OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [config/] [arm/] [tm-arm.h] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Definitions to target GDB to ARM targets.
2
   Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3
   1998, 1999, 2000 Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 2 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 59 Temple Place - Suite 330,
20
   Boston, MA 02111-1307, USA.  */
21
 
22
#ifndef TM_ARM_H
23
#define TM_ARM_H
24
 
25
#include "regcache.h"
26
#include "floatformat.h"
27
 
28
/* Forward declarations for prototypes.  */
29
struct type;
30
struct value;
31
 
32
/* Target byte order on ARM defaults to selectable, and defaults to
33
   little endian.  */
34
#define TARGET_BYTE_ORDER_SELECTABLE_P  1
35
#define TARGET_BYTE_ORDER_DEFAULT       LITTLE_ENDIAN
36
 
37
/* IEEE format floating point.  */
38
#define IEEE_FLOAT (1)
39
#define TARGET_DOUBLE_FORMAT  (target_byte_order == BIG_ENDIAN \
40
                               ? &floatformat_ieee_double_big    \
41
                               : &floatformat_ieee_double_littlebyte_bigword)
42
 
43
/* When reading symbols, we need to zap the low bit of the address,
44
   which may be set to 1 for Thumb functions.  */
45
 
46
#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
47
 
48
/* Remove useless bits from addresses in a running program.  */
49
 
50
CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
51
 
52
#define ADDR_BITS_REMOVE(val)   (arm_addr_bits_remove (val))
53
 
54
/* Offset from address of function to start of its code.  Zero on most
55
   machines.  */
56
 
57
#define FUNCTION_START_OFFSET   0
58
 
59
/* Advance PC across any function entry prologue instructions to reach
60
   some "real" code.  */
61
 
62
extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
63
 
64
#define SKIP_PROLOGUE(pc)  (arm_skip_prologue (pc))
65
 
66
/* Immediately after a function call, return the saved pc.  Can't
67
   always go through the frames for this because on some machines the
68
   new frame is not set up until the new function executes some
69
   instructions.  */
70
 
71
#define SAVED_PC_AFTER_CALL(frame)  arm_saved_pc_after_call (frame)
72
struct frame_info;
73
extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
74
 
75
/* The following define instruction sequences that will cause ARM
76
   cpu's to take an undefined instruction trap.  These are used to
77
   signal a breakpoint to GDB.
78
 
79
   The newer ARMv4T cpu's are capable of operating in ARM or Thumb
80
   modes.  A different instruction is required for each mode.  The ARM
81
   cpu's can also be big or little endian.  Thus four different
82
   instructions are needed to support all cases.
83
 
84
   Note: ARMv4 defines several new instructions that will take the
85
   undefined instruction trap.  ARM7TDMI is nominally ARMv4T, but does
86
   not in fact add the new instructions.  The new undefined
87
   instructions in ARMv4 are all instructions that had no defined
88
   behaviour in earlier chips.  There is no guarantee that they will
89
   raise an exception, but may be treated as NOP's.  In practice, it
90
   may only safe to rely on instructions matching:
91
 
92
   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
93
   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
94
   C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
95
 
96
   Even this may only true if the condition predicate is true. The
97
   following use a condition predicate of ALWAYS so it is always TRUE.
98
 
99
   There are other ways of forcing a breakpoint.  ARM Linux, RisciX,
100
   and I suspect NetBSD will all use a software interrupt rather than
101
   an undefined instruction to force a trap.  This can be handled by
102
   redefining some or all of the following in a target dependent
103
   fashion.  */
104
 
105
#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
106
#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
107
#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
108
#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
109
 
110
/* Stack grows downward.  */
111
 
112
#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
113
 
114
/* !!!! if we're using RDP, then we're inserting breakpoints and
115
   storing their handles instread of what was in memory.  It is nice
116
   that this is the same size as a handle - otherwise remote-rdp will
117
   have to change. */
118
 
