1 |
578 |
markom |
/* Support for printing Fortran values for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
|
5 |
|
|
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program; if not, write to the Free Software
|
21 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
22 |
|
|
Boston, MA 02111-1307, USA. */
|
23 |
|
|
|
24 |
|
|
#include "defs.h"
|
25 |
|
|
#include "gdb_string.h"
|
26 |
|
|
#include "symtab.h"
|
27 |
|
|
#include "gdbtypes.h"
|
28 |
|
|
#include "expression.h"
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "valprint.h"
|
31 |
|
|
#include "language.h"
|
32 |
|
|
#include "f-lang.h"
|
33 |
|
|
#include "frame.h"
|
34 |
|
|
#include "gdbcore.h"
|
35 |
|
|
#include "command.h"
|
36 |
|
|
|
37 |
|
|
#if 0
|
38 |
|
|
static int there_is_a_visible_common_named (char *);
|
39 |
|
|
#endif
|
40 |
|
|
|
41 |
|
|
extern void _initialize_f_valprint (void);
|
42 |
|
|
static void info_common_command (char *, int);
|
43 |
|
|
static void list_all_visible_commons (char *);
|
44 |
|
|
static void f77_print_array (struct type *, char *, CORE_ADDR,
|
45 |
|
|
struct ui_file *, int, int, int,
|
46 |
|
|
enum val_prettyprint);
|
47 |
|
|
static void f77_print_array_1 (int, int, struct type *, char *,
|
48 |
|
|
CORE_ADDR, struct ui_file *, int, int, int,
|
49 |
|
|
enum val_prettyprint);
|
50 |
|
|
static void f77_create_arrayprint_offset_tbl (struct type *,
|
51 |
|
|
struct ui_file *);
|
52 |
|
|
static void f77_get_dynamic_length_of_aggregate (struct type *);
|
53 |
|
|
|
54 |
|
|
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
|
55 |
|
|
|
56 |
|
|
/* Array which holds offsets to be applied to get a row's elements
|
57 |
|
|
for a given array. Array also holds the size of each subarray. */
|
58 |
|
|
|
59 |
|
|
/* The following macro gives us the size of the nth dimension, Where
|
60 |
|
|
n is 1 based. */
|
61 |
|
|
|
62 |
|
|
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
|
63 |
|
|
|
64 |
|
|
/* The following gives us the offset for row n where n is 1-based. */
|
65 |
|
|
|
66 |
|
|
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
|
67 |
|
|
|
68 |
|
|
int
|
69 |
|
|
f77_get_dynamic_lowerbound (struct type *type, int *lower_bound)
|
70 |
|
|
{
|
71 |
|
|
CORE_ADDR current_frame_addr;
|
72 |
|
|
CORE_ADDR ptr_to_lower_bound;
|
73 |
|
|
|
74 |
|
|
switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
|
75 |
|
|
{
|
76 |
|
|
case BOUND_BY_VALUE_ON_STACK:
|
77 |
|
|
current_frame_addr = selected_frame->frame;
|
78 |
|
|
if (current_frame_addr > 0)
|
79 |
|
|
{
|
80 |
|
|
*lower_bound =
|
81 |
|
|
read_memory_integer (current_frame_addr +
|
82 |
|
|
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
|
83 |
|
|
4);
|
84 |
|
|
}
|
85 |
|
|
else
|
86 |
|
|
{
|
87 |
|
|
*lower_bound = DEFAULT_LOWER_BOUND;
|
88 |
|
|
return BOUND_FETCH_ERROR;
|
89 |
|
|
}
|
90 |
|
|
break;
|
91 |
|
|
|
92 |
|
|
case BOUND_SIMPLE:
|
93 |
|
|
*lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
|
94 |
|
|
break;
|
95 |
|
|
|
96 |
|
|
case BOUND_CANNOT_BE_DETERMINED:
|
97 |
|
|
error ("Lower bound may not be '*' in F77");
|
98 |
|
|
break;
|
99 |
|
|
|
100 |
|
|
case BOUND_BY_REF_ON_STACK:
|
101 |
|
|
current_frame_addr = selected_frame->frame;
|
102 |
|
|
if (current_frame_addr > 0)
|
103 |
|
|
{
|
104 |
|
|
ptr_to_lower_bound =
|
105 |
|
|
read_memory_integer (current_frame_addr +
|
106 |
|
|
