1 |
578 |
markom |
/* Target-dependent code for the HP PA architecture, for GDB.
|
2 |
|
|
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
3 |
|
|
1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Contributed by the Center for Software Science at the
|
6 |
|
|
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program; if not, write to the Free Software
|
22 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
23 |
|
|
Boston, MA 02111-1307, USA. */
|
24 |
|
|
|
25 |
|
|
#include "defs.h"
|
26 |
|
|
#include "frame.h"
|
27 |
|
|
#include "bfd.h"
|
28 |
|
|
#include "inferior.h"
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "regcache.h"
|
31 |
|
|
|
32 |
|
|
/* For argument passing to the inferior */
|
33 |
|
|
#include "symtab.h"
|
34 |
|
|
|
35 |
|
|
#ifdef USG
|
36 |
|
|
#include <sys/types.h>
|
37 |
|
|
#endif
|
38 |
|
|
|
39 |
|
|
#include <dl.h>
|
40 |
|
|
#include <sys/param.h>
|
41 |
|
|
#include <signal.h>
|
42 |
|
|
|
43 |
|
|
#include <sys/ptrace.h>
|
44 |
|
|
#include <machine/save_state.h>
|
45 |
|
|
|
46 |
|
|
#ifdef COFF_ENCAPSULATE
|
47 |
|
|
#include "a.out.encap.h"
|
48 |
|
|
#else
|
49 |
|
|
#endif
|
50 |
|
|
|
51 |
|
|
/*#include <sys/user.h> After a.out.h */
|
52 |
|
|
#include <sys/file.h>
|
53 |
|
|
#include "gdb_stat.h"
|
54 |
|
|
#include "gdb_wait.h"
|
55 |
|
|
|
56 |
|
|
#include "gdbcore.h"
|
57 |
|
|
#include "gdbcmd.h"
|
58 |
|
|
#include "target.h"
|
59 |
|
|
#include "symfile.h"
|
60 |
|
|
#include "objfiles.h"
|
61 |
|
|
|
62 |
|
|
/* To support detection of the pseudo-initial frame
|
63 |
|
|
that threads have. */
|
64 |
|
|
#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
|
65 |
|
|
#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
|
66 |
|
|
|
67 |
|
|
static int extract_5_load (unsigned int);
|
68 |
|
|
|
69 |
|
|
static unsigned extract_5R_store (unsigned int);
|
70 |
|
|
|
71 |
|
|
static unsigned extract_5r_store (unsigned int);
|
72 |
|
|
|
73 |
|
|
static void find_dummy_frame_regs (struct frame_info *,
|
74 |
|
|
struct frame_saved_regs *);
|
75 |
|
|
|
76 |
|
|
static int find_proc_framesize (CORE_ADDR);
|
77 |
|
|
|
78 |
|
|
static int find_return_regnum (CORE_ADDR);
|
79 |
|
|
|
80 |
|
|
struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
|
81 |
|
|
|
82 |
|
|
static int extract_17 (unsigned int);
|
83 |
|
|
|
84 |
|
|
static unsigned deposit_21 (unsigned int, unsigned int);
|
85 |
|
|
|
86 |
|
|
static int extract_21 (unsigned);
|
87 |
|
|
|
88 |
|
|
static unsigned deposit_14 (int, unsigned int);
|
89 |
|
|
|
90 |
|
|
static int extract_14 (unsigned);
|
91 |
|
|
|
92 |
|
|
static void unwind_command (char *, int);
|
93 |
|
|
|
94 |
|
|
static int low_sign_extend (unsigned int, unsigned int);
|
95 |
|
|
|
96 |
|
|
static int sign_extend (unsigned int, unsigned int);
|
97 |
|
|
|
98 |
|
|
static int restore_pc_queue (struct frame_saved_regs *);
|
99 |
|
|
|
100 |
|
|
static int hppa_alignof (struct type *);
|
101 |
|
|
|
102 |
|
|
/* To support multi-threading and stepping. */
|
103 |
|
|
int hppa_prepare_to_proceed ();
|
104 |
|
|
|
105 |
|
|
static int prologue_inst_adjust_sp (unsigned long);
|
106 |
|
|
|
107 |
|
|
static int is_branch (unsigned long);
|
108 |
|
|
|
109 |
|
|
static int inst_saves_gr (unsigned long);
|
110 |
|
|
|
111 |
|
|
static int inst_saves_fr (unsigned long);
|
112 |
|
|
|
113 |
|
|
static int pc_in_interrupt_handler (CORE_ADDR);
|
114 |
|
|
|
115 |
|
|
static int pc_in_linker_stub (CORE_ADDR);
|
116 |
|
|
|
117 |
|
|
static int compare_unwind_entries (const void *, const void *);
|
118 |
|
|
|
119 |
|
|
static void read_unwind_info (struct objfile *);
|
120 |
|
|
|
121 |
|
|
static void internalize_unwinds (struct objfile *,
|
122 |
|
|
struct unwind_table_entry *,
|
123 |
|
|
asection *, unsigned int,
|
124 |
|
|
unsigned int, CORE_ADDR);
|
125 |
|
|
static void pa_print_registers (char *, int, int);
|
126 |
|
|
static void pa_strcat_registers (char *, int, int, struct ui_file *);
|
127 |
|
|
static void pa_register_look_aside (char *, int, long *);
|
128 |
|
|
static void pa_print_fp_reg (int);
|
129 |
|
|
static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
|
130 |
|
|
static void record_text_segment_lowaddr (bfd *, asection *, void *);
|
131 |
|
|
|
132 |
|
|
typedef struct
|
133 |
|
|
{
|
134 |
|
|
struct minimal_symbol *msym;
|
135 |
|
|
CORE_ADDR solib_handle;
|
136 |
|
|
CORE_ADDR return_val;
|
137 |
|
|
}
|
138 |
|
|
args_for_find_stub;
|
139 |
|
|
|
140 |
|
|
static int cover_find_stub_with_shl_get (PTR);
|
141 |
|
|
|
142 |
|
|
static int is_pa_2 = 0; /* False */
|
143 |
|
|
|
144 |
|
|
/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
|
145 |
|
|
extern int hp_som_som_object_present;
|
146 |
|
|
|
147 |
|
|
/* In breakpoint.c */
|
148 |
|
|
extern int exception_catchpoints_are_fragile;
|
149 |
|
|
|
150 |
|
|
/* This is defined in valops.c. */
|
151 |
|
|
extern value_ptr find_function_in_inferior (char *);
|
152 |
|
|
|
153 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
154 |
|
|
int
|
155 |
|
|
hppa_use_struct_convention (int gcc_p, struct type *type)
|
156 |
|
|
{
|
157 |
|
|
return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
/* Routines to extract various sized constants out of hppa
|
162 |
|
|
instructions. */
|
163 |
|
|
|
164 |
|
|
/* This assumes that no garbage lies outside of the lower bits of
|
165 |
|
|
value. */
|
166 |
|
|
|
167 |
|
|
static int
|
168 |
|
|
sign_extend (unsigned val, unsigned bits)
|
169 |
|
|
{
|
170 |
|
|
return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
/* For many immediate values the sign bit is the low bit! */
|
174 |
|
|
|
175 |
|
|
static int
|
176 |
|
|
low_sign_extend (unsigned val, unsigned bits)
|
177 |
|
|
{
|
178 |
|
|
return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
/* extract the immediate field from a ld{bhw}s instruction */
|
182 |
|
|
|
183 |
|
|
static int
|
184 |
|
|
extract_5_load (unsigned word)
|
185 |
|
|
{
|
186 |
|
|
return low_sign_extend (word >> 16 & MASK_5, 5);
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
/* extract the immediate field from a break instruction */
|
190 |
|
|
|
191 |
|
|
static unsigned
|
192 |
|
|
extract_5r_store (unsigned word)
|
193 |
|
|
{
|
194 |
|
|
return (word & MASK_5);
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/* extract the immediate field from a {sr}sm instruction */
|
198 |
|
|
|
199 |
|
|
static unsigned
|
200 |
|
|
extract_5R_store (unsigned word)
|
201 |
|
|
{
|
202 |
|
|
return (word >> 16 & MASK_5);
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
/* extract a 14 bit immediate field */
|
206 |
|
|
|
207 |
|
|
static int
|
208 |
|
|
extract_14 (unsigned word)
|
209 |
|
|
{
|
210 |
|
|
return low_sign_extend (word & MASK_14, 14);
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
/* deposit a 14 bit constant in a word */
|
214 |
|
|
|
215 |
|
|
static unsigned
|
216 |
|
|
deposit_14 (int opnd, unsigned word)
|
217 |
|
|
{
|
218 |
|
|
unsigned sign = (opnd < 0 ? 1 : 0);
|
219 |
|
|
|
220 |
|
|
return word | ((unsigned) opnd << 1 & MASK_14) | sign;
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
/* extract a 21 bit constant */
|
224 |
|
|
|
225 |
|
|
static int
|
226 |
|
|
extract_21 (unsigned word)
|
227 |
|
|
{
|
228 |
|
|
int val;
|
229 |
|
|
|
230 |
|
|
word &= MASK_21;
|
231 |
|
|
word <<= 11;
|
232 |
|
|
val = GET_FIELD (word, 20, 20);
|
233 |
|
|
val <<= 11;
|
234 |
|
|
val |= GET_FIELD (word, 9, 19);
|
235 |
|
|
val <<= 2;
|
236 |
|
|
val |= GET_FIELD (word, 5, 6);
|
237 |
|
|
val <<= 5;
|
238 |
|
|
val |= GET_FIELD (word, 0, 4);
|
239 |
|
|
val <<= 2;
|
240 |
|
|
val |= GET_FIELD (word, 7, 8);
|
241 |
|
|
return sign_extend (val, 21) << 11;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
/* deposit a 21 bit constant in a word. Although 21 bit constants are
|
245 |
|
|
usually the top 21 bits of a 32 bit constant, we assume that only
|
246 |
|
|
the low 21 bits of opnd are relevant */
|
247 |
|
|
|
248 |
|
|
static unsigned
|
249 |
|
|
deposit_21 (unsigned opnd, unsigned word)
|
250 |
|
|
{
|
251 |
|
|
unsigned val = 0;
|
252 |
|
|
|
253 |
|
|
val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
|
254 |
|
|
val <<= 2;
|
255 |
|
|
val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
|
256 |
|
|
val <<= 2;
|
257 |
|
|
val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
|
258 |
|
|
val <<= 11;
|
259 |
|
|
val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
|
260 |
|
|
val <<= 1;
|
261 |
|
|
val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
|
262 |
|
|
return word | val;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* extract a 17 bit constant from branch instructions, returning the
|
266 |
|
|
19 bit signed value. */
|
267 |
|
|
|
268 |
|
|
static int
|
269 |
|
|
extract_17 (unsigned word)
|
270 |
|
|
{
|
271 |
|
|
return sign_extend (GET_FIELD (word, 19, 28) |
|
272 |
|
|
GET_FIELD (word, 29, 29) << 10 |
|
273 |
|
|
GET_FIELD (word, 11, 15) << 11 |
|
274 |
|
|
(word & 0x1) << 16, 17) << 2;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
|
278 |
|
|
/* Compare the start address for two unwind entries returning 1 if
|
279 |
|
|
the first address is larger than the second, -1 if the second is
|
280 |
|
|
larger than the first, and zero if they are equal. */
|
281 |
|
|
|
282 |
|
|
static int
|
283 |
|
|
compare_unwind_entries (const void *arg1, const void *arg2)
|
284 |
|
|
{
|
285 |
|
|
const struct unwind_table_entry *a = arg1;
|
286 |
|
|
const struct unwind_table_entry *b = arg2;
|
287 |
|
|
|
288 |
|
|
if (a->region_start > b->region_start)
|
289 |
|
|
return 1;
|
290 |
|
|
else if (a->region_start < b->region_start)
|
291 |
|
|
return -1;
|
292 |
|
|
else
|
293 |
|
|
return 0;
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
static CORE_ADDR low_text_segment_address;
|
297 |
|
|
|
298 |
|
|
static void
|
299 |
|
|
record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
|
300 |
|
|
{
|
301 |
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
|
302 |
|
|
== (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
303 |
|
|
&& section->vma < low_text_segment_address)
|
304 |
|
|
low_text_segment_address = section->vma;
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
static void
|
308 |
|
|
internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
|
309 |
|
|
asection *section, unsigned int entries, unsigned int size,
|
310 |
|
|
CORE_ADDR text_offset)
|
311 |
|
|
{
|
312 |
|
|
/* We will read the unwind entries into temporary memory, then
|
313 |
|
|
fill in the actual unwind table. */
|
314 |
|
|
if (size > 0)
|
315 |
|
|
{
|
316 |
|
|
unsigned long tmp;
|
317 |
|
|
unsigned i;
|
318 |
|
|
char *buf = alloca (size);
|
319 |
|
|
|
320 |
|
|
low_text_segment_address = -1;
|
321 |
|
|
|
322 |
|
|
/* If addresses are 64 bits wide, then unwinds are supposed to
|
323 |
|
|
be segment relative offsets instead of absolute addresses.
|
324 |
|
|
|
325 |
|
|
Note that when loading a shared library (text_offset != 0) the
|
326 |
|
|
unwinds are already relative to the text_offset that will be
|
327 |
|
|
passed in. */
|
328 |
|
|
if (TARGET_PTR_BIT == 64 && text_offset == 0)
|
329 |
|
|
{
|
330 |
|
|
bfd_map_over_sections (objfile->obfd,
|
331 |
|
|
record_text_segment_lowaddr, (PTR) NULL);
|
332 |
|
|
|
333 |
|
|
/* ?!? Mask off some low bits. Should this instead subtract
|
334 |
|
|
out the lowest section's filepos or something like that?
|
335 |
|
|
This looks very hokey to me. */
|
336 |
|
|
low_text_segment_address &= ~0xfff;
|
337 |
|
|
text_offset += low_text_segment_address;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
|
341 |
|
|
|
342 |
|
|
/* Now internalize the information being careful to handle host/target
|
343 |
|
|
endian issues. */
|
344 |
|
|
for (i = 0; i < entries; i++)
|
345 |
|
|
{
|
346 |
|
|
table[i].region_start = bfd_get_32 (objfile->obfd,
|
347 |
|
|
(bfd_byte *) buf);
|
348 |
|
|
table[i].region_start += text_offset;
|
349 |
|
|
buf += 4;
|
350 |
|
|
table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
351 |
|
|
table[i].region_end += text_offset;
|
352 |
|
|
buf += 4;
|
353 |
|
|
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
354 |
|
|
buf += 4;
|
355 |
|
|
table[i].Cannot_unwind = (tmp >> 31) & 0x1;
|
356 |
|
|
table[i].Millicode = (tmp >> 30) & 0x1;
|
357 |
|
|
table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
|
358 |
|
|
table[i].Region_description = (tmp >> 27) & 0x3;
|
359 |
|
|
table[i].reserved1 = (tmp >> 26) & 0x1;
|
360 |
|
|
table[i].Entry_SR = (tmp >> 25) & 0x1;
|
361 |
|
|
table[i].Entry_FR = (tmp >> 21) & 0xf;
|
362 |
|
|
table[i].Entry_GR = (tmp >> 16) & 0x1f;
|
363 |
|
|
table[i].Args_stored = (tmp >> 15) & 0x1;
|
364 |
|
|
table[i].Variable_Frame = (tmp >> 14) & 0x1;
|
365 |
|
|
table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
|
366 |
|
|
table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
|
367 |
|
|
table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
|
368 |
|
|
table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
|
369 |
|
|
table[i].Ada_Region = (tmp >> 9) & 0x1;
|
370 |
|
|
table[i].cxx_info = (tmp >> 8) & 0x1;
|
371 |
|
|
table[i].cxx_try_catch = (tmp >> 7) & 0x1;
|
372 |
|
|
table[i].sched_entry_seq = (tmp >> 6) & 0x1;
|
373 |
|
|
table[i].reserved2 = (tmp >> 5) & 0x1;
|
374 |
|
|
table[i].Save_SP = (tmp >> 4) & 0x1;
|
375 |
|
|
table[i].Save_RP = (tmp >> 3) & 0x1;
|
376 |
|
|
table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
|
377 |
|
|
table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
|
378 |
|
|
table[i].Cleanup_defined = tmp & 0x1;
|
379 |
|
|
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
380 |
|
|
buf += 4;
|
381 |
|
|
table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
|
382 |
|
|
table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
|
383 |
|
|
table[i].Large_frame = (tmp >> 29) & 0x1;
|
384 |
|
|
table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
|
385 |
|
|
table[i].reserved4 = (tmp >> 27) & 0x1;
|
386 |
|
|
table[i].Total_frame_size = tmp & 0x7ffffff;
|
387 |
|
|
|
388 |
|
|
/* Stub unwinds are handled elsewhere. */
|
389 |
|
|
table[i].stub_unwind.stub_type = 0;
|
390 |
|
|
table[i].stub_unwind.padding = 0;
|
391 |
|
|
}
|
392 |
|
|
}
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* Read in the backtrace information stored in the `$UNWIND_START$' section of
|
396 |
|
|
the object file. This info is used mainly by find_unwind_entry() to find
|
397 |
|
|
out the stack frame size and frame pointer used by procedures. We put
|
398 |
|
|
everything on the psymbol obstack in the objfile so that it automatically
|
399 |
|
|
gets freed when the objfile is destroyed. */
|
400 |
|
|
|
401 |
|
|
static void
|
402 |
|
|
read_unwind_info (struct objfile *objfile)
|
403 |
|
|
{
|
404 |
|
|
asection *unwind_sec, *stub_unwind_sec;
|
405 |
|
|
unsigned unwind_size, stub_unwind_size, total_size;
|
406 |
|
|
unsigned index, unwind_entries;
|
407 |
|
|
unsigned stub_entries, total_entries;
|
408 |
|
|
CORE_ADDR text_offset;
|
409 |
|
|
struct obj_unwind_info *ui;
|
410 |
|
|
obj_private_data_t *obj_private;
|
411 |
|
|
|
412 |
|
|
text_offset = ANOFFSET (objfile->section_offsets, 0);
|
413 |
|
|
ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
|
414 |
|
|
sizeof (struct obj_unwind_info));
|
415 |
|
|
|
416 |
|
|
ui->table = NULL;
|
417 |
|
|
ui->cache = NULL;
|
418 |
|
|
ui->last = -1;
|
419 |
|
|
|
420 |
|
|
/* For reasons unknown the HP PA64 tools generate multiple unwinder
|
421 |
|
|
sections in a single executable. So we just iterate over every
|
422 |
|
|
section in the BFD looking for unwinder sections intead of trying
|
423 |
|
|
to do a lookup with bfd_get_section_by_name.
|
424 |
|
|
|
425 |
|
|
First determine the total size of the unwind tables so that we
|
426 |
|
|
can allocate memory in a nice big hunk. */
|
427 |
|
|
total_entries = 0;
|
428 |
|
|
for (unwind_sec = objfile->obfd->sections;
|
429 |
|
|
unwind_sec;
|
430 |
|
|
unwind_sec = unwind_sec->next)
|
431 |
|
|
{
|
432 |
|
|
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
433 |
|
|
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
434 |
|
|
{
|
435 |
|
|
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
436 |
|
|
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
437 |
|
|
|
438 |
|
|
total_entries += unwind_entries;
|
439 |
|
|
}
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
/* Now compute the size of the stub unwinds. Note the ELF tools do not
|
443 |
|
|
use stub unwinds at the curren time. */
|
444 |
|
|
stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
|
445 |
|
|
|
446 |
|
|
if (stub_unwind_sec)
|
447 |
|
|
{
|
448 |
|
|
stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
|
449 |
|
|
stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
|
450 |
|
|
}
|
451 |
|
|
else
|
452 |
|
|
{
|
453 |
|
|
stub_unwind_size = 0;
|
454 |
|
|
stub_entries = 0;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
/* Compute total number of unwind entries and their total size. */
|
458 |
|
|
total_entries += stub_entries;
|
459 |
|
|
total_size = total_entries * sizeof (struct unwind_table_entry);
|
460 |
|
|
|
461 |
|
|
/* Allocate memory for the unwind table. */
|
462 |
|
|
ui->table = (struct unwind_table_entry *)
|
463 |
|
|
obstack_alloc (&objfile->psymbol_obstack, total_size);
|
464 |
|
|
ui->last = total_entries - 1;
|
465 |
|
|
|
466 |
|
|
/* Now read in each unwind section and internalize the standard unwind
|
467 |
|
|
entries. */
|
468 |
|
|
index = 0;
|
469 |
|
|
for (unwind_sec = objfile->obfd->sections;
|
470 |
|
|
unwind_sec;
|
471 |
|
|
unwind_sec = unwind_sec->next)
|
472 |
|
|
{
|
473 |
|
|
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
474 |
|
|
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
475 |
|
|
{
|
476 |
|
|
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
477 |
|
|
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
478 |
|
|
|
479 |
|
|
internalize_unwinds (objfile, &ui->table[index], unwind_sec,
|
480 |
|
|
unwind_entries, unwind_size, text_offset);
|
481 |
|
|
index += unwind_entries;
|
482 |
|
|
}
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
/* Now read in and internalize the stub unwind entries. */
|
486 |
|
|
if (stub_unwind_size > 0)
|
487 |
|
|
{
|
488 |
|
|
unsigned int i;
|
489 |
|
|
char *buf = alloca (stub_unwind_size);
|
490 |
|
|
|
491 |
|
|
/* Read in the stub unwind entries. */
|
492 |
|
|
bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
|
493 |
|
|
0, stub_unwind_size);
|
494 |
|
|
|
495 |
|
|
/* Now convert them into regular unwind entries. */
|
496 |
|
|
for (i = 0; i < stub_entries; i++, index++)
|
497 |
|
|
{
|
498 |
|
|
/* Clear out the next unwind entry. */
|
499 |
|
|
memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
|
500 |
|
|
|
501 |
|
|
/* Convert offset & size into region_start and region_end.
|
502 |
|
|
Stuff away the stub type into "reserved" fields. */
|
503 |
|
|
ui->table[index].region_start = bfd_get_32 (objfile->obfd,
|
504 |
|
|
(bfd_byte *) buf);
|
505 |
|
|
ui->table[index].region_start += text_offset;
|
506 |
|
|
buf += 4;
|
507 |
|
|
ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
|
508 |
|
|
(bfd_byte *) buf);
|
509 |
|
|
buf += 2;
|
510 |
|
|
ui->table[index].region_end
|
511 |
|
|
= ui->table[index].region_start + 4 *
|
512 |
|
|
(bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
|
513 |
|
|
buf += 2;
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* Unwind table needs to be kept sorted. */
|
519 |
|
|
qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
|
520 |
|
|
compare_unwind_entries);
|
521 |
|
|
|
522 |
|
|
/* Keep a pointer to the unwind information. */
|
523 |
|
|
if (objfile->obj_private == NULL)
|
524 |
|
|
{
|
525 |
|
|
obj_private = (obj_private_data_t *)
|
526 |
|
|
obstack_alloc (&objfile->psymbol_obstack,
|
527 |
|
|
sizeof (obj_private_data_t));
|
528 |
|
|
obj_private->unwind_info = NULL;
|
529 |
|
|
obj_private->so_info = NULL;
|
530 |
|
|
obj_private->dp = 0;
|
531 |
|
|
|
532 |
|
|
objfile->obj_private = (PTR) obj_private;
|
533 |
|
|
}
|
534 |
|
|
obj_private = (obj_private_data_t *) objfile->obj_private;
|
535 |
|
|
obj_private->unwind_info = ui;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* Lookup the unwind (stack backtrace) info for the given PC. We search all
|
539 |
|
|
of the objfiles seeking the unwind table entry for this PC. Each objfile
|
540 |
|
|
contains a sorted list of struct unwind_table_entry. Since we do a binary
|
541 |
|
|
search of the unwind tables, we depend upon them to be sorted. */
|
542 |
|
|
|
543 |
|
|
struct unwind_table_entry *
|
544 |
|
|
find_unwind_entry (CORE_ADDR pc)
|
545 |
|
|
{
|
546 |
|
|
int first, middle, last;
|
547 |
|
|
struct objfile *objfile;
|
548 |
|
|
|
549 |
|
|
/* A function at address 0? Not in HP-UX! */
|
550 |
|
|
if (pc == (CORE_ADDR) 0)
|
551 |
|
|
return NULL;
|
552 |
|
|
|
553 |
|
|
ALL_OBJFILES (objfile)
|
554 |
|
|
{
|
555 |
|
|
struct obj_unwind_info *ui;
|
556 |
|
|
ui = NULL;
|
557 |
|
|
if (objfile->obj_private)
|
558 |
|
|
ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
|
559 |
|
|
|
560 |
|
|
if (!ui)
|
561 |
|
|
{
|
562 |
|
|
read_unwind_info (objfile);
|
563 |
|
|
if (objfile->obj_private == NULL)
|
564 |
|
|
error ("Internal error reading unwind information.");
|
565 |
|
|
ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
/* First, check the cache */
|
569 |
|
|
|
570 |
|
|
if (ui->cache
|
571 |
|
|
&& pc >= ui->cache->region_start
|
572 |
|
|
&& pc <= ui->cache->region_end)
|
573 |
|
|
return ui->cache;
|
574 |
|
|
|
575 |
|
|
/* Not in the cache, do a binary search */
|
576 |
|
|
|
577 |
|
|
first = 0;
|
578 |
|
|
last = ui->last;
|
579 |
|
|
|
580 |
|
|
while (first <= last)
|
581 |
|
|
{
|
582 |
|
|
middle = (first + last) / 2;
|
583 |
|
|
if (pc >= ui->table[middle].region_start
|
584 |
|
|
&& pc <= ui->table[middle].region_end)
|
585 |
|
|
{
|
586 |
|
|
ui->cache = &ui->table[middle];
|
587 |
|
|
return &ui->table[middle];
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
if (pc < ui->table[middle].region_start)
|
591 |
|
|
last = middle - 1;
|
592 |
|
|
else
|
593 |
|
|
first = middle + 1;
|
594 |
|
|
}
|
595 |
|
|
} /* ALL_OBJFILES() */
|
596 |
|
|
return NULL;
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
/* Return the adjustment necessary to make for addresses on the stack
|
600 |
|
|
as presented by hpread.c.
|
601 |
|
|
|
602 |
|
|
This is necessary because of the stack direction on the PA and the
|
603 |
|
|
bizarre way in which someone (?) decided they wanted to handle
|
604 |
|
|
frame pointerless code in GDB. */
|
605 |
|
|
int
|
606 |
|
|
hpread_adjust_stack_address (CORE_ADDR func_addr)
|
607 |
|
|
{
|
608 |
|
|
struct unwind_table_entry *u;
|
609 |
|
|
|
610 |
|
|
u = find_unwind_entry (func_addr);
|
611 |
|
|
if (!u)
|
612 |
|
|
return 0;
|
613 |
|
|
else
|
614 |
|
|
return u->Total_frame_size << 3;
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* Called to determine if PC is in an interrupt handler of some
|
618 |
|
|
kind. */
|
619 |
|
|
|
620 |
|
|
static int
|
621 |
|
|
pc_in_interrupt_handler (CORE_ADDR pc)
|
622 |
|
|
{
|
623 |
|
|
struct unwind_table_entry *u;
|
624 |
|
|
struct minimal_symbol *msym_us;
|
625 |
|
|
|
626 |
|
|
u = find_unwind_entry (pc);
|
627 |
|
|
if (!u)
|
628 |
|
|
return 0;
|
629 |
|
|
|
630 |
|
|
/* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
|
631 |
|
|
its frame isn't a pure interrupt frame. Deal with this. */
|
632 |
|
|
msym_us = lookup_minimal_symbol_by_pc (pc);
|
633 |
|
|
|
634 |
|
|
return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
/* Called when no unwind descriptor was found for PC. Returns 1 if it
|
638 |
|
|
appears that PC is in a linker stub.
