OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [gdbserver/] [low-nbsd.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Low level interface to ptrace, for the remote server for GDB.
2
   Copyright 1986, 1987, 1993, 2000, 2001 Free Software Foundation, Inc.
3
 
4
This file is part of GDB.
5
 
6
This program is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2 of the License, or
9
(at your option) any later version.
10
 
11
This program is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
GNU General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with this program; if not, write to the Free Software
18
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19
 
20
#include "server.h"
21
#include <sys/types.h>
22
#include <sys/wait.h>
23
#include "frame.h"
24
#include "inferior.h"
25
 
26
#include <stdio.h>
27
#include <errno.h>
28
 
29
/***************Begin MY defs*********************/
30
static char my_registers[REGISTER_BYTES];
31
char *registers = my_registers;
32
/***************End MY defs*********************/
33
 
34
#include <sys/ptrace.h>
35
#include <machine/reg.h>
36
 
37
#define RF(dst, src) \
38
        memcpy(&registers[REGISTER_BYTE(dst)], &src, sizeof(src))
39
 
40
#define RS(src, dst) \
41
        memcpy(&dst, &registers[REGISTER_BYTE(src)], sizeof(dst))
42
 
43
#ifdef __i386__
44
struct env387
45
  {
46
    unsigned short control;
47
    unsigned short r0;
48
    unsigned short status;
49
    unsigned short r1;
50
    unsigned short tag;
51
    unsigned short r2;
52
    unsigned long eip;
53
    unsigned short code_seg;
54
    unsigned short opcode;
55
    unsigned long operand;
56
    unsigned short operand_seg;
57
    unsigned short r3;
58
    unsigned char regs[8][10];
59
  };
60
 
61
/* i386_register_raw_size[i] is the number of bytes of storage in the
62
   actual machine representation for register i.  */
63
int i386_register_raw_size[MAX_NUM_REGS] = {
64
   4,  4,  4,  4,
65
   4,  4,  4,  4,
66
   4,  4,  4,  4,
67
   4,  4,  4,  4,
68
  10, 10, 10, 10,
69
  10, 10, 10, 10,
70
   4,  4,  4,  4,
71
   4,  4,  4,  4,
72
  16, 16, 16, 16,
73
  16, 16, 16, 16,
74
  4
75
};
76
 
77
int i386_register_byte[MAX_NUM_REGS];
78
 
79
static void
80
initialize_arch (void)
81
{
82
  /* Initialize the table saying where each register starts in the
83
     register file.  */
84
  {
85
    int i, offset;
86
 
87
    offset = 0;
88
    for (i = 0; i < MAX_NUM_REGS; i++)
89
      {
90
        i386_register_byte[i] = offset;
91
        offset += i386_register_raw_size[i];
92
      }
93
  }
94
}
95
#endif  /* !__i386__ */
96
 
97
#ifdef __m68k__
98
static void
99
initialize_arch (void)
100
{
101
}
102
#endif  /* !__m68k__ */
103
 
104
#ifdef __ns32k__
105
static void
106
initialize_arch (void)
107
{
108
}
109
#endif  /* !__ns32k__ */
110
 
111
#ifdef __powerpc__
112
#include "ppc-tdep.h"
113
 
114
static void
115
initialize_arch (void)
116
{
117
}
118
#endif  /* !__powerpc__ */
119
 
120
 
121
/* Start an inferior process and returns its pid.
122
   ALLARGS is a vector of program-name and args. */
123
 
124
int
125
create_inferior (char *program, char **allargs)
126
{
127
  int pid;
128
 
129
  pid = fork ();
130
  if (pid < 0)
131
    perror_with_name ("fork");
132
 
133
  if (pid == 0)
134
    {
135
      ptrace (PT_TRACE_ME, 0, 0, 0);
136
 
137
      execv (program, allargs);
138
 
139
      fprintf (stderr, "Cannot exec %s: %s.\n", program,
140
               errno < sys_nerr ? sys_errlist[errno] : "unknown error");
141
      fflush (stderr);
142
      _exit (0177);
143
    }
144
 