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
|
107 |
|
|
4);
|
108 |
|
|
*lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
|
109 |
|
|
}
|
110 |
|
|
else
|
111 |
|
|
{
|
112 |
|
|
*lower_bound = DEFAULT_LOWER_BOUND;
|
113 |
|
|
return BOUND_FETCH_ERROR;
|
114 |
|
|
}
|
115 |
|
|
break;
|
116 |
|
|
|
117 |
|
|
case BOUND_BY_REF_IN_REG:
|
118 |
|
|
case BOUND_BY_VALUE_IN_REG:
|
119 |
|
|
default:
|
120 |
|
|
error ("??? unhandled dynamic array bound type ???");
|
121 |
|
|
break;
|
122 |
|
|
}
|
123 |
|
|
return BOUND_FETCH_OK;
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
int
|
127 |
|
|
f77_get_dynamic_upperbound (struct type *type, int *upper_bound)
|
128 |
|
|
{
|
129 |
|
|
CORE_ADDR current_frame_addr = 0;
|
130 |
|
|
CORE_ADDR ptr_to_upper_bound;
|
131 |
|
|
|
132 |
|
|
switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
|
133 |
|
|
{
|
134 |
|
|
case BOUND_BY_VALUE_ON_STACK:
|
135 |
|
|
current_frame_addr = selected_frame->frame;
|
136 |
|
|
if (current_frame_addr > 0)
|
137 |
|
|
{
|
138 |
|
|
*upper_bound =
|
139 |
|
|
read_memory_integer (current_frame_addr +
|
140 |
|
|
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
|
141 |
|
|
4);
|
142 |
|
|
}
|
143 |
|
|
else
|
144 |
|
|
{
|
145 |
|
|
*upper_bound = DEFAULT_UPPER_BOUND;
|
146 |
|
|
return BOUND_FETCH_ERROR;
|
147 |
|
|
}
|
148 |
|
|
break;
|
149 |
|
|
|
150 |
|
|
case BOUND_SIMPLE:
|
151 |
|
|
*upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
|
152 |
|
|
break;
|
153 |
|
|
|
154 |
|
|
case BOUND_CANNOT_BE_DETERMINED:
|
155 |
|
|
/* we have an assumed size array on our hands. Assume that
|
156 |
|
|
upper_bound == lower_bound so that we show at least
|
157 |
|
|
1 element.If the user wants to see more elements, let
|
158 |
|
|
him manually ask for 'em and we'll subscript the
|
159 |
|
|
array and show him */
|
160 |
|
|
f77_get_dynamic_lowerbound (type, upper_bound);
|
161 |
|
|
break;
|
162 |
|
|
|
163 |
|
|
case BOUND_BY_REF_ON_STACK:
|
164 |
|
|
current_frame_addr = selected_frame->frame;
|
165 |
|
|
if (current_frame_addr > 0)
|
166 |
|
|
{
|
167 |
|
|
ptr_to_upper_bound =
|
168 |
|
|
read_memory_integer (current_frame_addr +
|
169 |
|
|
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
|
170 |
|
|
4);
|
171 |
|
|
*upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
|
172 |
|
|
}
|
173 |
|
|
else
|
174 |
|
|
{
|
175 |
|
|
*upper_bound = DEFAULT_UPPER_BOUND;
|
176 |
|
|
return BOUND_FETCH_ERROR;
|
177 |
|
|
}
|
178 |
|
|
break;
|
179 |
|
|
|
180 |
|
|
case BOUND_BY_REF_IN_REG:
|
181 |
|
|
case BOUND_BY_VALUE_IN_REG:
|
182 |
|
|
default:
|
183 |
|
|
error ("??? unhandled dynamic array bound type ???");
|
184 |
|
|
break;
|
185 |
|
|
}
|
186 |
|
|
return BOUND_FETCH_OK;
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
/* Obtain F77 adjustable array dimensions */
|
190 |
|
|
|
191 |
|
|
static void
|
192 |
|
|
f77_get_dynamic_length_of_aggregate (struct type *type)
|
193 |
|
|
{
|
194 |
|
|
int upper_bound = -1;
|
195 |
|
|
int lower_bound = 1;
|
196 |
|
|
int retcode;
|
197 |
|
|
|
198 |
|
|
/* Recursively go all the way down into a possibly multi-dimensional
|
199 |
|
|
F77 array and get the bounds. For simple arrays, this is pretty
|
200 |
|
|
easy but when the bounds are dynamic, we must be very careful
|
201 |
|
|
to add up all the lengths correctly. Not doing this right
|
202 |
|
|
will lead to horrendous-looking arrays in parameter lists.