|
639 |
|
|
|
640 |
|
|
?!? Need to handle stubs which appear in PA64 code. */
|
641 |
|
|
|
642 |
|
|
static int
|
643 |
|
|
pc_in_linker_stub (CORE_ADDR pc)
|
644 |
|
|
{
|
645 |
|
|
int found_magic_instruction = 0;
|
646 |
|
|
int i;
|
647 |
|
|
char buf[4];
|
648 |
|
|
|
649 |
|
|
/* If unable to read memory, assume pc is not in a linker stub. */
|
650 |
|
|
if (target_read_memory (pc, buf, 4) != 0)
|
651 |
|
|
return 0;
|
652 |
|
|
|
653 |
|
|
/* We are looking for something like
|
654 |
|
|
|
655 |
|
|
; $$dyncall jams RP into this special spot in the frame (RP')
|
656 |
|
|
; before calling the "call stub"
|
657 |
|
|
ldw -18(sp),rp
|
658 |
|
|
|
659 |
|
|
ldsid (rp),r1 ; Get space associated with RP into r1
|
660 |
|
|
mtsp r1,sp ; Move it into space register 0
|
661 |
|
|
be,n 0(sr0),rp) ; back to your regularly scheduled program */
|
662 |
|
|
|
663 |
|
|
/* Maximum known linker stub size is 4 instructions. Search forward
|
664 |
|
|
from the given PC, then backward. */
|
665 |
|
|
for (i = 0; i < 4; i++)
|
666 |
|
|
{
|
667 |
|
|
/* If we hit something with an unwind, stop searching this direction. */
|
668 |
|
|
|
669 |
|
|
if (find_unwind_entry (pc + i * 4) != 0)
|
670 |
|
|
break;
|
671 |
|
|
|
672 |
|
|
/* Check for ldsid (rp),r1 which is the magic instruction for a
|
673 |
|
|
return from a cross-space function call. */
|
674 |
|
|
if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
|
675 |
|
|
{
|
676 |
|
|
found_magic_instruction = 1;
|
677 |
|
|
break;
|
678 |
|
|
}
|
679 |
|
|
/* Add code to handle long call/branch and argument relocation stubs
|
680 |
|
|
here. */
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
if (found_magic_instruction != 0)
|
684 |
|
|
return 1;
|
685 |
|
|
|
686 |
|
|
/* Now look backward. */
|
687 |
|
|
for (i = 0; i < 4; i++)
|
688 |
|
|
{
|
689 |
|
|
/* If we hit something with an unwind, stop searching this direction. */
|
690 |
|
|
|
691 |
|
|
if (find_unwind_entry (pc - i * 4) != 0)
|
692 |
|
|
break;
|
693 |
|
|
|
694 |
|
|
/* Check for ldsid (rp),r1 which is the magic instruction for a
|
695 |
|
|
return from a cross-space function call. */
|
696 |
|
|
if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
|
697 |
|
|
{
|
698 |
|
|
found_magic_instruction = 1;
|
699 |
|
|
break;
|
700 |
|
|
}
|
701 |
|
|
/* Add code to handle long call/branch and argument relocation stubs
|
702 |
|
|
here. */
|
703 |
|
|
}
|
704 |
|
|
return found_magic_instruction;
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
static int
|
708 |
|
|
find_return_regnum (CORE_ADDR pc)
|
709 |
|
|
{
|
710 |
|
|
struct unwind_table_entry *u;
|
711 |
|
|
|
712 |
|
|
u = find_unwind_entry (pc);
|
713 |
|
|
|
714 |
|
|
if (!u)
|
715 |
|
|
return RP_REGNUM;
|
716 |
|
|
|
717 |
|
|
if (u->Millicode)
|
718 |
|
|
return 31;
|
719 |
|
|
|
720 |
|
|
return RP_REGNUM;
|
721 |
|
|
}
|
722 |
|
|
|
723 |
|
|
/* Return size of frame, or -1 if we should use a frame pointer. */
|
724 |
|
|
static int
|
725 |
|
|
find_proc_framesize (CORE_ADDR pc)
|
726 |
|
|
{
|
727 |
|
|
struct unwind_table_entry *u;
|
728 |
|
|
struct minimal_symbol *msym_us;
|
729 |
|
|
|
730 |
|
|
/* This may indicate a bug in our callers... */
|
731 |
|
|
if (pc == (CORE_ADDR) 0)
|
732 |
|
|
return -1;
|
733 |
|
|
|
734 |
|
|
u = find_unwind_entry (pc);
|
735 |
|
|
|
736 |
|
|
if (!u)
|
737 |
|
|
{
|
738 |
|
|
if (pc_in_linker_stub (pc))
|
739 |
|
|
/* Linker stubs have a zero size frame. */
|
740 |
|
|
return 0;
|
741 |
|
|
else
|
742 |
|
|
return -1;
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
msym_us = lookup_minimal_symbol_by_pc (pc);
|
746 |
|
|
|
747 |
|
|
/* If Save_SP is set, and we're not in an interrupt or signal caller,
|
748 |
|
|
then we have a frame pointer. Use it. */
|
749 |
|
|
if (u->Save_SP && !pc_in_interrupt_handler (pc)
|
750 |
|
|
&& !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
|
751 |
|
|
return -1;
|
752 |
|
|
|
753 |
|
|
return u->Total_frame_size << 3;
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
/* Return offset from sp at which rp is saved, or 0 if not saved. */
|
757 |
|
|
static int rp_saved (CORE_ADDR);
|
758 |
|
|
|
759 |
|
|
static int
|
760 |
|
|
rp_saved (CORE_ADDR pc)
|
761 |
|
|
{
|
762 |
|
|
struct unwind_table_entry *u;
|
763 |
|
|
|
764 |
|
|
/* A function at, and thus a return PC from, address 0? Not in HP-UX! */
|
765 |
|
|
if (pc == (CORE_ADDR) 0)
|
766 |
|
|
return 0;
|
767 |
|
|
|
768 |
|
|
u = find_unwind_entry (pc);
|
769 |
|
|
|
770 |
|
|
if (!u)
|
771 |
|
|
{
|
772 |
|
|
if (pc_in_linker_stub (pc))
|
773 |
|
|
/* This is the so-called RP'. */
|
774 |
|
|
return -24;
|
775 |
|
|
else
|
776 |
|
|
return 0;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
if (u->Save_RP)
|
780 |
|
|
return (TARGET_PTR_BIT == 64 ? -16 : -20);
|
781 |
|
|
else if (u->stub_unwind.stub_type != 0)
|
782 |
|
|
{
|
783 |
|
|
switch (u->stub_unwind.stub_type)
|
784 |
|
|
{
|
785 |
|
|
case EXPORT:
|
786 |
|
|
case IMPORT:
|
787 |
|
|
return -24;
|
788 |
|
|
case PARAMETER_RELOCATION:
|
789 |
|
|
return -8;
|
790 |
|
|
default:
|
791 |
|
|
return 0;
|
792 |
|
|
}
|
793 |
|
|
}
|
794 |
|
|
else
|
795 |
|
|
return 0;
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
int
|
799 |
|
|
frameless_function_invocation (struct frame_info *frame)
|
800 |
|
|
{
|
801 |
|
|
struct unwind_table_entry *u;
|
802 |
|
|
|
803 |
|
|
u = find_unwind_entry (frame->pc);
|
804 |
|
|
|
805 |
|
|
if (u == 0)
|
806 |
|
|
return 0;
|
807 |
|
|
|
808 |
|
|
return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
|
809 |
|
|
}
|
810 |
|
|
|
811 |
|
|
CORE_ADDR
|
812 |
|
|
saved_pc_after_call (struct frame_info *frame)
|
813 |
|
|
{
|
814 |
|
|
int ret_regnum;
|
815 |
|
|
CORE_ADDR pc;
|
816 |
|
|
struct unwind_table_entry *u;
|
817 |
|
|
|
818 |
|
|
ret_regnum = find_return_regnum (get_frame_pc (frame));
|
819 |
|
|
pc = read_register (ret_regnum) & ~0x3;
|
820 |
|
|
|
821 |
|
|
/* If PC is in a linker stub, then we need to dig the address
|
822 |
|
|
the stub will return to out of the stack. */
|
823 |
|
|
u = find_unwind_entry (pc);
|
824 |
|
|
if (u && u->stub_unwind.stub_type != 0)
|
825 |
|
|
return FRAME_SAVED_PC (frame);
|
826 |
|
|
else
|
827 |
|
|
return pc;
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
CORE_ADDR
|
831 |
|
|
hppa_frame_saved_pc (struct frame_info *frame)
|
832 |
|
|
{
|
833 |
|
|
CORE_ADDR pc = get_frame_pc (frame);
|
834 |
|
|
struct unwind_table_entry *u;
|
835 |
|
|
CORE_ADDR old_pc;
|
836 |
|
|
int spun_around_loop = 0;
|
837 |
|
|
int rp_offset = 0;
|
838 |
|
|
|
839 |
|
|
/* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
|
840 |
|
|
at the base of the frame in an interrupt handler. Registers within
|
841 |
|
|
are saved in the exact same order as GDB numbers registers. How
|
842 |
|
|
convienent. */
|
843 |
|
|
if (pc_in_interrupt_handler (pc))
|
844 |
|
|
return read_memory_integer (frame->frame + PC_REGNUM * 4,
|
845 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
846 |
|
|
|
847 |
|
|
if ((frame->pc >= frame->frame
|
848 |
|
|
&& frame->pc <= (frame->frame
|
849 |
|
|
/* A call dummy is sized in words, but it is
|
850 |
|
|
actually a series of instructions. Account
|
851 |
|
|
for that scaling factor. */
|
852 |
|
|
+ ((REGISTER_SIZE / INSTRUCTION_SIZE)
|
853 |
|
|
* CALL_DUMMY_LENGTH)
|
854 |
|
|
/* Similarly we have to account for 64bit
|
855 |
|
|
wide register saves. */
|
856 |
|
|
+ (32 * REGISTER_SIZE)
|
857 |
|
|
/* We always consider FP regs 8 bytes long. */
|
858 |
|
|
+ (NUM_REGS - FP0_REGNUM) * 8
|
859 |
|
|
/* Similarly we have to account for 64bit
|
860 |
|
|
wide register saves. */
|
861 |
|
|
+ (6 * REGISTER_SIZE))))
|
862 |
|
|
{
|
863 |
|
|
return read_memory_integer ((frame->frame
|
864 |
|
|
+ (TARGET_PTR_BIT == 64 ? -16 : -20)),
|
865 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
|
869 |
|
|
/* Deal with signal handler caller frames too. */
|
870 |
|
|
if (frame->signal_handler_caller)
|
871 |
|
|
{
|
872 |
|
|
CORE_ADDR rp;
|
873 |
|
|
FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
|
874 |
|
|
return rp & ~0x3;
|
875 |
|
|
}
|
876 |
|
|
#endif
|
877 |
|
|
|
878 |
|
|
if (frameless_function_invocation (frame))
|
879 |
|
|
{
|
880 |
|
|
int ret_regnum;
|
881 |
|
|
|
882 |
|
|
ret_regnum = find_return_regnum (pc);
|
883 |
|
|
|
884 |
|
|
/* If the next frame is an interrupt frame or a signal
|
885 |
|
|
handler caller, then we need to look in the saved
|
886 |
|
|
register area to get the return pointer (the values
|
887 |
|
|
in the registers may not correspond to anything useful). */
|
888 |
|
|
if (frame->next
|
889 |
|
|
&& (frame->next->signal_handler_caller
|
890 |
|
|
|| pc_in_interrupt_handler (frame->next->pc)))
|
891 |
|
|
{
|
892 |
|
|
struct frame_saved_regs saved_regs;
|
893 |
|
|
|
894 |
|
|
get_frame_saved_regs (frame->next, &saved_regs);
|
895 |
|
|
if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
896 |
|
|
TARGET_PTR_BIT / 8) & 0x2)
|
897 |
|
|
{
|
898 |
|
|
pc = read_memory_integer (saved_regs.regs[31],
|
899 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
900 |
|
|
|
901 |
|
|
/* Syscalls are really two frames. The syscall stub itself
|
902 |
|
|
with a return pointer in %rp and the kernel call with
|
903 |
|
|
a return pointer in %r31. We return the %rp variant
|
904 |
|
|
if %r31 is the same as frame->pc. */
|
905 |
|
|
if (pc == frame->pc)
|
906 |
|
|
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
907 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
908 |
|
|
}
|
909 |
|
|
else
|
910 |
|
|
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
911 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
912 |
|
|
}
|
913 |
|
|
else
|
914 |
|
|
pc = read_register (ret_regnum) & ~0x3;
|
915 |
|
|
}
|
916 |
|
|
else
|
917 |
|
|
{
|
918 |
|
|
spun_around_loop = 0;
|
919 |
|
|
old_pc = pc;
|
920 |
|
|
|
921 |
|
|
restart:
|
922 |
|
|
rp_offset = rp_saved (pc);
|
923 |
|
|
|
924 |
|
|
/* Similar to code in frameless function case. If the next
|
925 |
|
|
frame is a signal or interrupt handler, then dig the right
|
926 |
|
|
information out of the saved register info. */
|
927 |
|
|
if (rp_offset == 0
|
928 |
|
|
&& frame->next
|
929 |
|
|
&& (frame->next->signal_handler_caller
|
930 |
|
|
|| pc_in_interrupt_handler (frame->next->pc)))
|
931 |
|
|
{
|
932 |
|
|
struct frame_saved_regs saved_regs;
|
933 |
|
|
|
934 |
|
|
get_frame_saved_regs (frame->next, &saved_regs);
|
935 |
|
|
if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
936 |
|
|
TARGET_PTR_BIT / 8) & 0x2)
|
937 |
|
|
{
|
938 |
|
|
pc = read_memory_integer (saved_regs.regs[31],
|
939 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
940 |
|
|
|
941 |
|
|
/* Syscalls are really two frames. The syscall stub itself
|
942 |
|
|
with a return pointer in %rp and the kernel call with
|
943 |
|
|
a return pointer in %r31. We return the %rp variant
|
944 |
|
|
if %r31 is the same as frame->pc. */
|
945 |
|
|
if (pc == frame->pc)
|
946 |
|
|
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
947 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
948 |
|
|
}
|
949 |
|
|
else
|
950 |
|
|
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
951 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
952 |
|
|
}
|
953 |
|
|
else if (rp_offset == 0)
|
954 |
|
|
{
|
955 |
|
|
old_pc = pc;
|
956 |
|
|
pc = read_register (RP_REGNUM) & ~0x3;
|
957 |
|
|
}
|
958 |
|
|
else
|
959 |
|
|
{
|
960 |
|
|
old_pc = pc;
|
961 |
|
|
pc = read_memory_integer (frame->frame + rp_offset,
|
962 |
|
|
TARGET_PTR_BIT / 8) & ~0x3;
|
963 |
|
|
}
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
/* If PC is inside a linker stub, then dig out the address the stub
|
967 |
|
|
will return to.
|
968 |
|
|
|
969 |
|
|
Don't do this for long branch stubs. Why? For some unknown reason
|
970 |
|
|
_start is marked as a long branch stub in hpux10. */
|
971 |
|
|
u = find_unwind_entry (pc);
|
972 |
|
|
if (u && u->stub_unwind.stub_type != 0
|
973 |
|
|
&& u->stub_unwind.stub_type != LONG_BRANCH)
|
974 |
|
|
{
|
975 |
|
|
unsigned int insn;
|
976 |
|
|
|
977 |
|
|
/* If this is a dynamic executable, and we're in a signal handler,
|
978 |
|
|
then the call chain will eventually point us into the stub for
|
979 |
|
|
_sigreturn. Unlike most cases, we'll be pointed to the branch
|
980 |
|
|
to the real sigreturn rather than the code after the real branch!.
|
981 |
|
|
|
982 |
|
|
Else, try to dig the address the stub will return to in the normal
|
983 |
|
|
fashion. */
|
984 |
|
|
insn = read_memory_integer (pc, 4);
|
985 |
|
|
if ((insn & 0xfc00e000) == 0xe8000000)
|
986 |
|
|
return (pc + extract_17 (insn) + 8) & ~0x3;
|
987 |
|
|
else
|
988 |
|
|
{
|
989 |
|
|
if (old_pc == pc)
|
990 |
|
|
spun_around_loop++;
|
991 |
|
|
|
992 |
|
|
if (spun_around_loop > 1)
|
993 |
|
|
{
|
994 |
|
|
/* We're just about to go around the loop again with
|
995 |
|
|
no more hope of success. Die. */
|
996 |
|
|
error ("Unable to find return pc for this frame");
|
997 |
|
|
}
|
998 |
|
|
else
|
999 |
|
|
goto restart;
|
1000 |
|
|
}
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
return pc;
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
/* We need to correct the PC and the FP for the outermost frame when we are
|
1007 |
|
|
in a system call. */
|
1008 |
|
|
|
1009 |
|
|
void
|
1010 |
|
|
init_extra_frame_info (int fromleaf, struct frame_info *frame)
|
1011 |
|
|
{
|
1012 |
|
|
int flags;
|
1013 |
|
|
int framesize;
|
1014 |
|
|
|
1015 |
|
|
if (frame->next && !fromleaf)
|
1016 |
|
|
return;
|
1017 |
|
|
|
1018 |
|
|
/* If the next frame represents a frameless function invocation
|
1019 |
|
|
then we have to do some adjustments that are normally done by
|
1020 |
|
|
FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
|
1021 |
|
|
if (fromleaf)
|
1022 |
|
|
{
|
1023 |
|
|
/* Find the framesize of *this* frame without peeking at the PC
|
1024 |
|
|
in the current frame structure (it isn't set yet). */
|
1025 |
|
|
framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
|
1026 |
|
|
|
1027 |
|
|
/* Now adjust our base frame accordingly. If we have a frame pointer
|
1028 |
|
|
use it, else subtract the size of this frame from the current
|
1029 |
|
|
frame. (we always want frame->frame to point at the lowest address
|
1030 |
|
|
in the frame). */
|
1031 |
|
|
if (framesize == -1)
|
1032 |
|
|
frame->frame = TARGET_READ_FP ();
|
1033 |
|
|
else
|
1034 |
|
|
frame->frame -= framesize;
|
1035 |
|
|
return;
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
flags = read_register (FLAGS_REGNUM);
|
1039 |
|
|
if (flags & 2) /* In system call? */
|
1040 |
|
|
frame->pc = read_register (31) & ~0x3;
|
1041 |
|
|
|
1042 |
|
|
/* The outermost frame is always derived from PC-framesize
|
1043 |
|
|
|
1044 |
|
|
One might think frameless innermost frames should have
|
1045 |
|
|
a frame->frame that is the same as the parent's frame->frame.
|
1046 |
|
|
That is wrong; frame->frame in that case should be the *high*
|
1047 |
|
|
address of the parent's frame. It's complicated as hell to
|
1048 |
|
|
explain, but the parent *always* creates some stack space for
|
1049 |
|
|
the child. So the child actually does have a frame of some
|
1050 |
|
|
sorts, and its base is the high address in its parent's frame. */
|
1051 |
|
|
framesize = find_proc_framesize (frame->pc);
|
1052 |
|
|
if (framesize == -1)
|
1053 |
|
|
frame->frame = TARGET_READ_FP ();
|
1054 |
|
|
else
|
1055 |
|
|
frame->frame = read_register (SP_REGNUM) - framesize;
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
1059 |
|
|
This will be used to create a new GDB frame struct, and then
|
1060 |
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
1061 |
|
|
|
1062 |
|
|
This may involve searching through prologues for several functions
|
1063 |
|
|
at boundaries where GCC calls HP C code, or where code which has
|
1064 |
|
|
a frame pointer calls code without a frame pointer. */
|
1065 |
|
|
|
1066 |
|
|
CORE_ADDR
|
1067 |
|
|
frame_chain (struct frame_info *frame)
|
1068 |
|
|
{
|
1069 |
|
|
int my_framesize, caller_framesize;
|
1070 |
|
|
struct unwind_table_entry *u;
|
1071 |
|
|
CORE_ADDR frame_base;
|
1072 |
|
|
struct frame_info *tmp_frame;
|
1073 |
|
|
|
1074 |
|
|
/* A frame in the current frame list, or zero. */
|
1075 |
|
|
struct frame_info *saved_regs_frame = 0;
|
1076 |
|
|
/* Where the registers were saved in saved_regs_frame.
|
1077 |
|
|
If saved_regs_frame is zero, this is garbage. */
|
1078 |
|
|
struct frame_saved_regs saved_regs;
|
1079 |
|
|
|
1080 |
|
|
CORE_ADDR caller_pc;
|
1081 |
|
|
|
1082 |
|
|
struct minimal_symbol *min_frame_symbol;
|
1083 |
|
|
struct symbol *frame_symbol;
|
1084 |
|
|
char *frame_symbol_name;
|
1085 |
|
|
|
1086 |
|
|
/* If this is a threaded application, and we see the
|
1087 |
|
|
routine "__pthread_exit", treat it as the stack root
|
1088 |
|
|
for this thread. */
|
1089 |
|
|
min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
|
1090 |
|
|
frame_symbol = find_pc_function (frame->pc);
|
1091 |
|
|
|
1092 |
|
|
if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
|
1093 |
|
|
{
|
1094 |
|
|
/* The test above for "no user function name" would defend
|
1095 |
|
|
against the slim likelihood that a user might define a
|
1096 |
|
|
routine named "__pthread_exit" and then try to debug it.
|
1097 |
|
|
|
1098 |
|
|
If it weren't commented out, and you tried to debug the
|
1099 |
|
|
pthread library itself, you'd get errors.
|
1100 |
|
|
|
1101 |
|
|
So for today, we don't make that check. */
|
1102 |
|
|
frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
|
1103 |
|
|
if (frame_symbol_name != 0)
|
1104 |
|
|
{
|
1105 |
|
|
if (0 == strncmp (frame_symbol_name,
|
1106 |
|
|
THREAD_INITIAL_FRAME_SYMBOL,
|
1107 |
|
|
THREAD_INITIAL_FRAME_SYM_LEN))
|
1108 |
|
|
{
|
1109 |
|
|
/* Pretend we've reached the bottom of the stack. */
|
1110 |
|
|
return (CORE_ADDR) 0;
|
1111 |
|
|
}
|
1112 |
|
|
}
|
1113 |
|
|
} /* End of hacky code for threads. */
|
1114 |
|
|
|
1115 |
|
|
/* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
|
1116 |
|
|
are easy; at *sp we have a full save state strucutre which we can
|
1117 |
|
|
pull the old stack pointer from. Also see frame_saved_pc for
|
1118 |
|
|
code to dig a saved PC out of the save state structure. */
|
1119 |
|
|
if (pc_in_interrupt_handler (frame->pc))
|
1120 |
|
|
frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
|
1121 |
|
|
TARGET_PTR_BIT / 8);
|
1122 |
|
|
#ifdef FRAME_BASE_BEFORE_SIGTRAMP
|
1123 |
|
|
else if (frame->signal_handler_caller)
|
1124 |
|
|
{
|
1125 |
|
|
FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
|
1126 |
|
|
}
|
1127 |
|
|
#endif
|
1128 |
|
|
else
|
1129 |
|
|
frame_base = frame->frame;
|
1130 |
|
|
|
1131 |
|
|
/* Get frame sizes for the current frame and the frame of the
|
1132 |
|
|
caller. */
|
1133 |
|
|
my_framesize = find_proc_framesize (frame->pc);
|
1134 |
|
|
caller_pc = FRAME_SAVED_PC (frame);
|
1135 |
|
|
|
1136 |
|
|
/* If we can't determine the caller's PC, then it's not likely we can
|
1137 |
|
|
really determine anything meaningful about its frame. We'll consider
|
1138 |
|
|
this to be stack bottom. */
|
1139 |
|
|
if (caller_pc == (CORE_ADDR) 0)
|
1140 |
|
|
return (CORE_ADDR) 0;
|
1141 |
|
|
|
1142 |
|
|
caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
|
1143 |
|
|
|
1144 |
|
|
/* If caller does not have a frame pointer, then its frame
|
1145 |
|
|
can be found at current_frame - caller_framesize. */
|
1146 |
|
|
if (caller_framesize != -1)
|
1147 |
|
|
{
|
1148 |
|
|
return frame_base - caller_framesize;
|
1149 |
|
|
}
|
1150 |
|
|
/* Both caller and callee have frame pointers and are GCC compiled
|
1151 |
|
|
(SAVE_SP bit in unwind descriptor is on for both functions.
|
1152 |
|
|
The previous frame pointer is found at the top of the current frame. */
|
1153 |
|
|
if (caller_framesize == -1 && my_framesize == -1)
|
1154 |
|
|
{
|
1155 |
|
|
return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
|
1156 |
|
|
}
|
1157 |
|
|
/* Caller has a frame pointer, but callee does not. This is a little
|
1158 |
|
|
more difficult as GCC and HP C lay out locals and callee register save
|
1159 |
|
|
areas very differently.
|
1160 |
|
|
|
1161 |
|
|
The previous frame pointer could be in a register, or in one of
|
1162 |
|
|
several areas on the stack.
|
1163 |
|
|
|
1164 |
|
|
Walk from the current frame to the innermost frame examining
|
1165 |
|
|
unwind descriptors to determine if %r3 ever gets saved into the
|
1166 |
|
|
stack. If so return whatever value got saved into the stack.
|
1167 |
|
|
If it was never saved in the stack, then the value in %r3 is still
|
1168 |
|
|
valid, so use it.
|
1169 |
|
|
|
1170 |
|
|
We use information from unwind descriptors to determine if %r3
|
1171 |
|
|
is saved into the stack (Entry_GR field has this information). */
|
1172 |
|
|
|
1173 |
|
|
for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
|
1174 |
|
|
{
|
1175 |
|
|
u = find_unwind_entry (tmp_frame->pc);
|
1176 |
|
|
|
1177 |
|
|
if (!u)
|
1178 |
|
|
{
|
1179 |
|
|
/* We could find this information by examining prologues. I don't
|
1180 |
|
|
think anyone has actually written any tools (not even "strip")
|
1181 |
|
|
which leave them out of an executable, so maybe this is a moot
|
1182 |
|
|
point. */
|
1183 |
|
|
/* ??rehrauer: Actually, it's quite possible to stepi your way into
|
1184 |
|
|
code that doesn't have unwind entries. For example, stepping into
|
1185 |
|
|
the dynamic linker will give you a PC that has none. Thus, I've
|
1186 |
|
|
disabled this warning. */
|
1187 |
|
|
#if 0
|
1188 |
|
|
warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
|
1189 |
|
|
#endif
|
1190 |
|
|
return (CORE_ADDR) 0;
|
1191 |
|
|
}
|
1192 |
|
|
|
1193 |
|
|
if (u->Save_SP
|
1194 |
|
|
|| tmp_frame->signal_handler_caller
|
1195 |
|
|
|| pc_in_interrupt_handler (tmp_frame->pc))
|
1196 |
|
|
break;
|
1197 |
|
|
|
1198 |
|
|
/* Entry_GR specifies the number of callee-saved general registers
|
1199 |
|
|
saved in the stack. It starts at %r3, so %r3 would be 1. */
|
1200 |
|
|
if (u->Entry_GR >= 1)
|
1201 |
|
|
{
|
1202 |
|
|
/* The unwind entry claims that r3 is saved here. However,
|
1203 |
|
|
in optimized code, GCC often doesn't actually save r3.
|
1204 |
|
|
We'll discover this if we look at the prologue. */
|
1205 |
|
|
get_frame_saved_regs (tmp_frame, &saved_regs);
|
1206 |
|
|
saved_regs_frame = tmp_frame;
|
1207 |
|
|
|
1208 |
|
|
/* If we have an address for r3, that's good. */
|
1209 |
|
|
if (saved_regs.regs[FP_REGNUM])
|
1210 |
|
|
break;
|
1211 |
|
|
}
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
if (tmp_frame)
|
1215 |
|
|
{
|
1216 |
|
|
/* We may have walked down the chain into a function with a frame
|
1217 |
|
|
pointer. */
|
1218 |
|
|
if (u->Save_SP
|
1219 |
|
|
&& !tmp_frame->signal_handler_caller
|
1220 |
|
|
&& !pc_in_interrupt_handler (tmp_frame->pc))
|
1221 |
|
|
{
|
1222 |
|
|
return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
|
1223 |
|
|
}
|
1224 |
|
|
/* %r3 was saved somewhere in the stack. Dig it out. */
|
1225 |
|
|
else
|
1226 |
|
|
{
|
1227 |
|
|
/* Sick.
|
1228 |
|
|
|
1229 |
|
|
For optimization purposes many kernels don't have the
|
1230 |
|
|
callee saved registers into the save_state structure upon
|
1231 |
|
|
entry into the kernel for a syscall; the optimization
|
1232 |
|
|
is usually turned off if the process is being traced so
|
1233 |
|
|
that the debugger can get full register state for the
|
1234 |
|
|
process.
|
1235 |
|
|
|
1236 |
|
|
This scheme works well except for two cases:
|
1237 |
|
|
|
1238 |
|
|
* Attaching to a process when the process is in the
|
1239 |
|
|
kernel performing a system call (debugger can't get
|
1240 |
|
|
full register state for the inferior process since
|
1241 |
|
|
the process wasn't being traced when it entered the
|
1242 |
|
|
system call).
|
1243 |
|
|
|
1244 |
|
|
* Register state is not complete if the system call
|
1245 |
|
|
causes the process to core dump.
