OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [config/] [pa/] [tm-hppa.h] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2
   Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3
   1998, 1999, 2000 Free Software Foundation, Inc.
4
 
5
   Contributed by the Center for Software Science at the
6
   University of Utah (pa-gdb-bugs@cs.utah.edu).
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 2 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program; if not, write to the Free Software
22
   Foundation, Inc., 59 Temple Place - Suite 330,
23
   Boston, MA 02111-1307, USA.  */
24
 
25
#include "regcache.h"
26
 
27
/* Forward declarations of some types we use in prototypes */
28
 
29
struct frame_info;
30
struct frame_saved_regs;
31
struct value;
32
struct type;
33
struct inferior_status;
34
 
35
/* Target system byte order. */
36
 
37
#define TARGET_BYTE_ORDER       BIG_ENDIAN
38
 
39
/* By default assume we don't have to worry about software floating point.  */
40
#ifndef SOFT_FLOAT
41
#define SOFT_FLOAT 0
42
#endif
43
 
44
/* Get at various relevent fields of an instruction word. */
45
 
46
#define MASK_5 0x1f
47
#define MASK_11 0x7ff
48
#define MASK_14 0x3fff
49
#define MASK_21 0x1fffff
50
 
51
/* This macro gets bit fields using HP's numbering (MSB = 0) */
52
#ifndef GET_FIELD
53
#define GET_FIELD(X, FROM, TO) \
54
  ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
55
#endif
56
 
57
/* Watch out for NaNs */
58
 
59
#define IEEE_FLOAT (1)
60
 
61
/* On the PA, any pass-by-value structure > 8 bytes is actually
62
   passed via a pointer regardless of its type or the compiler
63
   used.  */
64
 
65
#define REG_STRUCT_HAS_ADDR(gcc_p,type) \
66
  (TYPE_LENGTH (type) > 8)
67
 
68
/* Offset from address of function to start of its code.
69
   Zero on most machines.  */
70
 
71
#define FUNCTION_START_OFFSET 0
72
 
73
/* Advance PC across any function entry prologue instructions
74
   to reach some "real" code.  */
75
 
76
extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
77
#define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
78
 
79
/* If PC is in some function-call trampoline code, return the PC
80
   where the function itself actually starts.  If not, return NULL.  */
81
 
82
#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
83
extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
84
 
85
/* Return non-zero if we are in an appropriate trampoline. */
86
 
87
#define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
88
   in_solib_call_trampoline (pc, name)
89
extern int in_solib_call_trampoline (CORE_ADDR, char *);
90
 
91
#define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
92
  in_solib_return_trampoline (pc, name)
93
extern int in_solib_return_trampoline (CORE_ADDR, char *);
94
 
95
/* Immediately after a function call, return the saved pc.
96
   Can't go through the frames for this because on some machines
97
   the new frame is not set up until the new function executes
98
   some instructions.  */
99
 
100
#undef  SAVED_PC_AFTER_CALL
101
#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
102
extern CORE_ADDR saved_pc_after_call (struct frame_info *);
103
 
104
/* Stack grows upward */
105
#define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
106
 
107
/* elz: adjust the quantity to the next highest value which is 64-bit aligned.
108
   This is used in valops.c, when the sp is adjusted.
109
   On hppa the sp must always be kept 64-bit aligned */
110
 
111
#define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
112
#define EXTRA_STACK_ALIGNMENT_NEEDED 0
113
 
114
/* Sequence of bytes for breakpoint instruction.  */
115
 
116
#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
117
#define BREAKPOINT32 0x10004
118
 
119
/* Amount PC must be decremented by after a breakpoint.
120
   This is often the number of bytes in BREAKPOINT
121
   but not always.
122
 
123
   Not on the PA-RISC */
124
 
125
#define DECR_PC_AFTER_BREAK 0
126
 
127
/* Sometimes we may pluck out a minimal symbol that has a negative
128
   address.
129
 
130
   An example of this occurs when an a.out is linked against a foo.sl.
131
   The foo.sl defines a global bar(), and the a.out declares a signature
132
   for bar().  However, the a.out doesn't directly call bar(), but passes
133
   its address in another call.
134
 
