1 |
578 |
markom |
/* Evaluate expressions for GDB.
|
2 |
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
3 |
|
|
1996, 1997, 1998, 1999, 2000
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "gdbtypes.h"
|
27 |
|
|
#include "value.h"
|
28 |
|
|
#include "expression.h"
|
29 |
|
|
#include "target.h"
|
30 |
|
|
#include "frame.h"
|
31 |
|
|
#include "language.h" /* For CAST_IS_CONVERSION */
|
32 |
|
|
#include "f-lang.h" /* for array bound stuff */
|
33 |
|
|
#include "cp-abi.h"
|
34 |
|
|
|
35 |
|
|
/* Defined in symtab.c */
|
36 |
|
|
extern int hp_som_som_object_present;
|
37 |
|
|
|
38 |
|
|
/* This is defined in valops.c */
|
39 |
|
|
extern int overload_resolution;
|
40 |
|
|
|
41 |
|
|
/* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
|
42 |
|
|
on with successful lookup for member/method of the rtti type. */
|
43 |
|
|
extern int objectprint;
|
44 |
|
|
|
45 |
|
|
/* Prototypes for local functions. */
|
46 |
|
|
|
47 |
|
|
static value_ptr evaluate_subexp_for_sizeof (struct expression *, int *);
|
48 |
|
|
|
49 |
|
|
static value_ptr evaluate_subexp_for_address (struct expression *,
|
50 |
|
|
int *, enum noside);
|
51 |
|
|
|
52 |
|
|
static value_ptr evaluate_subexp (struct type *, struct expression *,
|
53 |
|
|
int *, enum noside);
|
54 |
|
|
|
55 |
|
|
static char *get_label (struct expression *, int *);
|
56 |
|
|
|
57 |
|
|
static value_ptr
|
58 |
|
|
evaluate_struct_tuple (value_ptr, struct expression *, int *,
|
59 |
|
|
enum noside, int);
|
60 |
|
|
|
61 |
|
|
static LONGEST
|
62 |
|
|
init_array_element (value_ptr, value_ptr, struct expression *,
|
63 |
|
|
int *, enum noside, LONGEST, LONGEST);
|
64 |
|
|
|
65 |
|
|
static value_ptr
|
66 |
|
|
evaluate_subexp (struct type *expect_type, register struct expression *exp,
|
67 |
|
|
register int *pos, enum noside noside)
|
68 |
|
|
{
|
69 |
|
|
return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
/* Parse the string EXP as a C expression, evaluate it,
|
73 |
|
|
and return the result as a number. */
|
74 |
|
|
|
75 |
|
|
CORE_ADDR
|
76 |
|
|
parse_and_eval_address (char *exp)
|
77 |
|
|
{
|
78 |
|
|
struct expression *expr = parse_expression (exp);
|
79 |
|
|
register CORE_ADDR addr;
|
80 |
|
|
register struct cleanup *old_chain =
|
81 |
|
|
make_cleanup (free_current_contents, &expr);
|
82 |
|
|
|
83 |
|
|
addr = value_as_pointer (evaluate_expression (expr));
|
84 |
|
|
do_cleanups (old_chain);
|
85 |
|
|
return addr;
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
/* Like parse_and_eval_address but takes a pointer to a char * variable
|
89 |
|
|
and advanced that variable across the characters parsed. */
|
90 |
|
|
|
91 |
|
|
CORE_ADDR
|
92 |
|
|
parse_and_eval_address_1 (char **expptr)
|
93 |
|
|
{
|
94 |
|
|
struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
|
95 |
|
|
register CORE_ADDR addr;
|
96 |
|
|
register struct cleanup *old_chain =
|
97 |
|
|
make_cleanup (free_current_contents, &expr);
|
98 |
|
|
|
99 |
|
|
addr = value_as_pointer (evaluate_expression (expr));
|
100 |
|
|
do_cleanups (old_chain);
|
101 |
|
|
return addr;
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
/* Like parse_and_eval_address, but treats the value of the expression
|
105 |
|
|
as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
|
106 |
|
|
LONGEST
|
107 |
|
|
parse_and_eval_long (char *exp)
|
108 |
|
|
{
|
109 |
|
|
struct expression *expr = parse_expression (exp);
|
110 |
|
|
register LONGEST retval;
|
111 |
|
|
register struct cleanup *old_chain =
|
112 |
|
|
make_cleanup (free_current_contents, &expr);
|
113 |
|
|
|
114 |
|
|
retval = value_as_long (evaluate_expression (expr));
|
115 |
|
|
do_cleanups (old_chain);
|
116 |
|
|
return (retval);
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
value_ptr
|
120 |
|
|
parse_and_eval (char *exp)
|
121 |
|
|
{
|
122 |
|
|
struct expression *expr = parse_expression (exp);
|
123 |
|
|
register value_ptr val;
|
124 |
|
|
register struct cleanup *old_chain
|
125 |
|
|
= make_cleanup (free_current_contents, &expr);
|
126 |
|
|
|
127 |
|
|
val = evaluate_expression (expr);
|
128 |
|
|
do_cleanups (old_chain);
|
129 |
|
|
return val;
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
/* Parse up to a comma (or to a closeparen)
|
133 |
|
|
in the string EXPP as an expression, evaluate it, and return the value.
|
134 |
|
|
EXPP is advanced to point to the comma. */
|
135 |
|
|
|
136 |
|
|
value_ptr
|
137 |
|
|
parse_to_comma_and_eval (char **expp)
|
138 |
|
|
{
|
139 |
|
|
struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
|
140 |
|
|
register value_ptr val;
|
141 |
|
|
register struct cleanup *old_chain
|
142 |
|
|
= make_cleanup (free_current_contents, &expr);
|
143 |
|
|
|
144 |
|
|
val = evaluate_expression (expr);
|
145 |
|
|
do_cleanups (old_chain);
|
146 |
|
|
return val;
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
/* Evaluate an expression in internal prefix form
|
150 |
|
|
such as is constructed by parse.y.
|
151 |
|
|
|
152 |
|
|
See expression.h for info on the format of an expression. */
|
153 |
|
|
|
154 |
|
|
value_ptr
|
155 |
|
|
evaluate_expression (struct expression *exp)
|
156 |
|
|
{
|
157 |
|
|
int pc = 0;
|
158 |
|
|
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Evaluate an expression, avoiding all memory references
|
162 |
|
|
and getting a value whose type alone is correct. */
|
163 |
|
|
|
164 |
|
|
value_ptr
|
165 |
|
|
evaluate_type (struct expression *exp)
|
166 |
|
|
{
|
167 |
|
|
int pc = 0;
|
168 |
|
|
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
/* If the next expression is an OP_LABELED, skips past it,
|
172 |
|
|
returning the label. Otherwise, does nothing and returns NULL. */
|
173 |
|
|
|
174 |
|
|
static char *
|
175 |
|
|
get_label (register struct expression *exp, int *pos)
|
176 |
|
|
{
|
177 |
|
|
if (exp->elts[*pos].opcode == OP_LABELED)
|
178 |
|
|
{
|
179 |
|
|
int pc = (*pos)++;
|
180 |
|
|
char *name = &exp->elts[pc + 2].string;
|
181 |
|
|
int tem = longest_to_int (exp->elts[pc + 1].longconst);
|
182 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
183 |
|
|
return name;
|
184 |
|
|
}
|
185 |
|
|
else
|
186 |
|
|
return NULL;
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
/* This function evaluates tuples (in Chill) or brace-initializers
|
190 |
|
|
(in C/C++) for structure types. */
|
191 |
|
|
|
192 |
|
|
static value_ptr
|
193 |
|
|
evaluate_struct_tuple (value_ptr struct_val, register struct expression *exp,
|
194 |
|
|
register int *pos, enum noside noside, int nargs)
|
195 |
|
|
{
|
196 |
|
|
struct type *struct_type = check_typedef (VALUE_TYPE (struct_val));
|
197 |
|
|
struct type *substruct_type = struct_type;
|
198 |
|
|
struct type *field_type;
|
199 |
|
|
int fieldno = -1;
|
200 |
|
|
int variantno = -1;
|
201 |
|
|
int subfieldno = -1;
|
202 |
|
|
while (--nargs >= 0)
|
203 |
|
|
{
|
204 |
|
|
int pc = *pos;
|
205 |
|
|
value_ptr val = NULL;
|
206 |
|
|
int nlabels = 0;
|
207 |
|
|
int bitpos, bitsize;
|
208 |
|
|
char *addr;
|
209 |
|
|
|
210 |
|
|
/* Skip past the labels, and count them. */
|
211 |
|
|
while (get_label (exp, pos) != NULL)
|
212 |
|
|
nlabels++;
|
213 |
|
|
|
214 |
|
|
do
|
215 |
|
|
{
|
216 |
|
|
char *label = get_label (exp, &pc);
|
217 |
|
|
if (label)
|
218 |
|
|
{
|
219 |
|
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
|
220 |
|
|
fieldno++)
|
221 |
|
|
{
|
222 |
|
|
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
|
223 |
|
|
if (field_name != NULL && STREQ (field_name, label))
|
224 |
|
|
{
|
225 |
|
|
variantno = -1;
|
226 |
|
|
subfieldno = fieldno;
|
227 |
|
|
substruct_type = struct_type;
|
228 |
|
|
goto found;
|
229 |
|
|
}
|
230 |
|
|
}
|
231 |
|
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
|
232 |
|
|
fieldno++)
|
233 |
|
|
{
|
234 |
|
|
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
|
235 |
|
|
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
|
236 |
|
|
if ((field_name == 0 || *field_name == '\0')
|
237 |
|
|
&& TYPE_CODE (field_type) == TYPE_CODE_UNION)
|
238 |
|
|
{
|
239 |
|
|
variantno = 0;
|
240 |
|
|
for (; variantno < TYPE_NFIELDS (field_type);
|
241 |
|
|
variantno++)
|
242 |
|
|
{
|
243 |
|
|
substruct_type
|
244 |
|
|
= TYPE_FIELD_TYPE (field_type, variantno);
|
245 |
|
|
if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
|
246 |
|
|
{
|
247 |
|
|
for (subfieldno = 0;
|
248 |
|
|
subfieldno < TYPE_NFIELDS (substruct_type);
|
249 |
|
|
subfieldno++)
|
250 |
|
|
{
|
251 |
|
|
if (STREQ (TYPE_FIELD_NAME (substruct_type,
|
252 |
|
|
subfieldno),
|
253 |
|
|
label))
|
254 |
|
|
{
|
255 |
|
|
goto found;
|
256 |
|
|
}
|
257 |
|
|
}
|
258 |
|
|
}
|
259 |
|
|
}
|
260 |
|
|
}
|
261 |
|
|
}
|
262 |
|
|
error ("there is no field named %s", label);
|
263 |
|
|
found:
|
264 |
|
|
;
|
265 |
|
|
}
|
266 |
|
|
else
|
267 |
|
|
{
|
268 |
|
|
/* Unlabelled tuple element - go to next field. */
|
269 |
|
|
if (variantno >= 0)
|
270 |
|
|
{
|
271 |
|
|
subfieldno++;
|
272 |
|
|
if (subfieldno >= TYPE_NFIELDS (substruct_type))
|
273 |
|
|
{
|
274 |
|
|
variantno = -1;
|
275 |
|
|
substruct_type = struct_type;
|
276 |
|
|
}
|
277 |
|
|
}
|
278 |
|
|
if (variantno < 0)
|
279 |
|
|
{
|
280 |
|
|
fieldno++;
|
281 |
|
|
subfieldno = fieldno;
|
282 |
|
|
if (fieldno >= TYPE_NFIELDS (struct_type))
|
283 |
|
|
error ("too many initializers");
|
284 |
|
|
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
|
285 |
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
286 |
|
|
&& TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
|
287 |
|
|
error ("don't know which variant you want to set");
|
288 |
|
|
}
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/* Here, struct_type is the type of the inner struct,
|
292 |
|
|
while substruct_type is the type of the inner struct.