|
1246 |
|
|
|
1247 |
|
|
|
1248 |
|
|
The following heinous code is an attempt to deal with
|
1249 |
|
|
the lack of register state in a core dump. It will
|
1250 |
|
|
fail miserably if the function which performs the
|
1251 |
|
|
system call has a variable sized stack frame. */
|
1252 |
|
|
|
1253 |
|
|
if (tmp_frame != saved_regs_frame)
|
1254 |
|
|
get_frame_saved_regs (tmp_frame, &saved_regs);
|
1255 |
|
|
|
1256 |
|
|
/* Abominable hack. */
|
1257 |
|
|
if (current_target.to_has_execution == 0
|
1258 |
|
|
&& ((saved_regs.regs[FLAGS_REGNUM]
|
1259 |
|
|
&& (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
1260 |
|
|
TARGET_PTR_BIT / 8)
|
1261 |
|
|
& 0x2))
|
1262 |
|
|
|| (saved_regs.regs[FLAGS_REGNUM] == 0
|
1263 |
|
|
&& read_register (FLAGS_REGNUM) & 0x2)))
|
1264 |
|
|
{
|
1265 |
|
|
u = find_unwind_entry (FRAME_SAVED_PC (frame));
|
1266 |
|
|
if (!u)
|
1267 |
|
|
{
|
1268 |
|
|
return read_memory_integer (saved_regs.regs[FP_REGNUM],
|
1269 |
|
|
TARGET_PTR_BIT / 8);
|
1270 |
|
|
}
|
1271 |
|
|
else
|
1272 |
|
|
{
|
1273 |
|
|
return frame_base - (u->Total_frame_size << 3);
|
1274 |
|
|
}
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
return read_memory_integer (saved_regs.regs[FP_REGNUM],
|
1278 |
|
|
TARGET_PTR_BIT / 8);
|
1279 |
|
|
}
|
1280 |
|
|
}
|
1281 |
|
|
else
|
1282 |
|
|
{
|
1283 |
|
|
/* Get the innermost frame. */
|
1284 |
|
|
tmp_frame = frame;
|
1285 |
|
|
while (tmp_frame->next != NULL)
|
1286 |
|
|
tmp_frame = tmp_frame->next;
|
1287 |
|
|
|
1288 |
|
|
if (tmp_frame != saved_regs_frame)
|
1289 |
|
|
get_frame_saved_regs (tmp_frame, &saved_regs);
|
1290 |
|
|
|
1291 |
|
|
/* Abominable hack. See above. */
|
1292 |
|
|
if (current_target.to_has_execution == 0
|
1293 |
|
|
&& ((saved_regs.regs[FLAGS_REGNUM]
|
1294 |
|
|
&& (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
1295 |
|
|
TARGET_PTR_BIT / 8)
|
1296 |
|
|
& 0x2))
|
1297 |
|
|
|| (saved_regs.regs[FLAGS_REGNUM] == 0
|
1298 |
|
|
&& read_register (FLAGS_REGNUM) & 0x2)))
|
1299 |
|
|
{
|
1300 |
|
|
u = find_unwind_entry (FRAME_SAVED_PC (frame));
|
1301 |
|
|
if (!u)
|
1302 |
|
|
{
|
1303 |
|
|
return read_memory_integer (saved_regs.regs[FP_REGNUM],
|
1304 |
|
|
TARGET_PTR_BIT / 8);
|
1305 |
|
|
}
|
1306 |
|
|
else
|
1307 |
|
|
{
|
1308 |
|
|
return frame_base - (u->Total_frame_size << 3);
|
1309 |
|
|
}
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
/* The value in %r3 was never saved into the stack (thus %r3 still
|
1313 |
|
|
holds the value of the previous frame pointer). */
|
1314 |
|
|
return TARGET_READ_FP ();
|
1315 |
|
|
}
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
|
1319 |
|
|
/* To see if a frame chain is valid, see if the caller looks like it
|
1320 |
|
|
was compiled with gcc. */
|
1321 |
|
|
|
1322 |
|
|
int
|
1323 |
|
|
hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
1324 |
|
|
{
|
1325 |
|
|
struct minimal_symbol *msym_us;
|
1326 |
|
|
struct minimal_symbol *msym_start;
|
1327 |
|
|
struct unwind_table_entry *u, *next_u = NULL;
|
1328 |
|
|
struct frame_info *next;
|
1329 |
|
|
|
1330 |
|
|
if (!chain)
|
1331 |
|
|
return 0;
|
1332 |
|
|
|
1333 |
|
|
u = find_unwind_entry (thisframe->pc);
|
1334 |
|
|
|
1335 |
|
|
if (u == NULL)
|
1336 |
|
|
return 1;
|
1337 |
|
|
|
1338 |
|
|
/* We can't just check that the same of msym_us is "_start", because
|
1339 |
|
|
someone idiotically decided that they were going to make a Ltext_end
|
1340 |
|
|
symbol with the same address. This Ltext_end symbol is totally
|
1341 |
|
|
indistinguishable (as nearly as I can tell) from the symbol for a function
|
1342 |
|
|
which is (legitimately, since it is in the user's namespace)
|
1343 |
|
|
named Ltext_end, so we can't just ignore it. */
|
1344 |
|
|
msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
|
1345 |
|
|
msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
|
1346 |
|
|
if (msym_us
|
1347 |
|
|
&& msym_start
|
1348 |
|
|
&& SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
|
1349 |
|
|
return 0;
|
1350 |
|
|
|
1351 |
|
|
/* Grrrr. Some new idiot decided that they don't want _start for the
|
1352 |
|
|
PRO configurations; $START$ calls main directly.... Deal with it. */
|
1353 |
|
|
msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
|
1354 |
|
|
if (msym_us
|
1355 |
|
|
&& msym_start
|
1356 |
|
|
&& SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
|
1357 |
|
|
return 0;
|
1358 |
|
|
|
1359 |
|
|
next = get_next_frame (thisframe);
|
1360 |
|
|
if (next)
|
1361 |
|
|
next_u = find_unwind_entry (next->pc);
|
1362 |
|
|
|
1363 |
|
|
/* If this frame does not save SP, has no stack, isn't a stub,
|
1364 |
|
|
and doesn't "call" an interrupt routine or signal handler caller,
|
1365 |
|
|
then its not valid. */
|
1366 |
|
|
if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
|
1367 |
|
|
|| (thisframe->next && thisframe->next->signal_handler_caller)
|
1368 |
|
|
|| (next_u && next_u->HP_UX_interrupt_marker))
|
1369 |
|
|
return 1;
|
1370 |
|
|
|
1371 |
|
|
if (pc_in_linker_stub (thisframe->pc))
|
1372 |
|
|
return 1;
|
1373 |
|
|
|
1374 |
|
|
return 0;
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
/*
|
1378 |
|
|
These functions deal with saving and restoring register state
|
1379 |
|
|
around a function call in the inferior. They keep the stack
|
1380 |
|
|
double-word aligned; eventually, on an hp700, the stack will have
|
1381 |
|
|
to be aligned to a 64-byte boundary. */
|
1382 |
|
|
|
1383 |
|
|
void
|
1384 |
|
|
push_dummy_frame (struct inferior_status *inf_status)
|
1385 |
|
|
{
|
1386 |
|
|
CORE_ADDR sp, pc, pcspace;
|
1387 |
|
|
register int regnum;
|
1388 |
|
|
CORE_ADDR int_buffer;
|
1389 |
|
|
double freg_buffer;
|
1390 |
|
|
|
1391 |
|
|
/* Oh, what a hack. If we're trying to perform an inferior call
|
1392 |
|
|
while the inferior is asleep, we have to make sure to clear
|
1393 |
|
|
the "in system call" bit in the flag register (the call will
|
1394 |
|
|
start after the syscall returns, so we're no longer in the system
|
1395 |
|
|
call!) This state is kept in "inf_status", change it there.
|
1396 |
|
|
|
1397 |
|
|
We also need a number of horrid hacks to deal with lossage in the
|
1398 |
|
|
PC queue registers (apparently they're not valid when the in syscall
|
1399 |
|
|
bit is set). */
|
1400 |
|
|
pc = target_read_pc (inferior_ptid);
|
1401 |
|
|
int_buffer = read_register (FLAGS_REGNUM);
|
1402 |
|
|
if (int_buffer & 0x2)
|
1403 |
|
|
{
|
1404 |
|
|
unsigned int sid;
|
1405 |
|
|
int_buffer &= ~0x2;
|
1406 |
|
|
write_inferior_status_register (inf_status, 0, int_buffer);
|
1407 |
|
|
write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
|
1408 |
|
|
write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
|
1409 |
|
|
sid = (pc >> 30) & 0x3;
|
1410 |
|
|
if (sid == 0)
|
1411 |
|
|
pcspace = read_register (SR4_REGNUM);
|
1412 |
|
|
else
|
1413 |
|
|
pcspace = read_register (SR4_REGNUM + 4 + sid);
|
1414 |
|
|
write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
|
1415 |
|
|
write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
|
1416 |
|
|
}
|
1417 |
|
|
else
|
1418 |
|
|
pcspace = read_register (PCSQ_HEAD_REGNUM);
|
1419 |
|
|
|
1420 |
|
|
/* Space for "arguments"; the RP goes in here. */
|
1421 |
|
|
sp = read_register (SP_REGNUM) + 48;
|
1422 |
|
|
int_buffer = read_register (RP_REGNUM) | 0x3;
|
1423 |
|
|
|
1424 |
|
|
/* The 32bit and 64bit ABIs save the return pointer into different
|
1425 |
|
|
stack slots. */
|
1426 |
|
|
if (REGISTER_SIZE == 8)
|
1427 |
|
|
write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
|
1428 |
|
|
else
|
1429 |
|
|
write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
|
1430 |
|
|
|
1431 |
|
|
int_buffer = TARGET_READ_FP ();
|
1432 |
|
|
write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
|
1433 |
|
|
|
1434 |
|
|
write_register (FP_REGNUM, sp);
|
1435 |
|
|
|
1436 |
|
|
sp += 2 * REGISTER_SIZE;
|
1437 |
|
|
|
1438 |
|
|
for (regnum = 1; regnum < 32; regnum++)
|
1439 |
|
|
if (regnum != RP_REGNUM && regnum != FP_REGNUM)
|
1440 |
|
|
sp = push_word (sp, read_register (regnum));
|
1441 |
|
|
|
1442 |
|
|
/* This is not necessary for the 64bit ABI. In fact it is dangerous. */
|
1443 |
|
|
if (REGISTER_SIZE != 8)
|
1444 |
|
|
sp += 4;
|
1445 |
|
|
|
1446 |
|
|
for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
|
1447 |
|
|
{
|
1448 |
|
|
read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
|
1449 |
|
|
sp = push_bytes (sp, (char *) &freg_buffer, 8);
|
1450 |
|
|
}
|
1451 |
|
|
sp = push_word (sp, read_register (IPSW_REGNUM));
|
1452 |
|
|
sp = push_word (sp, read_register (SAR_REGNUM));
|
1453 |
|
|
sp = push_word (sp, pc);
|
1454 |
|
|
sp = push_word (sp, pcspace);
|
1455 |
|
|
sp = push_word (sp, pc + 4);
|
1456 |
|
|
sp = push_word (sp, pcspace);
|
1457 |
|
|
write_register (SP_REGNUM, sp);
|
1458 |
|
|
}
|
1459 |
|
|
|
1460 |
|
|
static void
|
1461 |
|
|
find_dummy_frame_regs (struct frame_info *frame,
|
1462 |
|
|
struct frame_saved_regs *frame_saved_regs)
|
1463 |
|
|
{
|
1464 |
|
|
CORE_ADDR fp = frame->frame;
|
1465 |
|
|
int i;
|
1466 |
|
|
|
1467 |
|
|
/* The 32bit and 64bit ABIs save RP into different locations. */
|
1468 |
|
|
if (REGISTER_SIZE == 8)
|
1469 |
|
|
frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
|
1470 |
|
|
else
|
1471 |
|
|
frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
|
1472 |
|
|
|
1473 |
|
|
frame_saved_regs->regs[FP_REGNUM] = fp;
|
1474 |
|
|
|
1475 |
|
|
frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
|
1476 |
|
|
|
1477 |
|
|
for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
|
1478 |
|
|
{
|
1479 |
|
|
if (i != FP_REGNUM)
|
1480 |
|
|
{
|
1481 |
|
|
frame_saved_regs->regs[i] = fp;
|
1482 |
|
|
fp += REGISTER_SIZE;
|
1483 |
|
|
}
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/* This is not necessary or desirable for the 64bit ABI. */
|
1487 |
|
|
if (REGISTER_SIZE != 8)
|
1488 |
|
|
fp += 4;
|
1489 |
|
|
|
1490 |
|
|
for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
|
1491 |
|
|
frame_saved_regs->regs[i] = fp;
|
1492 |
|
|
|
1493 |
|
|
frame_saved_regs->regs[IPSW_REGNUM] = fp;
|
1494 |
|
|
frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
|
1495 |
|
|
frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
|
1496 |
|
|
frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
|
1497 |
|
|
frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
|
1498 |
|
|
frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
void
|
1502 |
|
|
hppa_pop_frame (void)
|
1503 |
|
|
{
|
1504 |
|
|
register struct frame_info *frame = get_current_frame ();
|
1505 |
|
|
register CORE_ADDR fp, npc, target_pc;
|
1506 |
|
|
register int regnum;
|
1507 |
|
|
struct frame_saved_regs fsr;
|
1508 |
|
|
double freg_buffer;
|
1509 |
|
|
|
1510 |
|
|
fp = FRAME_FP (frame);
|
1511 |
|
|
get_frame_saved_regs (frame, &fsr);
|
1512 |
|
|
|
1513 |
|
|
#ifndef NO_PC_SPACE_QUEUE_RESTORE
|
1514 |
|
|
if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
|
1515 |
|
|
restore_pc_queue (&fsr);
|
1516 |
|
|
#endif
|
1517 |
|
|
|
1518 |
|
|
for (regnum = 31; regnum > 0; regnum--)
|
1519 |
|
|
if (fsr.regs[regnum])
|
1520 |
|
|
write_register (regnum, read_memory_integer (fsr.regs[regnum],
|
1521 |
|
|
REGISTER_SIZE));
|
1522 |
|
|
|
1523 |
|
|
for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
|
1524 |
|
|
if (fsr.regs[regnum])
|
1525 |
|
|
{
|
1526 |
|
|
read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
|
1527 |
|
|
write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
|
1528 |
|
|
}
|
1529 |
|
|
|
1530 |
|
|
if (fsr.regs[IPSW_REGNUM])
|
1531 |
|
|
write_register (IPSW_REGNUM,
|
1532 |
|
|
read_memory_integer (fsr.regs[IPSW_REGNUM],
|
1533 |
|
|
REGISTER_SIZE));
|
1534 |
|
|
|
1535 |
|
|
if (fsr.regs[SAR_REGNUM])
|
1536 |
|
|
write_register (SAR_REGNUM,
|
1537 |
|
|
read_memory_integer (fsr.regs[SAR_REGNUM],
|
1538 |
|
|
REGISTER_SIZE));
|
1539 |
|
|
|
1540 |
|
|
/* If the PC was explicitly saved, then just restore it. */
|
1541 |
|
|
if (fsr.regs[PCOQ_TAIL_REGNUM])
|
1542 |
|
|
{
|
1543 |
|
|
npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
|
1544 |
|
|
REGISTER_SIZE);
|
1545 |
|
|
write_register (PCOQ_TAIL_REGNUM, npc);
|
1546 |
|
|
}
|
1547 |
|
|
/* Else use the value in %rp to set the new PC. */
|
1548 |
|
|
else
|
1549 |
|
|
{
|
1550 |
|
|
npc = read_register (RP_REGNUM);
|
1551 |
|
|
write_pc (npc);
|
1552 |
|
|
}
|
1553 |
|
|
|
1554 |
|
|
write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
|
1555 |
|
|
|
1556 |
|
|
if (fsr.regs[IPSW_REGNUM]) /* call dummy */
|
1557 |
|
|
write_register (SP_REGNUM, fp - 48);
|
1558 |
|
|
else
|
1559 |
|
|
write_register (SP_REGNUM, fp);
|
1560 |
|
|
|
1561 |
|
|
/* The PC we just restored may be inside a return trampoline. If so
|
1562 |
|
|
we want to restart the inferior and run it through the trampoline.
|
1563 |
|
|
|
1564 |
|
|
Do this by setting a momentary breakpoint at the location the
|
1565 |
|
|
trampoline returns to.
|
1566 |
|
|
|
1567 |
|
|
Don't skip through the trampoline if we're popping a dummy frame. */
|
1568 |
|
|
target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
|
1569 |
|
|
if (target_pc && !fsr.regs[IPSW_REGNUM])
|
1570 |
|
|
{
|
1571 |
|
|
struct symtab_and_line sal;
|
1572 |
|
|
struct breakpoint *breakpoint;
|
1573 |
|
|
struct cleanup *old_chain;
|
1574 |
|
|
|
1575 |
|
|
/* Set up our breakpoint. Set it to be silent as the MI code
|
1576 |
|
|
for "return_command" will print the frame we returned to. */
|
1577 |
|
|
sal = find_pc_line (target_pc, 0);
|
1578 |
|
|
sal.pc = target_pc;
|
1579 |
|
|
breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
|
1580 |
|
|
breakpoint->silent = 1;
|
1581 |
|
|
|
1582 |
|
|
/* So we can clean things up. */
|
1583 |
|
|
old_chain = make_cleanup_delete_breakpoint (breakpoint);
|
1584 |
|
|
|
1585 |
|
|
/* Start up the inferior. */
|
1586 |
|
|
clear_proceed_status ();
|
1587 |
|
|
proceed_to_finish = 1;
|
1588 |
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
1589 |
|
|
|
1590 |
|
|
/* Perform our cleanups. */
|
1591 |
|
|
do_cleanups (old_chain);
|
1592 |
|
|
}
|
1593 |
|
|
flush_cached_frames ();
|
1594 |
|
|
}
|
1595 |
|
|
|
1596 |
|
|
/* After returning to a dummy on the stack, restore the instruction
|
1597 |
|
|
queue space registers. */
|
1598 |
|
|
|
1599 |
|
|
static int
|
1600 |
|
|
restore_pc_queue (struct frame_saved_regs *fsr)
|
1601 |
|
|
{
|
1602 |
|
|
CORE_ADDR pc = read_pc ();
|
1603 |
|
|
CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
|
1604 |
|
|
TARGET_PTR_BIT / 8);
|
1605 |
|
|
struct target_waitstatus w;
|
1606 |
|
|
int insn_count;
|
1607 |
|
|
|
1608 |
|
|
/* Advance past break instruction in the call dummy. */
|
1609 |
|
|
write_register (PCOQ_HEAD_REGNUM, pc + 4);
|
1610 |
|
|
write_register (PCOQ_TAIL_REGNUM, pc + 8);
|
1611 |
|
|
|
1612 |
|
|
/* HPUX doesn't let us set the space registers or the space
|
1613 |
|
|
registers of the PC queue through ptrace. Boo, hiss.
|
1614 |
|
|
Conveniently, the call dummy has this sequence of instructions
|
1615 |
|
|
after the break:
|
1616 |
|
|
mtsp r21, sr0
|
1617 |
|
|
ble,n 0(sr0, r22)
|
1618 |
|
|
|
1619 |
|
|
So, load up the registers and single step until we are in the
|
1620 |
|
|
right place. */
|
1621 |
|
|
|
1622 |
|
|
write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
|
1623 |
|
|
REGISTER_SIZE));
|
1624 |
|
|
write_register (22, new_pc);
|
1625 |
|
|
|
1626 |
|
|
for (insn_count = 0; insn_count < 3; insn_count++)
|
1627 |
|
|
{
|
1628 |
|
|
/* FIXME: What if the inferior gets a signal right now? Want to
|
1629 |
|
|
merge this into wait_for_inferior (as a special kind of
|
1630 |
|
|
watchpoint? By setting a breakpoint at the end? Is there
|
1631 |
|
|
any other choice? Is there *any* way to do this stuff with
|
1632 |
|
|
ptrace() or some equivalent?). */
|
1633 |
|
|
resume (1, 0);
|
1634 |
|
|
target_wait (inferior_ptid, &w);
|
1635 |
|
|
|
1636 |
|
|
if (w.kind == TARGET_WAITKIND_SIGNALLED)
|
1637 |
|
|
{
|
1638 |
|
|
stop_signal = w.value.sig;
|
1639 |
|
|
terminal_ours_for_output ();
|
1640 |
|
|
printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
|
1641 |
|
|
target_signal_to_name (stop_signal),
|
1642 |
|
|
target_signal_to_string (stop_signal));
|
1643 |
|
|
gdb_flush (gdb_stdout);
|
1644 |
|
|
return 0;
|
1645 |
|
|
}
|
1646 |
|
|
}
|
1647 |
|
|
target_terminal_ours ();
|
1648 |
|
|
target_fetch_registers (-1);
|
1649 |
|
|
return 1;
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
|
1653 |
|
|
#ifdef PA20W_CALLING_CONVENTIONS
|
1654 |
|
|
|
1655 |
|
|
/* This function pushes a stack frame with arguments as part of the
|
1656 |
|
|
inferior function calling mechanism.
|
1657 |
|
|
|
1658 |
|
|
This is the version for the PA64, in which later arguments appear
|
1659 |
|
|
at higher addresses. (The stack always grows towards higher
|
1660 |
|
|
addresses.)
|
1661 |
|
|
|
1662 |
|
|
We simply allocate the appropriate amount of stack space and put
|
1663 |
|
|
arguments into their proper slots. The call dummy code will copy
|
1664 |
|
|
arguments into registers as needed by the ABI.
|
1665 |
|
|
|
1666 |
|
|
This ABI also requires that the caller provide an argument pointer
|
1667 |
|
|
to the callee, so we do that too. */
|
1668 |
|
|
|
1669 |
|
|
CORE_ADDR
|
1670 |
|
|
hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
1671 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1672 |
|
|
{
|
1673 |
|
|
/* array of arguments' offsets */
|
1674 |
|
|
int *offset = (int *) alloca (nargs * sizeof (int));
|
1675 |
|
|
|
1676 |
|
|
/* array of arguments' lengths: real lengths in bytes, not aligned to
|
1677 |
|
|
word size */
|
1678 |
|
|
int *lengths = (int *) alloca (nargs * sizeof (int));
|
1679 |
|
|
|
1680 |
|
|
/* The value of SP as it was passed into this function after
|
1681 |
|
|
aligning. */
|
1682 |
|
|
CORE_ADDR orig_sp = STACK_ALIGN (sp);
|
1683 |
|
|
|
1684 |
|
|
/* The number of stack bytes occupied by the current argument. */
|
1685 |
|
|
int bytes_reserved;
|
1686 |
|
|
|
1687 |
|
|
/* The total number of bytes reserved for the arguments. */
|
1688 |
|
|
int cum_bytes_reserved = 0;
|
1689 |
|
|
|
1690 |
|
|
/* Similarly, but aligned. */
|
1691 |
|
|
int cum_bytes_aligned = 0;
|
1692 |
|
|
int i;
|
1693 |
|
|
|
1694 |
|
|
/* Iterate over each argument provided by the user. */
|
1695 |
|
|
for (i = 0; i < nargs; i++)
|
1696 |
|
|
{
|
1697 |
|
|
struct type *arg_type = VALUE_TYPE (args[i]);
|
1698 |
|
|
|
1699 |
|
|
/* Integral scalar values smaller than a register are padded on
|
1700 |
|
|
the left. We do this by promoting them to full-width,
|
1701 |
|
|
although the ABI says to pad them with garbage. */
|
1702 |
|
|
if (is_integral_type (arg_type)
|
1703 |
|
|
&& TYPE_LENGTH (arg_type) < REGISTER_SIZE)
|
1704 |
|
|
{
|
1705 |
|
|
args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
|
1706 |
|
|
? builtin_type_unsigned_long
|
1707 |
|
|
: builtin_type_long),
|
1708 |
|
|
args[i]);
|
1709 |
|
|
arg_type = VALUE_TYPE (args[i]);
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
lengths[i] = TYPE_LENGTH (arg_type);
|
1713 |
|
|
|
1714 |
|
|
/* Align the size of the argument to the word size for this
|
1715 |
|
|
target. */
|
1716 |
|
|
bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
|
1717 |
|
|
|
1718 |
|
|
offset[i] = cum_bytes_reserved;
|
1719 |
|
|
|
1720 |
|
|
/* Aggregates larger than eight bytes (the only types larger
|
1721 |
|
|
than eight bytes we have) are aligned on a 16-byte boundary,
|
1722 |
|
|
possibly padded on the right with garbage. This may leave an
|
1723 |
|
|
empty word on the stack, and thus an unused register, as per
|
1724 |
|
|
the ABI. */
|
1725 |
|
|
if (bytes_reserved > 8)
|
1726 |
|
|
{
|
1727 |
|
|
/* Round up the offset to a multiple of two slots. */
|
1728 |
|
|
int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
|
1729 |
|
|
& -(2*REGISTER_SIZE));
|
1730 |
|
|
|
1731 |
|
|
/* Note the space we've wasted, if any. */
|
1732 |
|
|
bytes_reserved += new_offset - offset[i];
|
1733 |
|
|
offset[i] = new_offset;
|
1734 |
|
|
}
|
1735 |
|
|
|
1736 |
|
|
cum_bytes_reserved += bytes_reserved;
|
1737 |
|
|
}
|
1738 |
|
|
|
1739 |
|
|
/* CUM_BYTES_RESERVED already accounts for all the arguments
|
1740 |
|
|
passed by the user. However, the ABIs mandate minimum stack space
|
1741 |
|
|
allocations for outgoing arguments.
|
1742 |
|
|
|
1743 |
|
|
The ABIs also mandate minimum stack alignments which we must
|
1744 |
|
|
preserve. */
|
1745 |
|
|
cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
|
1746 |
|
|
sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
|
1747 |
|
|
|
1748 |
|
|
/* Now write each of the args at the proper offset down the stack. */
|
1749 |
|
|
for (i = 0; i < nargs; i++)
|
1750 |
|
|
write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
|
1751 |
|
|
|
1752 |
|
|
/* If a structure has to be returned, set up register 28 to hold its
|
1753 |
|
|
address */
|
1754 |
|
|
if (struct_return)
|
1755 |
|
|
write_register (28, struct_addr);
|
1756 |
|
|
|
1757 |
|
|
/* For the PA64 we must pass a pointer to the outgoing argument list.
|
1758 |
|
|
The ABI mandates that the pointer should point to the first byte of
|
1759 |
|
|
storage beyond the register flushback area.
|
1760 |
|
|
|
1761 |
|
|
However, the call dummy expects the outgoing argument pointer to
|
1762 |
|
|
be passed in register %r4. */
|
1763 |
|
|
write_register (4, orig_sp + REG_PARM_STACK_SPACE);
|
1764 |
|
|
|
1765 |
|
|
/* ?!? This needs further work. We need to set up the global data
|
1766 |
|
|
pointer for this procedure. This assumes the same global pointer
|
1767 |
|
|
for every procedure. The call dummy expects the dp value to
|
1768 |
|
|
be passed in register %r6. */
|
1769 |
|
|
write_register (6, read_register (27));
|
1770 |
|
|
|
1771 |
|
|
/* The stack will have 64 bytes of additional space for a frame marker. */
|
1772 |
|
|
return sp + 64;
|
1773 |
|
|
}
|
1774 |
|
|
|
1775 |
|
|
#else
|
1776 |
|
|
|
1777 |
|
|
/* This function pushes a stack frame with arguments as part of the
|
1778 |
|
|
inferior function calling mechanism.
|
1779 |
|
|
|
1780 |
|
|
This is the version of the function for the 32-bit PA machines, in
|
1781 |
|
|
which later arguments appear at lower addresses. (The stack always
|
1782 |
|
|
grows towards higher addresses.)
|
1783 |
|
|
|
1784 |
|
|
We simply allocate the appropriate amount of stack space and put
|
1785 |
|
|
arguments into their proper slots. The call dummy code will copy
|
1786 |
|
|
arguments into registers as needed by the ABI. */
|
1787 |
|
|
|
1788 |
|
|
CORE_ADDR
|
1789 |
|
|
hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
1790 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1791 |
|
|
{
|
1792 |
|
|
/* array of arguments' offsets */
|
1793 |
|
|
int *offset = (int *) alloca (nargs * sizeof (int));
|
1794 |
|
|
|
1795 |
|
|
/* array of arguments' lengths: real lengths in bytes, not aligned to
|
1796 |
|
|
word size */
|
1797 |
|
|
int *lengths = (int *) alloca (nargs * sizeof (int));
|
1798 |
|
|
|
1799 |
|
|
/* The number of stack bytes occupied by the current argument. */
|
1800 |
|
|
int bytes_reserved;
|
1801 |
|
|
|
1802 |
|
|
/* The total number of bytes reserved for the arguments. */
|
1803 |
|
|
int cum_bytes_reserved = 0;
|
1804 |
|
|
|
1805 |
|
|
/* Similarly, but aligned. */
|
1806 |
|
|
int cum_bytes_aligned = 0;
|
1807 |
|
|
int i;
|
1808 |
|
|
|
1809 |
|
|
/* Iterate over each argument provided by the user. */
|
1810 |
|
|
for (i = 0; i < nargs; i++)
|
1811 |
|
|
{
|
1812 |
|
|
lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
|
1813 |
|
|
|
1814 |
|
|
/* Align the size of the argument to the word size for this
|
1815 |
|
|
target. */
|
1816 |
|
|
bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
|
1817 |
|
|
|
1818 |
|
|
offset[i] = cum_bytes_reserved + lengths[i];
|
1819 |
|
|
|
1820 |
|
|
/* If the argument is a double word argument, then it needs to be
|
1821 |
|
|
double word aligned. */
|
1822 |
|
|
if ((bytes_reserved == 2 * REGISTER_SIZE)
|
1823 |
|
|
&& (offset[i] % 2 * REGISTER_SIZE))
|
1824 |
|
|
{
|
1825 |
|
|
int new_offset = 0;
|
1826 |
|
|
/* BYTES_RESERVED is already aligned to the word, so we put
|
1827 |
|
|
the argument at one word more down the stack.
|
1828 |
|
|
|
1829 |
|
|
This will leave one empty word on the stack, and one unused
|
1830 |
|
|
register as mandated by the ABI. */
|
1831 |
|
|
new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
|
1832 |
|
|
& -(2 * REGISTER_SIZE));
|
1833 |
|
|
|
1834 |
|
|
if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
|
1835 |
|
|
{
|
1836 |
|
|
bytes_reserved += REGISTER_SIZE;
|
1837 |
|
|
offset[i] += REGISTER_SIZE;
|
1838 |
|
|
}
|
1839 |
|
|
}
|
1840 |
|
|
|
1841 |
|
|
cum_bytes_reserved += bytes_reserved;
|
1842 |
|
|
|
1843 |
|
|
}
|
1844 |
|
|
|
1845 |
|
|
/* CUM_BYTES_RESERVED already accounts for all the arguments passed
|
1846 |
|
|
by the user. However, the ABI mandates minimum stack space
|
1847 |
|
|
allocations for outgoing arguments.