|
203 |
|
|
|
204 |
|
|
This function also works for strings which behave very
|
205 |
|
|
similarly to arrays. */
|
206 |
|
|
|
207 |
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|
208 |
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
|
209 |
|
|
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
|
210 |
|
|
|
211 |
|
|
/* Recursion ends here, start setting up lengths. */
|
212 |
|
|
retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
|
213 |
|
|
if (retcode == BOUND_FETCH_ERROR)
|
214 |
|
|
error ("Cannot obtain valid array lower bound");
|
215 |
|
|
|
216 |
|
|
retcode = f77_get_dynamic_upperbound (type, &upper_bound);
|
217 |
|
|
if (retcode == BOUND_FETCH_ERROR)
|
218 |
|
|
error ("Cannot obtain valid array upper bound");
|
219 |
|
|
|
220 |
|
|
/* Patch in a valid length value. */
|
221 |
|
|
|
222 |
|
|
TYPE_LENGTH (type) =
|
223 |
|
|
(upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
/* Function that sets up the array offset,size table for the array
|
227 |
|
|
type "type". */
|
228 |
|
|
|
229 |
|
|
static void
|
230 |
|
|
f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
|
231 |
|
|
{
|
232 |
|
|
struct type *tmp_type;
|
233 |
|
|
int eltlen;
|
234 |
|
|
int ndimen = 1;
|
235 |
|
|
int upper, lower, retcode;
|
236 |
|
|
|
237 |
|
|
tmp_type = type;
|
238 |
|
|
|
239 |
|
|
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
|
240 |
|
|
{
|
241 |
|
|
if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
|
242 |
|
|
fprintf_filtered (stream, "<assumed size array> ");
|
243 |
|
|
|
244 |
|
|
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
|
245 |
|
|
if (retcode == BOUND_FETCH_ERROR)
|
246 |
|
|
error ("Cannot obtain dynamic upper bound");
|
247 |
|
|
|
248 |
|
|
retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
|
249 |
|
|
if (retcode == BOUND_FETCH_ERROR)
|
250 |
|
|
error ("Cannot obtain dynamic lower bound");
|
251 |
|
|
|
252 |
|
|
F77_DIM_SIZE (ndimen) = upper - lower + 1;
|
253 |
|
|
|
254 |
|
|
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
255 |
|
|
ndimen++;
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/* Now we multiply eltlen by all the offsets, so that later we
|
259 |
|
|
can print out array elements correctly. Up till now we
|
260 |
|
|
know an offset to apply to get the item but we also
|
261 |
|
|
have to know how much to add to get to the next item */
|
262 |
|
|
|
263 |
|
|
ndimen--;
|
264 |
|
|
eltlen = TYPE_LENGTH (tmp_type);
|
265 |
|
|
F77_DIM_OFFSET (ndimen) = eltlen;
|
266 |
|
|
while (--ndimen > 0)
|
267 |
|
|
{
|
268 |
|
|
eltlen *= F77_DIM_SIZE (ndimen + 1);
|
269 |
|
|
F77_DIM_OFFSET (ndimen) = eltlen;
|
270 |
|
|
}
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
/* Actual function which prints out F77 arrays, Valaddr == address in
|
274 |
|
|
the superior. Address == the address in the inferior. */
|
275 |
|
|
|
276 |
|
|
static void
|
277 |
|
|
f77_print_array_1 (int nss, int ndimensions, struct type *type, char *valaddr,