135
   If you have this scenario and attempt to "break bar" before running,
136
   gdb will find a minimal symbol for bar() in the a.out.  But that
137
   symbol's address will be negative.  What this appears to denote is
138
   an index backwards from the base of the procedure linkage table (PLT)
139
   into the data linkage table (DLT), the end of which is contiguous
140
   with the start of the PLT.  This is clearly not a valid address for
141
   us to set a breakpoint on.
142
 
143
   Note that one must be careful in how one checks for a negative address.
144
   0xc0000000 is a legitimate address of something in a shared text
145
   segment, for example.  Since I don't know what the possible range
146
   is of these "really, truly negative" addresses that come from the
147
   minimal symbols, I'm resorting to the gross hack of checking the
148
   top byte of the address for all 1's.  Sigh.
149
 */
150
#define PC_REQUIRES_RUN_BEFORE_USE(pc) \
151
  (! target_has_stack && (pc & 0xFF000000))
152
 
153
/* return instruction is bv r0(rp) or bv,n r0(rp) */
154
 
155
#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
156
 
157
/* Say how long (ordinary) registers are.  This is a piece of bogosity
158
   used in push_word and a few other places; REGISTER_RAW_SIZE is the
159
   real way to know how big a register is.  */
160
 
161
#define REGISTER_SIZE 4
162
 
163
/* Number of machine registers */
164
 
165
#define NUM_REGS 128
166
 
167
/* Initializer for an array of names of registers.
168
   There should be NUM_REGS strings in this initializer.
169
   They are in rows of eight entries  */
170
 
171
#define REGISTER_NAMES  \
172
 {"flags",  "r1",      "rp",      "r3",    "r4",     "r5",      "r6",     "r7",    \
173
  "r8",     "r9",      "r10",     "r11",   "r12",    "r13",     "r14",    "r15",   \
174
  "r16",    "r17",     "r18",     "r19",   "r20",    "r21",     "r22",    "r23",   \
175
  "r24",    "r25",     "r26",     "dp",    "ret0",   "ret1",    "sp",     "r31",   \
176
  "sar",    "pcoqh",   "pcsqh",   "pcoqt", "pcsqt",  "eiem",    "iir",    "isr",   \
177
  "ior",    "ipsw",    "goto",    "sr4",   "sr0",    "sr1",     "sr2",    "sr3",   \
178
  "sr5",    "sr6",     "sr7",     "cr0",   "cr8",    "cr9",     "ccr",    "cr12",  \
179
  "cr13",   "cr24",    "cr25",    "cr26",  "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
180
  "fpsr",    "fpe1",   "fpe2",    "fpe3",  "fpe4",   "fpe5",    "fpe6",   "fpe7",  \
181
  "fr4",     "fr4R",   "fr5",     "fr5R",  "fr6",    "fr6R",    "fr7",    "fr7R",  \
182
  "fr8",     "fr8R",   "fr9",     "fr9R",  "fr10",   "fr10R",   "fr11",   "fr11R", \
183
  "fr12",    "fr12R",  "fr13",    "fr13R", "fr14",   "fr14R",   "fr15",   "fr15R", \
184
  "fr16",    "fr16R",  "fr17",    "fr17R", "fr18",   "fr18R",   "fr19",   "fr19R", \
185
  "fr20",    "fr20R",  "fr21",    "fr21R", "fr22",   "fr22R",   "fr23",   "fr23R", \
186
  "fr24",    "fr24R",  "fr25",    "fr25R", "fr26",   "fr26R",   "fr27",   "fr27R", \
187
  "fr28",    "fr28R",  "fr29",    "fr29R", "fr30",   "fr30R",   "fr31",   "fr31R"}
188
 
189
/* Register numbers of various important registers.
190
   Note that some of these values are "real" register numbers,
191
   and correspond to the general registers of the machine,
192
   and some are "phony" register numbers which are too large
193
   to be actual register numbers as far as the user is concerned
194
   but do serve to get the desired values when passed to read_register.  */
195
 