|
293 |
|
|
These are the same for normal structures, but a variant struct
|
294 |
|
|
contains anonymous union fields that contain substruct fields.
|
295 |
|
|
The value fieldno is the index of the top-level (normal or
|
296 |
|
|
anonymous union) field in struct_field, while the value
|
297 |
|
|
subfieldno is the index of the actual real (named inner) field
|
298 |
|
|
in substruct_type. */
|
299 |
|
|
|
300 |
|
|
field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
|
301 |
|
|
if (val == 0)
|
302 |
|
|
val = evaluate_subexp (field_type, exp, pos, noside);
|
303 |
|
|
|
304 |
|
|
/* Now actually set the field in struct_val. */
|
305 |
|
|
|
306 |
|
|
/* Assign val to field fieldno. */
|
307 |
|
|
if (VALUE_TYPE (val) != field_type)
|
308 |
|
|
val = value_cast (field_type, val);
|
309 |
|
|
|
310 |
|
|
bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
|
311 |
|
|
bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
|
312 |
|
|
if (variantno >= 0)
|
313 |
|
|
bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
|
314 |
|
|
addr = VALUE_CONTENTS (struct_val) + bitpos / 8;
|
315 |
|
|
if (bitsize)
|
316 |
|
|
modify_field (addr, value_as_long (val),
|
317 |
|
|
bitpos % 8, bitsize);
|
318 |
|
|
else
|
319 |
|
|
memcpy (addr, VALUE_CONTENTS (val),
|
320 |
|
|
TYPE_LENGTH (VALUE_TYPE (val)));
|
321 |
|
|
}
|
322 |
|
|
while (--nlabels > 0);
|
323 |
|
|
}
|
324 |
|
|
return struct_val;
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
/* Recursive helper function for setting elements of array tuples for Chill.
|
328 |
|
|
The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND);
|
329 |
|
|
the element value is ELEMENT;
|
330 |
|
|
EXP, POS and NOSIDE are as usual.
|
331 |
|
|
Evaluates index expresions and sets the specified element(s) of
|
332 |
|
|
ARRAY to ELEMENT.
|
333 |
|
|
Returns last index value. */
|
334 |
|
|
|
335 |
|
|
static LONGEST
|
336 |
|
|
init_array_element (value_ptr array, value_ptr element,
|
337 |
|
|
register struct expression *exp, register int *pos,
|
338 |
|
|
enum noside noside, LONGEST low_bound, LONGEST high_bound)
|
339 |
|
|
{
|
340 |
|
|
LONGEST index;
|
341 |
|
|
int element_size = TYPE_LENGTH (VALUE_TYPE (element));
|
342 |
|
|
if (exp->elts[*pos].opcode == BINOP_COMMA)
|
343 |
|
|
{
|
344 |
|
|
(*pos)++;
|
345 |
|
|
init_array_element (array, element, exp, pos, noside,
|
346 |
|
|
low_bound, high_bound);
|
347 |
|
|
return init_array_element (array, element,
|
348 |
|
|
exp, pos, noside, low_bound, high_bound);
|
349 |
|
|
}
|
350 |
|
|
else if (exp->elts[*pos].opcode == BINOP_RANGE)
|
351 |
|
|
{
|
352 |
|
|
LONGEST low, high;
|
353 |
|
|
(*pos)++;
|
354 |
|
|
low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
355 |
|
|
high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
356 |
|
|
if (low < low_bound || high > high_bound)
|
357 |
|
|
error ("tuple range index out of range");
|
358 |
|
|
for (index = low; index <= high; index++)
|
359 |
|
|
{
|
360 |
|
|
memcpy (VALUE_CONTENTS_RAW (array)
|
361 |
|
|
+ (index - low_bound) * element_size,
|
362 |
|
|
VALUE_CONTENTS (element), element_size);
|
363 |
|
|
}
|
364 |
|
|
}
|
365 |
|
|
else
|
366 |
|
|
{
|
367 |
|
|
index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
368 |
|
|
if (index < low_bound || index > high_bound)
|
369 |
|
|
error ("tuple index out of range");
|
370 |
|
|
memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size,
|
371 |
|
|
VALUE_CONTENTS (element), element_size);
|
372 |
|
|
}
|
373 |
|
|
return index;
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
value_ptr
|
377 |
|
|
evaluate_subexp_standard (struct type *expect_type,
|
378 |
|
|
register struct expression *exp, register int *pos,
|
379 |
|
|
enum noside noside)
|
380 |
|
|
{
|
381 |
|
|
enum exp_opcode op;
|
382 |
|
|
int tem, tem2, tem3;
|
383 |
|
|
register int pc, pc2 = 0, oldpos;
|
384 |
|
|
register value_ptr arg1 = NULL, arg2 = NULL, arg3;
|
385 |
|
|
struct type *type;
|
386 |
|
|
int nargs;
|
387 |
|
|
value_ptr *argvec;
|
388 |
|
|
int upper, lower, retcode;
|
389 |
|
|
int code;
|
390 |
|
|
int ix;
|
391 |
|
|
long mem_offset;
|
392 |
|
|
struct type **arg_types;
|
393 |
|
|
int save_pos1;
|
394 |
|
|
|
395 |
|
|
pc = (*pos)++;
|
396 |
|
|
op = exp->elts[pc].opcode;
|
397 |
|
|
|
398 |
|
|
switch (op)
|
399 |
|
|
{
|
400 |
|
|
case OP_SCOPE:
|
401 |
|
|
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
402 |
|
|
(*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
|
403 |
|
|
arg1 = value_struct_elt_for_reference (exp->elts[pc + 1].type,
|
404 |
|
|
0,
|
405 |
|
|
exp->elts[pc + 1].type,
|
406 |
|
|
&exp->elts[pc + 3].string,
|
407 |
|
|
NULL_TYPE);
|
408 |
|
|
if (arg1 == NULL)
|
409 |
|
|
error ("There is no field named %s", &exp->elts[pc + 3].string);
|
410 |
|
|
return arg1;
|
411 |
|
|
|
412 |
|
|
case OP_LONG:
|
413 |
|
|
(*pos) += 3;
|
414 |
|
|
return value_from_longest (exp->elts[pc + 1].type,
|
415 |
|
|
exp->elts[pc + 2].longconst);
|
416 |
|
|
|
417 |
|
|
case OP_DOUBLE:
|
418 |
|
|
(*pos) += 3;
|
419 |
|
|
return value_from_double (exp->elts[pc + 1].type,
|
420 |
|
|
exp->elts[pc + 2].doubleconst);
|
421 |
|
|
|
422 |
|
|
case OP_VAR_VALUE:
|
423 |
|
|
(*pos) += 3;
|
424 |
|
|
if (noside == EVAL_SKIP)
|
425 |
|
|
goto nosideret;
|
426 |
|
|
|
427 |
|
|
/* JYG: We used to just return value_zero of the symbol type
|
428 |
|
|
if we're asked to avoid side effects. Otherwise we return
|
429 |
|
|
value_of_variable (...). However I'm not sure if
|
430 |
|
|
value_of_variable () has any side effect.