|
278 |
|
|
CORE_ADDR address, struct ui_file *stream, int format,
|
279 |
|
|
int deref_ref, int recurse, enum val_prettyprint pretty)
|
280 |
|
|
{
|
281 |
|
|
int i;
|
282 |
|
|
|
283 |
|
|
if (nss != ndimensions)
|
284 |
|
|
{
|
285 |
|
|
for (i = 0; i < F77_DIM_SIZE (nss); i++)
|
286 |
|
|
{
|
287 |
|
|
fprintf_filtered (stream, "( ");
|
288 |
|
|
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
|
289 |
|
|
valaddr + i * F77_DIM_OFFSET (nss),
|
290 |
|
|
address + i * F77_DIM_OFFSET (nss),
|
291 |
|
|
stream, format, deref_ref, recurse, pretty);
|
292 |
|
|
fprintf_filtered (stream, ") ");
|
293 |
|
|
}
|
294 |
|
|
}
|
295 |
|
|
else
|
296 |
|
|
{
|
297 |
|
|
for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
|
298 |
|
|
{
|
299 |
|
|
val_print (TYPE_TARGET_TYPE (type),
|
300 |
|
|
valaddr + i * F77_DIM_OFFSET (ndimensions),
|
301 |
|
|
0,
|
302 |
|
|
address + i * F77_DIM_OFFSET (ndimensions),
|
303 |
|
|
stream, format, deref_ref, recurse, pretty);
|
304 |
|
|
|
305 |
|
|
if (i != (F77_DIM_SIZE (nss) - 1))
|
306 |
|
|
fprintf_filtered (stream, ", ");
|
307 |
|
|
|
308 |
|
|
if (i == print_max - 1)
|
309 |
|
|
fprintf_filtered (stream, "...");
|
310 |
|
|
}
|
311 |
|
|
}
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/* This function gets called to print an F77 array, we set up some
|
315 |
|
|
stuff and then immediately call f77_print_array_1() */
|
316 |
|
|
|
317 |
|
|
static void
|
318 |
|
|
f77_print_array (struct type *type, char *valaddr, CORE_ADDR address,
|
319 |
|
|
struct ui_file *stream, int format, int deref_ref, int recurse,
|
320 |
|
|
enum val_prettyprint pretty)
|
321 |
|
|
{
|
322 |
|
|
int ndimensions;
|
323 |
|
|
|
324 |
|
|
ndimensions = calc_f77_array_dims (type);
|
325 |
|
|
|
326 |
|
|
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
|
327 |
|
|
error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
|
328 |
|
|
ndimensions, MAX_FORTRAN_DIMS);
|
329 |
|
|
|
330 |
|
|
/* Since F77 arrays are stored column-major, we set up an
|
331 |
|
|
offset table to get at the various row's elements. The
|
332 |
|
|
offset table contains entries for both offset and subarray size. */
|
333 |
|
|
|
334 |
|
|
f77_create_arrayprint_offset_tbl (type, stream);
|
335 |
|
|
|
336 |
|
|
f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
|
337 |
|
|
deref_ref, recurse, pretty);
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
|
341 |
|
|
/* Print data of type TYPE located at VALADDR (within GDB), which came from
|
342 |
|
|
the inferior at address ADDRESS, onto stdio stream STREAM according to
|
343 |
|
|
FORMAT (a letter or 0 for natural format). The data at VALADDR is in
|
344 |
|
|
target byte order.
|
345 |
|
|
|
346 |
|
|
If the data are a string pointer, returns the number of string characters
|
347 |
|
|
printed.
|
348 |
|
|
|
349 |
|
|
If DEREF_REF is nonzero, then dereference references, otherwise just print
|
350 |
|
|
them like pointers.