145
  return pid;
146
}
147
 
148
/* Kill the inferior process.  Make us have no inferior.  */
149
 
150
void
151
kill_inferior (void)
152
{
153
  if (inferior_pid == 0)
154
    return;
155
  ptrace (PT_KILL, inferior_pid, 0, 0);
156
  wait (0);
157
  /*************inferior_died ();****VK**************/
158
}
159
 
160
/* Return nonzero if the given thread is still alive.  */
161
int
162
mythread_alive (int pid)
163
{
164
  return 1;
165
}
166
 
167
/* Wait for process, returns status */
168
 
169
unsigned char
170
mywait (char *status)
171
{
172
  int pid;
173
  int w;
174
 
175
  pid = wait (&w);
176
  if (pid != inferior_pid)
177
    perror_with_name ("wait");
178
 
179
  if (WIFEXITED (w))
180
    {
181
      fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
182
      *status = 'W';
183
      return ((unsigned char) WEXITSTATUS (w));
184
    }
185
  else if (!WIFSTOPPED (w))
186
    {
187
      fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
188
      *status = 'X';
189
      return ((unsigned char) WTERMSIG (w));
190
    }
191
 
192
  fetch_inferior_registers (0);
193
 
194
  *status = 'T';
195
  return ((unsigned char) WSTOPSIG (w));
196
}
197
 
198
/* Resume execution of the inferior process.
199
   If STEP is nonzero, single-step it.
200
   If SIGNAL is nonzero, give it that signal.  */
201
 
202
void
203
myresume (int step, int signal)
204
{
205
  errno = 0;
206
  ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid,
207
          (PTRACE_ARG3_TYPE) 1, signal);
208
  if (errno)
209
    perror_with_name ("ptrace");
210
}
211
 
212
 
213
#ifdef __i386__
214
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
215
   them all.  We actually fetch more than requested, when convenient,
216
   marking them as valid so we won't fetch them again.  */
217
 
218
void
219
fetch_inferior_registers (int ignored)
220
{
221
  struct reg inferior_registers;
222
  struct env387 inferior_fp_registers;
223
 
224
  ptrace (PT_GETREGS, inferior_pid,
225
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
226
  ptrace (PT_GETFPREGS, inferior_pid,
227
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
228
 
229
  RF ( 0, inferior_registers.r_eax);
230
  RF ( 1, inferior_registers.r_ecx);
231
  RF ( 2, inferior_registers.r_edx);
232
  RF ( 3, inferior_registers.r_ebx);
233
  RF ( 4, inferior_registers.r_esp);
234
  RF ( 5, inferior_registers.r_ebp);
235
  RF ( 6, inferior_registers.r_esi);
236
  RF ( 7, inferior_registers.r_edi);
237
  RF ( 8, inferior_registers.r_eip);
238
  RF ( 9, inferior_registers.r_eflags);
239
  RF (10, inferior_registers.r_cs);
240
  RF (11, inferior_registers.r_ss);
241
  RF (12, inferior_registers.r_ds);
242
  RF (13, inferior_registers.r_es);
243
  RF (14, inferior_registers.r_fs);
244
  RF (15, inferior_registers.r_gs);
245
 
246
  RF (FP0_REGNUM,     inferior_fp_registers.regs[0]);
247
  RF (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
248
  RF (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
249
  RF (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
250
  RF (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
251
  RF (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
252
  RF (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
253
  RF (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
254
 
255
  RF (FCTRL_REGNUM,   inferior_fp_registers.control);
256
  RF (FSTAT_REGNUM,   inferior_fp_registers.status);
257
  RF (FTAG_REGNUM,    inferior_fp_registers.tag);
258
  RF (FCS_REGNUM,     inferior_fp_registers.code_seg);
259
  RF (FCOFF_REGNUM,   inferior_fp_registers.eip);
260
  RF (FDS_REGNUM,     inferior_fp_registers.operand_seg);
261
  RF (FDOFF_REGNUM,   inferior_fp_registers.operand);
262
  RF (FOP_REGNUM,     inferior_fp_registers.opcode);
263
}
264
 
