1 |
578 |
markom |
/* Target-dependent code for Linux running on i386's, for GDB.
|
2 |
|
|
Copyright 2000, 2001 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
19 |
|
|
Boston, MA 02111-1307, USA. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "gdbcore.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "value.h"
|
25 |
|
|
#include "regcache.h"
|
26 |
|
|
|
27 |
|
|
/* For i386_linux_skip_solib_resolver. */
|
28 |
|
|
#include "symtab.h"
|
29 |
|
|
#include "symfile.h"
|
30 |
|
|
#include "objfiles.h"
|
31 |
|
|
|
32 |
|
|
#include "solib-svr4.h" /* For struct link_map_offsets. */
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
/* Recognizing signal handler frames. */
|
36 |
|
|
|
37 |
|
|
/* Linux has two flavors of signals. Normal signal handlers, and
|
38 |
|
|
"realtime" (RT) signals. The RT signals can provide additional
|
39 |
|
|
information to the signal handler if the SA_SIGINFO flag is set
|
40 |
|
|
when establishing a signal handler using `sigaction'. It is not
|
41 |
|
|
unlikely that future versions of Linux will support SA_SIGINFO for
|
42 |
|
|
normal signals too. */
|
43 |
|
|
|
44 |
|
|
/* When the i386 Linux kernel calls a signal handler and the
|
45 |
|
|
SA_RESTORER flag isn't set, the return address points to a bit of
|
46 |
|
|
code on the stack. This function returns whether the PC appears to
|
47 |
|
|
be within this bit of code.
|
48 |
|
|
|
49 |
|
|
The instruction sequence for normal signals is
|
50 |
|
|
pop %eax
|
51 |
|
|
mov $0x77,%eax
|
52 |
|
|
int $0x80
|
53 |
|
|
or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
|
54 |
|
|
|
55 |
|
|
Checking for the code sequence should be somewhat reliable, because
|
56 |
|
|
the effect is to call the system call sigreturn. This is unlikely
|
57 |
|
|
to occur anywhere other than a signal trampoline.
|
58 |
|
|
|
59 |
|
|
It kind of sucks that we have to read memory from the process in
|
60 |
|
|
order to identify a signal trampoline, but there doesn't seem to be
|
61 |
|
|
any other way. The IN_SIGTRAMP macro in tm-linux.h arranges to
|
62 |
|
|
only call us if no function name could be identified, which should
|
63 |
|
|
be the case since the code is on the stack.
|
64 |
|
|
|
65 |
|
|
Detection of signal trampolines for handlers that set the
|
66 |
|
|
SA_RESTORER flag is in general not possible. Unfortunately this is
|
67 |
|
|
what the GNU C Library has been doing for quite some time now.
|
68 |
|
|
However, as of version 2.1.2, the GNU C Library uses signal
|
69 |
|
|
trampolines (named __restore and __restore_rt) that are identical
|
70 |
|
|
to the ones used by the kernel. Therefore, these trampolines are
|
71 |
|
|
supported too. */
|
72 |
|
|
|
73 |
|
|
#define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
|
74 |
|
|
#define LINUX_SIGTRAMP_OFFSET0 (0)
|
75 |
|
|
#define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
|
76 |
|
|
#define LINUX_SIGTRAMP_OFFSET1 (1)
|
77 |
|
|
#define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
|
78 |
|
|
#define LINUX_SIGTRAMP_OFFSET2 (6)
|
79 |
|
|
|
80 |
|
|
static const unsigned char linux_sigtramp_code[] =
|
81 |
|
|
{
|
82 |
|
|
LINUX_SIGTRAMP_INSN0, /* pop %eax */
|
83 |
|
|
LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
|
84 |
|
|
LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
|
85 |
|
|
};
|
86 |
|
|
|
87 |
|
|
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
|
88 |
|
|
|
89 |
|
|
/* If PC is in a sigtramp routine, return the address of the start of
|
90 |
|
|
the routine. Otherwise, return 0. */
|
91 |
|
|
|
92 |
|
|
static CORE_ADDR
|
93 |
|
|
i386_linux_sigtramp_start (CORE_ADDR pc)
|
94 |
|
|
{
|
95 |
|
|
unsigned char buf[LINUX_SIGTRAMP_LEN];
|
96 |
|
|
|
97 |
|
|
/* We only recognize a signal trampoline if PC is at the start of
|
98 |
|
|
one of the three instructions. We optimize for finding the PC at
|
99 |
|
|
the start, as will be the case when the trampoline is not the
|
100 |
|
|
first frame on the stack. We assume that in the case where the
|
101 |
|
|
PC is not at the start of the instruction sequence, there will be
|
102 |
|
|
a few trailing readable bytes on the stack. */
|
103 |
|
|
|
104 |
|
|
if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
|
105 |
|
|
return 0;
|
106 |
|
|
|
107 |
|
|
if (buf[0] != LINUX_SIGTRAMP_INSN0)
|
108 |
|
|
{
|
109 |
|
|
int adjust;
|
110 |
|
|
|
111 |
|
|
switch (buf[0])
|
112 |
|
|
{
|
113 |
|
|
case LINUX_SIGTRAMP_INSN1:
|
114 |
|
|