119
/* BREAKPOINT_FROM_PC uses the program counter value to determine
120
   whether a 16- or 32-bit breakpoint should be used.  It returns a
121
   pointer to a string of bytes that encode a breakpoint instruction,
122
   stores the length of the string to *lenptr, and adjusts the pc (if
123
   necessary) to point to the actual memory location where the
124
   breakpoint should be inserted.  */
125
 
126
extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
127
#define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
128
 
129
/* Amount PC must be decremented by after a breakpoint.  This is often
130
   the number of bytes in BREAKPOINT but not always.  */
131
 
132
#define DECR_PC_AFTER_BREAK 0
133
 
134
/* Code to execute to print interesting information about the floating
135
   point processor (if any) or emulator.  No need to define if there
136
   is nothing to do. */
137
extern void arm_float_info (void);
138
 
139
#define FLOAT_INFO      { arm_float_info (); }
140
 
141
/* Say how long (ordinary) registers are.  This is a piece of bogosity
142
   used in push_word and a few other places; REGISTER_RAW_SIZE is the
143
   real way to know how big a register is.  */
144
 
145
#define REGISTER_SIZE   4
146
 
147
/* Say how long FP registers are.  Used for documentation purposes and
148
   code readability in this header.  IEEE extended doubles are 80
149
   bits.  DWORD aligned they use 96 bits.  */
150
#define FP_REGISTER_RAW_SIZE    12
151
 
152
/* GCC doesn't support long doubles (extended IEEE values).  The FP
153
   register virtual size is therefore 64 bits.  Used for documentation
154
   purposes and code readability in this header.  */
155
#define FP_REGISTER_VIRTUAL_SIZE        8
156
 
157
/* Status registers are the same size as general purpose registers.
158
   Used for documentation purposes and code readability in this
159
   header.  */
160
#define STATUS_REGISTER_SIZE    REGISTER_SIZE
161
 
162
/* Number of machine registers.  The only define actually required
163
   is NUM_REGS.  The other definitions are used for documentation
164
   purposes and code readability.  */
165
/* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
166
   (and called PS for processor status) so the status bits can be cleared
167
   from the PC (register 15).  For 32 bit ARM code, a copy of CPSR is placed
168
   in PS.  */
169
#define NUM_FREGS       8       /* Number of floating point registers.  */
170
#define NUM_SREGS       2       /* Number of status registers.  */
171
#define NUM_GREGS       16      /* Number of general purpose registers.  */
172
#define NUM_REGS        (NUM_GREGS + NUM_FREGS + NUM_SREGS)
173
 
174
/* An array of names of registers. */
175
extern char **arm_register_names;
176
 
177
#define REGISTER_NAME(i) arm_register_names[i]
178
 
179
/* Register numbers of various important registers.  Note that some of
180
   these values are "real" register numbers, and correspond to the
181
   general registers of the machine, and some are "phony" register
182
   numbers which are too large to be actual register numbers as far as
183
   the user is concerned but do serve to get the desired values when
184
   passed to read_register.  */
185
 
186
#define A1_REGNUM 0             /* first integer-like argument */
187
#define A4_REGNUM 3             /* last integer-like argument */
188
#define AP_REGNUM 11
189
#define FP_REGNUM 11            /* Contains address of executing stack frame */
190
#define SP_REGNUM 13            /* Contains address of top of stack */
191
#define LR_REGNUM 14            /* address to return to from a function call */
192
#define PC_REGNUM 15            /* Contains program counter */
193
#define F0_REGNUM 16            /* first floating point register */
194
#define F3_REGNUM 19            /* last floating point argument register */
195
#define F7_REGNUM 23            /* last floating point register */
196
#define FPS_REGNUM 24           /* floating point status register */
197
#define PS_REGNUM 25            /* Contains processor status */
198
 
199
#define THUMB_FP_REGNUM 7       /* R7 is frame register on Thumb */
200
 
201
#define ARM_NUM_ARG_REGS        4
202
#define ARM_LAST_ARG_REGNUM     A4_REGNUM
203
#define ARM_NUM_FP_ARG_REGS     4
204
#define ARM_LAST_FP_ARG_REGNUM  F3_REGNUM
205
 