265
/* Store our register values back into the inferior.
266
   If REGNO is -1, do this for all registers.
267
   Otherwise, REGNO specifies which register (so we can save time).  */
268
 
269
void
270
store_inferior_registers (int ignored)
271
{
272
  struct reg inferior_registers;
273
  struct env387 inferior_fp_registers;
274
 
275
  RS ( 0, inferior_registers.r_eax);
276
  RS ( 1, inferior_registers.r_ecx);
277
  RS ( 2, inferior_registers.r_edx);
278
  RS ( 3, inferior_registers.r_ebx);
279
  RS ( 4, inferior_registers.r_esp);
280
  RS ( 5, inferior_registers.r_ebp);
281
  RS ( 6, inferior_registers.r_esi);
282
  RS ( 7, inferior_registers.r_edi);
283
  RS ( 8, inferior_registers.r_eip);
284
  RS ( 9, inferior_registers.r_eflags);
285
  RS (10, inferior_registers.r_cs);
286
  RS (11, inferior_registers.r_ss);
287
  RS (12, inferior_registers.r_ds);
288
  RS (13, inferior_registers.r_es);
289
  RS (14, inferior_registers.r_fs);
290
  RS (15, inferior_registers.r_gs);
291
 
292
  RS (FP0_REGNUM,     inferior_fp_registers.regs[0]);
293
  RS (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
294
  RS (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
295
  RS (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
296
  RS (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
297
  RS (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
298
  RS (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
299
  RS (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
300
 
301
  RS (FCTRL_REGNUM,   inferior_fp_registers.control);
302
  RS (FSTAT_REGNUM,   inferior_fp_registers.status);
303
  RS (FTAG_REGNUM,    inferior_fp_registers.tag);
304
  RS (FCS_REGNUM,     inferior_fp_registers.code_seg);
305
  RS (FCOFF_REGNUM,   inferior_fp_registers.eip);
306
  RS (FDS_REGNUM,     inferior_fp_registers.operand_seg);
307
  RS (FDOFF_REGNUM,   inferior_fp_registers.operand);
308
  RS (FOP_REGNUM,     inferior_fp_registers.opcode);
309
 
310
  ptrace (PT_SETREGS, inferior_pid,
311
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
312
  ptrace (PT_SETFPREGS, inferior_pid,
313
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
314
}
315
#endif  /* !__i386__ */
316
 
317
#ifdef __m68k__
318
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
319
   them all.  We actually fetch more than requested, when convenient,
320
   marking them as valid so we won't fetch them again.  */
321
 
322
void
323
fetch_inferior_registers (int regno)
324
{
325
  struct reg inferior_registers;
326
  struct fpreg inferior_fp_registers;
327
 
328
  ptrace (PT_GETREGS, inferior_pid,
329
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
330
  memcpy (&registers[REGISTER_BYTE (0)], &inferior_registers,
331
          sizeof (inferior_registers));
332
 
333
  ptrace (PT_GETFPREGS, inferior_pid,
334
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
335
  memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
336
          sizeof (inferior_fp_registers));
337
}
338
 
339
/* Store our register values back into the inferior.
340
   If REGNO is -1, do this for all registers.
341
   Otherwise, REGNO specifies which register (so we can save time).  */
342
 
343
void
344
store_inferior_registers (int regno)
345
{
346
  struct reg inferior_registers;
347
  struct fpreg inferior_fp_registers;
348
 
349
  memcpy (&inferior_registers, &registers[REGISTER_BYTE (0)],
350
          sizeof (inferior_registers));
351
  ptrace (PT_SETREGS, inferior_pid,
352
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
353
 
354
  memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
355
          sizeof (inferior_fp_registers));
356
  ptrace (PT_SETFPREGS, inferior_pid,
357
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
358
}
359
#endif  /* !__m68k__ */
360
 
361
 
362
#ifdef __ns32k__
363
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
364
   them all.  We actually fetch more than requested, when convenient,
365
   marking them as valid so we won't fetch them again.  */
366
 