|
1848 |
|
|
|
1849 |
|
|
The ABI also mandates minimum stack alignments which we must
|
1850 |
|
|
preserve. */
|
1851 |
|
|
cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
|
1852 |
|
|
sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
|
1853 |
|
|
|
1854 |
|
|
/* Now write each of the args at the proper offset down the stack.
|
1855 |
|
|
?!? We need to promote values to a full register instead of skipping
|
1856 |
|
|
words in the stack. */
|
1857 |
|
|
for (i = 0; i < nargs; i++)
|
1858 |
|
|
write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
|
1859 |
|
|
|
1860 |
|
|
/* If a structure has to be returned, set up register 28 to hold its
|
1861 |
|
|
address */
|
1862 |
|
|
if (struct_return)
|
1863 |
|
|
write_register (28, struct_addr);
|
1864 |
|
|
|
1865 |
|
|
/* The stack will have 32 bytes of additional space for a frame marker. */
|
1866 |
|
|
return sp + 32;
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
#endif
|
1870 |
|
|
|
1871 |
|
|
/* elz: this function returns a value which is built looking at the given address.
|
1872 |
|
|
It is called from call_function_by_hand, in case we need to return a
|
1873 |
|
|
value which is larger than 64 bits, and it is stored in the stack rather than
|
1874 |
|
|
in the registers r28 and r29 or fr4.
|
1875 |
|
|
This function does the same stuff as value_being_returned in values.c, but
|
1876 |
|
|
gets the value from the stack rather than from the buffer where all the
|
1877 |
|
|
registers were saved when the function called completed. */
|
1878 |
|
|
value_ptr
|
1879 |
|
|
hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
|
1880 |
|
|
{
|
1881 |
|
|
register value_ptr val;
|
1882 |
|
|
|
1883 |
|
|
val = allocate_value (valtype);
|
1884 |
|
|
CHECK_TYPEDEF (valtype);
|
1885 |
|
|
target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
|
1886 |
|
|
|
1887 |
|
|
return val;
|
1888 |
|
|
}
|
1889 |
|
|
|
1890 |
|
|
|
1891 |
|
|
|
1892 |
|
|
/* elz: Used to lookup a symbol in the shared libraries.
|
1893 |
|
|
This function calls shl_findsym, indirectly through a
|
1894 |
|
|
call to __d_shl_get. __d_shl_get is in end.c, which is always
|
1895 |
|
|
linked in by the hp compilers/linkers.
|
1896 |
|
|
The call to shl_findsym cannot be made directly because it needs
|
1897 |
|
|
to be active in target address space.
|
1898 |
|
|
inputs: - minimal symbol pointer for the function we want to look up
|
1899 |
|
|
- address in target space of the descriptor for the library
|
1900 |
|
|
where we want to look the symbol up.
|
1901 |
|
|
This address is retrieved using the
|
1902 |
|
|
som_solib_get_solib_by_pc function (somsolib.c).
|
1903 |
|
|
output: - real address in the library of the function.
|
1904 |
|
|
note: the handle can be null, in which case shl_findsym will look for
|
1905 |
|
|
the symbol in all the loaded shared libraries.
|
1906 |
|
|
files to look at if you need reference on this stuff:
|
1907 |
|
|
dld.c, dld_shl_findsym.c
|
1908 |
|
|
end.c
|
1909 |
|
|
man entry for shl_findsym */
|
1910 |
|
|
|
1911 |
|
|
CORE_ADDR
|
1912 |
|
|
find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
|
1913 |
|
|
{
|
1914 |
|
|
struct symbol *get_sym, *symbol2;
|
1915 |
|
|
struct minimal_symbol *buff_minsym, *msymbol;
|
1916 |
|
|
struct type *ftype;
|
1917 |
|
|
value_ptr *args;
|
1918 |
|
|
value_ptr funcval, val;
|
1919 |
|
|
|
1920 |
|
|
int x, namelen, err_value, tmp = -1;
|
1921 |
|
|
CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
|
1922 |
|
|
CORE_ADDR stub_addr;
|
1923 |
|
|
|
1924 |
|
|
|
1925 |
|
|
args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
|
1926 |
|
|
funcval = find_function_in_inferior ("__d_shl_get");
|
1927 |
|
|
get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
|
1928 |
|
|
buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
|
1929 |
|
|
msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
|
1930 |
|
|
symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
|
1931 |
|
|
endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
|
1932 |
|
|
namelen = strlen (SYMBOL_NAME (function));
|
1933 |
|
|
value_return_addr = endo_buff_addr + namelen;
|
1934 |
|
|
ftype = check_typedef (SYMBOL_TYPE (get_sym));
|
1935 |
|
|
|
1936 |
|
|
/* do alignment */
|
1937 |
|
|
if ((x = value_return_addr % 64) != 0)
|
1938 |
|
|
value_return_addr = value_return_addr + 64 - x;
|
1939 |
|
|
|
1940 |
|
|
errno_return_addr = value_return_addr + 64;
|
1941 |
|
|
|
1942 |
|
|
|
1943 |
|
|
/* set up stuff needed by __d_shl_get in buffer in end.o */
|
1944 |
|
|
|
1945 |
|
|
target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
|
1946 |
|
|
|
1947 |
|
|
target_write_memory (value_return_addr, (char *) &tmp, 4);
|
1948 |
|
|
|
1949 |
|
|
target_write_memory (errno_return_addr, (char *) &tmp, 4);
|
1950 |
|
|
|
1951 |
|
|
target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
|
1952 |
|
|
(char *) &handle, 4);
|
1953 |
|
|
|
1954 |
|
|
/* now prepare the arguments for the call */
|
1955 |
|
|
|
1956 |
|
|
args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
|
1957 |
|
|
args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
|
1958 |
|
|
args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
|
1959 |
|
|
args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
|
1960 |
|
|
args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
|
1961 |
|
|
args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
|
1962 |
|
|
|
1963 |
|
|
/* now call the function */
|
1964 |
|
|
|
1965 |
|
|
val = call_function_by_hand (funcval, 6, args);
|
1966 |
|
|
|
1967 |
|
|
/* now get the results */
|
1968 |
|
|
|
1969 |
|
|
target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
|
1970 |
|
|
|
1971 |
|
|
target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
|
1972 |
|
|
if (stub_addr <= 0)
|
1973 |
|
|
error ("call to __d_shl_get failed, error code is %d", err_value);
|
1974 |
|
|
|
1975 |
|
|
return (stub_addr);
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
|
1979 |
|
|
static int
|
1980 |
|
|
cover_find_stub_with_shl_get (PTR args_untyped)
|
1981 |
|
|
{
|
1982 |
|
|
args_for_find_stub *args = args_untyped;
|
1983 |
|
|
args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
|
1984 |
|
|
return 0;
|
1985 |
|
|
}
|
1986 |
|
|
|
1987 |
|
|
/* Insert the specified number of args and function address
|
1988 |
|
|
into a call sequence of the above form stored at DUMMYNAME.
|
1989 |
|
|
|
1990 |
|
|
On the hppa we need to call the stack dummy through $$dyncall.
|
1991 |
|
|
Therefore our version of FIX_CALL_DUMMY takes an extra argument,
|
1992 |
|
|
real_pc, which is the location where gdb should start up the
|
1993 |
|
|
inferior to do the function call.
|
1994 |
|
|
|
1995 |
|
|
This has to work across several versions of hpux, bsd, osf1. It has to
|
1996 |
|
|
work regardless of what compiler was used to build the inferior program.
|
1997 |
|
|
It should work regardless of whether or not end.o is available. It has
|
1998 |
|
|
to work even if gdb can not call into the dynamic loader in the inferior
|
1999 |
|
|
to query it for symbol names and addresses.
|
2000 |
|
|
|
2001 |
|
|
Yes, all those cases should work. Luckily code exists to handle most
|
2002 |
|
|
of them. The complexity is in selecting exactly what scheme should
|
2003 |
|
|
be used to perform the inferior call.
|
2004 |
|
|
|
2005 |
|
|
At the current time this routine is known not to handle cases where
|
2006 |
|
|
the program was linked with HP's compiler without including end.o.
|
2007 |
|
|
|
2008 |
|
|
Please contact Jeff Law (law@cygnus.com) before changing this code. */
|
2009 |
|
|
|
2010 |
|
|
CORE_ADDR
|
2011 |
|
|
hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
2012 |
|
|
value_ptr *args, struct type *type, int gcc_p)
|
2013 |
|
|
{
|
2014 |
|
|
CORE_ADDR dyncall_addr;
|
2015 |
|
|
struct minimal_symbol *msymbol;
|
2016 |
|
|
struct minimal_symbol *trampoline;
|
2017 |
|
|
int flags = read_register (FLAGS_REGNUM);
|
2018 |
|
|
struct unwind_table_entry *u = NULL;
|
2019 |
|
|
CORE_ADDR new_stub = 0;
|
2020 |
|
|
CORE_ADDR solib_handle = 0;
|
2021 |
|
|
|
2022 |
|
|
/* Nonzero if we will use GCC's PLT call routine. This routine must be
|
2023 |
|
|
passed an import stub, not a PLABEL. It is also necessary to set %r19
|
2024 |
|
|
(the PIC register) before performing the call.
|
2025 |
|
|
|
2026 |
|
|
If zero, then we are using __d_plt_call (HP's PLT call routine) or we
|
2027 |
|
|
are calling the target directly. When using __d_plt_call we want to
|
2028 |
|
|
use a PLABEL instead of an import stub. */
|
2029 |
|
|
int using_gcc_plt_call = 1;
|
2030 |
|
|
|
2031 |
|
|
#ifdef GDB_TARGET_IS_HPPA_20W
|
2032 |
|
|
/* We currently use completely different code for the PA2.0W inferior
|
2033 |
|
|
function call sequences. This needs to be cleaned up. */
|
2034 |
|
|
{
|
2035 |
|
|
CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
|
2036 |
|
|
struct target_waitstatus w;
|
2037 |
|
|
int inst1, inst2;
|
2038 |
|
|
char buf[4];
|
2039 |
|
|
int status;
|
2040 |
|
|
struct objfile *objfile;
|
2041 |
|
|
|
2042 |
|
|
/* We can not modify the PC space queues directly, so we start
|
2043 |
|
|
up the inferior and execute a couple instructions to set the
|
2044 |
|
|
space queues so that they point to the call dummy in the stack. */
|
2045 |
|
|
pcsqh = read_register (PCSQ_HEAD_REGNUM);
|
2046 |
|
|
sr5 = read_register (SR5_REGNUM);
|
2047 |
|
|
if (1)
|
2048 |
|
|
{
|
2049 |
|
|
pcoqh = read_register (PCOQ_HEAD_REGNUM);
|
2050 |
|
|
pcoqt = read_register (PCOQ_TAIL_REGNUM);
|
2051 |
|
|
if (target_read_memory (pcoqh, buf, 4) != 0)
|
2052 |
|
|
error ("Couldn't modify space queue\n");
|
2053 |
|
|
inst1 = extract_unsigned_integer (buf, 4);
|
2054 |
|
|
|
2055 |
|
|
if (target_read_memory (pcoqt, buf, 4) != 0)
|
2056 |
|
|
error ("Couldn't modify space queue\n");
|
2057 |
|
|
inst2 = extract_unsigned_integer (buf, 4);
|
2058 |
|
|
|
2059 |
|
|
/* BVE (r1) */
|
2060 |
|
|
*((int *) buf) = 0xe820d000;
|
2061 |
|
|
if (target_write_memory (pcoqh, buf, 4) != 0)
|
2062 |
|
|
error ("Couldn't modify space queue\n");
|
2063 |
|
|
|
2064 |
|
|
/* NOP */
|
2065 |
|
|
*((int *) buf) = 0x08000240;
|
2066 |
|
|
if (target_write_memory (pcoqt, buf, 4) != 0)
|
2067 |
|
|
{
|
2068 |
|
|
*((int *) buf) = inst1;
|
2069 |
|
|
target_write_memory (pcoqh, buf, 4);
|
2070 |
|
|
error ("Couldn't modify space queue\n");
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
write_register (1, pc);
|
2074 |
|
|
|
2075 |
|
|
/* Single step twice, the BVE instruction will set the space queue
|
2076 |
|
|
such that it points to the PC value written immediately above
|
2077 |
|
|
(ie the call dummy). */
|
2078 |
|
|
resume (1, 0);
|
2079 |
|
|
target_wait (inferior_ptid, &w);
|
2080 |
|
|
resume (1, 0);
|
2081 |
|
|
target_wait (inferior_ptid, &w);
|
2082 |
|
|
|
2083 |
|
|
/* Restore the two instructions at the old PC locations. */
|
2084 |
|
|
*((int *) buf) = inst1;
|
2085 |
|
|
target_write_memory (pcoqh, buf, 4);
|
2086 |
|
|
*((int *) buf) = inst2;
|
2087 |
|
|
target_write_memory (pcoqt, buf, 4);
|
2088 |
|
|
}
|
2089 |
|
|
|
2090 |
|
|
/* The call dummy wants the ultimate destination address initially
|
2091 |
|
|
in register %r5. */
|
2092 |
|
|
write_register (5, fun);
|
2093 |
|
|
|
2094 |
|
|
/* We need to see if this objfile has a different DP value than our
|
2095 |
|
|
own (it could be a shared library for example). */
|
2096 |
|
|
ALL_OBJFILES (objfile)
|
2097 |
|
|
{
|
2098 |
|
|
struct obj_section *s;
|
2099 |
|
|
obj_private_data_t *obj_private;
|
2100 |
|
|
|
2101 |
|
|
/* See if FUN is in any section within this shared library. */
|
2102 |
|
|
for (s = objfile->sections; s < objfile->sections_end; s++)
|
2103 |
|
|
if (s->addr <= fun && fun < s->endaddr)
|
2104 |
|
|
break;
|
2105 |
|
|
|
2106 |
|
|
if (s >= objfile->sections_end)
|
2107 |
|
|
continue;
|
2108 |
|
|
|
2109 |
|
|
obj_private = (obj_private_data_t *) objfile->obj_private;
|
2110 |
|
|
|
2111 |
|
|
/* The DP value may be different for each objfile. But within an
|
2112 |
|
|
objfile each function uses the same dp value. Thus we do not need
|
2113 |
|
|
to grope around the opd section looking for dp values.
|
2114 |
|
|
|
2115 |
|
|
?!? This is not strictly correct since we may be in a shared library
|
2116 |
|
|
and want to call back into the main program. To make that case
|
2117 |
|
|
work correctly we need to set obj_private->dp for the main program's
|
2118 |
|
|
objfile, then remove this conditional. */
|
2119 |
|
|
if (obj_private->dp)
|
2120 |
|
|
write_register (27, obj_private->dp);
|
2121 |
|
|
break;
|
2122 |
|
|
}
|
2123 |
|
|
return pc;
|
2124 |
|
|
}
|
2125 |
|
|
#endif
|
2126 |
|
|
|
2127 |
|
|
#ifndef GDB_TARGET_IS_HPPA_20W
|
2128 |
|
|
/* Prefer __gcc_plt_call over the HP supplied routine because
|
2129 |
|
|
__gcc_plt_call works for any number of arguments. */
|
2130 |
|
|
trampoline = NULL;
|
2131 |
|
|
if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
|
2132 |
|
|
using_gcc_plt_call = 0;
|
2133 |
|
|
|
2134 |
|
|
msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
2135 |
|
|
if (msymbol == NULL)
|
2136 |
|
|
error ("Can't find an address for $$dyncall trampoline");
|
2137 |
|
|
|
2138 |
|
|
dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
2139 |
|
|
|
2140 |
|
|
/* FUN could be a procedure label, in which case we have to get
|
2141 |
|
|
its real address and the value of its GOT/DP if we plan to
|
2142 |
|
|
call the routine via gcc_plt_call. */
|
2143 |
|
|
if ((fun & 0x2) && using_gcc_plt_call)
|
2144 |
|
|
{
|
2145 |
|
|
/* Get the GOT/DP value for the target function. It's
|
2146 |
|
|
at *(fun+4). Note the call dummy is *NOT* allowed to
|
2147 |
|
|
trash %r19 before calling the target function. */
|
2148 |
|
|
write_register (19, read_memory_integer ((fun & ~0x3) + 4,
|
2149 |
|
|
REGISTER_SIZE));
|
2150 |
|
|
|
2151 |
|
|
/* Now get the real address for the function we are calling, it's
|
2152 |
|
|
at *fun. */
|
2153 |
|
|
fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
|
2154 |
|
|
TARGET_PTR_BIT / 8);
|
2155 |
|
|
}
|
2156 |
|
|
else
|
2157 |
|
|
{
|
2158 |
|
|
|
2159 |
|
|
#ifndef GDB_TARGET_IS_PA_ELF
|
2160 |
|
|
/* FUN could be an export stub, the real address of a function, or
|
2161 |
|
|
a PLABEL. When using gcc's PLT call routine we must call an import
|
2162 |
|
|
stub rather than the export stub or real function for lazy binding
|
2163 |
|
|
to work correctly
|
2164 |
|
|
|
2165 |
|
|
If we are using the gcc PLT call routine, then we need to
|
2166 |
|
|
get the import stub for the target function. */
|
2167 |
|
|
if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
|
2168 |
|
|
{
|
2169 |
|
|
struct objfile *objfile;
|
2170 |
|
|
struct minimal_symbol *funsymbol, *stub_symbol;
|
2171 |
|
|
CORE_ADDR newfun = 0;
|
2172 |
|
|
|
2173 |
|
|
funsymbol = lookup_minimal_symbol_by_pc (fun);
|
2174 |
|
|
if (!funsymbol)
|
2175 |
|
|
error ("Unable to find minimal symbol for target function.\n");
|
2176 |
|
|
|
2177 |
|
|
/* Search all the object files for an import symbol with the
|
2178 |
|
|
right name. */
|
2179 |
|
|
ALL_OBJFILES (objfile)
|
2180 |
|
|
{
|
2181 |
|
|
stub_symbol
|
2182 |
|
|
= lookup_minimal_symbol_solib_trampoline
|
2183 |
|
|
(SYMBOL_NAME (funsymbol), NULL, objfile);
|
2184 |
|
|
|
2185 |
|
|
if (!stub_symbol)
|
2186 |
|
|
stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
|
2187 |
|
|
NULL, objfile);
|
2188 |
|
|
|
2189 |
|
|
/* Found a symbol with the right name. */
|
2190 |
|
|
if (stub_symbol)
|
2191 |
|
|
{
|
2192 |
|
|
struct unwind_table_entry *u;
|
2193 |
|
|
/* It must be a shared library trampoline. */
|
2194 |
|
|
if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
|
2195 |
|
|
continue;
|
2196 |
|
|
|
2197 |
|
|
/* It must also be an import stub. */
|
2198 |
|
|
u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
|
2199 |
|
|
if (u == NULL
|
2200 |
|
|
|| (u->stub_unwind.stub_type != IMPORT
|
2201 |
|
|
#ifdef GDB_NATIVE_HPUX_11
|
2202 |
|
|
/* Sigh. The hpux 10.20 dynamic linker will blow
|
2203 |
|
|
chunks if we perform a call to an unbound function
|
2204 |
|
|
via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
|
2205 |
|
|
linker will blow chunks if we do not call the
|
2206 |
|
|
unbound function via the IMPORT_SHLIB stub.
|
2207 |
|
|
|
2208 |
|
|
We currently have no way to select bevahior on just
|
2209 |
|
|
the target. However, we only support HPUX/SOM in
|
2210 |
|
|
native mode. So we conditinalize on a native
|
2211 |
|
|
#ifdef. Ugly. Ugly. Ugly */
|
2212 |
|
|
&& u->stub_unwind.stub_type != IMPORT_SHLIB
|
2213 |
|
|
#endif
|
2214 |
|
|
))
|
2215 |
|
|
continue;
|
2216 |
|
|
|
2217 |
|
|
/* OK. Looks like the correct import stub. */
|
2218 |
|
|
newfun = SYMBOL_VALUE (stub_symbol);
|
2219 |
|
|
fun = newfun;
|
2220 |
|
|
|
2221 |
|
|
/* If we found an IMPORT stub, then we want to stop
|
2222 |
|
|
searching now. If we found an IMPORT_SHLIB, we want
|
2223 |
|
|
to continue the search in the hopes that we will find
|
2224 |
|
|
an IMPORT stub. */
|
2225 |
|
|
if (u->stub_unwind.stub_type == IMPORT)
|
2226 |
|
|
break;
|
2227 |
|
|
}
|
2228 |
|
|
}
|
2229 |
|
|
|
2230 |
|
|
/* Ouch. We did not find an import stub. Make an attempt to
|
2231 |
|
|
do the right thing instead of just croaking. Most of the
|
2232 |
|
|
time this will actually work. */
|
2233 |
|
|
if (newfun == 0)
|
2234 |
|
|
write_register (19, som_solib_get_got_by_pc (fun));
|
2235 |
|
|
|
2236 |
|
|
u = find_unwind_entry (fun);
|
2237 |
|
|
if (u
|
2238 |
|
|
&& (u->stub_unwind.stub_type == IMPORT
|
2239 |
|
|
|| u->stub_unwind.stub_type == IMPORT_SHLIB))
|
2240 |
|
|
trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
|
2241 |
|
|
|
2242 |
|
|
/* If we found the import stub in the shared library, then we have
|
2243 |
|
|
to set %r19 before we call the stub. */
|
2244 |
|
|
if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
|
2245 |
|
|
write_register (19, som_solib_get_got_by_pc (fun));
|
2246 |
|
|
}
|
2247 |
|
|
#endif
|
2248 |
|
|
}
|
2249 |
|
|
|
2250 |
|
|
/* If we are calling into another load module then have sr4export call the
|
2251 |
|
|
magic __d_plt_call routine which is linked in from end.o.
|
2252 |
|
|
|
2253 |
|
|
You can't use _sr4export to make the call as the value in sp-24 will get
|
2254 |
|
|
fried and you end up returning to the wrong location. You can't call the
|
2255 |
|
|
target as the code to bind the PLT entry to a function can't return to a
|
2256 |
|
|
stack address.
|
2257 |
|
|
|
2258 |
|
|
Also, query the dynamic linker in the inferior to provide a suitable
|
2259 |
|
|
PLABEL for the target function. */
|
2260 |
|
|
if (!using_gcc_plt_call)
|
2261 |
|
|
{
|
2262 |
|
|
CORE_ADDR new_fun;
|
2263 |
|
|
|
2264 |
|
|
/* Get a handle for the shared library containing FUN. Given the
|
2265 |
|
|
handle we can query the shared library for a PLABEL. */
|
2266 |
|
|
solib_handle = som_solib_get_solib_by_pc (fun);
|
2267 |
|
|
|
2268 |
|
|
if (solib_handle)
|
2269 |
|
|
{
|
2270 |
|
|
struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
|
2271 |
|
|
|
2272 |
|
|
trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
|
2273 |
|
|
|
2274 |
|
|
if (trampoline == NULL)
|
2275 |
|
|
{
|
2276 |
|
|
error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
|
2277 |
|
|
}
|
2278 |
|
|
|
2279 |
|
|
/* This is where sr4export will jump to. */
|
2280 |
|
|
new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
|
2281 |
|
|
|
2282 |
|
|
/* If the function is in a shared library, then call __d_shl_get to
|
2283 |
|
|
get a PLABEL for the target function. */
|
2284 |
|
|
new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
|
2285 |
|
|
|
2286 |
|
|
if (new_stub == 0)
|
2287 |
|
|
error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
|
2288 |
|
|
|
2289 |
|
|
/* We have to store the address of the stub in __shlib_funcptr. */
|
2290 |
|
|
msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
|
2291 |
|
|
(struct objfile *) NULL);
|
2292 |
|
|
|
2293 |
|
|
if (msymbol == NULL)
|
2294 |
|
|
error ("Can't find an address for __shlib_funcptr");
|
2295 |
|
|
target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
|
2296 |
|
|
(char *) &new_stub, 4);
|
2297 |
|
|
|
2298 |
|
|
/* We want sr4export to call __d_plt_call, so we claim it is
|
2299 |
|
|
the final target. Clear trampoline. */
|
2300 |
|
|
fun = new_fun;
|
2301 |
|
|
trampoline = NULL;
|
2302 |
|
|
}
|
2303 |
|
|
}
|
2304 |
|
|
|
2305 |
|
|
/* Store upper 21 bits of function address into ldil. fun will either be
|
2306 |
|
|
the final target (most cases) or __d_plt_call when calling into a shared
|
2307 |
|
|
library and __gcc_plt_call is not available. */
|
2308 |
|
|
store_unsigned_integer
|
2309 |
|
|
(&dummy[FUNC_LDIL_OFFSET],
|
2310 |
|
|
INSTRUCTION_SIZE,
|
2311 |
|
|
deposit_21 (fun >> 11,
|
2312 |
|
|
extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
|
2313 |
|
|
INSTRUCTION_SIZE)));
|
2314 |
|
|
|
2315 |
|
|
/* Store lower 11 bits of function address into ldo */
|
2316 |
|
|
store_unsigned_integer
|
2317 |
|
|
(&dummy[FUNC_LDO_OFFSET],
|
2318 |
|
|
INSTRUCTION_SIZE,
|
2319 |
|
|
deposit_14 (fun & MASK_11,
|
2320 |
|
|
extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
|
2321 |
|
|
INSTRUCTION_SIZE)));
|
2322 |
|
|
#ifdef SR4EXPORT_LDIL_OFFSET
|
2323 |
|
|
|
2324 |
|
|
{
|
2325 |
|
|
CORE_ADDR trampoline_addr;
|
2326 |
|
|
|
2327 |
|
|
/* We may still need sr4export's address too. */
|
2328 |
|
|
|
2329 |
|
|
if (trampoline == NULL)
|
2330 |
|
|
{
|
2331 |
|
|
msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
|
2332 |
|
|
if (msymbol == NULL)
|
2333 |
|
|
error ("Can't find an address for _sr4export trampoline");
|
2334 |
|
|
|
2335 |
|
|
trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
2336 |
|
|
}
|
2337 |
|
|
else
|
2338 |
|
|
trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
|
2339 |
|
|
|
2340 |
|
|
|
2341 |
|
|
/* Store upper 21 bits of trampoline's address into ldil */
|
2342 |
|
|
store_unsigned_integer
|
2343 |
|
|
(&dummy[SR4EXPORT_LDIL_OFFSET],
|
2344 |
|
|
INSTRUCTION_SIZE,
|
2345 |
|
|
deposit_21 (trampoline_addr >> 11,
|
2346 |
|
|
extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
|
2347 |
|
|
INSTRUCTION_SIZE)));
|
2348 |
|
|
|
2349 |
|
|
/* Store lower 11 bits of trampoline's address into ldo */
|
2350 |
|
|
store_unsigned_integer
|
2351 |
|
|
(&dummy[SR4EXPORT_LDO_OFFSET],
|
2352 |
|
|
INSTRUCTION_SIZE,
|
2353 |
|
|
deposit_14 (trampoline_addr & MASK_11,
|
2354 |
|
|
extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
|
2355 |
|
|
INSTRUCTION_SIZE)));
|
2356 |
|
|
}
|
2357 |
|
|
#endif
|
2358 |
|
|
|
2359 |
|
|
write_register (22, pc);
|
2360 |
|
|
|
2361 |
|
|
/* If we are in a syscall, then we should call the stack dummy
|
2362 |
|
|
directly. $$dyncall is not needed as the kernel sets up the
|
2363 |
|
|
space id registers properly based on the value in %r31. In
|
2364 |
|
|
fact calling $$dyncall will not work because the value in %r22
|
2365 |
|
|
will be clobbered on the syscall exit path.
|
2366 |
|
|
|
2367 |
|
|
Similarly if the current PC is in a shared library. Note however,
|
2368 |
|
|
this scheme won't work if the shared library isn't mapped into
|
2369 |
|
|
the same space as the stack. */
|
2370 |
|
|
if (flags & 2)
|
2371 |
|
|
return pc;
|
2372 |
|
|
#ifndef GDB_TARGET_IS_PA_ELF
|
2373 |
|
|
else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
|
2374 |
|
|
return pc;
|
2375 |
|
|
#endif
|
2376 |
|
|
else
|
2377 |
|
|
return dyncall_addr;
|
2378 |
|
|
#endif
|
2379 |
|
|
}
|
2380 |
|
|
|
2381 |
|
|
|
2382 |
|
|
|
2383 |
|
|
|
2384 |
|
|
/* If the pid is in a syscall, then the FP register is not readable.