196
#define R0_REGNUM 0             /* Doesn't actually exist, used as base for
197
                                   other r registers.  */
198
#define FLAGS_REGNUM 0          /* Various status flags */
199
#define RP_REGNUM 2             /* return pointer */
200
#define FP_REGNUM 3             /* Contains address of executing stack */
201
                                /* frame */
202
#define SP_REGNUM 30            /* Contains address of top of stack */
203
#define SAR_REGNUM 32           /* Shift Amount Register */
204
#define IPSW_REGNUM 41          /* Interrupt Processor Status Word */
205
#define PCOQ_HEAD_REGNUM 33     /* instruction offset queue head */
206
#define PCSQ_HEAD_REGNUM 34     /* instruction space queue head */
207
#define PCOQ_TAIL_REGNUM 35     /* instruction offset queue tail */
208
#define PCSQ_TAIL_REGNUM 36     /* instruction space queue tail */
209
#define EIEM_REGNUM 37          /* External Interrupt Enable Mask */
210
#define IIR_REGNUM 38           /* Interrupt Instruction Register */
211
#define IOR_REGNUM 40           /* Interrupt Offset Register */
212
#define SR4_REGNUM 43           /* space register 4 */
213
#define RCR_REGNUM 51           /* Recover Counter (also known as cr0) */
214
#define CCR_REGNUM 54           /* Coprocessor Configuration Register */
215
#define TR0_REGNUM 57           /* Temporary Registers (cr24 -> cr31) */
216
#define CR27_REGNUM 60          /* Base register for thread-local storage, cr27 */
217
#define FP0_REGNUM 64           /* floating point reg. 0 (fspr) */
218
#define FP4_REGNUM 72
219
 
220
#define ARG0_REGNUM 26          /* The first argument of a callee. */
221
#define ARG1_REGNUM 25          /* The second argument of a callee. */
222
#define ARG2_REGNUM 24          /* The third argument of a callee. */
223
#define ARG3_REGNUM 23          /* The fourth argument of a callee. */
224
 
225
/* compatibility with the rest of gdb. */
226
#define PC_REGNUM PCOQ_HEAD_REGNUM
227
#define NPC_REGNUM PCOQ_TAIL_REGNUM
228
 
229
/*
230
 * Processor Status Word Masks
231
 */
232
 
233
#define PSW_T   0x01000000      /* Taken Branch Trap Enable */
234
#define PSW_H   0x00800000      /* Higher-Privilege Transfer Trap Enable */
235
#define PSW_L   0x00400000      /* Lower-Privilege Transfer Trap Enable */
236
#define PSW_N   0x00200000      /* PC Queue Front Instruction Nullified */
237
#define PSW_X   0x00100000      /* Data Memory Break Disable */
238
#define PSW_B   0x00080000      /* Taken Branch in Previous Cycle */
239
#define PSW_C   0x00040000      /* Code Address Translation Enable */
240
#define PSW_V   0x00020000      /* Divide Step Correction */
241
#define PSW_M   0x00010000      /* High-Priority Machine Check Disable */
242
#define PSW_CB  0x0000ff00      /* Carry/Borrow Bits */
243
#define PSW_R   0x00000010      /* Recovery Counter Enable */
244
#define PSW_Q   0x00000008      /* Interruption State Collection Enable */
245
#define PSW_P   0x00000004      /* Protection ID Validation Enable */
246
#define PSW_D   0x00000002      /* Data Address Translation Enable */
247
#define PSW_I   0x00000001      /* External, Power Failure, Low-Priority */
248
                                /* Machine Check Interruption Enable */
249
 
250
/* When fetching register values from an inferior or a core file,
251
   clean them up using this macro.  BUF is a char pointer to
252
   the raw value of the register in the registers[] array.  */
253
 
254
#define CLEAN_UP_REGISTER_VALUE(regno, buf) \
255
  do {  \
256
    if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
257
      (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
258
  } while (0)
259
 
260
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
261
   of register dumps. */
262
 
263
#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
264
extern void pa_do_registers_info (int, int);
265
 
266
#if 0
267
#define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
268
extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
269
#endif
270
 
271
/* PA specific macro to see if the current instruction is nullified. */
272
#ifndef INSTRUCTION_NULLIFIED
273
#define INSTRUCTION_NULLIFIED \
274
    (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
275
     !((int)read_register (FLAGS_REGNUM) & 0x2))
276
#endif
277
 