367
void
368
fetch_inferior_registers (int regno)
369
{
370
  struct reg inferior_registers;
371
  struct fpreg inferior_fpregisters;
372
 
373
  ptrace (PT_GETREGS, inferior_pid,
374
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
375
  ptrace (PT_GETFPREGS, inferior_pid,
376
          (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
377
 
378
  RF (R0_REGNUM + 0, inferior_registers.r_r0);
379
  RF (R0_REGNUM + 1, inferior_registers.r_r1);
380
  RF (R0_REGNUM + 2, inferior_registers.r_r2);
381
  RF (R0_REGNUM + 3, inferior_registers.r_r3);
382
  RF (R0_REGNUM + 4, inferior_registers.r_r4);
383
  RF (R0_REGNUM + 5, inferior_registers.r_r5);
384
  RF (R0_REGNUM + 6, inferior_registers.r_r6);
385
  RF (R0_REGNUM + 7, inferior_registers.r_r7);
386
 
387
  RF (SP_REGNUM, inferior_registers.r_sp);
388
  RF (FP_REGNUM, inferior_registers.r_fp);
389
  RF (PC_REGNUM, inferior_registers.r_pc);
390
  RF (PS_REGNUM, inferior_registers.r_psr);
391
 
392
  RF (FPS_REGNUM, inferior_fpregisters.r_fsr);
393
  RF (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
394
  RF (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
395
  RF (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
396
  RF (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
397
  RF (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
398
  RF (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
399
  RF (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
400
  RF (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
401
}
402
 
403
/* Store our register values back into the inferior.
404
   If REGNO is -1, do this for all registers.
405
   Otherwise, REGNO specifies which register (so we can save time).  */
406
 
407
void
408
store_inferior_registers (int regno)
409
{
410
  struct reg inferior_registers;
411
  struct fpreg inferior_fpregisters;
412
 
413
  RS (R0_REGNUM + 0, inferior_registers.r_r0);
414
  RS (R0_REGNUM + 1, inferior_registers.r_r1);
415
  RS (R0_REGNUM + 2, inferior_registers.r_r2);
416
  RS (R0_REGNUM + 3, inferior_registers.r_r3);
417
  RS (R0_REGNUM + 4, inferior_registers.r_r4);
418
  RS (R0_REGNUM + 5, inferior_registers.r_r5);
419
  RS (R0_REGNUM + 6, inferior_registers.r_r6);
420
  RS (R0_REGNUM + 7, inferior_registers.r_r7);
421
 
422
  RS (SP_REGNUM, inferior_registers.r_sp);
423
  RS (FP_REGNUM, inferior_registers.r_fp);
424
  RS (PC_REGNUM, inferior_registers.r_pc);
425
  RS (PS_REGNUM, inferior_registers.r_psr);
426
 
427
  RS (FPS_REGNUM, inferior_fpregisters.r_fsr);
428
  RS (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
429
  RS (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
430
  RS (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
431
  RS (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
432
  RS (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
433
  RS (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
434
  RS (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
435
  RS (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
436
 
437
  ptrace (PT_SETREGS, inferior_pid,
438
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
439
  ptrace (PT_SETFPREGS, inferior_pid,
440
          (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
441
 
442
}
443
#endif  /* !__ns32k__ */
444
 
445
#ifdef __powerpc__
446
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
447
   them all.  We actually fetch more than requested, when convenient,
448
   marking them as valid so we won't fetch them again.  */
449
 
450
void
451
fetch_inferior_registers (int regno)
452
{
453
  struct reg inferior_registers;
454
#ifdef PT_GETFPREGS
455
  struct fpreg inferior_fp_registers;
456
#endif
457
  int i;
458
 
459
  ptrace (PT_GETREGS, inferior_pid,
460
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
461
  for (i = 0; i < 32; i++)
462
    RF (i, inferior_registers.fixreg[i]);
463
  RF (PPC_LR_REGNUM, inferior_registers.lr);
464
  RF (PPC_CR_REGNUM, inferior_registers.cr);
465
  RF (PPC_XER_REGNUM, inferior_registers.xer);
466
  RF (PPC_CTR_REGNUM, inferior_registers.ctr);
467
  RF (PC_REGNUM, inferior_registers.pc);
468
 