|
2385 |
|
|
We'll return zero in that case, rather than attempting to read it
|
2386 |
|
|
and cause a warning. */
|
2387 |
|
|
CORE_ADDR
|
2388 |
|
|
target_read_fp (int pid)
|
2389 |
|
|
{
|
2390 |
|
|
int flags = read_register (FLAGS_REGNUM);
|
2391 |
|
|
|
2392 |
|
|
if (flags & 2)
|
2393 |
|
|
{
|
2394 |
|
|
return (CORE_ADDR) 0;
|
2395 |
|
|
}
|
2396 |
|
|
|
2397 |
|
|
/* This is the only site that may directly read_register () the FP
|
2398 |
|
|
register. All others must use TARGET_READ_FP (). */
|
2399 |
|
|
return read_register (FP_REGNUM);
|
2400 |
|
|
}
|
2401 |
|
|
|
2402 |
|
|
|
2403 |
|
|
/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
|
2404 |
|
|
bits. */
|
2405 |
|
|
|
2406 |
|
|
CORE_ADDR
|
2407 |
|
|
target_read_pc (ptid_t ptid)
|
2408 |
|
|
{
|
2409 |
|
|
int flags = read_register_pid (FLAGS_REGNUM, ptid);
|
2410 |
|
|
|
2411 |
|
|
/* The following test does not belong here. It is OS-specific, and belongs
|
2412 |
|
|
in native code. */
|
2413 |
|
|
/* Test SS_INSYSCALL */
|
2414 |
|
|
if (flags & 2)
|
2415 |
|
|
return read_register_pid (31, ptid) & ~0x3;
|
2416 |
|
|
|
2417 |
|
|
return read_register_pid (PC_REGNUM, ptid) & ~0x3;
|
2418 |
|
|
}
|
2419 |
|
|
|
2420 |
|
|
/* Write out the PC. If currently in a syscall, then also write the new
|
2421 |
|
|
PC value into %r31. */
|
2422 |
|
|
|
2423 |
|
|
void
|
2424 |
|
|
target_write_pc (CORE_ADDR v, ptid_t ptid)
|
2425 |
|
|
{
|
2426 |
|
|
int flags = read_register_pid (FLAGS_REGNUM, ptid);
|
2427 |
|
|
|
2428 |
|
|
/* The following test does not belong here. It is OS-specific, and belongs
|
2429 |
|
|
in native code. */
|
2430 |
|
|
/* If in a syscall, then set %r31. Also make sure to get the
|
2431 |
|
|
privilege bits set correctly. */
|
2432 |
|
|
/* Test SS_INSYSCALL */
|
2433 |
|
|
if (flags & 2)
|
2434 |
|
|
write_register_pid (31, v | 0x3, ptid);
|
2435 |
|
|
|
2436 |
|
|
write_register_pid (PC_REGNUM, v, ptid);
|
2437 |
|
|
write_register_pid (NPC_REGNUM, v + 4, ptid);
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
/* return the alignment of a type in bytes. Structures have the maximum
|
2441 |
|
|
alignment required by their fields. */
|
2442 |
|
|
|
2443 |
|
|
static int
|
2444 |
|
|
hppa_alignof (struct type *type)
|
2445 |
|
|
{
|
2446 |
|
|
int max_align, align, i;
|
2447 |
|
|
CHECK_TYPEDEF (type);
|
2448 |
|
|
switch (TYPE_CODE (type))
|
2449 |
|
|
{
|
2450 |
|
|
case TYPE_CODE_PTR:
|
2451 |
|
|
case TYPE_CODE_INT:
|
2452 |
|
|
case TYPE_CODE_FLT:
|
2453 |
|
|
return TYPE_LENGTH (type);
|
2454 |
|
|
case TYPE_CODE_ARRAY:
|
2455 |
|
|
return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
|
2456 |
|
|
case TYPE_CODE_STRUCT:
|
2457 |
|
|
case TYPE_CODE_UNION:
|
2458 |
|
|
max_align = 1;
|
2459 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
2460 |
|
|
{
|
2461 |
|
|
/* Bit fields have no real alignment. */
|
2462 |
|
|
/* if (!TYPE_FIELD_BITPOS (type, i)) */
|
2463 |
|
|
if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
|
2464 |
|
|
{
|
2465 |
|
|
align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
|
2466 |
|
|
max_align = max (max_align, align);
|
2467 |
|
|
}
|
2468 |
|
|
}
|
2469 |
|
|
return max_align;
|
2470 |
|
|
default:
|
2471 |
|
|
return 4;
|
2472 |
|
|
}
|
2473 |
|
|
}
|
2474 |
|
|
|
2475 |
|
|
/* Print the register regnum, or all registers if regnum is -1 */
|
2476 |
|
|
|
2477 |
|
|
void
|
2478 |
|
|
pa_do_registers_info (int regnum, int fpregs)
|
2479 |
|
|
{
|
2480 |
|
|
char raw_regs[REGISTER_BYTES];
|
2481 |
|
|
int i;
|
2482 |
|
|
|
2483 |
|
|
/* Make a copy of gdb's save area (may cause actual
|
2484 |
|
|
reads from the target). */
|
2485 |
|
|
for (i = 0; i < NUM_REGS; i++)
|
2486 |
|
|
read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
|
2487 |
|
|
|
2488 |
|
|
if (regnum == -1)
|
2489 |
|
|
pa_print_registers (raw_regs, regnum, fpregs);
|
2490 |
|
|
else if (regnum < FP4_REGNUM)
|
2491 |
|
|
{
|
2492 |
|
|
long reg_val[2];
|
2493 |
|
|
|
2494 |
|
|
/* Why is the value not passed through "extract_signed_integer"
|
2495 |
|
|
as in "pa_print_registers" below? */
|
2496 |
|
|
pa_register_look_aside (raw_regs, regnum, ®_val[0]);
|
2497 |
|
|
|
2498 |
|
|
if (!is_pa_2)
|
2499 |
|
|
{
|
2500 |
|
|
printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
|
2501 |
|
|
}
|
2502 |
|
|
else
|
2503 |
|
|
{
|
2504 |
|
|
/* Fancy % formats to prevent leading zeros. */
|
2505 |
|
|
if (reg_val[0] == 0)
|
2506 |
|
|
printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
|
2507 |
|
|
else
|
2508 |
|
|
printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
|
2509 |
|
|
reg_val[0], reg_val[1]);
|
2510 |
|
|
}
|
2511 |
|
|
}
|
2512 |
|
|
else
|
2513 |
|
|
/* Note that real floating point values only start at
|
2514 |
|
|
FP4_REGNUM. FP0 and up are just status and error
|
2515 |
|
|
registers, which have integral (bit) values. */
|
2516 |
|
|
pa_print_fp_reg (regnum);
|
2517 |
|
|
}
|
2518 |
|
|
|
2519 |
|
|
/********** new function ********************/
|
2520 |
|
|
void
|
2521 |
|
|
pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
|
2522 |
|
|
enum precision_type precision)
|
2523 |
|
|
{
|
2524 |
|
|
char raw_regs[REGISTER_BYTES];
|
2525 |
|
|
int i;
|
2526 |
|
|
|
2527 |
|
|
/* Make a copy of gdb's save area (may cause actual
|
2528 |
|
|
reads from the target). */
|
2529 |
|
|
for (i = 0; i < NUM_REGS; i++)
|
2530 |
|
|
read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
|
2531 |
|
|
|
2532 |
|
|
if (regnum == -1)
|
2533 |
|
|
pa_strcat_registers (raw_regs, regnum, fpregs, stream);
|
2534 |
|
|
|
2535 |
|
|
else if (regnum < FP4_REGNUM)
|
2536 |
|
|
{
|
2537 |
|
|
long reg_val[2];
|
2538 |
|
|
|
2539 |
|
|
/* Why is the value not passed through "extract_signed_integer"
|
2540 |
|
|
as in "pa_print_registers" below? */
|
2541 |
|
|
pa_register_look_aside (raw_regs, regnum, ®_val[0]);
|
2542 |
|
|
|
2543 |
|
|
if (!is_pa_2)
|
2544 |
|
|
{
|
2545 |
|
|
fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
|
2546 |
|
|
}
|
2547 |
|
|
else
|
2548 |
|
|
{
|
2549 |
|
|
/* Fancy % formats to prevent leading zeros. */
|
2550 |
|
|
if (reg_val[0] == 0)
|
2551 |
|
|
fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
|
2552 |
|
|
reg_val[1]);
|
2553 |
|
|
else
|
2554 |
|
|
fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
|
2555 |
|
|
reg_val[0], reg_val[1]);
|
2556 |
|
|
}
|
2557 |
|
|
}
|
2558 |
|
|
else
|
2559 |
|
|
/* Note that real floating point values only start at
|
2560 |
|
|
FP4_REGNUM. FP0 and up are just status and error
|
2561 |
|
|
registers, which have integral (bit) values. */
|
2562 |
|
|
pa_strcat_fp_reg (regnum, stream, precision);
|
2563 |
|
|
}
|
2564 |
|
|
|
2565 |
|
|
/* If this is a PA2.0 machine, fetch the real 64-bit register
|
2566 |
|
|
value. Otherwise use the info from gdb's saved register area.
|
2567 |
|
|
|
2568 |
|
|
Note that reg_val is really expected to be an array of longs,
|
2569 |
|
|
with two elements. */
|
2570 |
|
|
static void
|
2571 |
|
|
pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
|
2572 |
|
|
{
|
2573 |
|
|
static int know_which = 0; /* False */
|
2574 |
|
|
|
2575 |
|
|
int regaddr;
|
2576 |
|
|
unsigned int offset;
|
2577 |
|
|
register int i;
|
2578 |
|
|
int start;
|
2579 |
|
|
|
2580 |
|
|
|
2581 |
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
2582 |
|
|
long long reg_val;
|
2583 |
|
|
|
2584 |
|
|
if (!know_which)
|
2585 |
|
|
{
|
2586 |
|
|
if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
|
2587 |
|
|
{
|
2588 |
|
|
is_pa_2 = (1 == 1);
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
know_which = 1; /* True */
|
2592 |
|
|
}
|
2593 |
|
|
|
2594 |
|
|
raw_val[0] = 0;
|
2595 |
|
|
raw_val[1] = 0;
|
2596 |
|
|
|
2597 |
|
|
if (!is_pa_2)
|
2598 |
|
|
{
|
2599 |
|
|
raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
|
2600 |
|
|
return;
|
2601 |
|
|
}
|
2602 |
|
|
|
2603 |
|
|
/* Code below copied from hppah-nat.c, with fixes for wide
|
2604 |
|
|
registers, using different area of save_state, etc. */
|
2605 |
|
|
if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
|
2606 |
|
|
!HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
|
2607 |
|
|
{
|
2608 |
|
|
/* Use narrow regs area of save_state and default macro. */
|
2609 |
|
|
offset = U_REGS_OFFSET;
|
2610 |
|
|
regaddr = register_addr (regnum, offset);
|
2611 |
|
|
start = 1;
|
2612 |
|
|
}
|
2613 |
|
|
else
|
2614 |
|
|
{
|
2615 |
|
|
/* Use wide regs area, and calculate registers as 8 bytes wide.
|
2616 |
|
|
|
2617 |
|
|
We'd like to do this, but current version of "C" doesn't
|
2618 |
|
|
permit "offsetof":
|
2619 |
|
|
|
2620 |
|
|
offset = offsetof(save_state_t, ss_wide);
|
2621 |
|
|
|
2622 |
|
|
Note that to avoid "C" doing typed pointer arithmetic, we
|
2623 |
|
|
have to cast away the type in our offset calculation:
|
2624 |
|
|
otherwise we get an offset of 1! */
|
2625 |
|
|
|
2626 |
|
|
/* NB: save_state_t is not available before HPUX 9.
|
2627 |
|
|
The ss_wide field is not available previous to HPUX 10.20,
|
2628 |
|
|
so to avoid compile-time warnings, we only compile this for
|
2629 |
|
|
PA 2.0 processors. This control path should only be followed
|
2630 |
|
|
if we're debugging a PA 2.0 processor, so this should not cause
|
2631 |
|
|
problems. */
|
2632 |
|
|
|
2633 |
|
|
/* #if the following code out so that this file can still be
|
2634 |
|
|
compiled on older HPUX boxes (< 10.20) which don't have
|
2635 |
|
|
this structure/structure member. */
|
2636 |
|
|
#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
|
2637 |
|
|
save_state_t temp;
|
2638 |
|
|
|
2639 |
|
|
offset = ((int) &temp.ss_wide) - ((int) &temp);
|
2640 |
|
|
regaddr = offset + regnum * 8;
|
2641 |
|
|
start = 0;
|
2642 |
|
|
#endif
|
2643 |
|
|
}
|
2644 |
|
|
|
2645 |
|
|
for (i = start; i < 2; i++)
|
2646 |
|
|
{
|
2647 |
|
|
errno = 0;
|
2648 |
|
|
raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
|
2649 |
|
|
(PTRACE_ARG3_TYPE) regaddr, 0);
|
2650 |
|
|
if (errno != 0)
|
2651 |
|
|
{
|
2652 |
|
|
/* Warning, not error, in case we are attached; sometimes the
|
2653 |
|
|
kernel doesn't let us at the registers. */
|
2654 |
|
|
char *err = safe_strerror (errno);
|
2655 |
|
|
char *msg = alloca (strlen (err) + 128);
|
2656 |
|
|
sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
|
2657 |
|
|
warning (msg);
|
2658 |
|
|
goto error_exit;
|
2659 |
|
|
}
|
2660 |
|
|
|
2661 |
|
|
regaddr += sizeof (long);
|
2662 |
|
|
}
|
2663 |
|
|
|
2664 |
|
|
if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
|
2665 |
|
|
raw_val[1] &= ~0x3; /* I think we're masking out space bits */
|
2666 |
|
|
|
2667 |
|
|
error_exit:
|
2668 |
|
|
;
|
2669 |
|
|
}
|
2670 |
|
|
|
2671 |
|
|
/* "Info all-reg" command */
|
2672 |
|
|
|
2673 |
|
|
static void
|
2674 |
|
|
pa_print_registers (char *raw_regs, int regnum, int fpregs)
|
2675 |
|
|
{
|
2676 |
|
|
int i, j;
|
2677 |
|
|
/* Alas, we are compiled so that "long long" is 32 bits */
|
2678 |
|
|
long raw_val[2];
|
2679 |
|
|
long long_val;
|
2680 |
|
|
int rows = 48, columns = 2;
|
2681 |
|
|
|
2682 |
|
|
for (i = 0; i < rows; i++)
|
2683 |
|
|
{
|
2684 |
|
|
for (j = 0; j < columns; j++)
|
2685 |
|
|
{
|
2686 |
|
|
/* We display registers in column-major order. */
|
2687 |
|
|
int regnum = i + j * rows;
|
2688 |
|
|
|
2689 |
|
|
/* Q: Why is the value passed through "extract_signed_integer",
|
2690 |
|
|
while above, in "pa_do_registers_info" it isn't?
|
2691 |
|
|
A: ? */
|
2692 |
|
|
pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
|
2693 |
|
|
|
2694 |
|
|
/* Even fancier % formats to prevent leading zeros
|
2695 |
|
|
and still maintain the output in columns. */
|
2696 |
|
|
if (!is_pa_2)
|
2697 |
|
|
{
|
2698 |
|
|
/* Being big-endian, on this machine the low bits
|
2699 |
|
|
(the ones we want to look at) are in the second longword. */
|
2700 |
|
|
long_val = extract_signed_integer (&raw_val[1], 4);
|
2701 |
|
|
printf_filtered ("%10.10s: %8x ",
|
2702 |
|
|
REGISTER_NAME (regnum), long_val);
|
2703 |
|
|
}
|
2704 |
|
|
else
|
2705 |
|
|
{
|
2706 |
|
|
/* raw_val = extract_signed_integer(&raw_val, 8); */
|
2707 |
|
|
if (raw_val[0] == 0)
|
2708 |
|
|
printf_filtered ("%10.10s: %8x ",
|
2709 |
|
|
REGISTER_NAME (regnum), raw_val[1]);
|
2710 |
|
|
else
|
2711 |
|
|
printf_filtered ("%10.10s: %8x%8.8x ",
|
2712 |
|
|
REGISTER_NAME (regnum),
|
2713 |
|
|
raw_val[0], raw_val[1]);
|
2714 |
|
|
}
|
2715 |
|
|
}
|
2716 |
|
|
printf_unfiltered ("\n");
|
2717 |
|
|
}
|
2718 |
|
|
|
2719 |
|
|
if (fpregs)
|
2720 |
|
|
for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
|
2721 |
|
|
pa_print_fp_reg (i);
|
2722 |
|
|
}
|
2723 |
|
|
|
2724 |
|
|
/************* new function ******************/
|
2725 |
|
|
static void
|
2726 |
|
|
pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
|
2727 |
|
|
struct ui_file *stream)
|
2728 |
|
|
{
|
2729 |
|
|
int i, j;
|
2730 |
|
|
long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
|
2731 |
|
|
long long_val;
|
2732 |
|
|
enum precision_type precision;
|
2733 |
|
|
|
2734 |
|
|
precision = unspecified_precision;
|
2735 |
|
|
|
2736 |
|
|
for (i = 0; i < 18; i++)
|
2737 |
|
|
{
|
2738 |
|
|
for (j = 0; j < 4; j++)
|
2739 |
|
|
{
|
2740 |
|
|
/* Q: Why is the value passed through "extract_signed_integer",
|
2741 |
|
|
while above, in "pa_do_registers_info" it isn't?
|
2742 |
|
|
A: ? */
|
2743 |
|
|
pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
|
2744 |
|
|
|
2745 |
|
|
/* Even fancier % formats to prevent leading zeros
|
2746 |
|
|
and still maintain the output in columns. */
|
2747 |
|
|
if (!is_pa_2)
|
2748 |
|
|
{
|
2749 |
|
|
/* Being big-endian, on this machine the low bits
|
2750 |
|
|
(the ones we want to look at) are in the second longword. */
|
2751 |
|
|
long_val = extract_signed_integer (&raw_val[1], 4);
|
2752 |
|
|
fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
|
2753 |
|
|
}
|
2754 |
|
|
else
|
2755 |
|
|
{
|
2756 |
|
|
/* raw_val = extract_signed_integer(&raw_val, 8); */
|
2757 |
|
|
if (raw_val[0] == 0)
|
2758 |
|
|
fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
|
2759 |
|
|
raw_val[1]);
|
2760 |
|
|
else
|
2761 |
|
|
fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
|
2762 |
|
|
raw_val[0], raw_val[1]);
|
2763 |
|
|
}
|
2764 |
|
|
}
|
2765 |
|
|
fprintf_unfiltered (stream, "\n");
|
2766 |
|
|
}
|
2767 |
|
|
|
2768 |
|
|
if (fpregs)
|
2769 |
|
|
for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
|
2770 |
|
|
pa_strcat_fp_reg (i, stream, precision);
|
2771 |
|
|
}
|
2772 |
|
|
|
2773 |
|
|
static void
|
2774 |
|
|
pa_print_fp_reg (int i)
|
2775 |
|
|
{
|
2776 |
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
2777 |
|
|
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
2778 |
|
|
|
2779 |
|
|
/* Get 32bits of data. */
|
2780 |
|
|
read_relative_register_raw_bytes (i, raw_buffer);
|
2781 |
|
|
|
2782 |
|
|
/* Put it in the buffer. No conversions are ever necessary. */
|
2783 |
|
|
memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
|
2784 |
|
|
|
2785 |
|
|
fputs_filtered (REGISTER_NAME (i), gdb_stdout);
|
2786 |
|
|
print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
|
2787 |
|
|
fputs_filtered ("(single precision) ", gdb_stdout);
|
2788 |
|
|
|
2789 |
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
|
2790 |
|
|
1, 0, Val_pretty_default);
|
2791 |
|
|
printf_filtered ("\n");
|
2792 |
|
|
|
2793 |
|
|
/* If "i" is even, then this register can also be a double-precision
|
2794 |
|
|
FP register. Dump it out as such. */
|
2795 |
|
|
if ((i % 2) == 0)
|
2796 |
|
|
{
|
2797 |
|
|
/* Get the data in raw format for the 2nd half. */
|
2798 |
|
|
read_relative_register_raw_bytes (i + 1, raw_buffer);
|
2799 |
|
|
|
2800 |
|
|
/* Copy it into the appropriate part of the virtual buffer. */
|
2801 |
|
|
memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
|
2802 |
|
|
REGISTER_RAW_SIZE (i));
|
2803 |
|
|
|
2804 |
|
|
/* Dump it as a double. */
|
2805 |
|
|
fputs_filtered (REGISTER_NAME (i), gdb_stdout);
|
2806 |
|
|
print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
|
2807 |
|
|
fputs_filtered ("(double precision) ", gdb_stdout);
|
2808 |
|
|
|
2809 |
|
|
val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
|
2810 |
|
|
1, 0, Val_pretty_default);
|
2811 |
|
|
printf_filtered ("\n");
|
2812 |
|
|
}
|
2813 |
|
|
}
|
2814 |
|
|
|
2815 |
|
|
/*************** new function ***********************/
|
2816 |
|
|
static void
|
2817 |
|
|
pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
|
2818 |
|
|
{
|
2819 |
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
2820 |
|
|
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
2821 |
|
|
|
2822 |
|
|
fputs_filtered (REGISTER_NAME (i), stream);
|
2823 |
|
|
print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
|
2824 |
|
|
|
2825 |
|
|
/* Get 32bits of data. */
|
2826 |
|
|
read_relative_register_raw_bytes (i, raw_buffer);
|
2827 |
|
|
|
2828 |
|
|
/* Put it in the buffer. No conversions are ever necessary. */
|
2829 |
|
|
memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
|
2830 |
|
|
|
2831 |
|
|
if (precision == double_precision && (i % 2) == 0)
|
2832 |
|
|
{
|
2833 |
|
|
|
2834 |
|
|
char raw_buf[MAX_REGISTER_RAW_SIZE];
|
2835 |
|
|
|
2836 |
|
|
/* Get the data in raw format for the 2nd half. */
|
2837 |
|
|
read_relative_register_raw_bytes (i + 1, raw_buf);
|
2838 |
|
|
|
2839 |
|
|
/* Copy it into the appropriate part of the virtual buffer. */
|
2840 |
|
|
memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
|
2841 |
|
|
|
2842 |
|
|
val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
|
2843 |
|
|
1, 0, Val_pretty_default);
|
2844 |
|
|
|
2845 |
|
|
}
|
2846 |
|
|
else
|
2847 |
|
|
{
|
2848 |
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
|
2849 |
|
|
1, 0, Val_pretty_default);
|
2850 |
|
|
}
|
2851 |
|
|
|
2852 |
|
|
}
|
2853 |
|
|
|
2854 |
|
|
/* Return one if PC is in the call path of a trampoline, else return zero.
|
2855 |
|
|
|
2856 |
|
|
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
2857 |
|
|
just shared library trampolines (import, export). */
|
2858 |
|
|
|
2859 |
|
|
int
|
2860 |
|
|
in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
2861 |
|
|
{
|
2862 |
|
|
struct minimal_symbol *minsym;
|
2863 |
|
|
struct unwind_table_entry *u;
|
2864 |
|
|
static CORE_ADDR dyncall = 0;
|
2865 |
|
|
static CORE_ADDR sr4export = 0;
|
2866 |
|
|
|
2867 |
|
|
#ifdef GDB_TARGET_IS_HPPA_20W
|
2868 |
|
|
/* PA64 has a completely different stub/trampoline scheme. Is it
|
2869 |
|
|
better? Maybe. It's certainly harder to determine with any
|
2870 |
|
|
certainty that we are in a stub because we can not refer to the
|
2871 |
|
|
unwinders to help.
|
2872 |
|
|
|
2873 |
|
|
The heuristic is simple. Try to lookup the current PC value in th
|
2874 |
|
|
minimal symbol table. If that fails, then assume we are not in a
|
2875 |
|
|
stub and return.
|
2876 |
|
|
|
2877 |
|
|
Then see if the PC value falls within the section bounds for the
|
2878 |
|
|
section containing the minimal symbol we found in the first
|
2879 |
|
|
step. If it does, then assume we are not in a stub and return.
|
2880 |
|
|
|
2881 |
|
|
Finally peek at the instructions to see if they look like a stub. */
|
2882 |
|
|
{
|
2883 |
|
|
struct minimal_symbol *minsym;
|
2884 |
|
|
asection *sec;
|
2885 |
|
|
CORE_ADDR addr;
|
2886 |
|
|
int insn, i;
|
2887 |
|
|
|
2888 |
|
|
minsym = lookup_minimal_symbol_by_pc (pc);
|
2889 |
|
|
if (! minsym)
|
2890 |
|
|
return 0;
|
2891 |
|
|
|
2892 |
|
|
sec = SYMBOL_BFD_SECTION (minsym);
|
2893 |
|
|
|
2894 |
|
|
if (sec->vma <= pc
|
2895 |
|
|
&& sec->vma + sec->_cooked_size < pc)
|
2896 |
|
|
return 0;
|
2897 |
|
|
|
2898 |
|
|
/* We might be in a stub. Peek at the instructions. Stubs are 3
|
2899 |
|
|
instructions long. */
|
2900 |
|
|
insn = read_memory_integer (pc, 4);
|
2901 |
|
|
|
2902 |
|
|
/* Find out where we think we are within the stub. */
|
2903 |
|
|
if ((insn & 0xffffc00e) == 0x53610000)
|
2904 |
|
|
addr = pc;
|
2905 |
|
|
else if ((insn & 0xffffffff) == 0xe820d000)
|
2906 |
|
|
addr = pc - 4;
|
2907 |
|
|
else if ((insn & 0xffffc00e) == 0x537b0000)
|
2908 |
|
|
addr = pc - 8;
|
2909 |
|
|
else
|
2910 |
|
|
return 0;
|
2911 |
|
|
|
2912 |
|
|
/* Now verify each insn in the range looks like a stub instruction. */
|
2913 |
|
|
insn = read_memory_integer (addr, 4);
|
2914 |
|
|
if ((insn & 0xffffc00e) != 0x53610000)
|
2915 |
|
|
return 0;
|
2916 |
|
|
|
2917 |
|
|
/* Now verify each insn in the range looks like a stub instruction. */
|
2918 |
|
|
insn = read_memory_integer (addr + 4, 4);
|
2919 |
|
|
if ((insn & 0xffffffff) != 0xe820d000)
|
2920 |
|
|
return 0;
|
2921 |
|
|
|
2922 |
|
|
/* Now verify each insn in the range looks like a stub instruction. */
|
2923 |
|
|
insn = read_memory_integer (addr + 8, 4);
|
2924 |
|
|
if ((insn & 0xffffc00e) != 0x537b0000)
|
2925 |
|
|
return 0;
|
2926 |
|
|
|
2927 |
|
|
/* Looks like a stub. */
|
2928 |
|
|
return 1;
|
2929 |
|
|
}
|
2930 |
|
|
#endif
|
2931 |
|
|
|
2932 |
|
|
/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
|
2933 |
|
|
new exec file */
|
2934 |
|
|
|
2935 |
|
|
/* First see if PC is in one of the two C-library trampolines. */
|
2936 |
|
|
if (!dyncall)
|
2937 |
|
|
{
|
2938 |
|
|
minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
2939 |
|
|
if (minsym)
|
2940 |
|
|
dyncall = SYMBOL_VALUE_ADDRESS (minsym);
|
2941 |
|
|
else
|
2942 |
|
|
dyncall = -1;
|
2943 |
|
|
}
|
2944 |
|
|
|
2945 |
|
|
if (!sr4export)
|
2946 |
|
|
{
|
2947 |
|
|
minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
|
2948 |
|
|
if (minsym)
|
2949 |
|
|
sr4export = SYMBOL_VALUE_ADDRESS (minsym);
|
2950 |
|
|
else
|
2951 |
|
|
sr4export = -1;
|
2952 |
|
|
}
|
2953 |
|
|
|
2954 |
|
|
if (pc == dyncall || pc == sr4export)
|
2955 |
|
|
return 1;
|
2956 |
|
|
|
2957 |
|
|
minsym = lookup_minimal_symbol_by_pc (pc);
|
2958 |
|
|
if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
|
2959 |
|
|
return 1;
|
2960 |
|
|
|
2961 |
|
|
/* Get the unwind descriptor corresponding to PC, return zero
|
2962 |
|
|
if no unwind was found. */
|
2963 |
|
|
u = find_unwind_entry (pc);
|
2964 |
|
|
if (!u)
|
2965 |
|
|
return 0;
|
2966 |
|
|
|
2967 |
|
|
/* If this isn't a linker stub, then return now. */
|
2968 |
|
|
if (u->stub_unwind.stub_type == 0)
|
2969 |
|
|
return 0;
|
2970 |
|
|
|
2971 |
|
|
/* By definition a long-branch stub is a call stub. */
|
2972 |
|
|
if (u->stub_unwind.stub_type == LONG_BRANCH)
|
2973 |
|
|
return 1;
|
2974 |
|
|
|
2975 |
|
|
/* The call and return path execute the same instructions within
|
2976 |
|
|
an IMPORT stub! So an IMPORT stub is both a call and return
|
2977 |
|
|
trampoline. */
|
2978 |
|
|
if (u->stub_unwind.stub_type == IMPORT)
|
2979 |
|
|
return 1;
|
2980 |
|
|
|
2981 |
|
|
/* Parameter relocation stubs always have a call path and may have a
|
2982 |
|
|
return path. */
|
2983 |
|
|
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
2984 |
|
|
|| u->stub_unwind.stub_type == EXPORT)
|
2985 |
|
|
{
|
2986 |
|
|
CORE_ADDR addr;
|
2987 |
|
|
|
2988 |
|
|
/* Search forward from the current PC until we hit a branch
|
2989 |
|
|
or the end of the stub. */
|
2990 |
|
|
for (addr = pc; addr <= u->region_end; addr += 4)
|
2991 |
|
|
{
|
2992 |
|
|
unsigned long insn;
|
2993 |
|
|
|
2994 |
|
|
insn = read_memory_integer (addr, 4);
|
2995 |
|
|
|
2996 |
|
|
/* Does it look like a bl? If so then it's the call path, if
|
2997 |
|
|
we find a bv or be first, then we're on the return path. */
|
2998 |
|
|
if ((insn & 0xfc00e000) == 0xe8000000)
|
2999 |
|
|
return 1;
|
3000 |
|
|
else if ((insn & 0xfc00e001) == 0xe800c000
|
3001 |
|
|
|| (insn & 0xfc000000) == 0xe0000000)
|
3002 |
|
|
return 0;
|
3003 |
|
|
}
|
3004 |
|
|
|
3005 |
|
|
/* Should never happen. */
|
3006 |
|
|
warning ("Unable to find branch in parameter relocation stub.\n");
|
3007 |
|
|
return 0;
|
3008 |
|
|
}
|
3009 |
|
|
|
3010 |
|
|
/* Unknown stub type. For now, just return zero. */
|
3011 |
|
|
return 0;
|
3012 |
|
|
}
|
3013 |
|
|
|
3014 |
|
|
/* Return one if PC is in the return path of a trampoline, else return zero.