|
431 |
|
|
We need a full value object returned here for whatis_exp ()
|
432 |
|
|
to call evaluate_type () and then pass the full value to
|
433 |
|
|
value_rtti_target_type () if we are dealing with a pointer
|
434 |
|
|
or reference to a base class and print object is on. */
|
435 |
|
|
|
436 |
|
|
return value_of_variable (exp->elts[pc + 2].symbol,
|
437 |
|
|
exp->elts[pc + 1].block);
|
438 |
|
|
|
439 |
|
|
case OP_LAST:
|
440 |
|
|
(*pos) += 2;
|
441 |
|
|
return
|
442 |
|
|
access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
|
443 |
|
|
|
444 |
|
|
case OP_REGISTER:
|
445 |
|
|
{
|
446 |
|
|
int regno = longest_to_int (exp->elts[pc + 1].longconst);
|
447 |
|
|
value_ptr val = value_of_register (regno);
|
448 |
|
|
|
449 |
|
|
(*pos) += 2;
|
450 |
|
|
if (val == NULL)
|
451 |
|
|
error ("Value of register %s not available.", REGISTER_NAME (regno));
|
452 |
|
|
else
|
453 |
|
|
return val;
|
454 |
|
|
}
|
455 |
|
|
case OP_BOOL:
|
456 |
|
|
(*pos) += 2;
|
457 |
|
|
return value_from_longest (LA_BOOL_TYPE,
|
458 |
|
|
exp->elts[pc + 1].longconst);
|
459 |
|
|
|
460 |
|
|
case OP_INTERNALVAR:
|
461 |
|
|
(*pos) += 2;
|
462 |
|
|
return value_of_internalvar (exp->elts[pc + 1].internalvar);
|
463 |
|
|
|
464 |
|
|
case OP_STRING:
|
465 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
466 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
467 |
|
|
if (noside == EVAL_SKIP)
|
468 |
|
|
goto nosideret;
|
469 |
|
|
return value_string (&exp->elts[pc + 2].string, tem);
|
470 |
|
|
|
471 |
|
|
case OP_BITSTRING:
|
472 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
473 |
|
|
(*pos)
|
474 |
|
|
+= 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
|
475 |
|
|
if (noside == EVAL_SKIP)
|
476 |
|
|
goto nosideret;
|
477 |
|
|
return value_bitstring (&exp->elts[pc + 2].string, tem);
|
478 |
|
|
break;
|
479 |
|
|
|
480 |
|
|
case OP_ARRAY:
|
481 |
|
|
(*pos) += 3;
|
482 |
|
|
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
|
483 |
|
|
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
|
484 |
|
|
nargs = tem3 - tem2 + 1;
|
485 |
|
|
type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
|
486 |
|
|
|
487 |
|
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
488 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
489 |
|
|
{
|
490 |
|
|
value_ptr rec = allocate_value (expect_type);
|
491 |
|
|
memset (VALUE_CONTENTS_RAW (rec), '\0', TYPE_LENGTH (type));
|
492 |
|
|
return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
496 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
497 |
|
|
{
|
498 |
|
|
struct type *range_type = TYPE_FIELD_TYPE (type, 0);
|
499 |
|
|
struct type *element_type = TYPE_TARGET_TYPE (type);
|
500 |
|
|
value_ptr array = allocate_value (expect_type);
|
501 |
|
|
int element_size = TYPE_LENGTH (check_typedef (element_type));
|
502 |
|
|
LONGEST low_bound, high_bound, index;
|
503 |
|
|
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
504 |
|
|
{
|
505 |
|
|
low_bound = 0;
|
506 |
|
|
high_bound = (TYPE_LENGTH (type) / element_size) - 1;
|
507 |
|
|
}
|
508 |
|
|
index = low_bound;
|
509 |
|
|
memset (VALUE_CONTENTS_RAW (array), 0, TYPE_LENGTH (expect_type));
|
510 |
|
|
for (tem = nargs; --nargs >= 0;)
|
511 |
|
|
{
|
512 |
|
|
value_ptr element;
|
513 |
|
|
int index_pc = 0;
|
514 |
|
|
if (exp->elts[*pos].opcode == BINOP_RANGE)
|
515 |
|
|
{
|
516 |
|
|
index_pc = ++(*pos);
|
517 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
518 |
|
|
}
|
519 |
|
|
element = evaluate_subexp (element_type, exp, pos, noside);
|
520 |
|
|
if (VALUE_TYPE (element) != element_type)
|
521 |
|
|
element = value_cast (element_type, element);
|
522 |
|
|
if (index_pc)
|
523 |
|
|
{
|
524 |
|
|
int continue_pc = *pos;
|
525 |
|
|
*pos = index_pc;
|
526 |
|
|
index = init_array_element (array, element, exp, pos, noside,
|
527 |
|
|
low_bound, high_bound);
|
528 |
|
|
*pos = continue_pc;
|
529 |
|
|
}
|
530 |
|
|
else
|
531 |
|
|
{
|
532 |
|
|
if (index > high_bound)
|
533 |
|
|
/* to avoid memory corruption */
|
534 |
|
|
error ("Too many array elements");
|
535 |
|
|
memcpy (VALUE_CONTENTS_RAW (array)
|
536 |
|
|
+ (index - low_bound) * element_size,
|
537 |
|
|
VALUE_CONTENTS (element),
|
538 |
|
|
element_size);
|
539 |
|
|
}
|
540 |
|
|
index++;
|
541 |
|
|
}
|
542 |
|
|
return array;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
546 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_SET)
|
547 |
|
|
{
|
548 |
|
|
value_ptr set = allocate_value (expect_type);
|
549 |
|
|
char *valaddr = VALUE_CONTENTS_RAW (set);
|
550 |
|
|
struct type *element_type = TYPE_INDEX_TYPE (type);
|
551 |
|
|
struct type *check_type = element_type;
|
552 |
|
|
LONGEST low_bound, high_bound;
|
553 |
|
|
|
554 |
|
|
/* get targettype of elementtype */
|
555 |
|
|
while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
|
556 |
|
|
TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
|
557 |
|
|
check_type = TYPE_TARGET_TYPE (check_type);
|
558 |
|
|
|
559 |
|
|
if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
|
560 |
|
|
error ("(power)set type with unknown size");
|
561 |
|
|
memset (valaddr, '\0', TYPE_LENGTH (type));
|
562 |
|
|
for (tem = 0; tem < nargs; tem++)
|
563 |
|
|
{
|
564 |
|
|
LONGEST range_low, range_high;
|
565 |
|
|
struct type *range_low_type, *range_high_type;
|
566 |
|
|
value_ptr elem_val;
|
567 |
|
|
if (exp->elts[*pos].opcode == BINOP_RANGE)
|
568 |
|
|
{
|
569 |
|
|
(*pos)++;
|
570 |
|
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
571 |
|
|
range_low_type = VALUE_TYPE (elem_val);
|
572 |
|
|
range_low = value_as_long (elem_val);
|
573 |
|
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
574 |
|
|
range_high_type = VALUE_TYPE (elem_val);
|
575 |
|
|
range_high = value_as_long (elem_val);
|
576 |
|
|
}
|
577 |
|
|
else
|
578 |
|
|
{
|
579 |
|
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
580 |
|
|
range_low_type = range_high_type = VALUE_TYPE (elem_val);
|
581 |
|
|
range_low = range_high = value_as_long (elem_val);
|
582 |
|
|
}
|
583 |
|
|
/* check types of elements to avoid mixture of elements from
|
584 |
|
|
different types. Also check if type of element is "compatible"
|
585 |
|
|
with element type of powerset */
|
586 |
|
|
if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
|
587 |
|
|
range_low_type = TYPE_TARGET_TYPE (range_low_type);
|
588 |
|
|
if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
|
589 |
|
|
range_high_type = TYPE_TARGET_TYPE (range_high_type);
|
590 |
|
|
if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
|
591 |
|
|
(TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
|
592 |
|
|
(range_low_type != range_high_type)))
|
593 |
|
|
/* different element modes */
|
594 |
|
|
error ("POWERSET tuple elements of different mode");
|
595 |
|
|
if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
|
596 |
|
|
(TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
|
597 |
|
|
range_low_type != check_type))
|
598 |
|
|
error ("incompatible POWERSET tuple elements");
|
599 |
|
|
if (range_low > range_high)
|
600 |
|
|
{
|
601 |
|
|
warning ("empty POWERSET tuple range");
|
602 |
|
|
continue;
|
603 |
|
|
}
|
604 |
|
|
if (range_low < low_bound || range_high > high_bound)
|
605 |
|
|
error ("POWERSET tuple element out of range");
|
606 |
|
|
range_low -= low_bound;
|
607 |
|
|
range_high -= low_bound;
|
608 |
|
|
for (; range_low <= range_high; range_low++)
|
609 |
|
|
{
|
610 |
|
|
int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
|
611 |
|
|
if (BITS_BIG_ENDIAN)
|
612 |
|
|
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
|
613 |
|
|
valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
|
614 |
|
|
|= 1 << bit_index;
|
615 |
|
|
}
|
616 |
|
|
}
|
617 |
|
|
return set;
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
argvec = (value_ptr *) alloca (sizeof (value_ptr) * nargs);
|
621 |
|
|
for (tem = 0; tem < nargs; tem++)
|
622 |
|
|
{
|
623 |
|
|
/* Ensure that array expressions are coerced into pointer objects. */
|
624 |
|
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
625 |
|
|
}
|
626 |
|
|
if (noside == EVAL_SKIP)
|
627 |
|
|
goto nosideret;
|
628 |
|
|
return value_array (tem2, tem3, argvec);
|
629 |
|
|
|
630 |
|
|
case TERNOP_SLICE:
|
631 |
|
|
{
|
632 |
|
|
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
633 |
|
|
int lowbound
|
634 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
635 |
|
|
int upper
|
636 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
637 |
|
|
if (noside == EVAL_SKIP)
|
638 |
|
|
goto nosideret;
|
639 |
|
|
return value_slice (array, lowbound, upper - lowbound + 1);
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
case TERNOP_SLICE_COUNT:
|
643 |
|
|
{
|
644 |
|
|
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
645 |
|
|
int lowbound
|
646 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
647 |
|
|
int length
|
648 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
649 |
|
|
return value_slice (array, lowbound, length);
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
case TERNOP_COND:
|
653 |
|
|
/* Skip third and second args to evaluate the first one. */
|
654 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
655 |
|
|
if (value_logical_not (arg1))
|
656 |
|
|
{
|
657 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
658 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
659 |
|
|
}
|
660 |
|
|
else
|
661 |
|
|
{
|
662 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
663 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
664 |
|
|
return arg2;
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
case OP_FUNCALL:
|
668 |
|
|
(*pos) += 2;
|
669 |
|
|
op = exp->elts[*pos].opcode;
|
670 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
671 |
|
|
/* Allocate arg vector, including space for the function to be
|
672 |
|
|
called in argvec[0] and a terminating NULL */
|
673 |
|
|
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 3));
|
674 |
|
|
if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
675 |
|
|
{
|
676 |
|
|
LONGEST fnptr;
|
677 |
|
|
|
678 |
|
|
/* 1997-08-01 Currently we do not support function invocation
|
679 |
|
|
via pointers-to-methods with HP aCC. Pointer does not point
|
680 |
|
|
to the function, but possibly to some thunk. */
|
681 |
|
|
if (hp_som_som_object_present)
|
682 |
|
|
{
|
683 |
|
|
error ("Not implemented: function invocation through pointer to method with HP aCC");
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
nargs++;
|
687 |
|
|
/* First, evaluate the structure into arg2 */
|
688 |
|
|
pc2 = (*pos)++;
|
689 |
|
|
|
690 |
|
|
if (noside == EVAL_SKIP)
|
691 |
|
|
goto nosideret;
|
692 |
|
|
|
693 |
|
|
if (op == STRUCTOP_MEMBER)
|
694 |
|
|
{
|
695 |
|
|
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
696 |
|
|
}
|
697 |
|
|
else
|
698 |
|
|
{
|
699 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
/* If the function is a virtual function, then the
|
703 |
|
|
aggregate value (providing the structure) plays
|
704 |
|
|
its part by providing the vtable. Otherwise,
|
705 |
|
|
it is just along for the ride: call the function
|
706 |
|
|
directly. */
|
707 |
|
|
|
708 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
709 |
|
|
|
710 |
|
|
fnptr = value_as_long (arg1);
|
711 |
|
|
|
712 |
|
|
if (METHOD_PTR_IS_VIRTUAL (fnptr))
|
713 |
|
|
{
|
714 |
|
|
int fnoffset = METHOD_PTR_TO_VOFFSET (fnptr);
|
715 |
|
|
struct type *basetype;
|
716 |
|
|
struct type *domain_type =
|
717 |
|
|
TYPE_DOMAIN_TYPE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
|
718 |
|
|
int i, j;
|
719 |
|
|
basetype = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
|
720 |
|
|
if (domain_type != basetype)
|
721 |
|
|
arg2 = value_cast (lookup_pointer_type (domain_type), arg2);
|
722 |
|
|
basetype = TYPE_VPTR_BASETYPE (domain_type);
|
723 |
|
|
for (i = TYPE_NFN_FIELDS (basetype) - 1; i >= 0; i--)
|
724 |
|
|
{
|
725 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (basetype, i);
|
726 |
|
|
/* If one is virtual, then all are virtual. */
|
727 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, 0))
|
728 |
|
|
for (j = TYPE_FN_FIELDLIST_LENGTH (basetype, i) - 1; j >= 0; --j)
|
729 |
|
|
if ((int) TYPE_FN_FIELD_VOFFSET (f, j) == fnoffset)
|
730 |
|
|
{
|
731 |
|
|
value_ptr temp = value_ind (arg2);
|
732 |
|
|
arg1 = value_virtual_fn_field (&temp, f, j, domain_type, 0);
|
733 |
|
|
arg2 = value_addr (temp);
|
734 |
|
|
goto got_it;
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
if (i < 0)
|
738 |
|
|
error ("virtual function at index %d not found", fnoffset);
|
739 |
|
|
}
|
740 |
|
|
else
|
741 |
|
|
{
|
742 |
|
|
VALUE_TYPE (arg1) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
|
743 |
|
|
}
|
744 |
|
|
got_it:
|
745 |
|
|
|
746 |
|
|
/* Now, say which argument to start evaluating from */
|
747 |
|
|
tem = 2;
|
748 |
|
|
}
|
749 |
|
|
else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
750 |
|
|
{
|
751 |
|
|
/* Hair for method invocations */
|
752 |
|
|
int tem2;
|
753 |
|
|
|
754 |
|
|
nargs++;
|
755 |
|
|
/* First, evaluate the structure into arg2 */
|
756 |
|
|
pc2 = (*pos)++;
|
757 |
|
|
tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
|
758 |
|
|
*pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
|
759 |
|
|
if (noside == EVAL_SKIP)
|
760 |
|
|
goto nosideret;
|
761 |
|
|
|
762 |
|
|
if (op == STRUCTOP_STRUCT)
|
763 |
|
|
{
|
764 |
|
|
/* If v is a variable in a register, and the user types
|
765 |
|
|
v.method (), this will produce an error, because v has
|
766 |
|
|
no address.
