OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [h8300-tdep.c] - Blame information for rev 1771

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Target-machine dependent code for Hitachi H8/300, for GDB.
2
   Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
3
   2000, 2001 Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 2 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 59 Temple Place - Suite 330,
20
   Boston, MA 02111-1307, USA.  */
21
 
22
/*
23
   Contributed by Steve Chamberlain
24
   sac@cygnus.com
25
 */
26
 
27
#include "defs.h"
28
#include "frame.h"
29
#include "obstack.h"
30
#include "symtab.h"
31
#include "dis-asm.h"
32
#include "gdbcmd.h"
33
#include "gdbtypes.h"
34
#include "gdbcore.h"
35
#include "gdb_string.h"
36
#include "value.h"
37
#include "regcache.h"
38
 
39
extern int h8300hmode, h8300smode;
40
 
41
#undef NUM_REGS
42
#define NUM_REGS 11
43
 
44
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
45
 
46
#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
47
#define IS_PUSH_FP(x) (x == 0x6df6)
48
#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
49
#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
50
#define IS_SUB2_SP(x) (x==0x1b87)
51
#define IS_SUB4_SP(x) (x==0x1b97)
52
#define IS_SUBL_SP(x) (x==0x7a37)
53
#define IS_MOVK_R5(x) (x==0x7905)
54
#define IS_SUB_R5SP(x) (x==0x1957)
55
 
56
 
57
/* The register names change depending on whether the h8300h processor
58
   type is selected. */
59
 
60
static char *original_register_names[] = REGISTER_NAMES;
61
 
62
static char *h8300h_register_names[] =
63
{"er0", "er1", "er2", "er3", "er4", "er5", "er6",
64
 "sp", "ccr", "pc", "cycles", "tick", "inst"};
65
 
66
char **h8300_register_names = original_register_names;
67
 
68
 
69
/* Local function declarations.  */
70
 
71
static CORE_ADDR examine_prologue ();
72
static void set_machine_hook (char *filename);
73
 
74
CORE_ADDR
75
h8300_skip_prologue (CORE_ADDR start_pc)
76
{
77
  short int w;
78
  int adjust = 0;
79
 
80
  /* Skip past all push and stm insns.  */
81
  while (1)
82
    {
83
      w = read_memory_unsigned_integer (start_pc, 2);
84
      /* First look for push insns.  */
85
      if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
86
        {
87
          w = read_memory_unsigned_integer (start_pc + 2, 2);
88
          adjust = 2;
89
        }
90
 
91
      if (IS_PUSH (w))
92
        {
93
          start_pc += 2 + adjust;
94
          w = read_memory_unsigned_integer (start_pc, 2);
95
          continue;
96
        }
97
      adjust = 0;
98
      break;
99
    }
100
 
101
  /* Skip past a move to FP, either word or long sized */
102
  w = read_memory_unsigned_integer (start_pc, 2);
103
  if (w == 0x0100)
104
    {
105
      w = read_memory_unsigned_integer (start_pc + 2, 2);
106
      adjust += 2;
107
    }
108
 
109
  if (IS_MOVE_FP (w))
110
    {
111
      start_pc += 2 + adjust;
112
      w = read_memory_unsigned_integer (start_pc, 2);
113
    }
114
 
115
  /* Check for loading either a word constant into r5;
116
     long versions are handled by the SUBL_SP below.  */
117
  if (IS_MOVK_R5 (w))
118
    {
119
      start_pc += 2;
120
      w = read_memory_unsigned_integer (start_pc, 2);
121
    }
122
 
123
  /* Now check for subtracting r5 from sp, word sized only.  */
124
  if (IS_SUB_R5SP (w))
125
    {
126
      start_pc += 2 + adjust;
127
      w = read_memory_unsigned_integer (start_pc, 2);
128
    }
129
 