|
3015 |
|
|
|
3016 |
|
|
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
3017 |
|
|
just shared library trampolines (import, export). */
|
3018 |
|
|
|
3019 |
|
|
int
|
3020 |
|
|
in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
3021 |
|
|
{
|
3022 |
|
|
struct unwind_table_entry *u;
|
3023 |
|
|
|
3024 |
|
|
/* Get the unwind descriptor corresponding to PC, return zero
|
3025 |
|
|
if no unwind was found. */
|
3026 |
|
|
u = find_unwind_entry (pc);
|
3027 |
|
|
if (!u)
|
3028 |
|
|
return 0;
|
3029 |
|
|
|
3030 |
|
|
/* If this isn't a linker stub or it's just a long branch stub, then
|
3031 |
|
|
return zero. */
|
3032 |
|
|
if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
|
3033 |
|
|
return 0;
|
3034 |
|
|
|
3035 |
|
|
/* The call and return path execute the same instructions within
|
3036 |
|
|
an IMPORT stub! So an IMPORT stub is both a call and return
|
3037 |
|
|
trampoline. */
|
3038 |
|
|
if (u->stub_unwind.stub_type == IMPORT)
|
3039 |
|
|
return 1;
|
3040 |
|
|
|
3041 |
|
|
/* Parameter relocation stubs always have a call path and may have a
|
3042 |
|
|
return path. */
|
3043 |
|
|
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
3044 |
|
|
|| u->stub_unwind.stub_type == EXPORT)
|
3045 |
|
|
{
|
3046 |
|
|
CORE_ADDR addr;
|
3047 |
|
|
|
3048 |
|
|
/* Search forward from the current PC until we hit a branch
|
3049 |
|
|
or the end of the stub. */
|
3050 |
|
|
for (addr = pc; addr <= u->region_end; addr += 4)
|
3051 |
|
|
{
|
3052 |
|
|
unsigned long insn;
|
3053 |
|
|
|
3054 |
|
|
insn = read_memory_integer (addr, 4);
|
3055 |
|
|
|
3056 |
|
|
/* Does it look like a bl? If so then it's the call path, if
|
3057 |
|
|
we find a bv or be first, then we're on the return path. */
|
3058 |
|
|
if ((insn & 0xfc00e000) == 0xe8000000)
|
3059 |
|
|
return 0;
|
3060 |
|
|
else if ((insn & 0xfc00e001) == 0xe800c000
|
3061 |
|
|
|| (insn & 0xfc000000) == 0xe0000000)
|
3062 |
|
|
return 1;
|
3063 |
|
|
}
|
3064 |
|
|
|
3065 |
|
|
/* Should never happen. */
|
3066 |
|
|
warning ("Unable to find branch in parameter relocation stub.\n");
|
3067 |
|
|
return 0;
|
3068 |
|
|
}
|
3069 |
|
|
|
3070 |
|
|
/* Unknown stub type. For now, just return zero. */
|
3071 |
|
|
return 0;
|
3072 |
|
|
|
3073 |
|
|
}
|
3074 |
|
|
|
3075 |
|
|
/* Figure out if PC is in a trampoline, and if so find out where
|
3076 |
|
|
the trampoline will jump to. If not in a trampoline, return zero.
|
3077 |
|
|
|
3078 |
|
|
Simple code examination probably is not a good idea since the code
|
3079 |
|
|
sequences in trampolines can also appear in user code.
|
3080 |
|
|
|
3081 |
|
|
We use unwinds and information from the minimal symbol table to
|
3082 |
|
|
determine when we're in a trampoline. This won't work for ELF
|
3083 |
|
|
(yet) since it doesn't create stub unwind entries. Whether or
|
3084 |
|
|
not ELF will create stub unwinds or normal unwinds for linker
|
3085 |
|
|
stubs is still being debated.
|
3086 |
|
|
|
3087 |
|
|
This should handle simple calls through dyncall or sr4export,
|
3088 |
|
|
long calls, argument relocation stubs, and dyncall/sr4export
|
3089 |
|
|
calling an argument relocation stub. It even handles some stubs
|
3090 |
|
|
used in dynamic executables. */
|
3091 |
|
|
|
3092 |
|
|
CORE_ADDR
|
3093 |
|
|
skip_trampoline_code (CORE_ADDR pc, char *name)
|
3094 |
|
|
{
|
3095 |
|
|
long orig_pc = pc;
|
3096 |
|
|
long prev_inst, curr_inst, loc;
|
3097 |
|
|
static CORE_ADDR dyncall = 0;
|
3098 |
|
|
static CORE_ADDR dyncall_external = 0;
|
3099 |
|
|
static CORE_ADDR sr4export = 0;
|
3100 |
|
|
struct minimal_symbol *msym;
|
3101 |
|
|
struct unwind_table_entry *u;
|
3102 |
|
|
|
3103 |
|
|
/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
|
3104 |
|
|
new exec file */
|
3105 |
|
|
|
3106 |
|
|
if (!dyncall)
|
3107 |
|
|
{
|
3108 |
|
|
msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
3109 |
|
|
if (msym)
|
3110 |
|
|
dyncall = SYMBOL_VALUE_ADDRESS (msym);
|
3111 |
|
|
else
|
3112 |
|
|
dyncall = -1;
|
3113 |
|
|
}
|
3114 |
|
|
|
3115 |
|
|
if (!dyncall_external)
|
3116 |
|
|
{
|
3117 |
|
|
msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
|
3118 |
|
|
if (msym)
|
3119 |
|
|
dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
|
3120 |
|
|
else
|
3121 |
|
|
dyncall_external = -1;
|
3122 |
|
|
}
|
3123 |
|
|
|
3124 |
|
|
if (!sr4export)
|
3125 |
|
|
{
|
3126 |
|
|
msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
|
3127 |
|
|
if (msym)
|
3128 |
|
|
sr4export = SYMBOL_VALUE_ADDRESS (msym);
|
3129 |
|
|
else
|
3130 |
|
|
sr4export = -1;
|
3131 |
|
|
}
|
3132 |
|
|
|
3133 |
|
|
/* Addresses passed to dyncall may *NOT* be the actual address
|
3134 |
|
|
of the function. So we may have to do something special. */
|
3135 |
|
|
if (pc == dyncall)
|
3136 |
|
|
{
|
3137 |
|
|
pc = (CORE_ADDR) read_register (22);
|
3138 |
|
|
|
3139 |
|
|
/* If bit 30 (counting from the left) is on, then pc is the address of
|
3140 |
|
|
the PLT entry for this function, not the address of the function
|
3141 |
|
|
itself. Bit 31 has meaning too, but only for MPE. */
|
3142 |
|
|
if (pc & 0x2)
|
3143 |
|
|
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
3144 |
|
|
}
|
3145 |
|
|
if (pc == dyncall_external)
|
3146 |
|
|
{
|
3147 |
|
|
pc = (CORE_ADDR) read_register (22);
|
3148 |
|
|
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
3149 |
|
|
}
|
3150 |
|
|
else if (pc == sr4export)
|
3151 |
|
|
pc = (CORE_ADDR) (read_register (22));
|
3152 |
|
|
|
3153 |
|
|
/* Get the unwind descriptor corresponding to PC, return zero
|
3154 |
|
|
if no unwind was found. */
|
3155 |
|
|
u = find_unwind_entry (pc);
|
3156 |
|
|
if (!u)
|
3157 |
|
|
return 0;
|
3158 |
|
|
|
3159 |
|
|
/* If this isn't a linker stub, then return now. */
|
3160 |
|
|
/* elz: attention here! (FIXME) because of a compiler/linker
|
3161 |
|
|
error, some stubs which should have a non zero stub_unwind.stub_type
|
3162 |
|
|
have unfortunately a value of zero. So this function would return here
|
3163 |
|
|
as if we were not in a trampoline. To fix this, we go look at the partial
|
3164 |
|
|
symbol information, which reports this guy as a stub.
|
3165 |
|
|
(FIXME): Unfortunately, we are not that lucky: it turns out that the
|
3166 |
|
|
partial symbol information is also wrong sometimes. This is because
|
3167 |
|
|
when it is entered (somread.c::som_symtab_read()) it can happen that
|
3168 |
|
|
if the type of the symbol (from the som) is Entry, and the symbol is
|
3169 |
|
|
in a shared library, then it can also be a trampoline. This would
|
3170 |
|
|
be OK, except that I believe the way they decide if we are ina shared library
|
3171 |
|
|
does not work. SOOOO..., even if we have a regular function w/o trampolines
|
3172 |
|
|
its minimal symbol can be assigned type mst_solib_trampoline.
|
3173 |
|
|
Also, if we find that the symbol is a real stub, then we fix the unwind
|
3174 |
|
|
descriptor, and define the stub type to be EXPORT.
|
3175 |
|
|
Hopefully this is correct most of the times. */
|
3176 |
|
|
if (u->stub_unwind.stub_type == 0)
|
3177 |
|
|
{
|
3178 |
|
|
|
3179 |
|
|
/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
|
3180 |
|
|
we can delete all the code which appears between the lines */
|
3181 |
|
|
/*--------------------------------------------------------------------------*/
|
3182 |
|
|
msym = lookup_minimal_symbol_by_pc (pc);
|
3183 |
|
|
|
3184 |
|
|
if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
|
3185 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3186 |
|
|
|
3187 |
|
|
else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
|
3188 |
|
|
{
|
3189 |
|
|
struct objfile *objfile;
|
3190 |
|
|
struct minimal_symbol *msymbol;
|
3191 |
|
|
int function_found = 0;
|
3192 |
|
|
|
3193 |
|
|
/* go look if there is another minimal symbol with the same name as
|
3194 |
|
|
this one, but with type mst_text. This would happen if the msym
|
3195 |
|
|
is an actual trampoline, in which case there would be another
|
3196 |
|
|
symbol with the same name corresponding to the real function */
|
3197 |
|
|
|
3198 |
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
3199 |
|
|
{
|
3200 |
|
|
if (MSYMBOL_TYPE (msymbol) == mst_text
|
3201 |
|
|
&& STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
|
3202 |
|
|
{
|
3203 |
|
|
function_found = 1;
|
3204 |
|
|
break;
|
3205 |
|
|
}
|
3206 |
|
|
}
|
3207 |
|
|
|
3208 |
|
|
if (function_found)
|
3209 |
|
|
/* the type of msym is correct (mst_solib_trampoline), but
|
3210 |
|
|
the unwind info is wrong, so set it to the correct value */
|
3211 |
|
|
u->stub_unwind.stub_type = EXPORT;
|
3212 |
|
|
else
|
3213 |
|
|
/* the stub type info in the unwind is correct (this is not a
|
3214 |
|
|
trampoline), but the msym type information is wrong, it
|
3215 |
|
|
should be mst_text. So we need to fix the msym, and also
|
3216 |
|
|
get out of this function */
|
3217 |
|
|
{
|
3218 |
|
|
MSYMBOL_TYPE (msym) = mst_text;
|
3219 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3220 |
|
|
}
|
3221 |
|
|
}
|
3222 |
|
|
|
3223 |
|
|
/*--------------------------------------------------------------------------*/
|
3224 |
|
|
}
|
3225 |
|
|
|
3226 |
|
|
/* It's a stub. Search for a branch and figure out where it goes.
|
3227 |
|
|
Note we have to handle multi insn branch sequences like ldil;ble.
|
3228 |
|
|
Most (all?) other branches can be determined by examining the contents
|
3229 |
|
|
of certain registers and the stack. */
|
3230 |
|
|
|
3231 |
|
|
loc = pc;
|
3232 |
|
|
curr_inst = 0;
|
3233 |
|
|
prev_inst = 0;
|
3234 |
|
|
while (1)
|
3235 |
|
|
{
|
3236 |
|
|
/* Make sure we haven't walked outside the range of this stub. */
|
3237 |
|
|
if (u != find_unwind_entry (loc))
|
3238 |
|
|
{
|
3239 |
|
|
warning ("Unable to find branch in linker stub");
|
3240 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3241 |
|
|
}
|
3242 |
|
|
|
3243 |
|
|
prev_inst = curr_inst;
|
3244 |
|
|
curr_inst = read_memory_integer (loc, 4);
|
3245 |
|
|
|
3246 |
|
|
/* Does it look like a branch external using %r1? Then it's the
|
3247 |
|
|
branch from the stub to the actual function. */
|
3248 |
|
|
if ((curr_inst & 0xffe0e000) == 0xe0202000)
|
3249 |
|
|
{
|
3250 |
|
|
/* Yup. See if the previous instruction loaded
|
3251 |
|
|
a value into %r1. If so compute and return the jump address. */
|
3252 |
|
|
if ((prev_inst & 0xffe00000) == 0x20200000)
|
3253 |
|
|
return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
|
3254 |
|
|
else
|
3255 |
|
|
{
|
3256 |
|
|
warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
|
3257 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3258 |
|
|
}
|
3259 |
|
|
}
|
3260 |
|
|
|
3261 |
|
|
/* Does it look like a be 0(sr0,%r21)? OR
|
3262 |
|
|
Does it look like a be, n 0(sr0,%r21)? OR
|
3263 |
|
|
Does it look like a bve (r21)? (this is on PA2.0)
|
3264 |
|
|
Does it look like a bve, n(r21)? (this is also on PA2.0)
|
3265 |
|
|
That's the branch from an
|
3266 |
|
|
import stub to an export stub.
|
3267 |
|
|
|
3268 |
|
|
It is impossible to determine the target of the branch via
|
3269 |
|
|
simple examination of instructions and/or data (consider
|
3270 |
|
|
that the address in the plabel may be the address of the
|
3271 |
|
|
bind-on-reference routine in the dynamic loader).
|
3272 |
|
|
|
3273 |
|
|
So we have try an alternative approach.
|
3274 |
|
|
|
3275 |
|
|
Get the name of the symbol at our current location; it should
|
3276 |
|
|
be a stub symbol with the same name as the symbol in the
|
3277 |
|
|
shared library.
|
3278 |
|
|
|
3279 |
|
|
Then lookup a minimal symbol with the same name; we should
|
3280 |
|
|
get the minimal symbol for the target routine in the shared
|
3281 |
|
|
library as those take precedence of import/export stubs. */
|
3282 |
|
|
if ((curr_inst == 0xe2a00000) ||
|
3283 |
|
|
(curr_inst == 0xe2a00002) ||
|
3284 |
|
|
(curr_inst == 0xeaa0d000) ||
|
3285 |
|
|
(curr_inst == 0xeaa0d002))
|
3286 |
|
|
{
|
3287 |
|
|
struct minimal_symbol *stubsym, *libsym;
|
3288 |
|
|
|
3289 |
|
|
stubsym = lookup_minimal_symbol_by_pc (loc);
|
3290 |
|
|
if (stubsym == NULL)
|
3291 |
|
|
{
|
3292 |
|
|
warning ("Unable to find symbol for 0x%x", loc);
|
3293 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3294 |
|
|
}
|
3295 |
|
|
|
3296 |
|
|
libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
|
3297 |
|
|
if (libsym == NULL)
|
3298 |
|
|
{
|
3299 |
|
|
warning ("Unable to find library symbol for %s\n",
|
3300 |
|
|
SYMBOL_NAME (stubsym));
|
3301 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3302 |
|
|
}
|
3303 |
|
|
|
3304 |
|
|
return SYMBOL_VALUE (libsym);
|
3305 |
|
|
}
|
3306 |
|
|
|
3307 |
|
|
/* Does it look like bl X,%rp or bl X,%r0? Another way to do a
|
3308 |
|
|
branch from the stub to the actual function. */
|
3309 |
|
|
/*elz */
|
3310 |
|
|
else if ((curr_inst & 0xffe0e000) == 0xe8400000
|
3311 |
|
|
|| (curr_inst & 0xffe0e000) == 0xe8000000
|
3312 |
|
|
|| (curr_inst & 0xffe0e000) == 0xe800A000)
|
3313 |
|
|
return (loc + extract_17 (curr_inst) + 8) & ~0x3;
|
3314 |
|
|
|
3315 |
|
|
/* Does it look like bv (rp)? Note this depends on the
|
3316 |
|
|
current stack pointer being the same as the stack
|
3317 |
|
|
pointer in the stub itself! This is a branch on from the
|
3318 |
|
|
stub back to the original caller. */
|
3319 |
|
|
/*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
|
3320 |
|
|
else if ((curr_inst & 0xffe0f000) == 0xe840c000)
|
3321 |
|
|
{
|
3322 |
|
|
/* Yup. See if the previous instruction loaded
|
3323 |
|
|
rp from sp - 8. */
|
3324 |
|
|
if (prev_inst == 0x4bc23ff1)
|
3325 |
|
|
return (read_memory_integer
|
3326 |
|
|
(read_register (SP_REGNUM) - 8, 4)) & ~0x3;
|
3327 |
|
|
else
|
3328 |
|
|
{
|
3329 |
|
|
warning ("Unable to find restore of %%rp before bv (%%rp).");
|
3330 |
|
|
return orig_pc == pc ? 0 : pc & ~0x3;
|
3331 |
|
|
}
|
3332 |
|
|
}
|
3333 |
|
|
|
3334 |
|
|
/* elz: added this case to capture the new instruction
|
3335 |
|
|
at the end of the return part of an export stub used by
|
3336 |
|
|
the PA2.0: BVE, n (rp) */
|
3337 |
|
|
else if ((curr_inst & 0xffe0f000) == 0xe840d000)
|
3338 |
|
|
{
|
3339 |
|
|
return (read_memory_integer
|
3340 |
|
|
(read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
|
3341 |
|
|
}
|
3342 |
|
|
|
3343 |
|
|
/* What about be,n 0(sr0,%rp)? It's just another way we return to
|
3344 |
|
|
the original caller from the stub. Used in dynamic executables. */
|
3345 |
|
|
else if (curr_inst == 0xe0400002)
|
3346 |
|
|
{
|
3347 |
|
|
/* The value we jump to is sitting in sp - 24. But that's
|
3348 |
|
|
loaded several instructions before the be instruction.
|
3349 |
|
|
I guess we could check for the previous instruction being
|
3350 |
|
|
mtsp %r1,%sr0 if we want to do sanity checking. */
|
3351 |
|
|
return (read_memory_integer
|
3352 |
|
|
(read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
|
3353 |
|
|
}
|
3354 |
|
|
|
3355 |
|
|
/* Haven't found the branch yet, but we're still in the stub.
|
3356 |
|
|
Keep looking. */
|
3357 |
|
|
loc += 4;
|
3358 |
|
|
}
|
3359 |
|
|
}
|
3360 |
|
|
|
3361 |
|
|
|
3362 |
|
|
/* For the given instruction (INST), return any adjustment it makes
|
3363 |
|
|
to the stack pointer or zero for no adjustment.
|
3364 |
|
|
|
3365 |
|
|
This only handles instructions commonly found in prologues. */
|
3366 |
|
|
|
3367 |
|
|
static int
|
3368 |
|
|
prologue_inst_adjust_sp (unsigned long inst)
|
3369 |
|
|
{
|
3370 |
|
|
/* This must persist across calls. */
|
3371 |
|
|
static int save_high21;
|
3372 |
|
|
|
3373 |
|
|
/* The most common way to perform a stack adjustment ldo X(sp),sp */
|
3374 |
|
|
if ((inst & 0xffffc000) == 0x37de0000)
|
3375 |
|
|
return extract_14 (inst);
|
3376 |
|
|
|
3377 |
|
|
/* stwm X,D(sp) */
|
3378 |
|
|
if ((inst & 0xffe00000) == 0x6fc00000)
|
3379 |
|
|
return extract_14 (inst);
|
3380 |
|
|
|
3381 |
|
|
/* std,ma X,D(sp) */
|
3382 |
|
|
if ((inst & 0xffe00008) == 0x73c00008)
|
3383 |
|
|
return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
3384 |
|
|
|
3385 |
|
|
/* addil high21,%r1; ldo low11,(%r1),%r30)
|
3386 |
|
|
save high bits in save_high21 for later use. */
|
3387 |
|
|
if ((inst & 0xffe00000) == 0x28200000)
|
3388 |
|
|
{
|
3389 |
|
|
save_high21 = extract_21 (inst);
|
3390 |
|
|
return 0;
|
3391 |
|
|
}
|
3392 |
|
|
|
3393 |
|
|
if ((inst & 0xffff0000) == 0x343e0000)
|
3394 |
|
|
return save_high21 + extract_14 (inst);
|
3395 |
|
|
|
3396 |
|
|
/* fstws as used by the HP compilers. */
|
3397 |
|
|
if ((inst & 0xffffffe0) == 0x2fd01220)
|
3398 |
|
|
return extract_5_load (inst);
|
3399 |
|
|
|
3400 |
|
|
/* No adjustment. */
|
3401 |
|
|
return 0;
|
3402 |
|
|
}
|
3403 |
|
|
|
3404 |
|
|
/* Return nonzero if INST is a branch of some kind, else return zero. */
|
3405 |
|
|
|
3406 |
|
|
static int
|
3407 |
|
|
is_branch (unsigned long inst)
|
3408 |
|
|
{
|
3409 |
|
|
switch (inst >> 26)
|
3410 |
|
|
{
|
3411 |
|
|
case 0x20:
|
3412 |
|
|
case 0x21:
|
3413 |
|
|
case 0x22:
|
3414 |
|
|
case 0x23:
|
3415 |
|
|
case 0x27:
|
3416 |
|
|
case 0x28:
|
3417 |
|
|
case 0x29:
|
3418 |
|
|
case 0x2a:
|
3419 |
|
|
case 0x2b:
|
3420 |
|
|
case 0x2f:
|
3421 |
|
|
case 0x30:
|
3422 |
|
|
case 0x31:
|
3423 |
|
|
case 0x32:
|
3424 |
|
|
case 0x33:
|
3425 |
|
|
case 0x38:
|
3426 |
|
|
case 0x39:
|
3427 |
|
|
case 0x3a:
|
3428 |
|
|
case 0x3b:
|
3429 |
|
|
return 1;
|
3430 |
|
|
|
3431 |
|
|
default:
|
3432 |
|
|
return 0;
|
3433 |
|
|
}
|
3434 |
|
|
}
|
3435 |
|
|
|
3436 |
|
|
/* Return the register number for a GR which is saved by INST or
|
3437 |
|
|
zero it INST does not save a GR. */
|
3438 |
|
|
|
3439 |
|
|
static int
|
3440 |
|
|
inst_saves_gr (unsigned long inst)
|
3441 |
|
|
{
|
3442 |
|
|
/* Does it look like a stw? */
|
3443 |
|
|
if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
|
3444 |
|
|
|| (inst >> 26) == 0x1f
|
3445 |
|
|
|| ((inst >> 26) == 0x1f
|
3446 |
|
|
&& ((inst >> 6) == 0xa)))
|
3447 |
|
|
return extract_5R_store (inst);
|
3448 |
|
|
|
3449 |
|
|
/* Does it look like a std? */
|
3450 |
|
|
if ((inst >> 26) == 0x1c
|
3451 |
|
|
|| ((inst >> 26) == 0x03
|
3452 |
|
|
&& ((inst >> 6) & 0xf) == 0xb))
|
3453 |
|
|
return extract_5R_store (inst);
|
3454 |
|
|
|
3455 |
|
|
/* Does it look like a stwm? GCC & HPC may use this in prologues. */
|
3456 |
|
|
if ((inst >> 26) == 0x1b)
|
3457 |
|
|
return extract_5R_store (inst);
|
3458 |
|
|
|
3459 |
|
|
/* Does it look like sth or stb? HPC versions 9.0 and later use these
|
3460 |
|
|
too. */
|
3461 |
|
|
if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
|
3462 |
|
|
|| ((inst >> 26) == 0x3
|
3463 |
|
|
&& (((inst >> 6) & 0xf) == 0x8
|
3464 |
|
|
|| (inst >> 6) & 0xf) == 0x9))
|
3465 |
|
|
return extract_5R_store (inst);
|
3466 |
|
|
|
3467 |
|
|
return 0;
|
3468 |
|
|
}
|
3469 |
|
|
|
3470 |
|
|
/* Return the register number for a FR which is saved by INST or
|
3471 |
|
|
zero it INST does not save a FR.
|
3472 |
|
|
|
3473 |
|
|
Note we only care about full 64bit register stores (that's the only
|
3474 |
|
|
kind of stores the prologue will use).
|
3475 |
|
|
|
3476 |
|
|
FIXME: What about argument stores with the HP compiler in ANSI mode? */
|
3477 |
|
|
|
3478 |
|
|
static int
|
3479 |
|
|
inst_saves_fr (unsigned long inst)
|
3480 |
|
|
{
|
3481 |
|
|
/* is this an FSTD ? */
|
3482 |
|
|
if ((inst & 0xfc00dfc0) == 0x2c001200)
|
3483 |
|
|
return extract_5r_store (inst);
|
3484 |
|
|
if ((inst & 0xfc000002) == 0x70000002)
|
3485 |
|
|
return extract_5R_store (inst);
|
3486 |
|
|
/* is this an FSTW ? */
|
3487 |
|
|
if ((inst & 0xfc00df80) == 0x24001200)
|
3488 |
|
|
return extract_5r_store (inst);
|
3489 |
|
|
if ((inst & 0xfc000002) == 0x7c000000)
|
3490 |
|
|
return extract_5R_store (inst);
|
3491 |
|
|
return 0;
|
3492 |
|
|
}
|
3493 |
|
|
|
3494 |
|
|
/* Advance PC across any function entry prologue instructions
|
3495 |
|
|
to reach some "real" code.
|
3496 |
|
|
|
3497 |
|
|
Use information in the unwind table to determine what exactly should
|
3498 |
|
|
be in the prologue. */
|
3499 |
|
|
|
3500 |
|
|
|
3501 |
|
|
CORE_ADDR
|
3502 |
|
|
skip_prologue_hard_way (CORE_ADDR pc)
|
3503 |
|
|
{
|
3504 |
|
|
char buf[4];
|
3505 |
|
|
CORE_ADDR orig_pc = pc;
|
3506 |
|
|
unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
|
3507 |
|
|
unsigned long args_stored, status, i, restart_gr, restart_fr;
|
3508 |
|
|
struct unwind_table_entry *u;
|
3509 |
|
|
|
3510 |
|
|
restart_gr = 0;
|
3511 |
|
|
restart_fr = 0;
|
3512 |
|
|
|
3513 |
|
|
restart:
|
3514 |
|
|
u = find_unwind_entry (pc);
|
3515 |
|
|
if (!u)
|
3516 |
|
|
return pc;
|
3517 |
|
|
|
3518 |
|
|
/* If we are not at the beginning of a function, then return now. */
|
3519 |
|
|
if ((pc & ~0x3) != u->region_start)
|
3520 |
|
|
return pc;
|
3521 |
|
|
|
3522 |
|
|
/* This is how much of a frame adjustment we need to account for. */
|
3523 |
|
|
stack_remaining = u->Total_frame_size << 3;
|
3524 |
|
|
|
3525 |
|
|
/* Magic register saves we want to know about. */
|
3526 |
|
|
save_rp = u->Save_RP;
|
3527 |
|
|
save_sp = u->Save_SP;
|
3528 |
|
|
|
3529 |
|
|
/* An indication that args may be stored into the stack. Unfortunately
|
3530 |
|
|
the HPUX compilers tend to set this in cases where no args were
|
3531 |
|
|
stored too!. */
|
3532 |
|
|
args_stored = 1;
|
3533 |
|
|
|
3534 |
|
|
/* Turn the Entry_GR field into a bitmask. */
|
3535 |
|
|
save_gr = 0;
|
3536 |
|
|
for (i = 3; i < u->Entry_GR + 3; i++)
|
3537 |
|
|
{
|
3538 |
|
|
/* Frame pointer gets saved into a special location. */
|
3539 |
|
|
if (u->Save_SP && i == FP_REGNUM)
|
3540 |
|
|
continue;
|
3541 |
|
|
|
3542 |
|
|
save_gr |= (1 << i);
|
3543 |
|
|
}
|
3544 |
|
|
save_gr &= ~restart_gr;
|
3545 |
|
|
|
3546 |
|
|
/* Turn the Entry_FR field into a bitmask too. */
|
3547 |
|
|
save_fr = 0;
|
3548 |
|
|
for (i = 12; i < u->Entry_FR + 12; i++)
|
3549 |
|
|
save_fr |= (1 << i);
|
3550 |
|
|
save_fr &= ~restart_fr;
|
3551 |
|
|
|
3552 |
|
|
/* Loop until we find everything of interest or hit a branch.