|
767 |
|
|
|
768 |
|
|
A possible way around this would be to allocate a
|
769 |
|
|
copy of the variable on the stack, copy in the
|
770 |
|
|
contents, call the function, and copy out the
|
771 |
|
|
contents. I.e. convert this from call by reference
|
772 |
|
|
to call by copy-return (or whatever it's called).
|
773 |
|
|
However, this does not work because it is not the
|
774 |
|
|
same: the method being called could stash a copy of
|
775 |
|
|
the address, and then future uses through that address
|
776 |
|
|
(after the method returns) would be expected to
|
777 |
|
|
use the variable itself, not some copy of it. */
|
778 |
|
|
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
779 |
|
|
}
|
780 |
|
|
else
|
781 |
|
|
{
|
782 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
783 |
|
|
}
|
784 |
|
|
/* Now, say which argument to start evaluating from */
|
785 |
|
|
tem = 2;
|
786 |
|
|
}
|
787 |
|
|
else
|
788 |
|
|
{
|
789 |
|
|
/* Non-method function call */
|
790 |
|
|
save_pos1 = *pos;
|
791 |
|
|
argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
|
792 |
|
|
tem = 1;
|
793 |
|
|
type = VALUE_TYPE (argvec[0]);
|
794 |
|
|
if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
|
795 |
|
|
type = TYPE_TARGET_TYPE (type);
|
796 |
|
|
if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
|
797 |
|
|
{
|
798 |
|
|
for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
|
799 |
|
|
{
|
800 |
|
|
/* pai: FIXME This seems to be coercing arguments before
|
801 |
|
|
* overload resolution has been done! */
|
802 |
|
|
argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
|
803 |
|
|
exp, pos, noside);
|
804 |
|
|
}
|
805 |
|
|
}
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/* Evaluate arguments */
|
809 |
|
|
for (; tem <= nargs; tem++)
|
810 |
|
|
{
|
811 |
|
|
/* Ensure that array expressions are coerced into pointer objects. */
|
812 |
|
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* signal end of arglist */
|
816 |
|
|
argvec[tem] = 0;
|
817 |
|
|
|
818 |
|
|
if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
819 |
|
|
{
|
820 |
|
|
int static_memfuncp;
|
821 |
|
|
value_ptr temp = arg2;
|
822 |
|
|
char tstr[256];
|
823 |
|
|
|
824 |
|
|
/* Method invocation : stuff "this" as first parameter */
|
825 |
|
|
/* pai: this used to have lookup_pointer_type for some reason,
|
826 |
|
|
* but temp is already a pointer to the object */
|
827 |
|
|
argvec[1]
|
828 |
|
|
= value_from_pointer (VALUE_TYPE (temp),
|
829 |
|
|
VALUE_ADDRESS (temp) + VALUE_OFFSET (temp));
|
830 |
|
|
/* Name of method from expression */
|
831 |
|
|
strcpy (tstr, &exp->elts[pc2 + 2].string);
|
832 |
|
|
|
833 |
|
|
if (overload_resolution && (exp->language_defn->la_language == language_cplus))
|
834 |
|
|
{
|
835 |
|
|
/* Language is C++, do some overload resolution before evaluation */
|
836 |
|
|
value_ptr valp = NULL;
|
837 |
|
|
|
838 |
|
|
/* Prepare list of argument types for overload resolution */
|
839 |
|
|
arg_types = (struct type **) xmalloc (nargs * (sizeof (struct type *)));
|
840 |
|
|
for (ix = 1; ix <= nargs; ix++)
|
841 |
|
|
arg_types[ix - 1] = VALUE_TYPE (argvec[ix]);
|
842 |
|
|
|
843 |
|
|
(void) find_overload_match (arg_types, nargs, tstr,
|
844 |
|
|
1 /* method */ , 0 /* strict match */ ,
|
845 |
|
|
arg2 /* the object */ , NULL,
|
846 |
|
|
&valp, NULL, &static_memfuncp);
|
847 |
|
|
|
848 |
|
|
|
849 |
|
|
argvec[1] = arg2; /* the ``this'' pointer */
|
850 |
|
|
argvec[0] = valp; /* use the method found after overload resolution */
|
851 |
|
|
}
|
852 |
|
|
else
|
853 |
|
|
/* Non-C++ case -- or no overload resolution */
|
854 |
|
|
{
|
855 |
|
|
temp = arg2;
|
856 |
|
|
argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
|
857 |
|
|
&static_memfuncp,
|
858 |
|
|
op == STRUCTOP_STRUCT
|
859 |
|
|
? "structure" : "structure pointer");
|
860 |
|
|
argvec[1] = arg2; /* the ``this'' pointer */
|
861 |
|
|
}
|
862 |
|
|
|
863 |
|
|
if (static_memfuncp)
|
864 |
|
|
{
|
865 |
|
|
argvec[1] = argvec[0];
|
866 |
|
|
nargs--;
|
867 |
|
|
argvec++;
|
868 |
|
|
}
|
869 |
|
|
}
|
870 |
|
|
else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
871 |
|
|
{
|
872 |
|
|
argvec[1] = arg2;
|
873 |
|
|
argvec[0] = arg1;
|
874 |
|
|
}
|
875 |
|
|
else if (op == OP_VAR_VALUE)
|
876 |
|
|
{
|
877 |
|
|
/* Non-member function being called */
|
878 |
|
|
/* fn: This can only be done for C++ functions. A C-style function
|
879 |
|
|
in a C++ program, for instance, does not have the fields that
|
880 |
|
|
are expected here */
|
881 |
|
|
|
882 |
|
|
if (overload_resolution && (exp->language_defn->la_language == language_cplus))
|
883 |
|
|
{
|
884 |
|
|
/* Language is C++, do some overload resolution before evaluation */
|
885 |
|
|
struct symbol *symp;
|
886 |
|
|
|
887 |
|
|
/* Prepare list of argument types for overload resolution */
|
888 |
|
|
arg_types = (struct type **) xmalloc (nargs * (sizeof (struct type *)));
|
889 |
|
|
for (ix = 1; ix <= nargs; ix++)
|
890 |
|
|
arg_types[ix - 1] = VALUE_TYPE (argvec[ix]);
|
891 |
|
|
|
892 |
|
|
(void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
|
893 |
|
|
|
894 |
|
|
NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
|
895 |
|
|
NULL, &symp, NULL);
|
896 |
|
|
|
897 |
|
|
/* Now fix the expression being evaluated */
|
898 |
|
|
exp->elts[save_pos1+2].symbol = symp;
|
899 |
|
|
argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
|
900 |
|
|
}
|
901 |
|
|
else
|
902 |
|
|
{
|
903 |
|
|
/* Not C++, or no overload resolution allowed */
|
904 |
|
|
/* nothing to be done; argvec already correctly set up */
|
905 |
|
|
}
|
906 |
|
|
}
|
907 |
|
|
else
|
908 |
|
|
{
|
909 |
|
|
/* It is probably a C-style function */
|
910 |
|
|
/* nothing to be done; argvec already correctly set up */
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
do_call_it:
|
914 |
|
|
|
915 |
|
|
if (noside == EVAL_SKIP)
|
916 |
|
|
goto nosideret;
|
917 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
918 |
|
|
{
|
919 |
|
|
/* If the return type doesn't look like a function type, call an
|
920 |
|
|
error. This can happen if somebody tries to turn a variable into
|
921 |
|
|
a function call. This is here because people often want to
|
922 |
|
|
call, eg, strcmp, which gdb doesn't know is a function. If
|
923 |
|
|
gdb isn't asked for it's opinion (ie. through "whatis"),
|
924 |
|
|
it won't offer it. */
|
925 |
|
|
|
926 |
|
|
struct type *ftype =
|
927 |
|
|
TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0]));
|
928 |
|
|
|
929 |
|
|
if (ftype)
|
930 |
|
|
return allocate_value (TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0])));
|
931 |
|
|
else
|
932 |
|
|
error ("Expression of type other than \"Function returning ...\" used as function");
|
933 |
|
|
}
|
934 |
|
|
if (argvec[0] == NULL)
|
935 |
|
|
error ("Cannot evaluate function -- may be inlined");
|
936 |
|
|
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
937 |
|
|
/* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
|
938 |
|
|
|
939 |
|
|
case OP_F77_UNDETERMINED_ARGLIST:
|
940 |
|
|
|
941 |
|
|
/* Remember that in F77, functions, substring ops and
|
942 |
|
|
array subscript operations cannot be disambiguated
|
943 |
|
|
at parse time. We have made all array subscript operations,
|
944 |
|
|
substring operations as well as function calls come here
|
945 |
|
|
and we now have to discover what the heck this thing actually was.