278
/* Number of bytes of storage in the actual machine representation
279
   for register N.  On the PA-RISC, all regs are 4 bytes, including
280
   the FP registers (they're accessed as two 4 byte halves).  */
281
 
282
#define REGISTER_RAW_SIZE(N) 4
283
 
284
/* Total amount of space needed to store our copies of the machine's
285
   register state, the array `registers'.  */
286
#define REGISTER_BYTES (NUM_REGS * 4)
287
 
288
/* Index within `registers' of the first byte of the space for
289
   register N.  */
290
 
291
#define REGISTER_BYTE(N) (N) * 4
292
 
293
/* Number of bytes of storage in the program's representation
294
   for register N. */
295
 
296
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
297
 
298
/* Largest value REGISTER_RAW_SIZE can have.  */
299
 
300
#define MAX_REGISTER_RAW_SIZE 4
301
 
302
/* Largest value REGISTER_VIRTUAL_SIZE can have.  */
303
 
304
#define MAX_REGISTER_VIRTUAL_SIZE 8
305
 
306
/* Return the GDB type object for the "standard" data type
307
   of data in register N.  */
308
 
309
#define REGISTER_VIRTUAL_TYPE(N) \
310
 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
311
 
312
/* Store the address of the place in which to copy the structure the
313
   subroutine will return.  This is called from call_function. */
314
 
315
#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
316
 
317
/* Extract from an array REGBUF containing the (raw) register state
318
   a function return value of type TYPE, and copy that, in virtual format,
319
   into VALBUF.
320
 
321
   elz: changed what to return when length is > 4: the stored result is
322
   in register 28 and in register 29, with the lower order word being in reg 29,
323
   so we must start reading it from somehere in the middle of reg28
324
 
325
   FIXME: Not sure what to do for soft float here.  */
326
 
327
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
328
  { \
329
    if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
330
      memcpy ((VALBUF), \
331
              ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
332
              TYPE_LENGTH (TYPE)); \
333
    else \
334
      memcpy ((VALBUF), \
335
              (char *)(REGBUF) + REGISTER_BYTE (28) + \
336
              (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
337
              TYPE_LENGTH (TYPE)); \
338
  }
339
 
340
 
341
 /* elz: decide whether the function returning a value of type type
342
    will put it on the stack or in the registers.
343
    The pa calling convention says that:
344
    register 28 (called ret0 by gdb) contains any ASCII char,
345
    and any non_floating point value up to 32-bits.
346
    reg 28 and 29 contain non-floating point up tp 64 bits and larger
347
    than 32 bits. (higer order word in reg 28).
348
    fr4: floating point up to 64 bits
349
    sr1: space identifier (32-bit)
350
    stack: any lager than 64-bit, with the address in r28
351
  */
352
extern use_struct_convention_fn hppa_use_struct_convention;
353
#define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
354
 
355
/* Write into appropriate registers a function return value
356
   of type TYPE, given in virtual format.
357
 
358
   For software floating point the return value goes into the integer
359
   registers.  But we don't have any flag to key this on, so we always
360
   store the value into the integer registers, and if it's a float value,
361
   then we put it in the float registers too.  */
362
 
363
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
364
  write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
365
  if (!SOFT_FLOAT) \
366
    write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
367
                           ? REGISTER_BYTE (FP4_REGNUM) \
368
                           : REGISTER_BYTE (28)),               \
369
                          (VALBUF), TYPE_LENGTH (TYPE))
370
 
371
/* Extract from an array REGBUF containing the (raw) register state
372
   the address in which a function should return its structure value,
373
   as a CORE_ADDR (or an expression that can be used as one).  */
374
 
375
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
376
  (*(int *)((REGBUF) + REGISTER_BYTE (28)))
377
 