130
  /* Check for subs #2 and subs #4. */
131
  while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
132
    {
133
      start_pc += 2 + adjust;
134
      w = read_memory_unsigned_integer (start_pc, 2);
135
    }
136
 
137
  /* Check for a 32bit subtract.  */
138
  if (IS_SUBL_SP (w))
139
    start_pc += 6 + adjust;
140
 
141
  return start_pc;
142
}
143
 
144
int
145
gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info)
146
{
147
  if (h8300smode)
148
    return print_insn_h8300s (memaddr, info);
149
  else if (h8300hmode)
150
    return print_insn_h8300h (memaddr, info);
151
  else
152
    return print_insn_h8300 (memaddr, info);
153
}
154
 
155
/* Given a GDB frame, determine the address of the calling function's frame.
156
   This will be used to create a new GDB frame struct, and then
157
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
158
 
159
   For us, the frame address is its stack pointer value, so we look up
160
   the function prologue to determine the caller's sp value, and return it.  */
161
 
162
CORE_ADDR
163
h8300_frame_chain (struct frame_info *thisframe)
164
{
165
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
166
    {                           /* initialize the from_pc now */
167
      thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
168
                                                        thisframe->frame,
169
                                                        PC_REGNUM);
170
      return thisframe->frame;
171
    }
172
  h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
173
  return thisframe->fsr->regs[SP_REGNUM];
174
}
175
 
176
/* Put here the code to store, into a struct frame_saved_regs,
177
   the addresses of the saved registers of frame described by FRAME_INFO.
178
   This includes special registers such as pc and fp saved in special
179
   ways in the stack frame.  sp is even more special:
180
   the address we return for it IS the sp for the next frame.
181
 
182
   We cache the result of doing this in the frame_obstack, since it is
183
   fairly expensive.  */
184
 
185
void
186
h8300_frame_find_saved_regs (struct frame_info *fi,
187
                             struct frame_saved_regs *fsr)
188
{
189
  register struct frame_saved_regs *cache_fsr;
190
  CORE_ADDR ip;
191
  struct symtab_and_line sal;
192
  CORE_ADDR limit;
193
 
194
  if (!fi->fsr)
195
    {
196
      cache_fsr = (struct frame_saved_regs *)
197
        frame_obstack_alloc (sizeof (struct frame_saved_regs));
198
      memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
199
 
200
      fi->fsr = cache_fsr;
201
 
202
      if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
203
        {                       /* no more to do. */
204
          if (fsr)
205
            *fsr = *fi->fsr;
206
          return;
207
        }
208
      /* Find the start and end of the function prologue.  If the PC
209
         is in the function prologue, we only consider the part that
210
         has executed already.  */
211
 
212
      ip = get_pc_function_start (fi->pc);
213
      sal = find_pc_line (ip, 0);
214
      limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
215
 
216
      /* This will fill in fields in *fi as well as in cache_fsr.  */
217
      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
218
    }
219
 
220
  if (fsr)
221
    *fsr = *fi->fsr;
222
}
223
 
224
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
225
   is not the address of a valid instruction, the address of the next
226
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
227
   of the instruction. */
228
 
229
CORE_ADDR
230
NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1)
231
{
232
  char buf[2];
233
  if (addr < lim + 8)
234
    {
235
      read_memory (addr, buf, 2);
236
      *pword1 = extract_signed_integer (buf, 2);
237
 
238
      return addr + 2;
239
    }
240
  return 0;
241
}
242
 
243
/* Examine the prologue of a function.  `ip' points to the first instruction.
244
   `limit' is the limit of the prologue (e.g. the addr of the first
245
   linenumber, or perhaps the program counter if we're stepping through).
246
   `frame_sp' is the stack pointer value in use in this frame.
247
   `fsr' is a pointer to a frame_saved_regs structure into which we put
248
   info about the registers saved by this frame.
249
   `fi' is a struct frame_info pointer; we fill in various fields in it
250
   to reflect the offsets of the arg pointer and the locals pointer.  */
251
 