|
946 |
|
|
If it is a function, we process just as if we got an OP_FUNCALL. */
|
947 |
|
|
|
948 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
949 |
|
|
(*pos) += 2;
|
950 |
|
|
|
951 |
|
|
/* First determine the type code we are dealing with. */
|
952 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
953 |
|
|
type = check_typedef (VALUE_TYPE (arg1));
|
954 |
|
|
code = TYPE_CODE (type);
|
955 |
|
|
|
956 |
|
|
switch (code)
|
957 |
|
|
{
|
958 |
|
|
case TYPE_CODE_ARRAY:
|
959 |
|
|
goto multi_f77_subscript;
|
960 |
|
|
|
961 |
|
|
case TYPE_CODE_STRING:
|
962 |
|
|
goto op_f77_substr;
|
963 |
|
|
|
964 |
|
|
case TYPE_CODE_PTR:
|
965 |
|
|
case TYPE_CODE_FUNC:
|
966 |
|
|
/* It's a function call. */
|
967 |
|
|
/* Allocate arg vector, including space for the function to be
|
968 |
|
|
called in argvec[0] and a terminating NULL */
|
969 |
|
|
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 2));
|
970 |
|
|
argvec[0] = arg1;
|
971 |
|
|
tem = 1;
|
972 |
|
|
for (; tem <= nargs; tem++)
|
973 |
|
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
974 |
|
|
argvec[tem] = 0; /* signal end of arglist */
|
975 |
|
|
goto do_call_it;
|
976 |
|
|
|
977 |
|
|
default:
|
978 |
|
|
error ("Cannot perform substring on this type");
|
979 |
|
|
}
|
980 |
|
|
|
981 |
|
|
op_f77_substr:
|
982 |
|
|
/* We have a substring operation on our hands here,
|
983 |
|
|
let us get the string we will be dealing with */
|
984 |
|
|
|
985 |
|
|
/* Now evaluate the 'from' and 'to' */
|
986 |
|
|
|
987 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
988 |
|
|
|
989 |
|
|
if (nargs < 2)
|
990 |
|
|
return value_subscript (arg1, arg2);
|
991 |
|
|
|
992 |
|
|
arg3 = evaluate_subexp_with_coercion (exp, pos, noside);
|
993 |
|
|
|
994 |
|
|
if (noside == EVAL_SKIP)
|
995 |
|
|
goto nosideret;
|
996 |
|
|
|
997 |
|
|
tem2 = value_as_long (arg2);
|
998 |
|
|
tem3 = value_as_long (arg3);
|
999 |
|
|
|
1000 |
|
|
return value_slice (arg1, tem2, tem3 - tem2 + 1);
|
1001 |
|
|
|
1002 |
|
|
case OP_COMPLEX:
|
1003 |
|
|
/* We have a complex number, There should be 2 floating
|
1004 |
|
|
point numbers that compose it */
|
1005 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1006 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1007 |
|
|
|
1008 |
|
|
return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
|
1009 |
|
|
|
1010 |
|
|
case STRUCTOP_STRUCT:
|
1011 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
1012 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
1013 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1014 |
|
|
if (noside == EVAL_SKIP)
|
1015 |
|
|
goto nosideret;
|
1016 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1017 |
|
|
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
|
1018 |
|
|
&exp->elts[pc + 2].string,
|
1019 |
|
|
0),
|
1020 |
|
|
lval_memory);
|
1021 |
|
|
else
|
1022 |
|
|
{
|
1023 |
|
|
value_ptr temp = arg1;
|
1024 |
|
|
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
1025 |
|
|
NULL, "structure");
|
1026 |
|
|
}
|
1027 |
|
|
|
1028 |
|
|
case STRUCTOP_PTR:
|
1029 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
1030 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
1031 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1032 |
|
|
if (noside == EVAL_SKIP)
|
1033 |
|
|
goto nosideret;
|
1034 |
|
|
|
1035 |
|
|
/* JYG: if print object is on we need to replace the base type
|
1036 |
|
|
with rtti type in order to continue on with successful
|
1037 |
|
|
lookup of member / method only available in the rtti type. */
|
1038 |
|
|
{
|
1039 |
|
|
struct type *type = VALUE_TYPE (arg1);
|
1040 |
|
|
struct type *real_type;
|
1041 |
|
|
int full, top, using_enc;
|
1042 |
|
|
|
1043 |
|
|
if (objectprint && TYPE_TARGET_TYPE(type) &&
|
1044 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
|
1045 |
|
|
{
|
1046 |
|
|
real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
|
1047 |
|
|
if (real_type)
|
1048 |
|
|
{
|
1049 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
1050 |
|
|
real_type = lookup_pointer_type (real_type);
|
1051 |
|
|
else
|
1052 |
|
|
real_type = lookup_reference_type (real_type);
|
1053 |
|
|
|
1054 |
|
|
arg1 = value_cast (real_type, arg1);
|
1055 |
|
|
}
|
1056 |
|
|
}
|
1057 |
|
|
}
|
1058 |
|
|
|
1059 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1060 |
|
|
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
|
1061 |
|
|
&exp->elts[pc + 2].string,
|
1062 |
|
|
0),
|
1063 |
|
|
lval_memory);
|
1064 |
|
|
else
|
1065 |
|
|
{
|
1066 |
|
|
value_ptr temp = arg1;
|
1067 |
|
|
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
1068 |
|
|
NULL, "structure pointer");
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
case STRUCTOP_MEMBER:
|
1072 |
|
|
arg1 = evaluate_subexp_for_address (exp, pos, noside);
|
1073 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1074 |
|
|
|
1075 |
|
|
/* With HP aCC, pointers to methods do not point to the function code */
|
1076 |
|
|
if (hp_som_som_object_present &&
|
1077 |
|
|
(TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) &&
|
1078 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD))
|
1079 |
|
|
error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */
|
1080 |
|
|
|
1081 |
|
|
mem_offset = value_as_long (arg2);
|
1082 |
|
|
goto handle_pointer_to_member;
|
1083 |
|
|
|
1084 |
|
|
case STRUCTOP_MPTR:
|
1085 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1086 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1087 |
|
|
|
1088 |
|
|
/* With HP aCC, pointers to methods do not point to the function code */
|
1089 |
|
|
if (hp_som_som_object_present &&
|
1090 |
|
|
(TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) &&
|
1091 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD))
|
1092 |
|
|
error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */
|
1093 |
|
|
|
1094 |
|
|
mem_offset = value_as_long (arg2);
|
1095 |
|
|
|
1096 |
|
|
handle_pointer_to_member:
|
1097 |
|
|
/* HP aCC generates offsets that have bit #29 set; turn it off to get
|
1098 |
|
|
a real offset to the member. */
|
1099 |
|
|
if (hp_som_som_object_present)
|
1100 |
|
|
{
|
1101 |
|
|
if (!mem_offset) /* no bias -> really null */
|
1102 |
|
|
error ("Attempted dereference of null pointer-to-member");
|
1103 |
|
|
mem_offset &= ~0x20000000;
|
1104 |
|
|
}
|
1105 |
|
|
if (noside == EVAL_SKIP)
|
1106 |
|
|
goto nosideret;
|
1107 |
|
|
type = check_typedef (VALUE_TYPE (arg2));
|
1108 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_PTR)
|
1109 |
|
|
goto bad_pointer_to_member;
|
1110 |
|
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
1111 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_METHOD)
|
1112 |
|
|
error ("not implemented: pointer-to-method in pointer-to-member construct");
|
1113 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_MEMBER)
|
1114 |
|
|
goto bad_pointer_to_member;
|
1115 |
|
|
/* Now, convert these values to an address. */
|
1116 |
|
|
arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
|
1117 |
|
|
arg1);
|
1118 |
|
|
arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
1119 |
|
|
value_as_long (arg1) + mem_offset);
|
1120 |
|
|
return value_ind (arg3);
|
1121 |
|
|
bad_pointer_to_member:
|
1122 |
|
|
error ("non-pointer-to-member value used in pointer-to-member construct");
|
1123 |
|
|
|
1124 |
|
|
case BINOP_CONCAT:
|
1125 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1126 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1127 |
|
|
if (noside == EVAL_SKIP)
|
1128 |
|
|
goto nosideret;
|
1129 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1130 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1131 |
|
|
else
|
1132 |
|
|
return value_concat (arg1, arg2);
|
1133 |
|
|
|
1134 |
|
|
case BINOP_ASSIGN:
|
1135 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1136 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1137 |
|
|
|
1138 |
|
|
/* Do special stuff for HP aCC pointers to members */
|
1139 |
|
|
if (hp_som_som_object_present)
|
1140 |
|
|
{
|
1141 |
|
|
/* 1997-08-19 Can't assign HP aCC pointers to methods. No details of
|
1142 |
|
|
the implementation yet; but the pointer appears to point to a code
|
1143 |
|
|
sequence (thunk) in memory -- in any case it is *not* the address
|
1144 |
|
|
of the function as it would be in a naive implementation. */
|
1145 |
|
|
if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) &&
|
1146 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD))
|
1147 |
|
|
error ("Assignment to pointers to methods not implemented with HP aCC");
|
1148 |
|
|
|
1149 |
|
|
/* HP aCC pointers to data members require a constant bias */
|
1150 |
|
|
if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) &&
|
1151 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER))
|
1152 |
|
|
{
|
1153 |
|
|
unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (arg2); /* forces evaluation */
|
1154 |
|
|
*ptr |= 0x20000000; /* set 29th bit */
|
1155 |
|
|
}
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
1159 |
|
|
return arg1;
|
1160 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1161 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1162 |
|
|
else
|
1163 |
|
|
return value_assign (arg1, arg2);
|
1164 |
|
|
|
1165 |
|
|
case BINOP_ASSIGN_MODIFY:
|
1166 |
|
|
(*pos) += 2;
|
1167 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1168 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1169 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
1170 |
|
|
return arg1;
|
1171 |
|
|
op = exp->elts[pc + 1].opcode;
|
1172 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1173 |
|
|
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
|
1174 |
|
|
else if (op == BINOP_ADD)
|
1175 |
|
|
arg2 = value_add (arg1, arg2);
|
1176 |
|
|
else if (op == BINOP_SUB)
|
1177 |
|
|
arg2 = value_sub (arg1, arg2);
|
1178 |
|
|
else
|
1179 |
|
|
arg2 = value_binop (arg1, arg2, op);
|
1180 |
|
|
return value_assign (arg1, arg2);
|
1181 |
|
|
|
1182 |
|
|
case BINOP_ADD:
|
1183 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1184 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1185 |
|
|
if (noside == EVAL_SKIP)
|
1186 |
|
|
goto nosideret;
|
1187 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1188 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1189 |
|
|
else
|
1190 |
|
|
return value_add (arg1, arg2);
|
1191 |
|
|
|
1192 |
|
|
case BINOP_SUB:
|
1193 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1194 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1195 |
|
|
if (noside == EVAL_SKIP)
|
1196 |
|
|
goto nosideret;
|
1197 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1198 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1199 |