469
#ifdef PT_GETFPREGS
470
  ptrace (PT_GETFPREGS, inferior_pid,
471
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
472
  for (i = 0; i < 32; i++)
473
    RF (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
474
#endif
475
}
476
 
477
/* Store our register values back into the inferior.
478
   If REGNO is -1, do this for all registers.
479
   Otherwise, REGNO specifies which register (so we can save time).  */
480
 
481
void
482
store_inferior_registers (int regno)
483
{
484
  struct reg inferior_registers;
485
#ifdef PT_SETFPREGS
486
  struct fpreg inferior_fp_registers;
487
#endif
488
  int i;
489
 
490
  for (i = 0; i < 32; i++)
491
    RS (i, inferior_registers.fixreg[i]);
492
  RS (PPC_LR_REGNUM, inferior_registers.lr);
493
  RS (PPC_CR_REGNUM, inferior_registers.cr);
494
  RS (PPC_XER_REGNUM, inferior_registers.xer);
495
  RS (PPC_CTR_REGNUM, inferior_registers.ctr);
496
  RS (PC_REGNUM, inferior_registers.pc);
497
  ptrace (PT_SETREGS, inferior_pid,
498
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
499
 
500
#ifdef PT_SETFPREGS
501
  for (i = 0; i < 32; i++)
502
    RS (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
503
  ptrace (PT_SETFPREGS, inferior_pid,
504
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
505
#endif
506
}
507
#endif  /* !__powerpc__ */
508
 
509
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
510
   in the NEW_SUN_PTRACE case.
511
   It ought to be straightforward.  But it appears that writing did
512
   not write the data that I specified.  I cannot understand where
513
   it got the data that it actually did write.  */
514
 
515
/* Copy LEN bytes from inferior's memory starting at MEMADDR
516
   to debugger memory starting at MYADDR.  */
517
 
518
void
519
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
520
{
521
  register int i;
522
  /* Round starting address down to longword boundary.  */
523
  register CORE_ADDR addr = memaddr & -sizeof (int);
524
  /* Round ending address up; get number of longwords that makes.  */
525
  register int count
526
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
527
  /* Allocate buffer of that many longwords.  */
528
  register int *buffer = (int *) alloca (count * sizeof (int));
529
 
530
  /* Read all the longwords */
531
  for (i = 0; i < count; i++, addr += sizeof (int))
532
    {
533
      buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
534
    }
535
 
536
  /* Copy appropriate bytes out of the buffer.  */
537
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
538
}
539
 
540
/* Copy LEN bytes of data from debugger memory at MYADDR
541
   to inferior's memory at MEMADDR.
542
   On failure (cannot write the inferior)
543
   returns the value of errno.  */
544
 
545
int
546
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
547
{
548
  register int i;
549
  /* Round starting address down to longword boundary.  */
550
  register CORE_ADDR addr = memaddr & -sizeof (int);
551
  /* Round ending address up; get number of longwords that makes.  */
552
  register int count
553
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
554
  /* Allocate buffer of that many longwords.  */
555
  register int *buffer = (int *) alloca (count * sizeof (int));
556
  extern int errno;
557
 
558
  /* Fill start and end extra bytes of buffer with existing memory data.  */
559
 
560
  buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
561
 
562
  if (count > 1)
563
    {
564
      buffer[count - 1]
565
        = ptrace (PT_READ_D, inferior_pid,
566
                  (PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
567
    }
568
 
569
  /* Copy data to be written over corresponding part of buffer */
570
 
571
  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
572
 
573
  /* Write the entire buffer.  */
574
 
575
  for (i = 0; i < count; i++, addr += sizeof (int))
576
    {
577
      errno = 0;
578
      ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
579
      if (errno)
580
        return errno;
581
    }
582
 
583
  return 0;
584
}
585
 
586
void
587
initialize_low (void)
588
{
589
  initialize_arch ();
590
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.