252
static CORE_ADDR
253
examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
254
                  CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
255
                  struct frame_info *fi)
256
{
257
  register CORE_ADDR next_ip;
258
  int r;
259
  int have_fp = 0;
260
  INSN_WORD insn_word;
261
  /* Number of things pushed onto stack, starts at 2/4, 'cause the
262
     PC is already there */
263
  unsigned int reg_save_depth = h8300hmode ? 4 : 2;
264
 
265
  unsigned int auto_depth = 0;   /* Number of bytes of autos */
266
 
267
  char in_frame[11];            /* One for each reg */
268
 
269
  int adjust = 0;
270
 
271
  memset (in_frame, 1, 11);
272
  for (r = 0; r < 8; r++)
273
    {
274
      fsr->regs[r] = 0;
275
    }
276
  if (after_prolog_fp == 0)
277
    {
278
      after_prolog_fp = read_register (SP_REGNUM);
279
    }
280
 
281
  /* If the PC isn't valid, quit now.  */
282
  if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
283
    return 0;
284
 
285
  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
286
 
287
  if (insn_word == 0x0100)
288
    {
289
      insn_word = read_memory_unsigned_integer (ip + 2, 2);
290
      adjust = 2;
291
    }
292
 
293
  /* Skip over any fp push instructions */
294
  fsr->regs[6] = after_prolog_fp;
295
  while (next_ip && IS_PUSH_FP (insn_word))
296
    {
297
      ip = next_ip + adjust;
298
 
299
      in_frame[insn_word & 0x7] = reg_save_depth;
300
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
301
      reg_save_depth += 2 + adjust;
302
    }
303
 
304
  /* Is this a move into the fp */
305
  if (next_ip && IS_MOV_SP_FP (insn_word))
306
    {
307
      ip = next_ip;
308
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
309
      have_fp = 1;
310
    }
311
 
312
  /* Skip over any stack adjustment, happens either with a number of
313
     sub#2,sp or a mov #x,r5 sub r5,sp */
314
 
315
  if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
316
    {
317
      while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
318
        {
319
          auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
320
          ip = next_ip;
321
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
322
        }
323
    }
324
  else
325
    {
326
      if (next_ip && IS_MOVK_R5 (insn_word))
327
        {
328
          ip = next_ip;
329
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
330
          auto_depth += insn_word;
331
 
332
          next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
333
          auto_depth += insn_word;
334
        }
335
      if (next_ip && IS_SUBL_SP (insn_word))
336
        {
337
          ip = next_ip;
338
          auto_depth += read_memory_unsigned_integer (ip, 4);
339
          ip += 4;
340
 
341
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
342
        }
343
    }
344
 
345
  /* Now examine the push insns to determine where everything lives
346
     on the stack.  */
347
  while (1)
348
    {
349
      adjust = 0;
350
      if (!next_ip)
351
        break;
352
 
353
      if (insn_word == 0x0100)
354
        {
355
          ip = next_ip;
356
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
357
          adjust = 2;
358
        }
359
 
360
      if (IS_PUSH (insn_word))
361
        {
362
          ip = next_ip;
363
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
364
          fsr->regs[r] = after_prolog_fp + auto_depth;
365
          auto_depth += 2 + adjust;
366
          continue;
367
        }
368
 
369
      /* Now check for push multiple insns.  */
370
      if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
371
        {
372
          int count = ((insn_word >> 4) & 0xf) + 1;
373
          int start, i;
374
 
375
          ip = next_ip;
376
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
377
          start = insn_word & 0x7;
378
 
379
          for (i = start; i <= start + count; i++)
380
            {
381
              fsr->regs[i] = after_prolog_fp + auto_depth;
382
              auto_depth += 4;
383
            }
384
        }
385
      break;
386
    }
387
 
