194 |
|
|
and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
|
| 1195 |
|
|
|
| 1196 |
|
|
int
|
| 1197 |
|
|
generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
| 1198 |
|
|
{
|
| 1199 |
|
|
if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
|
| 1200 |
|
|
return 1; /* don't prune CALL_DUMMY frames */
|
| 1201 |
|
|
else /* fall back to default algorithm (see frame.h) */
|
| 1202 |
|
|
return (fp != 0
|
| 1203 |
|
|
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
| 1204 |
|
|
&& !inside_entry_file (FRAME_SAVED_PC (fi)));
|
| 1205 |
|
|
}
|
| 1206 |
|
|
|
| 1207 |
|
|
int
|
| 1208 |
|
|
generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
| 1209 |
|
|
{
|
| 1210 |
|
|
if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
|
| 1211 |
|
|
return 1; /* don't prune CALL_DUMMY frames */
|
| 1212 |
|
|
else /* fall back to default algorithm (see frame.h) */
|
| 1213 |
|
|
return (fp != 0
|
| 1214 |
|
|
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
| 1215 |
|
|
&& !inside_main_func ((fi)->pc)
|
| 1216 |
|
|
&& !inside_entry_func ((fi)->pc));
|
| 1217 |
|
|
}
|
| 1218 |
|
|
|
| 1219 |
|
|
/* Function: fix_call_dummy
|
| 1220 |
|
|
Stub function. Generic dumy frames typically do not need to fix
|
| 1221 |
|
|
the frame being created */
|
| 1222 |
|
|
|
| 1223 |
|
|
void
|
| 1224 |
|
|
generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
| 1225 |
|
|
struct value **args, struct type *type, int gcc_p)
|
| 1226 |
|
|
{
|
| 1227 |
|
|
return;
|
| 1228 |
|
|
}
|
| 1229 |
|
|
|
| 1230 |
|
|
/* Function: get_saved_register
|
| 1231 |
|
|
Find register number REGNUM relative to FRAME and put its (raw,
|
| 1232 |
|
|
target format) contents in *RAW_BUFFER.
|
| 1233 |
|
|
|
| 1234 |
|
|
Set *OPTIMIZED if the variable was optimized out (and thus can't be
|
| 1235 |
|
|
fetched). Note that this is never set to anything other than zero
|
| 1236 |
|
|
in this implementation.
|
| 1237 |
|
|
|
| 1238 |
|
|
Set *LVAL to lval_memory, lval_register, or not_lval, depending on
|
| 1239 |
|
|
whether the value was fetched from memory, from a register, or in a
|
| 1240 |
|
|
strange and non-modifiable way (e.g. a frame pointer which was
|
| 1241 |
|
|
calculated rather than fetched). We will use not_lval for values
|
| 1242 |
|
|
fetched from generic dummy frames.
|
| 1243 |
|
|
|
| 1244 |
|
|
Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
|
| 1245 |
|
|
offset into the registers array. If the value is stored in a dummy
|
| 1246 |
|
|
frame, set *ADDRP to zero.
|
| 1247 |
|
|
|
| 1248 |
|
|
To use this implementation, define a function called
|
| 1249 |
|
|
"get_saved_register" in your target code, which simply passes all
|
| 1250 |
|
|
of its arguments to this function.
|
| 1251 |
|
|
|
| 1252 |
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
| 1253 |
|
|
|
| 1254 |
|
|
void
|
| 1255 |
|
|
generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
|
| 1256 |
|
|
struct frame_info *frame, int regnum,
|
| 1257 |
|
|
enum lval_type *lval)
|
| 1258 |
|
|
{
|
| 1259 |
|
|
if (!target_has_registers)
|
| 1260 |
|
|
error ("No registers.");
|
| 1261 |
|
|
|
| 1262 |
|
|
/* Normal systems don't optimize out things with register numbers. */
|
| 1263 |
|
|
if (optimized != NULL)
|
| 1264 |
|
|
*optimized = 0;
|
| 1265 |
|
|
|
| 1266 |
|
|
if (addrp) /* default assumption: not found in memory */
|
| 1267 |
|
|
*addrp = 0;
|
| 1268 |
|
|
|
| 1269 |
|
|
/* Note: since the current frame's registers could only have been
|
| 1270 |
|
|
saved by frames INTERIOR TO the current frame, we skip examining
|
| 1271 |
|
|
the current frame itself: otherwise, we would be getting the
|
| 1272 |
|
|
previous frame's registers which were saved by the current frame. */
|
| 1273 |
|
|
|
| 1274 |
|
|
while (frame && ((frame = frame->next) != NULL))
|
| 1275 |
|
|
{
|
| 1276 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
| 1277 |
|
|
{
|
| 1278 |
|
|
if (lval) /* found it in a CALL_DUMMY frame */
|
| 1279 |
|
|
*lval = not_lval;
|
| 1280 |
|
|
if (raw_buffer)
|
| 1281 |
|
|
memcpy (raw_buffer,
|
| 1282 |
|
|
generic_find_dummy_frame (frame->pc, frame->frame) +
|
| 1283 |
|
|
REGISTER_BYTE (regnum),
|
| 1284 |
|
|
REGISTER_RAW_SIZE (regnum));
|
| 1285 |
|
|
return;
|
| 1286 |
|
|
}
|
| 1287 |
|
|
|
| 1288 |
|
|
FRAME_INIT_SAVED_REGS (frame);
|
| 1289 |
|
|
if (frame->saved_regs != NULL
|
| 1290 |
|
|
&& frame->saved_regs[regnum] != 0)
|
| 1291 |
|
|
{
|
| 1292 |
|
|
if (lval) /* found it saved on the stack */
|
| 1293 |
|
|
*lval = lval_memory;
|
| 1294 |
|
|
if (regnum == SP_REGNUM)
|
| 1295 |
|
|
{
|
| 1296 |
|
|
if (raw_buffer) /* SP register treated specially */
|
| 1297 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
| 1298 |
|
|
frame->saved_regs[regnum]);
|
| 1299 |
|
|
}
|
| 1300 |
|
|
else
|
| 1301 |
|
|
{
|
| 1302 |
|
|
if (addrp) /* any other register */
|
| 1303 |
|
|
*addrp = frame->saved_regs[regnum];
|
| 1304 |
|
|
if (raw_buffer)
|
| 1305 |
|
|
read_memory (frame->saved_regs[regnum], raw_buffer,
|
| 1306 |
|
|
REGISTER_RAW_SIZE (regnum));
|
| 1307 |
|
|
}
|
| 1308 |
|
|
return;
|
| 1309 |
|
|
}
|
| 1310 |
|
|
}
|
| 1311 |
|
|
|
| 1312 |
|
|
/* If we get thru the loop to this point, it means the register was
|
| 1313 |
|
|
not saved in any frame. Return the actual live-register value. */
|
| 1314 |
|
|
|
| 1315 |
|
|
if (lval) /* found it in a live register */
|
| 1316 |
|
|
*lval = lval_register;
|
| 1317 |
|
|
if (addrp)
|
| 1318 |
|
|
*addrp = REGISTER_BYTE (regnum);
|
| 1319 |
|
|
if (raw_buffer)
|
| 1320 |
|
|
read_register_gen (regnum, raw_buffer);
|
| 1321 |
|
|
}
|
| 1322 |
|
|
|
| 1323 |
|
|
void
|
| 1324 |
|
|
_initialize_blockframe (void)
|
| 1325 |
|
|
{
|
| 1326 |
|
|
obstack_init (&frame_cache_obstack);
|
| 1327 |
|
|
}
|