|
|
else
|
1200 |
|
|
return value_sub (arg1, arg2);
|
1201 |
|
|
|
1202 |
|
|
case BINOP_MUL:
|
1203 |
|
|
case BINOP_DIV:
|
1204 |
|
|
case BINOP_REM:
|
1205 |
|
|
case BINOP_MOD:
|
1206 |
|
|
case BINOP_LSH:
|
1207 |
|
|
case BINOP_RSH:
|
1208 |
|
|
case BINOP_BITWISE_AND:
|
1209 |
|
|
case BINOP_BITWISE_IOR:
|
1210 |
|
|
case BINOP_BITWISE_XOR:
|
1211 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1212 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1213 |
|
|
if (noside == EVAL_SKIP)
|
1214 |
|
|
goto nosideret;
|
1215 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1216 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1217 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS
|
1218 |
|
|
&& (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
|
1219 |
|
|
return value_zero (VALUE_TYPE (arg1), not_lval);
|
1220 |
|
|
else
|
1221 |
|
|
return value_binop (arg1, arg2, op);
|
1222 |
|
|
|
1223 |
|
|
case BINOP_RANGE:
|
1224 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1225 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1226 |
|
|
if (noside == EVAL_SKIP)
|
1227 |
|
|
goto nosideret;
|
1228 |
|
|
error ("':' operator used in invalid context");
|
1229 |
|
|
|
1230 |
|
|
case BINOP_SUBSCRIPT:
|
1231 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1232 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1233 |
|
|
if (noside == EVAL_SKIP)
|
1234 |
|
|
goto nosideret;
|
1235 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1236 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1237 |
|
|
else
|
1238 |
|
|
{
|
1239 |
|
|
/* If the user attempts to subscript something that is not an
|
1240 |
|
|
array or pointer type (like a plain int variable for example),
|
1241 |
|
|
then report this as an error. */
|
1242 |
|
|
|
1243 |
|
|
COERCE_REF (arg1);
|
1244 |
|
|
type = check_typedef (VALUE_TYPE (arg1));
|
1245 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_ARRAY
|
1246 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_PTR)
|
1247 |
|
|
{
|
1248 |
|
|
if (TYPE_NAME (type))
|
1249 |
|
|
error ("cannot subscript something of type `%s'",
|
1250 |
|
|
TYPE_NAME (type));
|
1251 |
|
|
else
|
1252 |
|
|
error ("cannot subscript requested type");
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1256 |
|
|
return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
|
1257 |
|
|
else
|
1258 |
|
|
return value_subscript (arg1, arg2);
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
case BINOP_IN:
|
1262 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1263 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1264 |
|
|
if (noside == EVAL_SKIP)
|
1265 |
|
|
goto nosideret;
|
1266 |
|
|
return value_in (arg1, arg2);
|
1267 |
|
|
|
1268 |
|
|
case MULTI_SUBSCRIPT:
|
1269 |
|
|
(*pos) += 2;
|
1270 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
1271 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1272 |
|
|
while (nargs-- > 0)
|
1273 |
|
|
{
|
1274 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1275 |
|
|
/* FIXME: EVAL_SKIP handling may not be correct. */
|
1276 |
|
|
if (noside == EVAL_SKIP)
|
1277 |
|
|
{
|
1278 |
|
|
if (nargs > 0)
|
1279 |
|
|
{
|
1280 |
|
|
continue;
|
1281 |
|
|
}
|
1282 |
|
|
else
|
1283 |
|
|
{
|
1284 |
|
|
goto nosideret;
|
1285 |
|
|
}
|
1286 |
|
|
}
|
1287 |
|
|
/* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
|
1288 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1289 |
|
|
{
|
1290 |
|
|
/* If the user attempts to subscript something that has no target
|
1291 |
|
|
type (like a plain int variable for example), then report this
|
1292 |
|
|
as an error. */
|
1293 |
|
|
|
1294 |
|
|
type = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (arg1)));
|
1295 |
|
|
if (type != NULL)
|
1296 |
|
|
{
|
1297 |
|
|
arg1 = value_zero (type, VALUE_LVAL (arg1));
|
1298 |
|
|
noside = EVAL_SKIP;
|
1299 |
|
|
continue;
|
1300 |
|
|
}
|
1301 |
|
|
else
|
1302 |
|
|
{
|
1303 |
|
|
error ("cannot subscript something of type `%s'",
|
1304 |
|
|
TYPE_NAME (VALUE_TYPE (arg1)));
|
1305 |
|
|
}
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1309 |
|
|
{
|
1310 |
|
|
arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1311 |
|
|
}
|
1312 |
|
|
else
|
1313 |
|
|
{
|
1314 |
|
|
arg1 = value_subscript (arg1, arg2);
|
1315 |
|
|
}
|
1316 |
|
|
}
|
1317 |
|
|
return (arg1);
|
1318 |
|
|
|
1319 |
|
|
multi_f77_subscript:
|
1320 |
|
|
{
|
1321 |
|
|
int subscript_array[MAX_FORTRAN_DIMS + 1]; /* 1-based array of
|
1322 |
|
|
subscripts, max == 7 */
|
1323 |
|
|
int array_size_array[MAX_FORTRAN_DIMS + 1];
|
1324 |
|
|
int ndimensions = 1, i;
|
1325 |
|
|
struct type *tmp_type;
|
1326 |
|
|
int offset_item; /* The array offset where the item lives */
|
1327 |
|
|
|
1328 |
|
|
if (nargs > MAX_FORTRAN_DIMS)
|
1329 |
|
|
error ("Too many subscripts for F77 (%d Max)", MAX_FORTRAN_DIMS);
|
1330 |
|
|
|
1331 |
|
|
tmp_type = check_typedef (VALUE_TYPE (arg1));
|
1332 |
|
|
ndimensions = calc_f77_array_dims (type);
|
1333 |
|
|
|
1334 |
|
|
if (nargs != ndimensions)
|
1335 |
|
|
error ("Wrong number of subscripts");
|
1336 |
|
|
|
1337 |
|
|
/* Now that we know we have a legal array subscript expression
|
1338 |
|
|
let us actually find out where this element exists in the array. */
|
1339 |
|
|
|
1340 |
|
|
offset_item = 0;
|
1341 |
|
|
for (i = 1; i <= nargs; i++)
|
1342 |
|
|
{
|
1343 |
|
|
/* Evaluate each subscript, It must be a legal integer in F77 */
|
1344 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
1345 |
|
|
|
1346 |
|
|
/* Fill in the subscript and array size arrays */
|
1347 |
|
|
|
1348 |
|
|
subscript_array[i] = value_as_long (arg2);
|
1349 |
|
|
|
1350 |
|
|
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
|
1351 |
|
|
if (retcode == BOUND_FETCH_ERROR)
|
1352 |
|
|
error ("Cannot obtain dynamic upper bound");
|
1353 |
|
|
|
1354 |
|
|
retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
|
1355 |
|
|
if (retcode == BOUND_FETCH_ERROR)
|
1356 |
|
|
error ("Cannot obtain dynamic lower bound");
|
1357 |
|
|
|
1358 |
|
|
array_size_array[i] = upper - lower + 1;
|
1359 |
|
|
|
1360 |
|
|
/* Zero-normalize subscripts so that offsetting will work. */
|
1361 |
|
|
|
1362 |
|
|
subscript_array[i] -= lower;
|
1363 |
|
|
|
1364 |
|
|
/* If we are at the bottom of a multidimensional
|
1365 |
|
|
array type then keep a ptr to the last ARRAY
|
1366 |
|
|
type around for use when calling value_subscript()
|
1367 |
|
|
below. This is done because we pretend to value_subscript
|
1368 |
|
|
that we actually have a one-dimensional array
|
1369 |
|
|
of base element type that we apply a simple
|
1370 |
|
|
offset to. */
|
1371 |
|
|
|
1372 |
|
|
if (i < nargs)
|
1373 |
|
|
tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
/* Now let us calculate the offset for this item */
|
1377 |
|
|
|
1378 |
|
|
offset_item = subscript_array[ndimensions];
|
1379 |
|
|
|
1380 |
|
|
for (i = ndimensions - 1; i >= 1; i--)
|
1381 |
|
|
offset_item =
|
1382 |
|
|
array_size_array[i] * offset_item + subscript_array[i];
|
1383 |
|
|
|
1384 |
|
|
/* Construct a value node with the value of the offset */
|
1385 |
|
|
|
1386 |
|
|
arg2 = value_from_longest (builtin_type_f_integer, offset_item);
|
1387 |
|
|
|
1388 |
|
|
/* Let us now play a dirty trick: we will take arg1
|
1389 |
|
|
which is a value node pointing to the topmost level
|
1390 |
|
|
of the multidimensional array-set and pretend
|
1391 |
|
|
that it is actually a array of the final element
|
1392 |
|
|
type, this will ensure that value_subscript()
|
1393 |
|
|
returns the correct type value */
|
1394 |
|
|
|
1395 |
|
|
VALUE_TYPE (arg1) = tmp_type;
|
1396 |
|
|
return value_ind (value_add (value_coerce_array (arg1), arg2));
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
case BINOP_LOGICAL_AND:
|
1400 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1401 |
|
|
if (noside == EVAL_SKIP)
|
1402 |
|
|
{
|
1403 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1404 |
|
|
goto nosideret;
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
oldpos = *pos;
|
1408 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
1409 |
|
|
*pos = oldpos;
|
1410 |
|
|
|
1411 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1412 |
|
|
{
|
1413 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1414 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1415 |
|
|
}
|
1416 |
|
|
else
|
1417 |
|
|
{
|
1418 |
|
|
tem = value_logical_not (arg1);
|
1419 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
1420 |
|
|
(tem ? EVAL_SKIP : noside));
|
1421 |
|
|
return value_from_longest (LA_BOOL_TYPE,
|
1422 |
|
|
(LONGEST) (!tem && !value_logical_not (arg2)));
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
case BINOP_LOGICAL_OR:
|
1426 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1427 |
|
|
if (noside == EVAL_SKIP)
|
1428 |
|
|
{
|
1429 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1430 |
|
|
goto nosideret;
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
oldpos = *pos;
|
1434 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
1435 |
|
|
*pos = oldpos;
|
1436 |
|
|
|
1437 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1438 |
|
|
{
|
1439 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1440 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1441 |
|
|
}
|
1442 |
|
|
else
|
1443 |
|
|
{
|
1444 |
|
|
tem = value_logical_not (arg1);
|
1445 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
1446 |
|
|
(!tem ? EVAL_SKIP : noside));
|
1447 |
|
|
return value_from_longest (LA_BOOL_TYPE,
|
1448 |
|
|
(LONGEST) (!tem || !value_logical_not (arg2)));
|
1449 |
|
|
}
|
1450 |
|
|
|
1451 |
|
|
case BINOP_EQUAL:
|
1452 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1453 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1454 |
|
|
if (noside == EVAL_SKIP)
|
1455 |
|
|
goto nosideret;
|
1456 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1457 |
|
|
{
|
1458 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1459 |
|
|
}
|
1460 |
|
|
else
|
1461 |
|
|
{
|
1462 |
|
|
tem = value_equal (arg1, arg2);
|
1463 |
|
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
1464 |
|
|
}
|
1465 |
|
|
|
1466 |
|
|
case BINOP_NOTEQUAL:
|
1467 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1468 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1469 |
|
|
if (noside == EVAL_SKIP)
|
1470 |
|
|
goto nosideret;
|
1471 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1472 |
|
|
{
|
1473 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1474 |
|
|
}
|
1475 |
|
|
else
|
1476 |
|
|
{
|
1477 |
|
|
tem = value_equal (arg1, arg2);
|
1478 |
|