388
  /* The args are always reffed based from the stack pointer */
389
  fi->args_pointer = after_prolog_fp;
390
  /* Locals are always reffed based from the fp */
391
  fi->locals_pointer = after_prolog_fp;
392
  /* The PC is at a known place */
393
  fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
394
 
395
  /* Rememeber any others too */
396
  in_frame[PC_REGNUM] = 0;
397
 
398
  if (have_fp)
399
    /* We keep the old FP in the SP spot */
400
    fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
401
  else
402
    fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
403
 
404
  return (ip);
405
}
406
 
407
void
408
h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
409
{
410
  fi->fsr = 0;                   /* Not yet allocated */
411
  fi->args_pointer = 0;          /* Unknown */
412
  fi->locals_pointer = 0;        /* Unknown */
413
  fi->from_pc = 0;
414
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
415
    {                           /* anything special to do? */
416
      return;
417
    }
418
}
419
 
420
/* Return the saved PC from this frame.
421
 
422
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
423
   just use the register SRP_REGNUM itself.  */
424
 
425
CORE_ADDR
426
h8300_frame_saved_pc (struct frame_info *frame)
427
{
428
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
429
    return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
430
  else
431
    return frame->from_pc;
432
}
433
 
434
CORE_ADDR
435
h8300_frame_locals_address (struct frame_info *fi)
436
{
437
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
438
    return (CORE_ADDR) 0;        /* Not sure what else to do... */
439
  if (!fi->locals_pointer)
440
    {
441
      struct frame_saved_regs ignore;
442
 
443
      get_frame_saved_regs (fi, &ignore);
444
 
445
    }
446
  return fi->locals_pointer;
447
}
448
 
449
/* Return the address of the argument block for the frame
450
   described by FI.  Returns 0 if the address is unknown.  */
451
 
452
CORE_ADDR
453
h8300_frame_args_address (struct frame_info *fi)
454
{
455
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
456
    return (CORE_ADDR) 0;        /* Not sure what else to do... */
457
  if (!fi->args_pointer)
458
    {
459
      struct frame_saved_regs ignore;
460
 
461
      get_frame_saved_regs (fi, &ignore);
462
 
463
    }
464
 
465
  return fi->args_pointer;
466
}
467
 
468
/* Function: push_arguments
469
   Setup the function arguments for calling a function in the inferior.
470
 
471
   On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
472
   which are dedicated for passing function arguments.  Up to the first
473
   three arguments (depending on size) may go into these registers.
474
   The rest go on the stack.
475
 
476
   Arguments that are smaller than WORDSIZE bytes will still take up a
477
   whole register or a whole WORDSIZE word on the stack, and will be
478
   right-justified in the register or the stack word.  This includes
479
   chars and small aggregate types.  Note that WORDSIZE depends on the
480
   cpu type.
481
 
482
   Arguments that are larger than WORDSIZE bytes will be split between
483
   two or more registers as available, but will NOT be split between a
484
   register and the stack.
485
 
486
   An exceptional case exists for struct arguments (and possibly other
487
   aggregates such as arrays) -- if the size is larger than WORDSIZE
488
   bytes but not a multiple of WORDSIZE bytes.  In this case the
489
   argument is never split between the registers and the stack, but
490
   instead is copied in its entirety onto the stack, AND also copied
491
   into as many registers as there is room for.  In other words, space
492
   in registers permitting, two copies of the same argument are passed
493
   in.  As far as I can tell, only the one on the stack is used,
494
   although that may be a function of the level of compiler
495
   optimization.  I suspect this is a compiler bug.  Arguments of
496
   these odd sizes are left-justified within the word (as opposed to
497
   arguments smaller than WORDSIZE bytes, which are right-justified).
498
 
499
   If the function is to return an aggregate type such as a struct,
500
   the caller must allocate space into which the callee will copy the
501
   return value.  In this case, a pointer to the return value location
502
   is passed into the callee in register R0, which displaces one of
503
   the other arguments passed in via registers R0 to R2.  */
504
 