|
351 |
|
|
|
352 |
|
|
The PRETTY parameter controls prettyprinting. */
|
353 |
|
|
|
354 |
|
|
int
|
355 |
|
|
f_val_print (struct type *type, char *valaddr, int embedded_offset,
|
356 |
|
|
CORE_ADDR address, struct ui_file *stream, int format,
|
357 |
|
|
int deref_ref, int recurse, enum val_prettyprint pretty)
|
358 |
|
|
{
|
359 |
|
|
register unsigned int i = 0; /* Number of characters printed */
|
360 |
|
|
struct type *elttype;
|
361 |
|
|
LONGEST val;
|
362 |
|
|
CORE_ADDR addr;
|
363 |
|
|
|
364 |
|
|
CHECK_TYPEDEF (type);
|
365 |
|
|
switch (TYPE_CODE (type))
|
366 |
|
|
{
|
367 |
|
|
case TYPE_CODE_STRING:
|
368 |
|
|
f77_get_dynamic_length_of_aggregate (type);
|
369 |
|
|
LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
|
370 |
|
|
break;
|
371 |
|
|
|
372 |
|
|
case TYPE_CODE_ARRAY:
|
373 |
|
|
fprintf_filtered (stream, "(");
|
374 |
|
|
f77_print_array (type, valaddr, address, stream, format,
|
375 |
|
|
deref_ref, recurse, pretty);
|
376 |
|
|
fprintf_filtered (stream, ")");
|
377 |
|
|
break;
|
378 |
|
|
#if 0
|
379 |
|
|
/* Array of unspecified length: treat like pointer to first elt. */
|
380 |
|
|
valaddr = (char *) &address;
|
381 |
|
|
/* FALL THROUGH */
|
382 |
|
|
#endif
|
383 |
|
|
case TYPE_CODE_PTR:
|
384 |
|
|
if (format && format != 's')
|
385 |
|
|
{
|
386 |
|
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
387 |
|
|
break;
|
388 |
|
|
}
|
389 |
|
|
else
|
390 |
|
|
{
|
391 |
|
|
addr = unpack_pointer (type, valaddr);
|
392 |
|
|
elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
393 |
|
|
|
394 |
|
|
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
395 |
|
|
{
|
396 |
|
|
/* Try to print what function it points to. */
|
397 |
|
|
print_address_demangle (addr, stream, demangle);
|
398 |
|
|
/* Return value is irrelevant except for string pointers. */
|
399 |
|
|
return 0;
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
if (addressprint && format != 's')
|
403 |
|
|
fprintf_filtered (stream, "0x%s", paddr_nz (addr));
|
404 |
|
|
|
405 |
|
|
/* For a pointer to char or unsigned char, also print the string
|
406 |
|
|
pointed to, unless pointer is null. */
|
407 |
|
|
if (TYPE_LENGTH (elttype) == 1
|
408 |
|
|
&& TYPE_CODE (elttype) == TYPE_CODE_INT
|
409 |
|
|
&& (format == 0 || format == 's')
|
410 |
|
|
&& addr != 0)
|
411 |
|
|
i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
|
412 |
|
|
|
413 |
|
|
/* Return number of characters printed, plus one for the
|
414 |
|
|
terminating null if we have "reached the end". */
|
415 |
|
|
return (i + (print_max && i != print_max));
|
416 |
|
|
}
|
417 |
|
|
break;
|
418 |
|
|
|
419 |
|
|
case TYPE_CODE_FUNC:
|
420 |
|
|
if (format)
|
421 |
|
|
{
|
422 |
|
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
423 |
|
|
break;
|
424 |
|
|
}
|
425 |
|
|
/* FIXME, we should consider, at least for ANSI C language, eliminating
|
426 |
|
|
the distinction made between FUNCs and POINTERs to FUNCs. */
|
427 |
|
|
fprintf_filtered (stream, "{");
|
428 |
|
|
type_print (type, "", stream, -1);
|
429 |
|
|
fprintf_filtered (stream, "} ");
|
430 |
|
|
/* Try to print what function it points to, and its address. */
|
431 |
|
|
print_address_demangle (address, stream, demangle);
|
432 |
|
|
break;
|
433 |
|
|
|
434 |
|
|
case TYPE_CODE_INT:
|
435 |
|
|
format = format ? format : output_format;
|
436 |
|
|
if (format)
|
437 |
|
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
438 |
|
|
else
|
439 |
|
|
{
|
440 |
|
|
val_print_type_code_int (type, valaddr, stream);
|
441 |
|
|
/* C and C++ has no single byte int type, char is used instead.