206
/* Instruction condition field values.  */
207
#define INST_EQ         0x0
208
#define INST_NE         0x1
209
#define INST_CS         0x2
210
#define INST_CC         0x3
211
#define INST_MI         0x4
212
#define INST_PL         0x5
213
#define INST_VS         0x6
214
#define INST_VC         0x7
215
#define INST_HI         0x8
216
#define INST_LS         0x9
217
#define INST_GE         0xa
218
#define INST_LT         0xb
219
#define INST_GT         0xc
220
#define INST_LE         0xd
221
#define INST_AL         0xe
222
#define INST_NV         0xf
223
 
224
#define FLAG_N          0x80000000
225
#define FLAG_Z          0x40000000
226
#define FLAG_C          0x20000000
227
#define FLAG_V          0x10000000
228
 
229
 
230
 
231
/* Total amount of space needed to store our copies of the machine's
232
   register state, the array `registers'.  */
233
 
234
#define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
235
                        (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
236
                        (NUM_SREGS * STATUS_REGISTER_SIZE))
237
 
238
/* Index within `registers' of the first byte of the space for
239
   register N.  */
240
 
241
#define REGISTER_BYTE(N) \
242
     ((N) < F0_REGNUM \
243
      ? (N) * REGISTER_SIZE \
244
      : ((N) < PS_REGNUM \
245
         ? (NUM_GREGS * REGISTER_SIZE + \
246
            ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
247
         : (NUM_GREGS * REGISTER_SIZE + \
248
            NUM_FREGS * FP_REGISTER_RAW_SIZE + \
249
            ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
250
 
251
/* Number of bytes of storage in the actual machine representation for
252
   register N.  All registers are 4 bytes, except fp0 - fp7, which are
253
   12 bytes in length.  */
254
#define REGISTER_RAW_SIZE(N) \
255
     ((N) < F0_REGNUM ? REGISTER_SIZE : \
256
      (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
257
 
258
/* Number of bytes of storage in a program's representation
259
   for register N.  */
260
#define REGISTER_VIRTUAL_SIZE(N) \
261
        ((N) < F0_REGNUM ? REGISTER_SIZE : \
262
         (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
263
 
264
/* Largest value REGISTER_RAW_SIZE can have.  */
265
 
266
#define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
267
 
268
/* Largest value REGISTER_VIRTUAL_SIZE can have.  */
269
#define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
270
 
271
/* Nonzero if register N requires conversion from raw format to
272
   virtual format. */
273
extern int arm_register_convertible (unsigned int);
274
#define REGISTER_CONVERTIBLE(REGNUM) (arm_register_convertible (REGNUM))
275
 
276
/* Convert data from raw format for register REGNUM in buffer FROM to
277
   virtual format with type TYPE in buffer TO. */
278
 
279
extern void arm_register_convert_to_virtual (unsigned int regnum,
280
                                             struct type *type,
281
                                             void *from, void *to);
282
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
283
     arm_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
284
 
285
/* Convert data from virtual format with type TYPE in buffer FROM to
286
   raw format for register REGNUM in buffer TO.  */
287
 
288
extern void arm_register_convert_to_raw (unsigned int regnum,
289
                                         struct type *type,
290
                                         void *from, void *to);
291
#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
292
     arm_register_convert_to_raw (REGNUM, TYPE, FROM, TO)
293
 
294
/* Return the GDB type object for the "standard" data type of data in
295
   register N.  */
296
 
297
#define REGISTER_VIRTUAL_TYPE(N) \
298
     (((unsigned)(N) - F0_REGNUM) < NUM_FREGS \
299
      ? builtin_type_double : builtin_type_int)
300
 
301
/* The system C compiler uses a similar structure return convention to gcc */
302
extern use_struct_convention_fn arm_use_struct_convention;
303
#define USE_STRUCT_CONVENTION(gcc_p, type) \
304
     arm_use_struct_convention (gcc_p, type)
305
 