505
CORE_ADDR
506
h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
507
                      unsigned char struct_return, CORE_ADDR struct_addr)
508
{
509
  int stack_align, stack_alloc, stack_offset;
510
  int wordsize;
511
  int argreg;
512
  int argnum;
513
  struct type *type;
514
  CORE_ADDR regval;
515
  char *val;
516
  char valbuf[4];
517
  int len;
518
 
519
  if (h8300hmode || h8300smode)
520
    {
521
      stack_align = 3;
522
      wordsize = 4;
523
    }
524
  else
525
    {
526
      stack_align = 1;
527
      wordsize = 2;
528
    }
529
 
530
  /* first force sp to a n-byte alignment */
531
  sp = sp & ~stack_align;
532
 
533
  /* Now make sure there's space on the stack */
534
  for (argnum = 0, stack_alloc = 0;
535
       argnum < nargs; argnum++)
536
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
537
                    & ~stack_align);
538
  sp -= stack_alloc;            /* make room on stack for args */
539
  /* we may over-allocate a little here, but that won't hurt anything */
540
 
541
  argreg = ARG0_REGNUM;
542
  if (struct_return)            /* "struct return" pointer takes up one argreg */
543
    {
544
      write_register (argreg++, struct_addr);
545
    }
546
 
547
  /* Now load as many as possible of the first arguments into
548
     registers, and push the rest onto the stack.  There are 3N bytes
549
     in three registers available.  Loop thru args from first to last.  */
550
 
551
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
552
    {
553
      type = VALUE_TYPE (args[argnum]);
554
      len = TYPE_LENGTH (type);
555
      memset (valbuf, 0, sizeof (valbuf));
556
      if (len < wordsize)
557
        {
558
          /* the purpose of this is to right-justify the value within the word */
559
          memcpy (valbuf + (wordsize - len),
560
                  (char *) VALUE_CONTENTS (args[argnum]), len);
561
          val = valbuf;
562
        }
563
      else
564
        val = (char *) VALUE_CONTENTS (args[argnum]);
565
 
566
      if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
567
          (len > wordsize && (len & stack_align) != 0))
568
        {                       /* passed on the stack */
569
          write_memory (sp + stack_offset, val,
570
                        len < wordsize ? wordsize : len);
571
          stack_offset += (len + stack_align) & ~stack_align;
572
        }
573
      /* NOTE WELL!!!!!  This is not an "else if" clause!!!
574
         That's because some *&^%$ things get passed on the stack
575
         AND in the registers!   */
576
      if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
577
        while (len > 0)
578
          {                     /* there's room in registers */
579
            regval = extract_address (val, wordsize);
580
            write_register (argreg, regval);
581
            len -= wordsize;
582
            val += wordsize;
583
            argreg++;
584
          }
585
    }
586
  return sp;
587
}
588
 
589
/* Function: push_return_address
590
   Setup the return address for a dummy frame, as called by
591
   call_function_by_hand.  Only necessary when you are using an
592
   empty CALL_DUMMY, ie. the target will not actually be executing
593
   a JSR/BSR instruction.  */
594
 
595
CORE_ADDR
596
h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
597
{
598
  unsigned char buf[4];
599
  int wordsize;
600
 
601
  if (h8300hmode || h8300smode)
602
    wordsize = 4;
603
  else
604
    wordsize = 2;
605
 
606
  sp -= wordsize;
607
  store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
608
  write_memory (sp, buf, wordsize);
609
  return sp;
610
}
611
 
612
/* Function: h8300_pop_frame
613
   Restore the machine to the state it had before the current frame
614
   was created.  Usually used either by the "RETURN" command, or by
615
   call_function_by_hand after the dummy_frame is finished. */
616
 
617
void
618
h8300_pop_frame (void)
619
{
620
  unsigned regnum;
621
  struct frame_saved_regs fsr;
622
  struct frame_info *frame = get_current_frame ();
623
 