378
/* elz: Return a large value, which is stored on the stack at addr.
379
   This is defined only for the hppa, at this moment.
380
   The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
381
   because it assumes that on exit from a called function which returns
382
   a large structure on the stack, the address of the ret structure is
383
   still in register 28. Unfortunately this register is usually overwritten
384
   by the called function itself, on hppa. This is specified in the calling
385
   convention doc. As far as I know, the only way to get the return value
386
   is to have the caller tell us where it told the callee to put it, rather
387
   than have the callee tell us.
388
 */
389
#define VALUE_RETURNED_FROM_STACK(valtype,addr) \
390
  hppa_value_returned_from_stack (valtype, addr)
391
 
392
/*
393
 * This macro defines the register numbers (from REGISTER_NAMES) that
394
 * are effectively unavailable to the user through ptrace().  It allows
395
 * us to include the whole register set in REGISTER_NAMES (inorder to
396
 * better support remote debugging).  If it is used in
397
 * fetch/store_inferior_registers() gdb will not complain about I/O errors
398
 * on fetching these registers.  If all registers in REGISTER_NAMES
399
 * are available, then return false (0).
400
 */
401
 
402
#define CANNOT_STORE_REGISTER(regno)            \
403
                   ((regno) == 0) ||     \
404
                   ((regno) == PCSQ_HEAD_REGNUM) || \
405
                   ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) ||  \
406
                   ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
407
 
408
#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
409
extern void init_extra_frame_info (int, struct frame_info *);
410
 
411
/* Describe the pointer in each stack frame to the previous stack frame
412
   (its caller).  */
413
 
414
/* FRAME_CHAIN takes a frame's nominal address
415
   and produces the frame's chain-pointer.
416
 
417
   FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
418
   and produces the nominal address of the caller frame.
419
 
420
   However, if FRAME_CHAIN_VALID returns zero,
421
   it means the given frame is the outermost one and has no caller.
422
   In that case, FRAME_CHAIN_COMBINE is not used.  */
423
 
424
/* In the case of the PA-RISC, the frame's nominal address
425
   is the address of a 4-byte word containing the calling frame's
426
   address (previous FP).  */
427
 
428
#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
429
extern CORE_ADDR frame_chain (struct frame_info *);
430
 
431
extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
432
#define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
433
 
434
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
435
 
436
/* Define other aspects of the stack frame.  */
437
 
438
/* A macro that tells us whether the function invocation represented
439
   by FI does not have a frame on the stack associated with it.  If it
440
   does not, FRAMELESS is set to 1, else 0.  */
441
#define FRAMELESS_FUNCTION_INVOCATION(FI) \
442
  (frameless_function_invocation (FI))
443
extern int frameless_function_invocation (struct frame_info *);
444
 
445
extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
446
#define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
447
 
448
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
449
 
450
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
451
/* Set VAL to the number of args passed to frame described by FI.
452
   Can set VAL to -1, meaning no way to tell.  */
453
 
454
/* We can't tell how many args there are
455
   now that the C compiler delays popping them.  */
456
#define FRAME_NUM_ARGS(fi) (-1)
457
 
458
/* Return number of bytes at start of arglist that are not really args.  */
459
 
460
#define FRAME_ARGS_SKIP 0
461
 
462
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
463
  hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
464
extern void
465
hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
466
 
467
 
468
/* Things needed for making the inferior call functions.  */
469
 
470
/* Push an empty stack frame, to record the current PC, etc. */
471
 
472
#define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
473
extern void push_dummy_frame (struct inferior_status *);
474
 
475
/* Discard from the stack the innermost frame,
476
   restoring all saved registers.  */
477
#define POP_FRAME  hppa_pop_frame ()
478
extern void hppa_pop_frame (void);
479
 
480
#define INSTRUCTION_SIZE 4
481
 
482
#ifndef PA_LEVEL_0
483
 
484
/* Non-level zero PA's have space registers (but they don't always have
485
   floating-point, do they????  */
486
 