306
/* Store the address of the place in which to copy the structure the
307
   subroutine will return.  This is called from call_function. */
308
 
309
#define STORE_STRUCT_RETURN(ADDR, SP) \
310
     write_register (A1_REGNUM, (ADDR))
311
 
312
/* Extract from an array REGBUF containing the (raw) register state a
313
   function return value of type TYPE, and copy that, in virtual
314
   format, into VALBUF.  */
315
 
316
extern void arm_extract_return_value (struct type *, char[], char *);
317
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
318
     arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
319
 
320
/* Write into appropriate registers a function return value of type
321
   TYPE, given in virtual format.  */
322
 
323
extern void convert_to_extended (void *dbl, void *ptr);
324
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
325
  if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) {                              \
326
    char _buf[MAX_REGISTER_RAW_SIZE];                                   \
327
    convert_to_extended (VALBUF, _buf);                                         \
328
    write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
329
  } else                                                                \
330
    write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
331
 
332
/* Extract from an array REGBUF containing the (raw) register state
333
   the address in which a function should return its structure value,
334
   as a CORE_ADDR (or an expression that can be used as one).  */
335
 
336
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
337
  (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
338
 
339
/* Specify that for the native compiler variables for a particular
340
   lexical context are listed after the beginning LBRAC instead of
341
   before in the executables list of symbols.  */
342
#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
343
 
344
 
345
/* Define other aspects of the stack frame.  We keep the offsets of
346
   all saved registers, 'cause we need 'em a lot!  We also keep the
347
   current size of the stack frame, and the offset of the frame
348
   pointer from the stack pointer (for frameless functions, and when
349
   we're still in the prologue of a function with a frame) */
350
 
351
#define EXTRA_FRAME_INFO        \
352
  struct frame_saved_regs fsr;  \
353
  int framesize;                \
354
  int frameoffset;              \
355
  int framereg;
356
 
357
extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
358
#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
359
        arm_init_extra_frame_info ((fromleaf), (fi))
360
 
361
/* Return the frame address.  On ARM, it is R11; on Thumb it is R7.  */
362
CORE_ADDR arm_target_read_fp (void);
363
#define TARGET_READ_FP() arm_target_read_fp ()
364
 
365
/* Describe the pointer in each stack frame to the previous stack
366
   frame (its caller).  */
367
 
368
/* FRAME_CHAIN takes a frame's nominal address and produces the
369
   frame's chain-pointer.
370
 
371
   However, if FRAME_CHAIN_VALID returns zero,
372
   it means the given frame is the outermost one and has no caller.  */
373
 
374
#define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
375
extern CORE_ADDR arm_frame_chain (struct frame_info *);
376
 
377
extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
378
#define FRAME_CHAIN_VALID(chain, thisframe) \
379
     arm_frame_chain_valid (chain, thisframe)
380
 
381
/* Define other aspects of the stack frame.  */
382
 
383
/* A macro that tells us whether the function invocation represented
384
   by FI does not have a frame on the stack associated with it.  If it
385
   does not, FRAMELESS is set to 1, else 0.
386
 
387
   Sometimes we have functions that do a little setup (like saving the
388
   vN registers with the stmdb instruction, but DO NOT set up a frame.
389
   The symbol table will report this as a prologue.  However, it is
390
   important not to try to parse these partial frames as frames, or we
391
   will get really confused.
392
 
393
   So I will demand 3 instructions between the start & end of the
394
   prologue before I call it a real prologue, i.e. at least
395
         mov ip, sp,
396
         stmdb sp!, {}
397
         sub sp, ip, #4. */
398
 
399
extern int arm_frameless_function_invocation (struct frame_info *fi);
400
#define FRAMELESS_FUNCTION_INVOCATION(FI) \
401
(arm_frameless_function_invocation (FI))
402
 
403
/* Saved Pc.  */
404
 
405
#define FRAME_SAVED_PC(FRAME)   arm_frame_saved_pc (FRAME)
406
extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
407
 