624
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
625
    {
626
      generic_pop_dummy_frame ();
627
    }
628
  else
629
    {
630
      get_frame_saved_regs (frame, &fsr);
631
 
632
      for (regnum = 0; regnum < 8; regnum++)
633
        {
634
          /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
635
             actual value we want, not the address of the value we want.  */
636
          if (fsr.regs[regnum] && regnum != SP_REGNUM)
637
            write_register (regnum,
638
                            read_memory_integer (fsr.regs[regnum], BINWORD));
639
          else if (fsr.regs[regnum] && regnum == SP_REGNUM)
640
            write_register (regnum, frame->frame + 2 * BINWORD);
641
        }
642
 
643
      /* Don't forget the update the PC too!  */
644
      write_pc (frame->from_pc);
645
    }
646
  flush_cached_frames ();
647
}
648
 
649
/* Function: extract_return_value
650
   Figure out where in REGBUF the called function has left its return value.
651
   Copy that into VALBUF.  Be sure to account for CPU type.   */
652
 
653
void
654
h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
655
{
656
  int wordsize, len;
657
 
658
  if (h8300smode || h8300hmode)
659
    wordsize = 4;
660
  else
661
    wordsize = 2;
662
 
663
  len = TYPE_LENGTH (type);
664
 
665
  switch (len)
666
    {
667
    case 1:                     /* (char) */
668
    case 2:                     /* (short), (int) */
669
      memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
670
      break;
671
    case 4:                     /* (long), (float) */
672
      if (h8300smode || h8300hmode)
673
        {
674
          memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
675
        }
676
      else
677
        {
678
          memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
679
          memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
680
        }
681
      break;
682
    case 8:                     /* (double) (doesn't seem to happen, which is good,
683
                                   because this almost certainly isn't right.  */
684
      error ("I don't know how a double is returned.");
685
      break;
686
    }
687
}
688
 
689
/* Function: store_return_value
690
   Place the appropriate value in the appropriate registers.
691
   Primarily used by the RETURN command.  */
692
 
693
void
694
h8300_store_return_value (struct type *type, char *valbuf)
695
{
696
  int wordsize, len, regval;
697
 
698
  if (h8300hmode || h8300smode)
699
    wordsize = 4;
700
  else
701
    wordsize = 2;
702
 
703
  len = TYPE_LENGTH (type);
704
  switch (len)
705
    {
706
    case 1:                     /* char */
707
    case 2:                     /* short, int */
708
      regval = extract_address (valbuf, len);
709
      write_register (0, regval);
710
      break;
711
    case 4:                     /* long, float */
712
      regval = extract_address (valbuf, len);
713
      if (h8300smode || h8300hmode)
714
        {
715
          write_register (0, regval);
716
        }
717
      else
718
        {
719
          write_register (0, regval >> 16);
720
          write_register (1, regval & 0xffff);
721
        }
722
      break;
723
    case 8:                     /* presumeably double, but doesn't seem to happen */
724
      error ("I don't know how to return a double.");
725
      break;
726
    }
727
}
728
 
729
struct cmd_list_element *setmemorylist;
730
 
731
static void
732
set_register_names (void)
733
{
734
  if (h8300hmode != 0)
735
    h8300_register_names = h8300h_register_names;
736
  else
737
    h8300_register_names = original_register_names;
738
}
739
 
740
static void
741
h8300_command (char *args, int from_tty)
742
{
743
  extern int h8300hmode;
744
  h8300hmode = 0;
745
  h8300smode = 0;
746
  set_register_names ();
747
}
748
 
749
static void
750
h8300h_command (char *args, int from_tty)
751
{
752
  extern int h8300hmode;
753
  h8300hmode = 1;
754
  h8300smode = 0;
755
  set_register_names ();
756
}
757
 