|
442 |
|
|
Since we don't know whether the value is really intended to
|
443 |
|
|
be used as an integer or a character, print the character
|
444 |
|
|
equivalent as well. */
|
445 |
|
|
if (TYPE_LENGTH (type) == 1)
|
446 |
|
|
{
|
447 |
|
|
fputs_filtered (" ", stream);
|
448 |
|
|
LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
|
449 |
|
|
stream);
|
450 |
|
|
}
|
451 |
|
|
}
|
452 |
|
|
break;
|
453 |
|
|
|
454 |
|
|
case TYPE_CODE_FLT:
|
455 |
|
|
if (format)
|
456 |
|
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
457 |
|
|
else
|
458 |
|
|
print_floating (valaddr, type, stream);
|
459 |
|
|
break;
|
460 |
|
|
|
461 |
|
|
case TYPE_CODE_VOID:
|
462 |
|
|
fprintf_filtered (stream, "VOID");
|
463 |
|
|
break;
|
464 |
|
|
|
465 |
|
|
case TYPE_CODE_ERROR:
|
466 |
|
|
fprintf_filtered (stream, "<error type>");
|
467 |
|
|
break;
|
468 |
|
|
|
469 |
|
|
case TYPE_CODE_RANGE:
|
470 |
|
|
/* FIXME, we should not ever have to print one of these yet. */
|
471 |
|
|
fprintf_filtered (stream, "<range type>");
|
472 |
|
|
break;
|
473 |
|
|
|
474 |
|
|
case TYPE_CODE_BOOL:
|
475 |
|
|
format = format ? format : output_format;
|
476 |
|
|
if (format)
|
477 |
|
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
478 |
|
|
else
|
479 |
|
|
{
|
480 |
|
|
val = 0;
|
481 |
|
|
switch (TYPE_LENGTH (type))
|
482 |
|
|
{
|
483 |
|
|
case 1:
|
484 |
|
|
val = unpack_long (builtin_type_f_logical_s1, valaddr);
|
485 |
|
|
break;
|
486 |
|
|
|
487 |
|
|
case 2:
|
488 |
|
|
val = unpack_long (builtin_type_f_logical_s2, valaddr);
|
489 |
|
|
break;
|
490 |
|
|
|
491 |
|
|
case 4:
|
492 |
|
|
val = unpack_long (builtin_type_f_logical, valaddr);
|
493 |
|
|
break;
|
494 |
|
|
|
495 |
|
|
default:
|
496 |
|
|
error ("Logicals of length %d bytes not supported",
|
497 |
|
|
TYPE_LENGTH (type));
|
498 |
|
|
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
if (val == 0)
|
502 |
|
|
fprintf_filtered (stream, ".FALSE.");
|
503 |
|
|
else if (val == 1)
|
504 |
|
|
fprintf_filtered (stream, ".TRUE.");
|
505 |
|
|
else
|
506 |
|
|
/* Not a legitimate logical type, print as an integer. */
|
507 |
|
|
{
|
508 |
|
|
/* Bash the type code temporarily. */
|
509 |
|
|
TYPE_CODE (type) = TYPE_CODE_INT;
|
510 |
|
|
f_val_print (type, valaddr, 0, address, stream, format,
|
511 |
|
|
deref_ref, recurse, pretty);
|
512 |
|
|
/* Restore the type code so later uses work as intended. */
|
513 |
|
|
TYPE_CODE (type) = TYPE_CODE_BOOL;
|
514 |
|
|
}
|
515 |
|
|
}
|
516 |
|
|
break;
|
517 |
|
|
|
518 |
|
|
case TYPE_CODE_COMPLEX:
|
519 |
|
|
switch (TYPE_LENGTH (type))
|
520 |
|
|
{
|
521 |
|
|
case 8:
|
522 |
|
|
type = builtin_type_f_real;
|
523 |
|
|
break;
|
524 |
|
|
case 16:
|
525 |
|
|
type = builtin_type_f_real_s8;
|
526 |
|
|
break;
|
527 |
|
|
case 32:
|
528 |
|
|
type = builtin_type_f_real_s16;
|
529 |
|
|
break;
|
530 |
|
|
default:
|
531 |
|
|
error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
|
532 |
|
|
}
|
533 |
|
|
fputs_filtered ("(", stream);
|
534 |
|
|
print_floating (valaddr, type, stream);
|
535 |
|
|
fputs_filtered (",", stream);
|
536 |
|
|
print_floating (valaddr + TYPE_LENGTH (type), type, stream);
|
537 |
|
|
fputs_filtered (")", stream);
|
538 |
|
|
break;
|
539 |
|
|
|
540 |
|
|
case TYPE_CODE_UNDEF:
|
541 |
|
|
/* This happens (without TYPE_FLAG_STUB set) on systems which don't use
|
542 |
|
|
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
|
543 |
|
|
and no complete type for struct foo in that file. */
|
544 |
|
|
fprintf_filtered (stream, "<incomplete type>");
|
545 |
|
|
break;
|
546 |
|
|
|
547 |
|
|
default:
|
548 |
|
|