487
/* This sequence of words is the instructions
488
 
489
   ; Call stack frame has already been built by gdb. Since we could be calling
490
   ; a varargs function, and we do not have the benefit of a stub to put things in
491
   ; the right place, we load the first 4 word of arguments into both the general
492
   ; and fp registers.
493
   call_dummy
494
   ldw -36(sp), arg0
495
   ldw -40(sp), arg1
496
   ldw -44(sp), arg2
497
   ldw -48(sp), arg3
498
   ldo -36(sp), r1
499
   fldws 0(0, r1), fr4
500
   fldds -4(0, r1), fr5
501
   fldws -8(0, r1), fr6
502
   fldds -12(0, r1), fr7
503
   ldil 0, r22                  ; FUNC_LDIL_OFFSET must point here
504
   ldo 0(r22), r22                      ; FUNC_LDO_OFFSET must point here
505
   ldsid (0,r22), r4
506
   ldil 0, r1                   ; SR4EXPORT_LDIL_OFFSET must point here
507
   ldo 0(r1), r1                        ; SR4EXPORT_LDO_OFFSET must point here
508
   ldsid (0,r1), r20
509
   combt,=,n r4, r20, text_space        ; If target is in data space, do a
510
   ble 0(sr5, r22)                      ; "normal" procedure call
511
   copy r31, r2
512
   break 4, 8
513
   mtsp r21, sr0
514
   ble,n 0(sr0, r22)
515
   text_space                           ; Otherwise, go through _sr4export,
516
   ble (sr4, r1)                        ; which will return back here.
517
   stw r31,-24(r30)
518
   break 4, 8
519
   mtsp r21, sr0
520
   ble,n 0(sr0, r22)
521
   nop                          ; To avoid kernel bugs
522
   nop                          ; and keep the dummy 8 byte aligned
523
 
524
   The dummy decides if the target is in text space or data space. If
525
   it's in data space, there's no problem because the target can
526
   return back to the dummy. However, if the target is in text space,
527
   the dummy calls the secret, undocumented routine _sr4export, which
528
   calls a function in text space and can return to any space. Instead
529
   of including fake instructions to represent saved registers, we
530
   know that the frame is associated with the call dummy and treat it
531
   specially.
532
 
533
   The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
534
   kernels.   If the memory at the location pointed to by the PC is
535
   0xffffffff then a ptrace step call will fail (even if the instruction
536
   is nullified).
537
 
538
   The code to pop a dummy frame single steps three instructions
539
   starting with the last mtsp.  This includes the nullified "instruction"
540
   following the ble (which is uninitialized junk).  If the
541
   "instruction" following the last BLE is 0xffffffff, then the ptrace
542
   will fail and the dummy frame is not correctly popped.
543
 
544
   By placing a NOP in the delay slot of the BLE instruction we can be
545
   sure that we never try to execute a 0xffffffff instruction and
546
   avoid the kernel bug.  The second NOP is needed to keep the call
547
   dummy 8 byte aligned.  */
548
 
549
/* Define offsets into the call dummy for the target function address */
550
#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
551
#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
552
 
553
/* Define offsets into the call dummy for the _sr4export address */
554
#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
555
#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
556
 
557
#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
558
                    0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
559
                    0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
560
                    0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
561
                    0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
562
                    0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
563
                    0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
564
 
565
#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
566
#define REG_PARM_STACK_SPACE 16
567
 
568
#else /* defined PA_LEVEL_0 */
569
 
570
/* This is the call dummy for a level 0 PA.  Level 0's don't have space
571
   registers (or floating point?), so we skip all that inter-space call stuff,
572
   and avoid touching the fp regs.
573
 
574
   call_dummy
575
 
576
   ldw -36(%sp), %arg0
577
   ldw -40(%sp), %arg1
578
   ldw -44(%sp), %arg2
579
   ldw -48(%sp), %arg3
580
   ldil 0, %r31                 ; FUNC_LDIL_OFFSET must point here
581
   ldo 0(%r31), %r31            ; FUNC_LDO_OFFSET must point here
582
   ble 0(%sr0, %r31)
583
   copy %r31, %r2
584
   break 4, 8
585
   nop                          ; restore_pc_queue expects these
586
   bv,n 0(%r22)                 ; instructions to be here...
587
   nop
588
 */
589
 
590
/* Define offsets into the call dummy for the target function address */
591
#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
592
#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
593
 
594
#define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
595
                    0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
596
                    0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
597
 