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem);
|
1479 |
|
|
}
|
1480 |
|
|
|
1481 |
|
|
case BINOP_LESS:
|
1482 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1483 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1484 |
|
|
if (noside == EVAL_SKIP)
|
1485 |
|
|
goto nosideret;
|
1486 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1487 |
|
|
{
|
1488 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1489 |
|
|
}
|
1490 |
|
|
else
|
1491 |
|
|
{
|
1492 |
|
|
tem = value_less (arg1, arg2);
|
1493 |
|
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
case BINOP_GTR:
|
1497 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1498 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1499 |
|
|
if (noside == EVAL_SKIP)
|
1500 |
|
|
goto nosideret;
|
1501 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1502 |
|
|
{
|
1503 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1504 |
|
|
}
|
1505 |
|
|
else
|
1506 |
|
|
{
|
1507 |
|
|
tem = value_less (arg2, arg1);
|
1508 |
|
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
case BINOP_GEQ:
|
1512 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1513 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1514 |
|
|
if (noside == EVAL_SKIP)
|
1515 |
|
|
goto nosideret;
|
1516 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1517 |
|
|
{
|
1518 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1519 |
|
|
}
|
1520 |
|
|
else
|
1521 |
|
|
{
|
1522 |
|
|
tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
|
1523 |
|
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
1524 |
|
|
}
|
1525 |
|
|
|
1526 |
|
|
case BINOP_LEQ:
|
1527 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1528 |
|
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
1529 |
|
|
if (noside == EVAL_SKIP)
|
1530 |
|
|
goto nosideret;
|
1531 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
1532 |
|
|
{
|
1533 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
1534 |
|
|
}
|
1535 |
|
|
else
|
1536 |
|
|
{
|
1537 |
|
|
tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
|
1538 |
|
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
1539 |
|
|
}
|
1540 |
|
|
|
1541 |
|
|
case BINOP_REPEAT:
|
1542 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1543 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1544 |
|
|
if (noside == EVAL_SKIP)
|
1545 |
|
|
goto nosideret;
|
1546 |
|
|
type = check_typedef (VALUE_TYPE (arg2));
|
1547 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_INT)
|
1548 |
|
|
error ("Non-integral right operand for \"@\" operator.");
|
1549 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1550 |
|
|
{
|
1551 |
|
|
return allocate_repeat_value (VALUE_TYPE (arg1),
|
1552 |
|
|
longest_to_int (value_as_long (arg2)));
|
1553 |
|
|
}
|
1554 |
|
|
else
|
1555 |
|
|
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
|
1556 |
|
|
|
1557 |
|
|
case BINOP_COMMA:
|
1558 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1559 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1560 |
|
|
|
1561 |
|
|
case UNOP_NEG:
|
1562 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1563 |
|
|
if (noside == EVAL_SKIP)
|
1564 |
|
|
goto nosideret;
|
1565 |
|
|
if (unop_user_defined_p (op, arg1))
|
1566 |
|
|
return value_x_unop (arg1, op, noside);
|
1567 |
|
|
else
|
1568 |
|
|
return value_neg (arg1);
|
1569 |
|
|
|
1570 |
|
|
case UNOP_COMPLEMENT:
|
1571 |
|
|
/* C++: check for and handle destructor names. */
|
1572 |
|
|
op = exp->elts[*pos].opcode;
|
1573 |
|
|
|
1574 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1575 |
|
|
if (noside == EVAL_SKIP)
|
1576 |
|
|
goto nosideret;
|
1577 |
|
|
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
|
1578 |
|
|
return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
|
1579 |
|
|
else
|
1580 |
|
|
return value_complement (arg1);
|
1581 |
|
|
|
1582 |
|
|
case UNOP_LOGICAL_NOT:
|
1583 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1584 |
|
|
if (noside == EVAL_SKIP)
|
1585 |
|
|
goto nosideret;
|
1586 |
|
|
if (unop_user_defined_p (op, arg1))
|
1587 |
|
|
return value_x_unop (arg1, op, noside);
|
1588 |
|
|
else
|
1589 |
|
|
return value_from_longest (LA_BOOL_TYPE,
|
1590 |
|
|
(LONGEST) value_logical_not (arg1));
|
1591 |
|
|
|
1592 |
|
|
case UNOP_IND:
|
1593 |
|
|
if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
|
1594 |
|
|
expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
|
1595 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
1596 |
|
|
if ((TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) &&
|
1597 |
|
|
((TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD) ||
|
1598 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER)))
|
1599 |
|
|
error ("Attempt to dereference pointer to member without an object");
|
1600 |
|
|
if (noside == EVAL_SKIP)
|
1601 |
|
|
goto nosideret;
|
1602 |
|
|
if (unop_user_defined_p (op, arg1))
|
1603 |
|
|
return value_x_unop (arg1, op, noside);
|
1604 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1605 |
|
|
{
|
1606 |
|
|
type = check_typedef (VALUE_TYPE (arg1));
|
1607 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
1608 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
1609 |
|
|
/* In C you can dereference an array to get the 1st elt. */
|
1610 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|
1611 |
|
|
)
|
1612 |
|
|
return value_zero (TYPE_TARGET_TYPE (type),
|
1613 |
|
|
lval_memory);
|
1614 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
1615 |
|
|
/* GDB allows dereferencing an int. */
|
1616 |
|
|
return value_zero (builtin_type_int, lval_memory);
|
1617 |
|
|
else
|
1618 |
|
|
error ("Attempt to take contents of a non-pointer value.");
|
1619 |
|
|
}
|
1620 |
|
|
return value_ind (arg1);
|
1621 |
|
|
|
1622 |
|
|
case UNOP_ADDR:
|
1623 |
|
|
/* C++: check for and handle pointer to members. */
|
1624 |
|
|
|
1625 |
|
|
op = exp->elts[*pos].opcode;
|
1626 |
|
|
|
1627 |
|
|
if (noside == EVAL_SKIP)
|
1628 |
|
|
{
|
1629 |
|
|
if (op == OP_SCOPE)
|
1630 |
|
|
{
|
1631 |
|
|
int temm = longest_to_int (exp->elts[pc + 3].longconst);
|
1632 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (temm + 1);
|
1633 |
|
|
}
|
1634 |
|
|
else
|
1635 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
1636 |
|
|
goto nosideret;
|
1637 |
|
|
}
|
1638 |
|
|
else
|
1639 |
|
|
{
|
1640 |
|
|
value_ptr retvalp = evaluate_subexp_for_address (exp, pos, noside);
|
1641 |
|
|
/* If HP aCC object, use bias for pointers to members */
|
1642 |
|
|
if (hp_som_som_object_present &&
|
1643 |
|
|
(TYPE_CODE (VALUE_TYPE (retvalp)) == TYPE_CODE_PTR) &&
|
1644 |
|
|
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (retvalp))) == TYPE_CODE_MEMBER))
|
1645 |
|
|
{
|
1646 |
|
|
unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* forces evaluation */
|
1647 |
|
|
*ptr |= 0x20000000; /* set 29th bit */
|
1648 |
|
|
}
|
1649 |
|
|
return retvalp;
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
case UNOP_SIZEOF:
|
1653 |
|
|
if (noside == EVAL_SKIP)
|
1654 |
|
|
{
|
1655 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
1656 |
|
|
goto nosideret;
|
1657 |
|
|
}
|
1658 |
|
|
return evaluate_subexp_for_sizeof (exp, pos);
|
1659 |
|
|
|
1660 |
|
|
case UNOP_CAST:
|
1661 |
|
|
(*pos) += 2;
|
1662 |
|
|
type = exp->elts[pc + 1].type;
|
1663 |
|
|
arg1 = evaluate_subexp (type, exp, pos, noside);
|
1664 |
|
|
if (noside == EVAL_SKIP)
|
1665 |
|
|
goto nosideret;
|
1666 |
|
|
if (type != VALUE_TYPE (arg1))
|
1667 |
|
|
arg1 = value_cast (type, arg1);
|
1668 |
|
|
return arg1;
|
1669 |
|
|
|
1670 |
|
|
case UNOP_MEMVAL:
|
1671 |
|
|
(*pos) += 2;
|
1672 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
1673 |
|
|
if (noside == EVAL_SKIP)
|
1674 |
|
|
goto nosideret;
|
1675 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1676 |
|
|
return value_zero (exp->elts[pc + 1].type, lval_memory);
|
1677 |
|
|
else
|
1678 |
|
|
return value_at_lazy (exp->elts[pc + 1].type,
|
1679 |
|
|
value_as_pointer (arg1),
|
1680 |
|
|
NULL);
|
1681 |
|
|
|
1682 |
|
|
case UNOP_PREINCREMENT:
|
1683 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
1684 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
1685 |
|
|
return arg1;
|
1686 |
|
|
else if (unop_user_defined_p (op, arg1))
|
1687 |
|
|
{
|
1688 |
|
|
return value_x_unop (arg1, op, noside);
|
1689 |
|
|
}
|
1690 |
|
|
else
|
1691 |
|
|
{
|
1692 |
|
|
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
|
1693 |
|
|
(LONGEST) 1));
|
1694 |
|
|
return value_assign (arg1, arg2);
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
case UNOP_PREDECREMENT:
|
1698 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
1699 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
1700 |
|
|
return arg1;
|
1701 |
|
|
else if (unop_user_defined_p (op, arg1))
|
1702 |
|
|
{
|
1703 |
|
|
return value_x_unop (arg1, op, noside);
|
1704 |
|
|
}
|
1705 |
|
|
else
|
1706 |
|
|
{
|
1707 |
|
|
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
|
1708 |
|
|
(LONGEST) 1));
|
1709 |
|
|
return value_assign (arg1, arg2);
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
case UNOP_POSTINCREMENT:
|
1713 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
1714 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
1715 |
|
|
return arg1;
|
1716 |
|
|
else if (unop_user_defined_p (op, arg1))
|
1717 |
|
|
{
|
1718 |
|
|
return value_x_unop (arg1, op, noside);
|
1719 |
|
|
}
|
1720 |
|
|
else
|
1721 |
|
|
{
|
1722 |
|
|
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
|
1723 |
|
|
(LONGEST) 1));
|
1724 |
|
|
value_assign (arg1, arg2);
|
1725 |
|
|
return arg1;
|
1726 |
|
|
}
|
1727 |
|
|
|
1728 |
|
|
case UNOP_POSTDECREMENT:
|
1729 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
1730 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
1731 |
|
|
return arg1;
|
1732 |
|
|
else if (unop_user_defined_p (op, arg1))
|
1733 |
|
|
{
|
1734 |
|
|
return value_x_unop (arg1, op, noside);
|
1735 |
|
|
}
|
1736 |
|
|
else
|
1737 |
|
|
{
|
1738 |
|
|
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
|
1739 |
|
|
(LONGEST) 1));
|
1740 |
|
|
value_assign (arg1, arg2);
|
1741 |
|
|
return arg1;
|
1742 |
|
|
}
|
1743 |
|
|
|
1744 |
|
|
case OP_THIS:
|
1745 |
|
|
(*pos) += 1;
|
1746 |
|
|
return value_of_this (1);
|
1747 |
|
|
|
1748 |
|
|
case OP_TYPE:
|
1749 |
|
|
error ("Attempt to use a type name as an expression");
|
1750 |
|
|
|
1751 |
|
|
default:
|
1752 |
|
|
/* Removing this case and compiling with gcc -Wall reveals that
|
1753 |
|
|
a lot of cases are hitting this case. Some of these should
|
1754 |
|
|
probably be removed from expression.h; others are legitimate
|
1755 |
|
|
expressions which are (apparently) not fully implemented.