|
3553 |
|
|
|
3554 |
|
|
For unoptimized GCC code and for any HP CC code this will never ever
|
3555 |
|
|
examine any user instructions.
|
3556 |
|
|
|
3557 |
|
|
For optimzied GCC code we're faced with problems. GCC will schedule
|
3558 |
|
|
its prologue and make prologue instructions available for delay slot
|
3559 |
|
|
filling. The end result is user code gets mixed in with the prologue
|
3560 |
|
|
and a prologue instruction may be in the delay slot of the first branch
|
3561 |
|
|
or call.
|
3562 |
|
|
|
3563 |
|
|
Some unexpected things are expected with debugging optimized code, so
|
3564 |
|
|
we allow this routine to walk past user instructions in optimized
|
3565 |
|
|
GCC code. */
|
3566 |
|
|
while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
|
3567 |
|
|
|| args_stored)
|
3568 |
|
|
{
|
3569 |
|
|
unsigned int reg_num;
|
3570 |
|
|
unsigned long old_stack_remaining, old_save_gr, old_save_fr;
|
3571 |
|
|
unsigned long old_save_rp, old_save_sp, next_inst;
|
3572 |
|
|
|
3573 |
|
|
/* Save copies of all the triggers so we can compare them later
|
3574 |
|
|
(only for HPC). */
|
3575 |
|
|
old_save_gr = save_gr;
|
3576 |
|
|
old_save_fr = save_fr;
|
3577 |
|
|
old_save_rp = save_rp;
|
3578 |
|
|
old_save_sp = save_sp;
|
3579 |
|
|
old_stack_remaining = stack_remaining;
|
3580 |
|
|
|
3581 |
|
|
status = target_read_memory (pc, buf, 4);
|
3582 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
3583 |
|
|
|
3584 |
|
|
/* Yow! */
|
3585 |
|
|
if (status != 0)
|
3586 |
|
|
return pc;
|
3587 |
|
|
|
3588 |
|
|
/* Note the interesting effects of this instruction. */
|
3589 |
|
|
stack_remaining -= prologue_inst_adjust_sp (inst);
|
3590 |
|
|
|
3591 |
|
|
/* There are limited ways to store the return pointer into the
|
3592 |
|
|
stack. */
|
3593 |
|
|
if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
|
3594 |
|
|
save_rp = 0;
|
3595 |
|
|
|
3596 |
|
|
/* These are the only ways we save SP into the stack. At this time
|
3597 |
|
|
the HP compilers never bother to save SP into the stack. */
|
3598 |
|
|
if ((inst & 0xffffc000) == 0x6fc10000
|
3599 |
|
|
|| (inst & 0xffffc00c) == 0x73c10008)
|
3600 |
|
|
save_sp = 0;
|
3601 |
|
|
|
3602 |
|
|
/* Are we loading some register with an offset from the argument
|
3603 |
|
|
pointer? */
|
3604 |
|
|
if ((inst & 0xffe00000) == 0x37a00000
|
3605 |
|
|
|| (inst & 0xffffffe0) == 0x081d0240)
|
3606 |
|
|
{
|
3607 |
|
|
pc += 4;
|
3608 |
|
|
continue;
|
3609 |
|
|
}
|
3610 |
|
|
|
3611 |
|
|
/* Account for general and floating-point register saves. */
|
3612 |
|
|
reg_num = inst_saves_gr (inst);
|
3613 |
|
|
save_gr &= ~(1 << reg_num);
|
3614 |
|
|
|
3615 |
|
|
/* Ugh. Also account for argument stores into the stack.
|
3616 |
|
|
Unfortunately args_stored only tells us that some arguments
|
3617 |
|
|
where stored into the stack. Not how many or what kind!
|
3618 |
|
|
|
3619 |
|
|
This is a kludge as on the HP compiler sets this bit and it
|
3620 |
|
|
never does prologue scheduling. So once we see one, skip past
|
3621 |
|
|
all of them. We have similar code for the fp arg stores below.
|
3622 |
|
|
|
3623 |
|
|
FIXME. Can still die if we have a mix of GR and FR argument
|
3624 |
|
|
stores! */
|
3625 |
|
|
if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
|
3626 |
|
|
{
|
3627 |
|
|
while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
|
3628 |
|
|
{
|
3629 |
|
|
pc += 4;
|
3630 |
|
|
status = target_read_memory (pc, buf, 4);
|
3631 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
3632 |
|
|
if (status != 0)
|
3633 |
|
|
return pc;
|
3634 |
|
|
reg_num = inst_saves_gr (inst);
|
3635 |
|
|
}
|
3636 |
|
|
args_stored = 0;
|
3637 |
|
|
continue;
|
3638 |
|
|
}
|
3639 |
|
|
|
3640 |
|
|
reg_num = inst_saves_fr (inst);
|
3641 |
|
|
save_fr &= ~(1 << reg_num);
|
3642 |
|
|
|
3643 |
|
|
status = target_read_memory (pc + 4, buf, 4);
|
3644 |
|
|
next_inst = extract_unsigned_integer (buf, 4);
|
3645 |
|
|
|
3646 |
|
|
/* Yow! */
|
3647 |
|
|
if (status != 0)
|
3648 |
|
|
return pc;
|
3649 |
|
|
|
3650 |
|
|
/* We've got to be read to handle the ldo before the fp register
|
3651 |
|
|
save. */
|
3652 |
|
|
if ((inst & 0xfc000000) == 0x34000000
|
3653 |
|
|
&& inst_saves_fr (next_inst) >= 4
|
3654 |
|
|
&& inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
3655 |
|
|
{
|
3656 |
|
|
/* So we drop into the code below in a reasonable state. */
|
3657 |
|
|
reg_num = inst_saves_fr (next_inst);
|
3658 |
|
|
pc -= 4;
|
3659 |
|
|
}
|
3660 |
|
|
|
3661 |
|
|
/* Ugh. Also account for argument stores into the stack.
|
3662 |
|
|
This is a kludge as on the HP compiler sets this bit and it
|
3663 |
|
|
never does prologue scheduling. So once we see one, skip past
|
3664 |
|
|
all of them. */
|
3665 |
|
|
if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
3666 |
|
|
{
|
3667 |
|
|
while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
3668 |
|
|
{
|
3669 |
|
|
pc += 8;
|
3670 |
|
|
status = target_read_memory (pc, buf, 4);
|
3671 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
3672 |
|
|
if (status != 0)
|
3673 |
|
|
return pc;
|
3674 |
|
|
if ((inst & 0xfc000000) != 0x34000000)
|
3675 |
|
|
break;
|
3676 |
|
|
status = target_read_memory (pc + 4, buf, 4);
|
3677 |
|
|
next_inst = extract_unsigned_integer (buf, 4);
|
3678 |
|
|
if (status != 0)
|
3679 |
|
|
return pc;
|
3680 |
|
|
reg_num = inst_saves_fr (next_inst);
|
3681 |
|
|
}
|
3682 |
|
|
args_stored = 0;
|
3683 |
|
|
continue;
|
3684 |
|
|
}
|
3685 |
|
|
|
3686 |
|
|
/* Quit if we hit any kind of branch. This can happen if a prologue
|
3687 |
|
|
instruction is in the delay slot of the first call/branch. */
|
3688 |
|
|
if (is_branch (inst))
|
3689 |
|
|
break;
|
3690 |
|
|
|
3691 |
|
|
/* What a crock. The HP compilers set args_stored even if no
|
3692 |
|
|
arguments were stored into the stack (boo hiss). This could
|
3693 |
|
|
cause this code to then skip a bunch of user insns (up to the
|
3694 |
|
|
first branch).
|
3695 |
|
|
|
3696 |
|
|
To combat this we try to identify when args_stored was bogusly
|
3697 |
|
|
set and clear it. We only do this when args_stored is nonzero,
|
3698 |
|
|
all other resources are accounted for, and nothing changed on
|
3699 |
|
|
this pass. */
|
3700 |
|
|
if (args_stored
|
3701 |
|
|
&& !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
|
3702 |
|
|
&& old_save_gr == save_gr && old_save_fr == save_fr
|
3703 |
|
|
&& old_save_rp == save_rp && old_save_sp == save_sp
|
3704 |
|
|
&& old_stack_remaining == stack_remaining)
|
3705 |
|
|
break;
|
3706 |
|
|
|
3707 |
|
|
/* Bump the PC. */
|
3708 |
|
|
pc += 4;
|
3709 |
|
|
}
|
3710 |
|
|
|
3711 |
|
|
/* We've got a tenative location for the end of the prologue. However
|
3712 |
|
|
because of limitations in the unwind descriptor mechanism we may
|
3713 |
|
|
have went too far into user code looking for the save of a register
|
3714 |
|
|
that does not exist. So, if there registers we expected to be saved
|
3715 |
|
|
but never were, mask them out and restart.
|
3716 |
|
|
|
3717 |
|
|
This should only happen in optimized code, and should be very rare. */
|
3718 |
|
|
if (save_gr || (save_fr && !(restart_fr || restart_gr)))
|
3719 |
|
|
{
|
3720 |
|
|
pc = orig_pc;
|
3721 |
|
|
restart_gr = save_gr;
|
3722 |
|
|
restart_fr = save_fr;
|
3723 |
|
|
goto restart;
|
3724 |
|
|
}
|
3725 |
|
|
|
3726 |
|
|
return pc;
|
3727 |
|
|
}
|
3728 |
|
|
|
3729 |
|
|
|
3730 |
|
|
/* Return the address of the PC after the last prologue instruction if
|
3731 |
|
|
we can determine it from the debug symbols. Else return zero. */
|
3732 |
|
|
|
3733 |
|
|
static CORE_ADDR
|
3734 |
|
|
after_prologue (CORE_ADDR pc)
|
3735 |
|
|
{
|
3736 |
|
|
struct symtab_and_line sal;
|
3737 |
|
|
CORE_ADDR func_addr, func_end;
|
3738 |
|
|
struct symbol *f;
|
3739 |
|
|
|
3740 |
|
|
/* If we can not find the symbol in the partial symbol table, then
|
3741 |
|
|
there is no hope we can determine the function's start address
|
3742 |
|
|
with this code. */
|
3743 |
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
3744 |
|
|
return 0;
|
3745 |
|
|
|
3746 |
|
|
/* Get the line associated with FUNC_ADDR. */
|
3747 |
|
|
sal = find_pc_line (func_addr, 0);
|
3748 |
|
|
|
3749 |
|
|
/* There are only two cases to consider. First, the end of the source line
|
3750 |
|
|
is within the function bounds. In that case we return the end of the
|
3751 |
|
|
source line. Second is the end of the source line extends beyond the
|
3752 |
|
|
bounds of the current function. We need to use the slow code to
|
3753 |
|
|
examine instructions in that case.
|
3754 |
|
|
|
3755 |
|
|
Anything else is simply a bug elsewhere. Fixing it here is absolutely
|
3756 |
|
|
the wrong thing to do. In fact, it should be entirely possible for this
|
3757 |
|
|
function to always return zero since the slow instruction scanning code
|
3758 |
|
|
is supposed to *always* work. If it does not, then it is a bug. */
|
3759 |
|
|
if (sal.end < func_end)
|
3760 |
|
|
return sal.end;
|
3761 |
|
|
else
|
3762 |
|
|
return 0;
|
3763 |
|
|
}
|
3764 |
|
|
|
3765 |
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
3766 |
|
|
if the code at PC does not look like a function prologue; otherwise
|
3767 |
|
|
returns an address that (if we're lucky) follows the prologue. If
|
3768 |
|
|
LENIENT, then we must skip everything which is involved in setting
|
3769 |
|
|
up the frame (it's OK to skip more, just so long as we don't skip
|
3770 |
|
|
anything which might clobber the registers which are being saved.
|
3771 |
|
|
Currently we must not skip more on the alpha, but we might the lenient
|
3772 |
|
|
stuff some day. */
|
3773 |
|
|
|
3774 |
|
|
CORE_ADDR
|
3775 |
|
|
hppa_skip_prologue (CORE_ADDR pc)
|
3776 |
|
|
{
|
3777 |
|
|
unsigned long inst;
|
3778 |
|
|
int offset;
|
3779 |
|
|
CORE_ADDR post_prologue_pc;
|
3780 |
|
|
char buf[4];
|
3781 |
|
|
|
3782 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
3783 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
3784 |
|
|
is greater. */
|
3785 |
|
|
|
3786 |
|
|
post_prologue_pc = after_prologue (pc);
|
3787 |
|
|
|
3788 |
|
|
/* If after_prologue returned a useful address, then use it. Else
|
3789 |
|
|
fall back on the instruction skipping code.
|
3790 |
|
|
|
3791 |
|
|
Some folks have claimed this causes problems because the breakpoint
|
3792 |
|
|
may be the first instruction of the prologue. If that happens, then
|
3793 |
|
|
the instruction skipping code has a bug that needs to be fixed. */
|
3794 |
|
|
if (post_prologue_pc != 0)
|
3795 |
|
|
return max (pc, post_prologue_pc);
|
3796 |
|
|
else
|
3797 |
|
|
return (skip_prologue_hard_way (pc));
|
3798 |
|
|
}
|
3799 |
|
|
|
3800 |
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
3801 |
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
3802 |
|
|
This includes special registers such as pc and fp saved in special
|
3803 |
|
|
ways in the stack frame. sp is even more special:
|
3804 |
|
|
the address we return for it IS the sp for the next frame. */
|
3805 |
|
|
|
3806 |
|
|
void
|
3807 |
|
|
hppa_frame_find_saved_regs (struct frame_info *frame_info,
|
3808 |
|
|
struct frame_saved_regs *frame_saved_regs)
|
3809 |
|
|
{
|
3810 |
|
|
CORE_ADDR pc;
|
3811 |
|
|
struct unwind_table_entry *u;
|
3812 |
|
|
unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
|
3813 |
|
|
int status, i, reg;
|
3814 |
|
|
char buf[4];
|
3815 |
|
|
int fp_loc = -1;
|
3816 |
|
|
int final_iteration;
|
3817 |
|
|
|
3818 |
|
|
/* Zero out everything. */
|
3819 |
|
|
memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
|
3820 |
|
|
|
3821 |
|
|
/* Call dummy frames always look the same, so there's no need to
|
3822 |
|
|
examine the dummy code to determine locations of saved registers;
|
3823 |
|
|
instead, let find_dummy_frame_regs fill in the correct offsets
|
3824 |
|
|
for the saved registers. */
|
3825 |
|
|
if ((frame_info->pc >= frame_info->frame
|
3826 |
|
|
&& frame_info->pc <= (frame_info->frame
|
3827 |
|
|
/* A call dummy is sized in words, but it is
|
3828 |
|
|
actually a series of instructions. Account
|
3829 |
|
|
for that scaling factor. */
|
3830 |
|
|
+ ((REGISTER_SIZE / INSTRUCTION_SIZE)
|
3831 |
|
|
* CALL_DUMMY_LENGTH)
|
3832 |
|
|
/* Similarly we have to account for 64bit
|
3833 |
|
|
wide register saves. */
|
3834 |
|
|
+ (32 * REGISTER_SIZE)
|
3835 |
|
|
/* We always consider FP regs 8 bytes long. */
|
3836 |
|
|
+ (NUM_REGS - FP0_REGNUM) * 8
|
3837 |
|
|
/* Similarly we have to account for 64bit
|
3838 |
|
|
wide register saves. */
|
3839 |
|
|
+ (6 * REGISTER_SIZE))))
|
3840 |
|
|
find_dummy_frame_regs (frame_info, frame_saved_regs);
|
3841 |
|
|
|
3842 |
|
|
/* Interrupt handlers are special too. They lay out the register
|
3843 |
|
|
state in the exact same order as the register numbers in GDB. */
|
3844 |
|
|
if (pc_in_interrupt_handler (frame_info->pc))
|
3845 |
|
|
{
|
3846 |
|
|
for (i = 0; i < NUM_REGS; i++)
|
3847 |
|
|
{
|
3848 |
|
|
/* SP is a little special. */
|
3849 |
|
|
if (i == SP_REGNUM)
|
3850 |
|
|
frame_saved_regs->regs[SP_REGNUM]
|
3851 |
|
|
= read_memory_integer (frame_info->frame + SP_REGNUM * 4,
|
3852 |
|
|
TARGET_PTR_BIT / 8);
|
3853 |
|
|
else
|
3854 |
|
|
frame_saved_regs->regs[i] = frame_info->frame + i * 4;
|
3855 |
|
|
}
|
3856 |
|
|
return;
|
3857 |
|
|
}
|
3858 |
|
|
|
3859 |
|
|
#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
|
3860 |
|
|
/* Handle signal handler callers. */
|
3861 |
|
|
if (frame_info->signal_handler_caller)
|
3862 |
|
|
{
|
3863 |
|
|
FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
|
3864 |
|
|
return;
|
3865 |
|
|
}
|
3866 |
|
|
#endif
|
3867 |
|
|
|
3868 |
|
|
/* Get the starting address of the function referred to by the PC
|
3869 |
|
|
saved in frame. */
|
3870 |
|
|
pc = get_pc_function_start (frame_info->pc);
|
3871 |
|
|
|
3872 |
|
|
/* Yow! */
|
3873 |
|
|
u = find_unwind_entry (pc);
|
3874 |
|
|
if (!u)
|
3875 |
|
|
return;
|
3876 |
|
|
|
3877 |
|
|
/* This is how much of a frame adjustment we need to account for. */
|
3878 |
|
|
stack_remaining = u->Total_frame_size << 3;
|
3879 |
|
|
|
3880 |
|
|
/* Magic register saves we want to know about. */
|
3881 |
|
|
save_rp = u->Save_RP;
|
3882 |
|
|
save_sp = u->Save_SP;
|
3883 |
|
|
|
3884 |
|
|
/* Turn the Entry_GR field into a bitmask. */
|
3885 |
|
|
save_gr = 0;
|
3886 |
|
|
for (i = 3; i < u->Entry_GR + 3; i++)
|
3887 |
|
|
{
|
3888 |
|
|
/* Frame pointer gets saved into a special location. */
|
3889 |
|
|
if (u->Save_SP && i == FP_REGNUM)
|
3890 |
|
|
continue;
|
3891 |
|
|
|
3892 |
|
|
save_gr |= (1 << i);
|
3893 |
|
|
}
|
3894 |
|
|
|
3895 |
|
|
/* Turn the Entry_FR field into a bitmask too. */
|
3896 |
|
|
save_fr = 0;
|
3897 |
|
|
for (i = 12; i < u->Entry_FR + 12; i++)
|
3898 |
|
|
save_fr |= (1 << i);
|
3899 |
|
|
|
3900 |
|
|
/* The frame always represents the value of %sp at entry to the
|
3901 |
|
|
current function (and is thus equivalent to the "saved" stack
|
3902 |
|
|
pointer. */
|
3903 |
|
|
frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
|
3904 |
|
|
|
3905 |
|
|
/* Loop until we find everything of interest or hit a branch.
|
3906 |
|
|
|
3907 |
|
|
For unoptimized GCC code and for any HP CC code this will never ever
|
3908 |
|
|
examine any user instructions.
|
3909 |
|
|
|
3910 |
|
|
For optimized GCC code we're faced with problems. GCC will schedule
|
3911 |
|
|
its prologue and make prologue instructions available for delay slot
|
3912 |
|
|
filling. The end result is user code gets mixed in with the prologue
|
3913 |
|
|
and a prologue instruction may be in the delay slot of the first branch
|
3914 |
|
|
or call.
|
3915 |
|
|
|
3916 |
|
|
Some unexpected things are expected with debugging optimized code, so
|
3917 |
|
|
we allow this routine to walk past user instructions in optimized
|
3918 |
|
|
GCC code. */
|
3919 |
|
|
final_iteration = 0;
|
3920 |
|
|
while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
|
3921 |
|
|
&& pc <= frame_info->pc)
|
3922 |
|
|
{
|
3923 |
|
|
status = target_read_memory (pc, buf, 4);
|
3924 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
3925 |
|
|
|
3926 |
|
|
/* Yow! */
|
3927 |
|
|
if (status != 0)
|
3928 |
|
|
return;
|
3929 |
|
|
|
3930 |
|
|
/* Note the interesting effects of this instruction. */
|
3931 |
|
|
stack_remaining -= prologue_inst_adjust_sp (inst);
|
3932 |
|
|
|
3933 |
|
|
/* There are limited ways to store the return pointer into the
|
3934 |
|
|
stack. */
|
3935 |
|
|
if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
|
3936 |
|
|
{
|
3937 |
|
|
save_rp = 0;
|
3938 |
|
|
frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
|
3939 |
|
|
}
|
3940 |
|
|
else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
|
3941 |
|
|
{
|
3942 |
|
|
save_rp = 0;
|
3943 |
|
|
frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
|
3944 |
|
|
}
|
3945 |
|
|
|
3946 |
|
|
/* Note if we saved SP into the stack. This also happens to indicate
|
3947 |
|
|
the location of the saved frame pointer. */
|
3948 |
|
|
if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
|
3949 |
|
|
|| (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
|
3950 |
|
|
{
|
3951 |
|
|
frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
|
3952 |
|
|
save_sp = 0;
|
3953 |
|
|
}
|
3954 |
|
|
|
3955 |
|
|
/* Account for general and floating-point register saves. */
|
3956 |
|
|
reg = inst_saves_gr (inst);
|
3957 |
|
|
if (reg >= 3 && reg <= 18
|
3958 |
|
|
&& (!u->Save_SP || reg != FP_REGNUM))
|
3959 |
|
|
{
|
3960 |
|
|
save_gr &= ~(1 << reg);
|
3961 |
|
|
|
3962 |
|
|
/* stwm with a positive displacement is a *post modify*. */
|
3963 |
|
|
if ((inst >> 26) == 0x1b
|
3964 |
|
|
&& extract_14 (inst) >= 0)
|
3965 |
|
|
frame_saved_regs->regs[reg] = frame_info->frame;
|
3966 |
|
|
/* A std has explicit post_modify forms. */
|
3967 |
|
|
else if ((inst & 0xfc00000c0) == 0x70000008)
|
3968 |
|
|
frame_saved_regs->regs[reg] = frame_info->frame;
|
3969 |
|
|
else
|
3970 |
|
|
{
|
3971 |
|
|
CORE_ADDR offset;
|
3972 |
|
|
|
3973 |
|
|
if ((inst >> 26) == 0x1c)
|
3974 |
|
|
offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
3975 |
|
|
else if ((inst >> 26) == 0x03)
|
3976 |
|
|
offset = low_sign_extend (inst & 0x1f, 5);
|
3977 |
|
|
else
|
3978 |
|
|
offset = extract_14 (inst);
|
3979 |
|
|
|
3980 |
|
|
/* Handle code with and without frame pointers. */
|
3981 |
|
|
if (u->Save_SP)
|
3982 |
|
|
frame_saved_regs->regs[reg]
|
3983 |
|
|
= frame_info->frame + offset;
|
3984 |
|
|
else
|
3985 |
|
|
frame_saved_regs->regs[reg]
|
3986 |
|
|
= (frame_info->frame + (u->Total_frame_size << 3)
|
3987 |
|
|
+ offset);
|
3988 |
|
|
}
|
3989 |
|
|
}
|
3990 |
|
|
|
3991 |
|
|
|
3992 |
|
|
/* GCC handles callee saved FP regs a little differently.
|
3993 |
|
|
|
3994 |
|
|
It emits an instruction to put the value of the start of
|
3995 |
|
|
the FP store area into %r1. It then uses fstds,ma with
|
3996 |
|
|
a basereg of %r1 for the stores.
|
3997 |
|
|
|
3998 |
|
|
HP CC emits them at the current stack pointer modifying
|
3999 |
|
|
the stack pointer as it stores each register. */
|
4000 |
|
|
|
4001 |
|
|
/* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
|
4002 |
|
|
if ((inst & 0xffffc000) == 0x34610000
|
4003 |
|
|
|| (inst & 0xffffc000) == 0x37c10000)
|
4004 |
|
|
fp_loc = extract_14 (inst);
|
4005 |
|
|
|
4006 |
|
|
reg = inst_saves_fr (inst);
|
4007 |
|
|
if (reg >= 12 && reg <= 21)
|
4008 |
|
|
{
|
4009 |
|
|
/* Note +4 braindamage below is necessary because the FP status
|
4010 |
|
|
registers are internally 8 registers rather than the expected
|
4011 |
|
|
4 registers. */
|
4012 |
|
|
save_fr &= ~(1 << reg);
|
4013 |
|
|
if (fp_loc == -1)
|
4014 |
|
|
{
|
4015 |
|
|
/* 1st HP CC FP register store. After this instruction
|
4016 |
|
|
we've set enough state that the GCC and HPCC code are
|
4017 |
|
|
both handled in the same manner. */
|
4018 |
|
|
frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
|
4019 |
|
|
fp_loc = 8;
|
4020 |
|
|
}
|
4021 |
|
|
else
|
4022 |
|
|
{
|
4023 |
|
|
frame_saved_regs->regs[reg + FP0_REGNUM + 4]
|
4024 |
|
|
= frame_info->frame + fp_loc;
|
4025 |
|
|
fp_loc += 8;
|
4026 |
|
|
}
|
4027 |
|
|
}
|
4028 |
|
|
|
4029 |
|
|
/* Quit if we hit any kind of branch the previous iteration. */
|
4030 |
|
|
if (final_iteration)
|
4031 |
|
|
break;
|
4032 |
|
|
|
4033 |
|
|
/* We want to look precisely one instruction beyond the branch
|
4034 |
|
|
if we have not found everything yet. */
|
4035 |
|
|
if (is_branch (inst))
|
4036 |
|
|
final_iteration = 1;
|
4037 |
|
|
|
4038 |
|
|
/* Bump the PC. */
|
4039 |
|
|
pc += 4;
|
4040 |
|
|
}
|
4041 |
|
|
}
|
4042 |
|
|
|
4043 |
|
|
|
4044 |
|
|
/* Exception handling support for the HP-UX ANSI C++ compiler.
|
4045 |
|
|
The compiler (aCC) provides a callback for exception events;
|
4046 |
|
|
GDB can set a breakpoint on this callback and find out what
|
4047 |
|
|
exception event has occurred. */
|
4048 |
|
|
|
4049 |
|
|
/* The name of the hook to be set to point to the callback function */
|
4050 |
|
|
static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
|
4051 |
|
|
/* The name of the function to be used to set the hook value */
|
4052 |
|
|
static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
|
4053 |
|
|
/* The name of the callback function in end.o */
|
4054 |
|
|
static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
|
4055 |
|
|
/* Name of function in end.o on which a break is set (called by above) */
|
4056 |
|
|
static char HP_ACC_EH_break[] = "__d_eh_break";
|
4057 |
|
|
/* Name of flag (in end.o) that enables catching throws */
|
4058 |
|
|
static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
|
4059 |
|
|
/* Name of flag (in end.o) that enables catching catching */
|
4060 |
|
|
static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
|
4061 |
|
|
/* The enum used by aCC */
|
4062 |
|
|
typedef enum
|
4063 |
|
|
{
|
4064 |
|
|
__EH_NOTIFY_THROW,
|
4065 |
|
|
__EH_NOTIFY_CATCH
|
4066 |
|
|
}
|
4067 |
|
|
__eh_notification;
|
4068 |
|
|
|
4069 |
|
|
/* Is exception-handling support available with this executable? */
|
4070 |
|
|
static int hp_cxx_exception_support = 0;
|
4071 |
|
|
/* Has the initialize function been run? */
|
4072 |
|
|
int hp_cxx_exception_support_initialized = 0;
|
4073 |
|
|
/* Similar to above, but imported from breakpoint.c -- non-target-specific */
|
4074 |
|
|
extern int exception_support_initialized;
|
4075 |
|
|
/* Address of __eh_notify_hook */
|
4076 |
|
|
static CORE_ADDR eh_notify_hook_addr = 0;
|
4077 |
|
|
/* Address of __d_eh_notify_callback */
|
4078 |
|
|
static CORE_ADDR eh_notify_callback_addr = 0;
|
4079 |
|
|
/* Address of __d_eh_break */
|
4080 |
|
|
static CORE_ADDR eh_break_addr = 0;
|
4081 |
|
|
/* Address of __d_eh_catch_catch */
|
4082 |
|
|
static CORE_ADDR eh_catch_catch_addr = 0;
|
4083 |
|
|
/* Address of __d_eh_catch_throw */
|
4084 |
|
|
static CORE_ADDR eh_catch_throw_addr = 0;
|
4085 |
|
|
/* Sal for __d_eh_break */
|
4086 |
|
|
static struct symtab_and_line *break_callback_sal = 0;
|
4087 |
|
|
|
4088 |
|
|
/* Code in end.c expects __d_pid to be set in the inferior,
|
4089 |
|
|
otherwise __d_eh_notify_callback doesn't bother to call
|
4090 |
|
|
__d_eh_break! So we poke the pid into this symbol
|
4091 |
|
|
ourselves.