598
#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
599
 
600
#endif
601
 
602
#define CALL_DUMMY_START_OFFSET 0
603
 
604
/* If we've reached a trap instruction within the call dummy, then
605
   we'll consider that to mean that we've reached the call dummy's
606
   end after its successful completion. */
607
#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
608
  (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
609
   (read_memory_integer((pc), 4) == BREAKPOINT32))
610
 
611
/*
612
 * Insert the specified number of args and function address
613
 * into a call sequence of the above form stored at DUMMYNAME.
614
 *
615
 * On the hppa we need to call the stack dummy through $$dyncall.
616
 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
617
 * real_pc, which is the location where gdb should start up the
618
 * inferior to do the function call.
619
 */
620
 
621
#define FIX_CALL_DUMMY hppa_fix_call_dummy
622
 
623
extern CORE_ADDR
624
hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
625
                     struct value **, struct type *, int);
626
 
627
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
628
  (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
629
extern CORE_ADDR
630
hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
631
 
632
/* The low two bits of the PC on the PA contain the privilege level.  Some
633
   genius implementing a (non-GCC) compiler apparently decided this means
634
   that "addresses" in a text section therefore include a privilege level,
635
   and thus symbol tables should contain these bits.  This seems like a
636
   bonehead thing to do--anyway, it seems to work for our purposes to just
637
   ignore those bits.  */
638
#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
639
 
640
#define GDB_TARGET_IS_HPPA
641
 
642
#define BELIEVE_PCC_PROMOTION 1
643
 
644
/*
645
 * Unwind table and descriptor.
646
 */
647
 
648
struct unwind_table_entry
649
  {
650
    CORE_ADDR region_start;
651
    CORE_ADDR region_end;
652
 
653
    unsigned int Cannot_unwind:1;       /* 0 */
654
    unsigned int Millicode:1;   /* 1 */
655
    unsigned int Millicode_save_sr0:1;  /* 2 */
656
    unsigned int Region_description:2;  /* 3..4 */
657
    unsigned int reserved1:1;   /* 5 */
658
    unsigned int Entry_SR:1;    /* 6 */
659
    unsigned int Entry_FR:4;    /* number saved *//* 7..10 */
660
    unsigned int Entry_GR:5;    /* number saved *//* 11..15 */
661
    unsigned int Args_stored:1; /* 16 */
662
    unsigned int Variable_Frame:1;      /* 17 */
663
    unsigned int Separate_Package_Body:1;       /* 18 */
664
    unsigned int Frame_Extension_Millicode:1;   /* 19 */
665
    unsigned int Stack_Overflow_Check:1;        /* 20 */
666
    unsigned int Two_Instruction_SP_Increment:1;        /* 21 */
667
    unsigned int Ada_Region:1;  /* 22 */
668
    unsigned int cxx_info:1;    /* 23 */
669
    unsigned int cxx_try_catch:1;       /* 24 */
670
    unsigned int sched_entry_seq:1;     /* 25 */
671
    unsigned int reserved2:1;   /* 26 */
672
    unsigned int Save_SP:1;     /* 27 */
673
    unsigned int Save_RP:1;     /* 28 */
674
    unsigned int Save_MRP_in_frame:1;   /* 29 */
675
    unsigned int extn_ptr_defined:1;    /* 30 */
676
    unsigned int Cleanup_defined:1;     /* 31 */
677
 
678
    unsigned int MPE_XL_interrupt_marker:1;     /* 0 */
679
    unsigned int HP_UX_interrupt_marker:1;      /* 1 */
680
    unsigned int Large_frame:1; /* 2 */
681
    unsigned int Pseudo_SP_Set:1;       /* 3 */
682
    unsigned int reserved4:1;   /* 4 */
683
    unsigned int Total_frame_size:27;   /* 5..31 */
684
 
685
    /* This is *NOT* part of an actual unwind_descriptor in an object
686
       file.  It is *ONLY* part of the "internalized" descriptors that
687
       we create from those in a file.
688
     */
689
    struct
690
      {
691
        unsigned int stub_type:4;       /* 0..3 */
692
        unsigned int padding:28;        /* 4..31 */
693
      }
694
    stub_unwind;
695
  };
696
 