|
1756 |
|
|
|
1757 |
|
|
If there are any cases landing here which mean a user error,
|
1758 |
|
|
then they should be separate cases, with more descriptive
|
1759 |
|
|
error messages. */
|
1760 |
|
|
|
1761 |
|
|
error ("\
|
1762 |
|
|
GDB does not (yet) know how to evaluate that kind of expression");
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
nosideret:
|
1766 |
|
|
return value_from_longest (builtin_type_long, (LONGEST) 1);
|
1767 |
|
|
}
|
1768 |
|
|
|
1769 |
|
|
/* Evaluate a subexpression of EXP, at index *POS,
|
1770 |
|
|
and return the address of that subexpression.
|
1771 |
|
|
Advance *POS over the subexpression.
|
1772 |
|
|
If the subexpression isn't an lvalue, get an error.
|
1773 |
|
|
NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
|
1774 |
|
|
then only the type of the result need be correct. */
|
1775 |
|
|
|
1776 |
|
|
static value_ptr
|
1777 |
|
|
evaluate_subexp_for_address (register struct expression *exp, register int *pos,
|
1778 |
|
|
enum noside noside)
|
1779 |
|
|
{
|
1780 |
|
|
enum exp_opcode op;
|
1781 |
|
|
register int pc;
|
1782 |
|
|
struct symbol *var;
|
1783 |
|
|
|
1784 |
|
|
pc = (*pos);
|
1785 |
|
|
op = exp->elts[pc].opcode;
|
1786 |
|
|
|
1787 |
|
|
switch (op)
|
1788 |
|
|
{
|
1789 |
|
|
case UNOP_IND:
|
1790 |
|
|
(*pos)++;
|
1791 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1792 |
|
|
|
1793 |
|
|
case UNOP_MEMVAL:
|
1794 |
|
|
(*pos) += 3;
|
1795 |
|
|
return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
|
1796 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
1797 |
|
|
|
1798 |
|
|
case OP_VAR_VALUE:
|
1799 |
|
|
var = exp->elts[pc + 2].symbol;
|
1800 |
|
|
|
1801 |
|
|
/* C++: The "address" of a reference should yield the address
|
1802 |
|
|
* of the object pointed to. Let value_addr() deal with it. */
|
1803 |
|
|
if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
|
1804 |
|
|
goto default_case;
|
1805 |
|
|
|
1806 |
|
|
(*pos) += 4;
|
1807 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1808 |
|
|
{
|
1809 |
|
|
struct type *type =
|
1810 |
|
|
lookup_pointer_type (SYMBOL_TYPE (var));
|
1811 |
|
|
enum address_class sym_class = SYMBOL_CLASS (var);
|
1812 |
|
|
|
1813 |
|
|
if (sym_class == LOC_CONST
|
1814 |
|
|
|| sym_class == LOC_CONST_BYTES
|
1815 |
|
|
|| sym_class == LOC_REGISTER
|
1816 |
|
|
|| sym_class == LOC_REGPARM)
|
1817 |
|
|
error ("Attempt to take address of register or constant.");
|
1818 |
|
|
|
1819 |
|
|
return
|
1820 |
|
|
value_zero (type, not_lval);
|
1821 |
|
|
}
|
1822 |
|
|
else
|
1823 |
|
|
return
|
1824 |
|
|
locate_var_value
|
1825 |
|
|
(var,
|
1826 |
|
|
block_innermost_frame (exp->elts[pc + 1].block));
|
1827 |
|
|
|
1828 |
|
|
default:
|
1829 |
|
|
default_case:
|
1830 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
1831 |
|
|
{
|
1832 |
|
|
value_ptr x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1833 |
|
|
if (VALUE_LVAL (x) == lval_memory)
|
1834 |
|
|
return value_zero (lookup_pointer_type (VALUE_TYPE (x)),
|
1835 |
|
|
not_lval);
|
1836 |
|
|
else
|
1837 |
|
|
error ("Attempt to take address of non-lval");
|
1838 |
|
|
}
|
1839 |
|
|
return value_addr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
1840 |
|
|
}
|
1841 |
|
|
}
|
1842 |
|
|
|
1843 |
|
|
/* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
|
1844 |
|
|
When used in contexts where arrays will be coerced anyway, this is
|
1845 |
|
|
equivalent to `evaluate_subexp' but much faster because it avoids
|
1846 |
|
|
actually fetching array contents (perhaps obsolete now that we have
|
1847 |
|
|
VALUE_LAZY).
|
1848 |
|
|
|
1849 |
|
|
Note that we currently only do the coercion for C expressions, where
|
1850 |
|
|
arrays are zero based and the coercion is correct. For other languages,
|
1851 |
|
|
with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
|
1852 |
|
|
to decide if coercion is appropriate.
|
1853 |
|
|
|
1854 |
|
|
*/
|
1855 |
|
|
|
1856 |
|
|
value_ptr
|
1857 |
|
|
evaluate_subexp_with_coercion (register struct expression *exp,
|
1858 |
|
|
register int *pos, enum noside noside)
|
1859 |
|
|
{
|
1860 |
|
|
register enum exp_opcode op;
|
1861 |
|
|
register int pc;
|
1862 |
|
|
register value_ptr val;
|
1863 |
|
|
struct symbol *var;
|
1864 |
|
|
|
1865 |
|
|
pc = (*pos);
|
1866 |
|
|
op = exp->elts[pc].opcode;
|
1867 |
|
|
|
1868 |
|
|
switch (op)
|
1869 |
|
|
{
|
1870 |
|
|
case OP_VAR_VALUE:
|
1871 |
|
|
var = exp->elts[pc + 2].symbol;
|
1872 |
|
|
if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
|
1873 |
|
|
&& CAST_IS_CONVERSION)
|
1874 |
|
|
{
|
1875 |
|
|
(*pos) += 4;
|
1876 |
|
|
val =
|
1877 |
|
|
locate_var_value
|
1878 |
|
|
(var, block_innermost_frame (exp->elts[pc + 1].block));
|
1879 |
|
|
return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
|
1880 |
|
|
val);
|
1881 |
|
|
}
|
1882 |
|
|
/* FALLTHROUGH */
|
1883 |
|
|
|
1884 |
|
|
default:
|
1885 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
1886 |
|
|
}
|
1887 |
|
|
}
|
1888 |
|
|
|
1889 |
|
|
/* Evaluate a subexpression of EXP, at index *POS,
|
1890 |
|
|
and return a value for the size of that subexpression.
|
1891 |
|
|
Advance *POS over the subexpression. */
|
1892 |
|
|
|
1893 |
|
|
static value_ptr
|
1894 |
|
|
evaluate_subexp_for_sizeof (register struct expression *exp, register int *pos)
|
1895 |
|
|
{
|
1896 |
|
|
enum exp_opcode op;
|
1897 |
|
|
register int pc;
|
1898 |
|
|
struct type *type;
|
1899 |
|
|
value_ptr val;
|
1900 |
|
|
|
1901 |
|
|
pc = (*pos);
|
1902 |
|
|
op = exp->elts[pc].opcode;
|
1903 |
|
|
|
1904 |
|
|
switch (op)
|
1905 |
|
|
{
|
1906 |
|
|
/* This case is handled specially
|
1907 |
|
|
so that we avoid creating a value for the result type.
|
1908 |
|
|
If the result type is very big, it's desirable not to
|
1909 |
|
|
create a value unnecessarily. */
|
1910 |
|
|
case UNOP_IND:
|
1911 |
|
|
(*pos)++;
|
1912 |
|
|
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
1913 |
|
|
type = check_typedef (VALUE_TYPE (val));
|
1914 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
1915 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_REF
|
1916 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
1917 |
|
|
error ("Attempt to take contents of a non-pointer value.");
|
1918 |
|
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
1919 |
|
|
return value_from_longest (builtin_type_int, (LONGEST)
|
1920 |
|
|
TYPE_LENGTH (type));
|
1921 |
|
|
|
1922 |
|
|
case UNOP_MEMVAL:
|
1923 |
|
|
(*pos) += 3;
|
1924 |
|
|
type = check_typedef (exp->elts[pc + 1].type);
|
1925 |
|
|
return value_from_longest (builtin_type_int,
|
1926 |
|
|
(LONGEST) TYPE_LENGTH (type));
|
1927 |
|
|
|
1928 |
|
|
case OP_VAR_VALUE:
|
1929 |
|
|
(*pos) += 4;
|
1930 |
|
|
type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
|
1931 |
|
|
return
|
1932 |
|
|
value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
|
1933 |
|
|
|
1934 |
|
|
default:
|
1935 |
|
|
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
1936 |
|
|
return value_from_longest (builtin_type_int,
|
1937 |
|
|
(LONGEST) TYPE_LENGTH (VALUE_TYPE (val)));
|
1938 |
|
|
}
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
/* Parse a type expression in the string [P..P+LENGTH). */
|
1942 |
|
|
|
1943 |
|
|
struct type *
|
1944 |
|
|
parse_and_eval_type (char *p, int length)
|
1945 |
|
|
{
|
1946 |
|
|
char *tmp = (char *) alloca (length + 4);
|
1947 |
|
|
struct expression *expr;
|
1948 |
|
|
tmp[0] = '(';
|
1949 |
|
|
memcpy (tmp + 1, p, length);
|
1950 |
|
|
tmp[length + 1] = ')';
|
1951 |
|
|
tmp[length + 2] = '0';
|
1952 |
|
|
tmp[length + 3] = '\0';
|
1953 |
|
|
expr = parse_expression (tmp);
|
1954 |
|
|
if (expr->elts[0].opcode != UNOP_CAST)
|
1955 |
|
|
error ("Internal error in eval_type.");
|
1956 |
|
|
return expr->elts[1].type;
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
int
|
1960 |
|
|
calc_f77_array_dims (struct type *array_type)
|
1961 |
|
|
{
|
1962 |
|
|
int ndimen = 1;
|
1963 |
|
|
struct type *tmp_type;
|
1964 |
|
|
|
1965 |
|
|
if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
|
1966 |
|
|
error ("Can't get dimensions for a non-array type");
|
1967 |
|
|
|
1968 |
|
|
tmp_type = array_type;
|
1969 |
|
|
|
1970 |
|
|
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
1971 |
|
|
{
|
1972 |
|
|
if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
|
1973 |
|
|
++ndimen;
|
1974 |
|
|
}
|
1975 |
|
|
return ndimen;
|
1976 |
|
|
}
|