error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
|
549 |
|
|
}
|
550 |
|
|
gdb_flush (stream);
|
551 |
|
|
return 0;
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
static void
|
555 |
|
|
list_all_visible_commons (char *funname)
|
556 |
|
|
{
|
557 |
|
|
SAVED_F77_COMMON_PTR tmp;
|
558 |
|
|
|
559 |
|
|
tmp = head_common_list;
|
560 |
|
|
|
561 |
|
|
printf_filtered ("All COMMON blocks visible at this level:\n\n");
|
562 |
|
|
|
563 |
|
|
while (tmp != NULL)
|
564 |
|
|
{
|
565 |
|
|
if (STREQ (tmp->owning_function, funname))
|
566 |
|
|
printf_filtered ("%s\n", tmp->name);
|
567 |
|
|
|
568 |
|
|
tmp = tmp->next;
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
/* This function is used to print out the values in a given COMMON
|
573 |
|
|
block. It will always use the most local common block of the
|
574 |
|
|
given name */
|
575 |
|
|
|
576 |
|
|
static void
|
577 |
|
|
info_common_command (char *comname, int from_tty)
|
578 |
|
|
{
|
579 |
|
|
SAVED_F77_COMMON_PTR the_common;
|
580 |
|
|
COMMON_ENTRY_PTR entry;
|
581 |
|
|
struct frame_info *fi;
|
582 |
|
|
register char *funname = 0;
|
583 |
|
|
struct symbol *func;
|
584 |
|
|
|
585 |
|
|
/* We have been told to display the contents of F77 COMMON
|
586 |
|
|
block supposedly visible in this function. Let us
|
587 |
|
|
first make sure that it is visible and if so, let
|
588 |
|
|
us display its contents */
|
589 |
|
|
|
590 |
|
|
fi = selected_frame;
|
591 |
|
|
|
592 |
|
|
if (fi == NULL)
|
593 |
|
|
error ("No frame selected");
|
594 |
|
|
|
595 |
|
|
/* The following is generally ripped off from stack.c's routine
|
596 |
|
|
print_frame_info() */
|
597 |
|
|
|
598 |
|
|
func = find_pc_function (fi->pc);
|
599 |
|
|
if (func)
|
600 |
|
|
{
|
601 |
|
|
/* In certain pathological cases, the symtabs give the wrong
|
602 |
|
|
function (when we are in the first function in a file which
|
603 |
|
|
is compiled without debugging symbols, the previous function
|
604 |
|
|
is compiled with debugging symbols, and the "foo.o" symbol
|
605 |
|
|
that is supposed to tell us where the file with debugging symbols
|
606 |
|
|
ends has been truncated by ar because it is longer than 15
|
607 |
|
|
characters).
|
608 |
|
|
|
609 |
|
|
So look in the minimal symbol tables as well, and if it comes
|
610 |
|
|
up with a larger address for the function use that instead.
|
611 |
|
|
I don't think this can ever cause any problems; there shouldn't
|
612 |
|
|
be any minimal symbols in the middle of a function.
|
613 |
|
|
FIXME: (Not necessarily true. What about text labels) */
|
614 |
|
|
|
615 |
|
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
616 |
|
|
|
617 |
|
|
if (msymbol != NULL
|
618 |
|
|
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
619 |
|
|
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
620 |
|
|
funname = SYMBOL_NAME (msymbol);
|
621 |
|
|
else
|
622 |
|
|
funname = SYMBOL_NAME (func);
|
623 |
|
|
}
|
624 |
|
|
else
|
625 |
|
|
{
|
626 |
|
|
register struct minimal_symbol *msymbol =
|
627 |
|
|
lookup_minimal_symbol_by_pc (fi->pc);
|
628 |
|
|
|
629 |
|
|
if (msymbol != NULL)
|
630 |
|
|
funname = SYMBOL_NAME (msymbol);
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* If comname is NULL, we assume the user wishes to see the
|
634 |
|
|
which COMMON blocks are visible here and then return */
|
635 |
|
|
|
636 |
|
|
if (comname == 0)
|
637 |
|
|
{
|
638 |
|
|
list_all_visible_commons (funname);
|
639 |
|
|
return;
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
the_common = find_common_for_function (comname, funname);
|
643 |
|
|
|
644 |
|
|
if (the_common)
|
645 |
|
|
{
|
646 |
|
|