758
static void
759
h8300s_command (char *args, int from_tty)
760
{
761
  extern int h8300smode;
762
  extern int h8300hmode;
763
  h8300smode = 1;
764
  h8300hmode = 1;
765
  set_register_names ();
766
}
767
 
768
 
769
static void
770
set_machine (char *args, int from_tty)
771
{
772
  printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
773
  printf_unfiltered ("or h8300s");
774
  help_list (setmemorylist, "set memory ", -1, gdb_stdout);
775
}
776
 
777
/* set_machine_hook is called as the exec file is being opened, but
778
   before the symbol file is opened.  This allows us to set the
779
   h8300hmode flag based on the machine type specified in the exec
780
   file.  This in turn will cause subsequently defined pointer types
781
   to be 16 or 32 bits as appropriate for the machine.  */
782
 
783
static void
784
set_machine_hook (char *filename)
785
{
786
  if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
787
    {
788
      h8300smode = 1;
789
      h8300hmode = 1;
790
    }
791
  else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
792
    {
793
      h8300smode = 0;
794
      h8300hmode = 1;
795
    }
796
  else
797
    {
798
      h8300smode = 0;
799
      h8300hmode = 0;
800
    }
801
  set_register_names ();
802
}
803
 
804
void
805
_initialize_h8300m (void)
806
{
807
  add_prefix_cmd ("machine", no_class, set_machine,
808
                  "set the machine type",
809
                  &setmemorylist, "set machine ", 0,
810
                  &setlist);
811
 
812
  add_cmd ("h8300", class_support, h8300_command,
813
           "Set machine to be H8/300.", &setmemorylist);
814
 
815
  add_cmd ("h8300h", class_support, h8300h_command,
816
           "Set machine to be H8/300H.", &setmemorylist);
817
 
818
  add_cmd ("h8300s", class_support, h8300s_command,
819
           "Set machine to be H8/300S.", &setmemorylist);
820
 
821
  /* Add a hook to set the machine type when we're loading a file. */
822
 
823
  specify_exec_file_hook (set_machine_hook);
824
}
825
 
826
 
827
 
828
void
829
h8300_print_register_hook (int regno)
830
{
831
  if (regno == 8)
832
    {
833
      /* CCR register */
834
      int C, Z, N, V;
835
      unsigned char b[4];
836
      unsigned char l;
837
      read_relative_register_raw_bytes (regno, b);
838
      l = b[REGISTER_VIRTUAL_SIZE (8) - 1];
839
      printf_unfiltered ("\t");
840
      printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
841
      printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
842
      N = (l & 0x8) != 0;
843
      Z = (l & 0x4) != 0;
844
      V = (l & 0x2) != 0;
845
      C = (l & 0x1) != 0;
846
      printf_unfiltered ("N-%d ", N);
847
      printf_unfiltered ("Z-%d ", Z);
848
      printf_unfiltered ("V-%d ", V);
849
      printf_unfiltered ("C-%d ", C);
850
      if ((C | Z) == 0)
851
        printf_unfiltered ("u> ");
852
      if ((C | Z) == 1)
853
        printf_unfiltered ("u<= ");
854
      if ((C == 0))
855
        printf_unfiltered ("u>= ");
856
      if (C == 1)
857
        printf_unfiltered ("u< ");
858
      if (Z == 0)
859
        printf_unfiltered ("!= ");
860
      if (Z == 1)
861
        printf_unfiltered ("== ");
862
      if ((N ^ V) == 0)
863
        printf_unfiltered (">= ");
864
      if ((N ^ V) == 1)
865
        printf_unfiltered ("< ");
866
      if ((Z | (N ^ V)) == 0)
867
        printf_unfiltered ("> ");
868
      if ((Z | (N ^ V)) == 1)
869
        printf_unfiltered ("<= ");
870
    }
871
}
872
 
873
void
874
_initialize_h8300_tdep (void)
875
{
876
  tm_print_insn = gdb_print_insn_h8300;
877
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.