408
#define FRAME_ARGS_ADDRESS(fi) (fi->frame)
409
 
410
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
411
 
412
/* Return number of args passed to a frame.
413
   Can return -1, meaning no way to tell.  */
414
 
415
#define FRAME_NUM_ARGS(fi) (-1)
416
 
417
/* Return number of bytes at start of arglist that are not really args. */
418
 
419
#define FRAME_ARGS_SKIP 0
420
 
421
/* Put here the code to store, into a struct frame_saved_regs, the
422
   addresses of the saved registers of frame described by FRAME_INFO.
423
   This includes special registers such as pc and fp saved in special
424
   ways in the stack frame.  sp is even more special: the address we
425
   return for it IS the sp for the next frame.  */
426
 
427
struct frame_saved_regs;
428
struct frame_info;
429
void arm_frame_find_saved_regs (struct frame_info * fi,
430
                                struct frame_saved_regs * fsr);
431
 
432
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
433
        arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
434
 
435
/* Things needed for making the inferior call functions.  */
436
 
437
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
438
     sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
439
extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
440
                                     CORE_ADDR);
441
 
442
/* Push an empty stack frame, to record the current PC, etc.  */
443
 
444
void arm_push_dummy_frame (void);
445
 
446
#define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
447
 
448
/* Discard from the stack the innermost frame, restoring all registers.  */
449
 
450
void arm_pop_frame (void);
451
 
452
#define POP_FRAME arm_pop_frame ()
453
 
454
/* This sequence of words is the instructions
455
 
456
   mov  lr,pc
457
   mov  pc,r4
458
   illegal
459
 
460
   Note this is 12 bytes.  */
461
 
462
#define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
463
#define CALL_DUMMY_START_OFFSET  0      /* Start execution at beginning of dummy */
464
 
465
#define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
466
extern int arm_call_dummy_breakpoint_offset (void);
467
 
468
/* Insert the specified number of args and function address into a
469
   call sequence of the above form stored at DUMMYNAME.  */
470
 
471
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
472
   arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
473
 
474
void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
475
                         int nargs, struct value ** args,
476
                         struct type * type, int gcc_p);
477
 
478
CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
479
 
480
/* Macros for setting and testing a bit in a minimal symbol that marks
481
   it as Thumb function.  The MSB of the minimal symbol's "info" field
482
   is used for this purpose. This field is already being used to store
483
   the symbol size, so the assumption is that the symbol size cannot
484
   exceed 2^31.
485
 
486
   COFF_MAKE_MSYMBOL_SPECIAL
487
   ELF_MAKE_MSYMBOL_SPECIAL
488
 
489
   These macros test whether the COFF or ELF symbol corresponds to a
490
   thumb function, and set a "special" bit in a minimal symbol to
491
   indicate that it does.
492
 
493
   MSYMBOL_SET_SPECIAL  Actually sets the "special" bit.
494
   MSYMBOL_IS_SPECIAL   Tests the "special" bit in a minimal symbol.
495
   MSYMBOL_SIZE         Returns the size of the minimal symbol,
496
                        i.e. the "info" field with the "special" bit
497
                        masked out
498
   */
499
 
500
extern int coff_sym_is_thumb (int val);
501
 
502
#define MSYMBOL_SET_SPECIAL(msym) \
503
        MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
504
#define MSYMBOL_IS_SPECIAL(msym) \
505
  (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
506
#define MSYMBOL_SIZE(msym) \
507
  ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
508
 
509
/* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
510
#define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
511
        { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
512
                MSYMBOL_SET_SPECIAL(msym); }
513
 
514
#define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
515
 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
516
 
517
/* The first 0x20 bytes are the trap vectors.  */
518
#define LOWEST_PC       0x20
519
 
520
/* Function to determine whether MEMADDR is in a Thumb function.  */
521
extern int arm_pc_is_thumb (bfd_vma memaddr);
522
 
523
/* Function to determine whether MEMADDR is in a call dummy called from
524
   a Thumb function.  */
525
extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
526
 
527
#endif /* TM_ARM_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.