697
/* HP linkers also generate unwinds for various linker-generated stubs.
698
   GDB reads in the stubs from the $UNWIND_END$ subspace, then
699
   "converts" them into normal unwind entries using some of the reserved
700
   fields to store the stub type.  */
701
 
702
struct stub_unwind_entry
703
  {
704
    /* The offset within the executable for the associated stub.  */
705
    unsigned stub_offset;
706
 
707
    /* The type of stub this unwind entry describes.  */
708
    char type;
709
 
710
    /* Unknown.  Not needed by GDB at this time.  */
711
    char prs_info;
712
 
713
    /* Length (in instructions) of the associated stub.  */
714
    short stub_length;
715
  };
716
 
717
/* Sizes (in bytes) of the native unwind entries.  */
718
#define UNWIND_ENTRY_SIZE 16
719
#define STUB_UNWIND_ENTRY_SIZE 8
720
 
721
/* The gaps represent linker stubs used in MPE and space for future
722
   expansion.  */
723
enum unwind_stub_types
724
  {
725
    LONG_BRANCH = 1,
726
    PARAMETER_RELOCATION = 2,
727
    EXPORT = 10,
728
    IMPORT = 11,
729
    IMPORT_SHLIB = 12,
730
  };
731
 
732
/* We use the objfile->obj_private pointer for two things:
733
 
734
 * 1.  An unwind table;
735
 *
736
 * 2.  A pointer to any associated shared library object.
737
 *
738
 * #defines are used to help refer to these objects.
739
 */
740
 
741
/* Info about the unwind table associated with an object file.
742
 
743
 * This is hung off of the "objfile->obj_private" pointer, and
744
 * is allocated in the objfile's psymbol obstack.  This allows
745
 * us to have unique unwind info for each executable and shared
746
 * library that we are debugging.
747
 */
748
struct obj_unwind_info
749
  {
750
    struct unwind_table_entry *table;   /* Pointer to unwind info */
751
    struct unwind_table_entry *cache;   /* Pointer to last entry we found */
752
    int last;                   /* Index of last entry */
753
  };
754
 
755
typedef struct obj_private_struct
756
  {
757
    struct obj_unwind_info *unwind_info;        /* a pointer */
758
    struct so_list *so_info;    /* a pointer  */
759
    CORE_ADDR dp;
760
  }
761
obj_private_data_t;
762
 
763
#if 0
764
extern void target_write_pc (CORE_ADDR, int);
765
extern CORE_ADDR target_read_pc (int);
766
extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
767
#endif
768
 
769
#define TARGET_READ_PC(pid) target_read_pc (pid)
770
extern CORE_ADDR target_read_pc (ptid_t);
771
 
772
#define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
773
extern void target_write_pc (CORE_ADDR, ptid_t);
774
 
775
#define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
776
extern CORE_ADDR target_read_fp (int);
777
 
778
/* For a number of horrible reasons we may have to adjust the location
779
   of variables on the stack.  Ugh.  */
780
#define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
781
 
782
extern int hpread_adjust_stack_address (CORE_ADDR);
783
 
784
/* If the current gcc for for this target does not produce correct debugging
785
   information for float parameters, both prototyped and unprototyped, then
786
   define this macro.  This forces gdb to  always assume that floats are
787
   passed as doubles and then converted in the callee.
788
 
789
   For the pa, it appears that the debug info marks the parameters as
790
   floats regardless of whether the function is prototyped, but the actual
791
   values are passed as doubles for the non-prototyped case and floats for
792
   the prototyped case.  Thus we choose to make the non-prototyped case work
793
   for C and break the prototyped case, since the non-prototyped case is
794
   probably much more common.  (FIXME). */
795
 
796
#define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
797
 
798
/* Here's how to step off a permanent breakpoint.  */
799
#define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
800
extern void hppa_skip_permanent_breakpoint (void);
801
 
802
/* On HP-UX, certain system routines (millicode) have names beginning
803
   with $ or $$, e.g. $$dyncall, which handles inter-space procedure
804
   calls on PA-RISC.  Tell the expression parser to check for those
805
   when parsing tokens that begin with "$".  */
806
#define SYMBOLS_CAN_START_WITH_DOLLAR (1)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.