|
4092 |
|
|
|
4093 |
|
|
1 => failure */
|
4094 |
|
|
int
|
4095 |
|
|
setup_d_pid_in_inferior (void)
|
4096 |
|
|
{
|
4097 |
|
|
CORE_ADDR anaddr;
|
4098 |
|
|
struct minimal_symbol *msymbol;
|
4099 |
|
|
char buf[4]; /* FIXME 32x64? */
|
4100 |
|
|
|
4101 |
|
|
/* Slam the pid of the process into __d_pid; failing is only a warning! */
|
4102 |
|
|
msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
|
4103 |
|
|
if (msymbol == NULL)
|
4104 |
|
|
{
|
4105 |
|
|
warning ("Unable to find __d_pid symbol in object file.");
|
4106 |
|
|
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
4107 |
|
|
return 1;
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
4111 |
|
|
store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
|
4112 |
|
|
if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
|
4113 |
|
|
{
|
4114 |
|
|
warning ("Unable to write __d_pid");
|
4115 |
|
|
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
4116 |
|
|
return 1;
|
4117 |
|
|
}
|
4118 |
|
|
return 0;
|
4119 |
|
|
}
|
4120 |
|
|
|
4121 |
|
|
/* Initialize exception catchpoint support by looking for the
|
4122 |
|
|
necessary hooks/callbacks in end.o, etc., and set the hook value to
|
4123 |
|
|
point to the required debug function
|
4124 |
|
|
|
4125 |
|
|
Return 0 => failure
|
4126 |
|
|
1 => success */
|
4127 |
|
|
|
4128 |
|
|
static int
|
4129 |
|
|
initialize_hp_cxx_exception_support (void)
|
4130 |
|
|
{
|
4131 |
|
|
struct symtabs_and_lines sals;
|
4132 |
|
|
struct cleanup *old_chain;
|
4133 |
|
|
struct cleanup *canonical_strings_chain = NULL;
|
4134 |
|
|
int i;
|
4135 |
|
|
char *addr_start;
|
4136 |
|
|
char *addr_end = NULL;
|
4137 |
|
|
char **canonical = (char **) NULL;
|
4138 |
|
|
int thread = -1;
|
4139 |
|
|
struct symbol *sym = NULL;
|
4140 |
|
|
struct minimal_symbol *msym = NULL;
|
4141 |
|
|
struct objfile *objfile;
|
4142 |
|
|
asection *shlib_info;
|
4143 |
|
|
|
4144 |
|
|
/* Detect and disallow recursion. On HP-UX with aCC, infinite
|
4145 |
|
|
recursion is a possibility because finding the hook for exception
|
4146 |
|
|
callbacks involves making a call in the inferior, which means
|
4147 |
|
|
re-inserting breakpoints which can re-invoke this code */
|
4148 |
|
|
|
4149 |
|
|
static int recurse = 0;
|
4150 |
|
|
if (recurse > 0)
|
4151 |
|
|
{
|
4152 |
|
|
hp_cxx_exception_support_initialized = 0;
|
4153 |
|
|
exception_support_initialized = 0;
|
4154 |
|
|
return 0;
|
4155 |
|
|
}
|
4156 |
|
|
|
4157 |
|
|
hp_cxx_exception_support = 0;
|
4158 |
|
|
|
4159 |
|
|
/* First check if we have seen any HP compiled objects; if not,
|
4160 |
|
|
it is very unlikely that HP's idiosyncratic callback mechanism
|
4161 |
|
|
for exception handling debug support will be available!
|
4162 |
|
|
This will percolate back up to breakpoint.c, where our callers
|
4163 |
|
|
will decide to try the g++ exception-handling support instead. */
|
4164 |
|
|
if (!hp_som_som_object_present)
|
4165 |
|
|
return 0;
|
4166 |
|
|
|
4167 |
|
|
/* We have a SOM executable with SOM debug info; find the hooks */
|
4168 |
|
|
|
4169 |
|
|
/* First look for the notify hook provided by aCC runtime libs */
|
4170 |
|
|
/* If we find this symbol, we conclude that the executable must
|
4171 |
|
|
have HP aCC exception support built in. If this symbol is not
|
4172 |
|
|
found, even though we're a HP SOM-SOM file, we may have been
|
4173 |
|
|
built with some other compiler (not aCC). This results percolates
|
4174 |
|
|
back up to our callers in breakpoint.c which can decide to
|
4175 |
|
|
try the g++ style of exception support instead.
|
4176 |
|
|
If this symbol is found but the other symbols we require are
|
4177 |
|
|
not found, there is something weird going on, and g++ support
|
4178 |
|
|
should *not* be tried as an alternative.
|
4179 |
|
|
|
4180 |
|
|
ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
|
4181 |
|
|
ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
|
4182 |
|
|
|
4183 |
|
|
/* libCsup has this hook; it'll usually be non-debuggable */
|
4184 |
|
|
msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
|
4185 |
|
|
if (msym)
|
4186 |
|
|
{
|
4187 |
|
|
eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
|
4188 |
|
|
hp_cxx_exception_support = 1;
|
4189 |
|
|
}
|
4190 |
|
|
else
|
4191 |
|
|
{
|
4192 |
|
|
warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
|
4193 |
|
|
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
4194 |
|
|
warning ("GDB will be unable to intercept exception events.");
|
4195 |
|
|
eh_notify_hook_addr = 0;
|
4196 |
|
|
hp_cxx_exception_support = 0;
|
4197 |
|
|
return 0;
|
4198 |
|
|
}
|
4199 |
|
|
|
4200 |
|
|
/* Next look for the notify callback routine in end.o */
|
4201 |
|
|
/* This is always available in the SOM symbol dictionary if end.o is linked in */
|
4202 |
|
|
msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
|
4203 |
|
|
if (msym)
|
4204 |
|
|
{
|
4205 |
|
|
eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
|
4206 |
|
|
hp_cxx_exception_support = 1;
|
4207 |
|
|
}
|
4208 |
|
|
else
|
4209 |
|
|
{
|
4210 |
|
|
warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
|
4211 |
|
|
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
4212 |
|
|
warning ("GDB will be unable to intercept exception events.");
|
4213 |
|
|
eh_notify_callback_addr = 0;
|
4214 |
|
|
return 0;
|
4215 |
|
|
}
|
4216 |
|
|
|
4217 |
|
|
#ifndef GDB_TARGET_IS_HPPA_20W
|
4218 |
|
|
/* Check whether the executable is dynamically linked or archive bound */
|
4219 |
|
|
/* With an archive-bound executable we can use the raw addresses we find
|
4220 |
|
|
for the callback function, etc. without modification. For an executable
|
4221 |
|
|
with shared libraries, we have to do more work to find the plabel, which
|
4222 |
|
|
can be the target of a call through $$dyncall from the aCC runtime support
|
4223 |
|
|
library (libCsup) which is linked shared by default by aCC. */
|
4224 |
|
|
/* This test below was copied from somsolib.c/somread.c. It may not be a very
|
4225 |
|
|
reliable one to test that an executable is linked shared. pai/1997-07-18 */
|
4226 |
|
|
shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
|
4227 |
|
|
if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
|
4228 |
|
|
{
|
4229 |
|
|
/* The minsym we have has the local code address, but that's not the
|
4230 |
|
|
plabel that can be used by an inter-load-module call. */
|
4231 |
|
|
/* Find solib handle for main image (which has end.o), and use that
|
4232 |
|
|
and the min sym as arguments to __d_shl_get() (which does the equivalent
|
4233 |
|
|
of shl_findsym()) to find the plabel. */
|
4234 |
|
|
|
4235 |
|
|
args_for_find_stub args;
|
4236 |
|
|
static char message[] = "Error while finding exception callback hook:\n";
|
4237 |
|
|
|
4238 |
|
|
args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
|
4239 |
|
|
args.msym = msym;
|
4240 |
|
|
args.return_val = 0;
|
4241 |
|
|
|
4242 |
|
|
recurse++;
|
4243 |
|
|
catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
|
4244 |
|
|
RETURN_MASK_ALL);
|
4245 |
|
|
eh_notify_callback_addr = args.return_val;
|
4246 |
|
|
recurse--;
|
4247 |
|
|
|
4248 |
|
|
exception_catchpoints_are_fragile = 1;
|
4249 |
|
|
|
4250 |
|
|
if (!eh_notify_callback_addr)
|
4251 |
|
|
{
|
4252 |
|
|
/* We can get here either if there is no plabel in the export list
|
4253 |
|
|
for the main image, or if something strange happened (?) */
|
4254 |
|
|
warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
|
4255 |
|
|
warning ("GDB will not be able to intercept exception events.");
|
4256 |
|
|
return 0;
|
4257 |
|
|
}
|
4258 |
|
|
}
|
4259 |
|
|
else
|
4260 |
|
|
exception_catchpoints_are_fragile = 0;
|
4261 |
|
|
#endif
|
4262 |
|
|
|
4263 |
|
|
/* Now, look for the breakpointable routine in end.o */
|
4264 |
|
|
/* This should also be available in the SOM symbol dict. if end.o linked in */
|
4265 |
|
|
msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
|
4266 |
|
|
if (msym)
|
4267 |
|
|
{
|
4268 |
|
|
eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
|
4269 |
|
|
hp_cxx_exception_support = 1;
|
4270 |
|
|
}
|
4271 |
|
|
else
|
4272 |
|
|
{
|
4273 |
|
|
warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
|
4274 |
|
|
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
4275 |
|
|
warning ("GDB will be unable to intercept exception events.");
|
4276 |
|
|
eh_break_addr = 0;
|
4277 |
|
|
return 0;
|
4278 |
|
|
}
|
4279 |
|
|
|
4280 |
|
|
/* Next look for the catch enable flag provided in end.o */
|
4281 |
|
|
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
|
4282 |
|
|
VAR_NAMESPACE, 0, (struct symtab **) NULL);
|
4283 |
|
|
if (sym) /* sometimes present in debug info */
|
4284 |
|
|
{
|
4285 |
|
|
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
|
4286 |
|
|
hp_cxx_exception_support = 1;
|
4287 |
|
|
}
|
4288 |
|
|
else
|
4289 |
|
|
/* otherwise look in SOM symbol dict. */
|
4290 |
|
|
{
|
4291 |
|
|
msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
|
4292 |
|
|
if (msym)
|
4293 |
|
|
{
|
4294 |
|
|
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
|
4295 |
|
|
hp_cxx_exception_support = 1;
|
4296 |
|
|
}
|
4297 |
|
|
else
|
4298 |
|
|
{
|
4299 |
|
|
warning ("Unable to enable interception of exception catches.");
|
4300 |
|
|
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
4301 |
|
|
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
4302 |
|
|
return 0;
|
4303 |
|
|
}
|
4304 |
|
|
}
|
4305 |
|
|
|
4306 |
|
|
/* Next look for the catch enable flag provided end.o */
|
4307 |
|
|
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
|
4308 |
|
|
VAR_NAMESPACE, 0, (struct symtab **) NULL);
|
4309 |
|
|
if (sym) /* sometimes present in debug info */
|
4310 |
|
|
{
|
4311 |
|
|
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
|
4312 |
|
|
hp_cxx_exception_support = 1;
|
4313 |
|
|
}
|
4314 |
|
|
else
|
4315 |
|
|
/* otherwise look in SOM symbol dict. */
|
4316 |
|
|
{
|
4317 |
|
|
msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
|
4318 |
|
|
if (msym)
|
4319 |
|
|
{
|
4320 |
|
|
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
|
4321 |
|
|
hp_cxx_exception_support = 1;
|
4322 |
|
|
}
|
4323 |
|
|
else
|
4324 |
|
|
{
|
4325 |
|
|
warning ("Unable to enable interception of exception throws.");
|
4326 |
|
|
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
4327 |
|
|
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
4328 |
|
|
return 0;
|
4329 |
|
|
}
|
4330 |
|
|
}
|
4331 |
|
|
|
4332 |
|
|
/* Set the flags */
|
4333 |
|
|
hp_cxx_exception_support = 2; /* everything worked so far */
|
4334 |
|
|
hp_cxx_exception_support_initialized = 1;
|
4335 |
|
|
exception_support_initialized = 1;
|
4336 |
|
|
|
4337 |
|
|
return 1;
|
4338 |
|
|
}
|
4339 |
|
|
|
4340 |
|
|
/* Target operation for enabling or disabling interception of
|
4341 |
|
|
exception events.
|
4342 |
|
|
KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
|
4343 |
|
|
ENABLE is either 0 (disable) or 1 (enable).
|
4344 |
|
|
Return value is NULL if no support found;
|
4345 |
|
|
-1 if something went wrong,
|
4346 |
|
|
or a pointer to a symtab/line struct if the breakpointable
|
4347 |
|
|
address was found. */
|
4348 |
|
|
|
4349 |
|
|
struct symtab_and_line *
|
4350 |
|
|
child_enable_exception_callback (enum exception_event_kind kind, int enable)
|
4351 |
|
|
{
|
4352 |
|
|
char buf[4];
|
4353 |
|
|
|
4354 |
|
|
if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
|
4355 |
|
|
if (!initialize_hp_cxx_exception_support ())
|
4356 |
|
|
return NULL;
|
4357 |
|
|
|
4358 |
|
|
switch (hp_cxx_exception_support)
|
4359 |
|
|
{
|
4360 |
|
|
case 0:
|
4361 |
|
|
/* Assuming no HP support at all */
|
4362 |
|
|
return NULL;
|
4363 |
|
|
case 1:
|
4364 |
|
|
/* HP support should be present, but something went wrong */
|
4365 |
|
|
return (struct symtab_and_line *) -1; /* yuck! */
|
4366 |
|
|
/* there may be other cases in the future */
|
4367 |
|
|
}
|
4368 |
|
|
|
4369 |
|
|
/* Set the EH hook to point to the callback routine */
|
4370 |
|
|
store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
|
4371 |
|
|
/* pai: (temp) FIXME should there be a pack operation first? */
|
4372 |
|
|
if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
|
4373 |
|
|
{
|
4374 |
|
|
warning ("Could not write to target memory for exception event callback.");
|
4375 |
|
|
warning ("Interception of exception events may not work.");
|
4376 |
|
|
return (struct symtab_and_line *) -1;
|
4377 |
|
|
}
|
4378 |
|
|
if (enable)
|
4379 |
|
|
{
|
4380 |
|
|
/* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
|
4381 |
|
|
if (PIDGET (inferior_ptid) > 0)
|
4382 |
|
|
{
|
4383 |
|
|
if (setup_d_pid_in_inferior ())
|
4384 |
|
|
return (struct symtab_and_line *) -1;
|
4385 |
|
|
}
|
4386 |
|
|
else
|
4387 |
|
|
{
|
4388 |
|
|
warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
|
4389 |
|
|
return (struct symtab_and_line *) -1;
|
4390 |
|
|
}
|
4391 |
|
|
}
|
4392 |
|
|
|
4393 |
|
|
switch (kind)
|
4394 |
|
|
{
|
4395 |
|
|
case EX_EVENT_THROW:
|
4396 |
|
|
store_unsigned_integer (buf, 4, enable ? 1 : 0);
|
4397 |
|
|
if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
|
4398 |
|
|
{
|
4399 |
|
|
warning ("Couldn't enable exception throw interception.");
|
4400 |
|
|
return (struct symtab_and_line *) -1;
|
4401 |
|
|
}
|
4402 |
|
|
break;
|
4403 |
|
|
case EX_EVENT_CATCH:
|
4404 |
|
|
store_unsigned_integer (buf, 4, enable ? 1 : 0);
|
4405 |
|
|
if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
|
4406 |
|
|
{
|
4407 |
|
|
warning ("Couldn't enable exception catch interception.");
|
4408 |
|
|
return (struct symtab_and_line *) -1;
|
4409 |
|
|
}
|
4410 |
|
|
break;
|
4411 |
|
|
default:
|
4412 |
|
|
error ("Request to enable unknown or unsupported exception event.");
|
4413 |
|
|
}
|
4414 |
|
|
|
4415 |
|
|
/* Copy break address into new sal struct, malloc'ing if needed. */
|
4416 |
|
|
if (!break_callback_sal)
|
4417 |
|
|
{
|
4418 |
|
|
break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
|
4419 |
|
|
}
|
4420 |
|
|
INIT_SAL (break_callback_sal);
|
4421 |
|
|
break_callback_sal->symtab = NULL;
|
4422 |
|
|
break_callback_sal->pc = eh_break_addr;
|
4423 |
|
|
break_callback_sal->line = 0;
|
4424 |
|
|
break_callback_sal->end = eh_break_addr;
|
4425 |
|
|
|
4426 |
|
|
return break_callback_sal;
|
4427 |
|
|
}
|
4428 |
|
|
|
4429 |
|
|
/* Record some information about the current exception event */
|
4430 |
|
|
static struct exception_event_record current_ex_event;
|
4431 |
|
|
/* Convenience struct */
|
4432 |
|
|
static struct symtab_and_line null_symtab_and_line =
|
4433 |
|
|
{NULL, 0, 0, 0};
|
4434 |
|
|
|
4435 |
|
|
/* Report current exception event. Returns a pointer to a record
|
4436 |
|
|
that describes the kind of the event, where it was thrown from,
|
4437 |
|
|
and where it will be caught. More information may be reported
|
4438 |
|
|
in the future */
|
4439 |
|
|
struct exception_event_record *
|
4440 |
|
|
child_get_current_exception_event (void)
|
4441 |
|
|
{
|
4442 |
|
|
CORE_ADDR event_kind;
|
4443 |
|
|
CORE_ADDR throw_addr;
|
4444 |
|
|
CORE_ADDR catch_addr;
|
4445 |
|
|
struct frame_info *fi, *curr_frame;
|
4446 |
|
|
int level = 1;
|
4447 |
|
|
|
4448 |
|
|
curr_frame = get_current_frame ();
|
4449 |
|
|
if (!curr_frame)
|
4450 |
|
|
return (struct exception_event_record *) NULL;
|
4451 |
|
|
|
4452 |
|
|
/* Go up one frame to __d_eh_notify_callback, because at the
|
4453 |
|
|
point when this code is executed, there's garbage in the
|
4454 |
|
|
arguments of __d_eh_break. */
|
4455 |
|
|
fi = find_relative_frame (curr_frame, &level);
|
4456 |
|
|
if (level != 0)
|
4457 |
|
|
return (struct exception_event_record *) NULL;
|
4458 |
|
|
|
4459 |
|
|
select_frame (fi, -1);
|
4460 |
|
|
|
4461 |
|
|
/* Read in the arguments */
|
4462 |
|
|
/* __d_eh_notify_callback() is called with 3 arguments:
|
4463 |
|
|
1. event kind catch or throw
|
4464 |
|
|
2. the target address if known
|
4465 |
|
|
3. a flag -- not sure what this is. pai/1997-07-17 */
|
4466 |
|
|
event_kind = read_register (ARG0_REGNUM);
|
4467 |
|
|
catch_addr = read_register (ARG1_REGNUM);
|
4468 |
|
|
|
4469 |
|
|
/* Now go down to a user frame */
|
4470 |
|
|
/* For a throw, __d_eh_break is called by
|
4471 |
|
|
__d_eh_notify_callback which is called by
|
4472 |
|
|
__notify_throw which is called
|
4473 |
|
|
from user code.
|
4474 |
|
|
For a catch, __d_eh_break is called by
|
4475 |
|
|
__d_eh_notify_callback which is called by
|
4476 |
|
|
<stackwalking stuff> which is called by
|
4477 |
|
|
__throw__<stuff> or __rethrow_<stuff> which is called
|
4478 |
|
|
from user code. */
|
4479 |
|
|
/* FIXME: Don't use such magic numbers; search for the frames */
|
4480 |
|
|
level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
|
4481 |
|
|
fi = find_relative_frame (curr_frame, &level);
|
4482 |
|
|
if (level != 0)
|
4483 |
|
|
return (struct exception_event_record *) NULL;
|
4484 |
|
|
|
4485 |
|
|
select_frame (fi, -1);
|
4486 |
|
|
throw_addr = fi->pc;
|
4487 |
|
|
|
4488 |
|
|
/* Go back to original (top) frame */
|
4489 |
|
|
select_frame (curr_frame, -1);
|
4490 |
|
|
|
4491 |
|
|
current_ex_event.kind = (enum exception_event_kind) event_kind;
|
4492 |
|
|
current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
|
4493 |
|
|
current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
|
4494 |
|
|
|
4495 |
|
|
return ¤t_ex_event;
|
4496 |
|
|
}
|
4497 |
|
|
|
4498 |
|
|
static void
|
4499 |
|
|
unwind_command (char *exp, int from_tty)
|
4500 |
|
|
{
|
4501 |
|
|
CORE_ADDR address;
|
4502 |
|
|
struct unwind_table_entry *u;
|
4503 |
|
|
|
4504 |
|
|
/* If we have an expression, evaluate it and use it as the address. */
|
4505 |
|
|
|
4506 |
|
|
if (exp != 0 && *exp != 0)
|
4507 |
|
|
address = parse_and_eval_address (exp);
|
4508 |
|
|
else
|
4509 |
|
|
return;
|
4510 |
|
|
|
4511 |
|
|
u = find_unwind_entry (address);
|
4512 |
|
|
|
4513 |
|
|
if (!u)
|
4514 |
|
|
{
|
4515 |
|
|
printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
|
4516 |
|
|
return;
|
4517 |
|
|
}
|
4518 |
|
|
|
4519 |
|
|
printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
|
4520 |
|
|
|
4521 |
|
|
printf_unfiltered ("\tregion_start = ");
|
4522 |
|
|
print_address (u->region_start, gdb_stdout);
|
4523 |
|
|
|
4524 |
|
|
printf_unfiltered ("\n\tregion_end = ");
|
4525 |
|
|
print_address (u->region_end, gdb_stdout);
|
4526 |
|
|
|
4527 |
|
|
#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
|
4528 |
|
|
|
4529 |
|
|
printf_unfiltered ("\n\tflags =");
|
4530 |
|
|
pif (Cannot_unwind);
|
4531 |
|
|
pif (Millicode);
|
4532 |
|
|
pif (Millicode_save_sr0);
|
4533 |
|
|
pif (Entry_SR);
|
4534 |
|
|
pif (Args_stored);
|
4535 |
|
|
pif (Variable_Frame);
|
4536 |
|
|
pif (Separate_Package_Body);
|
4537 |
|
|
pif (Frame_Extension_Millicode);
|
4538 |
|
|
pif (Stack_Overflow_Check);
|
4539 |
|
|
pif (Two_Instruction_SP_Increment);
|
4540 |
|
|
pif (Ada_Region);
|
4541 |
|
|
pif (Save_SP);
|
4542 |
|
|
pif (Save_RP);
|
4543 |
|
|
pif (Save_MRP_in_frame);
|
4544 |
|
|
pif (extn_ptr_defined);
|
4545 |
|
|
pif (Cleanup_defined);
|
4546 |
|
|
pif (MPE_XL_interrupt_marker);
|
4547 |
|
|
pif (HP_UX_interrupt_marker);
|
4548 |
|
|
pif (Large_frame);
|
4549 |
|
|
|
4550 |
|
|
putchar_unfiltered ('\n');
|
4551 |
|
|
|
4552 |
|
|
#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
|
4553 |
|
|
|
4554 |
|
|
pin (Region_description);
|
4555 |
|
|
pin (Entry_FR);
|
4556 |
|
|
pin (Entry_GR);
|
4557 |
|
|
pin (Total_frame_size);
|
4558 |
|
|
}
|
4559 |
|
|
|
4560 |
|
|
#ifdef PREPARE_TO_PROCEED
|
4561 |
|
|
|
4562 |
|
|
/* If the user has switched threads, and there is a breakpoint
|
4563 |
|
|
at the old thread's pc location, then switch to that thread
|
4564 |
|
|
and return TRUE, else return FALSE and don't do a thread
|
4565 |
|
|
switch (or rather, don't seem to have done a thread switch).
|
4566 |
|
|
|
4567 |
|
|
Ptrace-based gdb will always return FALSE to the thread-switch
|
4568 |
|
|
query, and thus also to PREPARE_TO_PROCEED.
|
4569 |
|
|
|
4570 |
|
|
The important thing is whether there is a BPT instruction,
|
4571 |
|
|
not how many user breakpoints there are. So we have to worry
|
4572 |
|
|
about things like these:
|
4573 |
|
|
|
4574 |
|
|
o Non-bp stop -- NO
|
4575 |
|
|
|
4576 |
|
|
o User hits bp, no switch -- NO
|
4577 |
|
|
|
4578 |
|
|
o User hits bp, switches threads -- YES
|
4579 |
|
|
|
4580 |
|
|
o User hits bp, deletes bp, switches threads -- NO
|
4581 |
|
|
|
4582 |
|
|
o User hits bp, deletes one of two or more bps
|
4583 |
|
|
at that PC, user switches threads -- YES
|
4584 |
|
|
|
4585 |
|
|
o Plus, since we're buffering events, the user may have hit a
|
4586 |
|
|
breakpoint, deleted the breakpoint and then gotten another
|
4587 |
|
|
hit on that same breakpoint on another thread which
|
4588 |
|
|
actually hit before the delete. (FIXME in breakpoint.c
|
4589 |
|
|
so that "dead" breakpoints are ignored?) -- NO
|
4590 |
|
|
|
4591 |
|
|
For these reasons, we have to violate information hiding and
|
4592 |
|
|
call "breakpoint_here_p". If core gdb thinks there is a bpt
|
4593 |
|
|
here, that's what counts, as core gdb is the one which is
|
4594 |
|
|
putting the BPT instruction in and taking it out.
|
4595 |
|
|
|
4596 |
|
|
Note that this implementation is potentially redundant now that
|
4597 |
|
|
default_prepare_to_proceed() has been added.
|
4598 |
|
|
|
4599 |
|
|
FIXME This may not support switching threads after Ctrl-C
|
4600 |
|
|
correctly. The default implementation does support this. */
|
4601 |
|
|
int
|
4602 |
|
|
hppa_prepare_to_proceed (void)
|
4603 |
|
|
{
|
4604 |
|
|
pid_t old_thread;
|
4605 |
|
|
pid_t current_thread;
|
4606 |
|
|
|
4607 |
|
|
old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
|
4608 |
|
|
if (old_thread != 0)
|
4609 |
|
|
{
|
4610 |
|
|
/* Switched over from "old_thread". Try to do
|
4611 |
|
|
as little work as possible, 'cause mostly
|
4612 |
|
|
we're going to switch back. */
|
4613 |
|
|
CORE_ADDR new_pc;
|
4614 |
|
|
CORE_ADDR old_pc = read_pc ();
|
4615 |
|
|
|
4616 |
|
|
/* Yuk, shouldn't use global to specify current
|
4617 |
|
|
thread. But that's how gdb does it. */
|
4618 |
|
|
current_thread = PIDGET (inferior_ptid);
|
4619 |
|
|
inferior_ptid = pid_to_ptid (old_thread);
|
4620 |
|
|
|
4621 |
|
|
new_pc = read_pc ();
|
4622 |
|
|
if (new_pc != old_pc /* If at same pc, no need */
|
4623 |
|
|
&& breakpoint_here_p (new_pc))
|
4624 |
|
|
{
|
4625 |
|
|
/* User hasn't deleted the BP.
|
4626 |
|
|
Return TRUE, finishing switch to "old_thread". */
|
4627 |
|
|
flush_cached_frames ();
|
4628 |
|
|
registers_changed ();
|
4629 |
|
|
#if 0
|
4630 |
|
|
printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
|
4631 |
|
|
current_thread, PIDGET (inferior_ptid));
|
4632 |
|
|
#endif
|
4633 |
|
|
|
4634 |
|
|
return 1;
|
4635 |
|
|
}
|
4636 |
|
|
|
4637 |
|
|
/* Otherwise switch back to the user-chosen thread. */
|
4638 |
|
|
inferior_ptid = pid_to_ptid (current_thread);
|
4639 |
|
|
new_pc = read_pc (); /* Re-prime register cache */
|
4640 |
|
|
}
|
4641 |
|
|
|
4642 |
|
|
return 0;
|
4643 |
|
|
}
|
4644 |
|
|
#endif /* PREPARE_TO_PROCEED */
|
4645 |
|
|
|
4646 |
|
|
void
|
4647 |
|
|
hppa_skip_permanent_breakpoint (void)
|
4648 |
|
|
{
|
4649 |
|
|
/* To step over a breakpoint instruction on the PA takes some
|
4650 |
|
|
fiddling with the instruction address queue.
|
4651 |
|
|
|
4652 |
|
|
When we stop at a breakpoint, the IA queue front (the instruction
|
4653 |
|
|
we're executing now) points at the breakpoint instruction, and
|
4654 |
|
|
the IA queue back (the next instruction to execute) points to
|
4655 |
|
|
whatever instruction we would execute after the breakpoint, if it
|
4656 |
|
|
were an ordinary instruction. This is the case even if the
|
4657 |
|
|
breakpoint is in the delay slot of a branch instruction.
|
4658 |
|
|
|
4659 |
|
|
Clearly, to step past the breakpoint, we need to set the queue
|
4660 |
|
|
front to the back. But what do we put in the back? What
|
4661 |
|
|
instruction comes after that one? Because of the branch delay
|
4662 |
|
|
slot, the next insn is always at the back + 4. */
|
4663 |
|
|
write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
|
4664 |
|
|
write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
|
4665 |
|
|
|
4666 |
|
|
write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
|
4667 |
|
|
/* We can leave the tail's space the same, since there's no jump. */
|
4668 |
|
|
}
|
4669 |
|
|
|
4670 |
|
|
void
|
4671 |
|
|
_initialize_hppa_tdep (void)
|
4672 |
|
|
{
|
4673 |
|
|
tm_print_insn = print_insn_hppa;
|
4674 |
|
|
|
4675 |
|
|
add_cmd ("unwind", class_maintenance, unwind_command,
|
4676 |
|
|
"Print unwind table entry at given address.",
|
4677 |
|
|
&maintenanceprintlist);
|
4678 |
|
|
}
|