if (STREQ (comname, BLANK_COMMON_NAME_LOCAL))
|
647 |
|
|
printf_filtered ("Contents of blank COMMON block:\n");
|
648 |
|
|
else
|
649 |
|
|
printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
|
650 |
|
|
|
651 |
|
|
printf_filtered ("\n");
|
652 |
|
|
entry = the_common->entries;
|
653 |
|
|
|
654 |
|
|
while (entry != NULL)
|
655 |
|
|
{
|
656 |
|
|
printf_filtered ("%s = ", SYMBOL_NAME (entry->symbol));
|
657 |
|
|
print_variable_value (entry->symbol, fi, gdb_stdout);
|
658 |
|
|
printf_filtered ("\n");
|
659 |
|
|
entry = entry->next;
|
660 |
|
|
}
|
661 |
|
|
}
|
662 |
|
|
else
|
663 |
|
|
printf_filtered ("Cannot locate the common block %s in function '%s'\n",
|
664 |
|
|
comname, funname);
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
/* This function is used to determine whether there is a
|
668 |
|
|
F77 common block visible at the current scope called 'comname'. */
|
669 |
|
|
|
670 |
|
|
#if 0
|
671 |
|
|
static int
|
672 |
|
|
there_is_a_visible_common_named (char *comname)
|
673 |
|
|
{
|
674 |
|
|
SAVED_F77_COMMON_PTR the_common;
|
675 |
|
|
struct frame_info *fi;
|
676 |
|
|
register char *funname = 0;
|
677 |
|
|
struct symbol *func;
|
678 |
|
|
|
679 |
|
|
if (comname == NULL)
|
680 |
|
|
error ("Cannot deal with NULL common name!");
|
681 |
|
|
|
682 |
|
|
fi = selected_frame;
|
683 |
|
|
|
684 |
|
|
if (fi == NULL)
|
685 |
|
|
error ("No frame selected");
|
686 |
|
|
|
687 |
|
|
/* The following is generally ripped off from stack.c's routine
|
688 |
|
|
print_frame_info() */
|
689 |
|
|
|
690 |
|
|
func = find_pc_function (fi->pc);
|
691 |
|
|
if (func)
|
692 |
|
|
{
|
693 |
|
|
/* In certain pathological cases, the symtabs give the wrong
|
694 |
|
|
function (when we are in the first function in a file which
|
695 |
|
|
is compiled without debugging symbols, the previous function
|
696 |
|
|
is compiled with debugging symbols, and the "foo.o" symbol
|
697 |
|
|
that is supposed to tell us where the file with debugging symbols
|
698 |
|
|
ends has been truncated by ar because it is longer than 15
|
699 |
|
|
characters).
|
700 |
|
|
|
701 |
|
|
So look in the minimal symbol tables as well, and if it comes
|
702 |
|
|
up with a larger address for the function use that instead.
|
703 |
|
|
I don't think this can ever cause any problems; there shouldn't
|
704 |
|
|
be any minimal symbols in the middle of a function.
|
705 |
|
|
FIXME: (Not necessarily true. What about text labels) */
|
706 |
|
|
|
707 |
|
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
708 |
|
|
|
709 |
|
|
if (msymbol != NULL
|
710 |
|
|
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
711 |
|
|
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
712 |
|
|
funname = SYMBOL_NAME (msymbol);
|
713 |
|
|
else
|
714 |
|
|
funname = SYMBOL_NAME (func);
|
715 |
|
|
}
|
716 |
|
|
else
|
717 |
|
|
{
|
718 |
|
|
register struct minimal_symbol *msymbol =
|
719 |
|
|
lookup_minimal_symbol_by_pc (fi->pc);
|
720 |
|
|
|
721 |
|
|
if (msymbol != NULL)
|
722 |
|
|
funname = SYMBOL_NAME (msymbol);
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
the_common = find_common_for_function (comname, funname);
|
726 |
|
|
|
727 |
|
|
return (the_common ? 1 : 0);
|
728 |
|
|
}
|
729 |
|
|
#endif
|
730 |
|
|
|
731 |
|
|
void
|
732 |
|
|
_initialize_f_valprint (void)
|
733 |
|
|
{
|
734 |
|
|
add_info ("common", info_common_command,
|
735 |
|
|
"Print out the values contained in a Fortran COMMON block.");
|
736 |
|
|
if (xdb_commands)
|
737 |
|
|
add_com ("lc", class_info, info_common_command,
|
738 |
|
|
"Print out the values contained in a Fortran COMMON block.");
|
739 |
|
|
}
|