adjust = LINUX_SIGTRAMP_OFFSET1;
|
115 |
|
|
break;
|
116 |
|
|
case LINUX_SIGTRAMP_INSN2:
|
117 |
|
|
adjust = LINUX_SIGTRAMP_OFFSET2;
|
118 |
|
|
break;
|
119 |
|
|
default:
|
120 |
|
|
return 0;
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
pc -= adjust;
|
124 |
|
|
|
125 |
|
|
if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
|
126 |
|
|
return 0;
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
|
130 |
|
|
return 0;
|
131 |
|
|
|
132 |
|
|
return pc;
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
/* This function does the same for RT signals. Here the instruction
|
136 |
|
|
sequence is
|
137 |
|
|
mov $0xad,%eax
|
138 |
|
|
int $0x80
|
139 |
|
|
or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
|
140 |
|
|
|
141 |
|
|
The effect is to call the system call rt_sigreturn. */
|
142 |
|
|
|
143 |
|
|
#define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
|
144 |
|
|
#define LINUX_RT_SIGTRAMP_OFFSET0 (0)
|
145 |
|
|
#define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
|
146 |
|
|
#define LINUX_RT_SIGTRAMP_OFFSET1 (5)
|
147 |
|
|
|
148 |
|
|
static const unsigned char linux_rt_sigtramp_code[] =
|
149 |
|
|
{
|
150 |
|
|
LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
|
151 |
|
|
LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
|
152 |
|
|
};
|
153 |
|
|
|
154 |
|
|
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
|
155 |
|
|
|
156 |
|
|
/* If PC is in a RT sigtramp routine, return the address of the start
|
157 |
|
|
of the routine. Otherwise, return 0. */
|
158 |
|
|
|
159 |
|
|
static CORE_ADDR
|
160 |
|
|
i386_linux_rt_sigtramp_start (CORE_ADDR pc)
|
161 |
|
|
{
|
162 |
|
|
unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
|
163 |
|
|
|
164 |
|
|
/* We only recognize a signal trampoline if PC is at the start of
|
165 |
|
|
one of the two instructions. We optimize for finding the PC at
|
166 |
|
|
the start, as will be the case when the trampoline is not the
|
167 |
|
|
first frame on the stack. We assume that in the case where the
|
168 |
|
|
PC is not at the start of the instruction sequence, there will be
|
169 |
|
|
a few trailing readable bytes on the stack. */
|
170 |
|
|
|
171 |
|
|
if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
|
172 |
|
|
return 0;
|
173 |
|
|
|
174 |
|
|
if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
|
175 |
|
|
{
|
176 |
|
|
if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
|
177 |
|
|
return 0;
|
178 |
|
|
|
179 |
|
|
pc -= LINUX_RT_SIGTRAMP_OFFSET1;
|
180 |
|
|
|
181 |
|
|
if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
|
182 |
|
|
return 0;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
|
186 |
|
|
return 0;
|
187 |
|
|
|
188 |
|
|
return pc;
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
/* Return whether PC is in a Linux sigtramp routine. */
|
192 |
|
|
|
193 |
|
|
int
|
194 |
|
|
i386_linux_in_sigtramp (CORE_ADDR pc, char *name)
|
195 |
|
|
{
|
196 |
|
|
if (name)
|
197 |
|
|
return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
|
198 |
|
|
|
199 |
|
|
return (i386_linux_sigtramp_start (pc) != 0
|
200 |
|
|
|| i386_linux_rt_sigtramp_start (pc) != 0);
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* Assuming FRAME is for a Linux sigtramp routine, return the address
|
204 |
|
|
of the associated sigcontext structure. */
|
205 |
|
|
|
206 |
|
|
CORE_ADDR
|
207 |
|
|
i386_linux_sigcontext_addr (struct frame_info *frame)
|
208 |
|
|
{
|
209 |
|
|
CORE_ADDR pc;
|
210 |
|
|
|
211 |
|
|
pc = i386_linux_sigtramp_start (frame->pc);
|
212 |
|
|
if (pc)
|
213 |
|
|
{
|
214 |
|
|
CORE_ADDR sp;
|
215 |
|
|
|
216 |
|
|
if (frame->next)
|
217 |
|
|
/* If this isn't the top frame, the next frame must be for the
|
218 |
|
|
signal handler itself. The sigcontext structure lives on
|
219 |
|
|
the stack, right after the signum argument. */
|
220 |
|
|
return frame->next->frame + 12;
|
221 |
|
|
|
222 |
|
|
/* This is the top frame. We'll have to find the address of the
|
223 |
|
|
sigcontext structure by looking at the stack pointer. Keep
|
224 |
|
|
in mind that the first instruction of the sigtramp code is
|
225 |
|
|
"pop %eax". If the PC is at this instruction, adjust the
|
226 |
|
|
returned value accordingly. */
|
227 |
|
|
sp = read_register (SP_REGNUM);
|
228 |
|
|
if (pc == frame->pc)
|
229 |
|
|
return sp + 4;
|
230 |
|
|
return sp;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
pc = i386_linux_rt_sigtramp_start (frame->pc);
|
234 |
|
|
if (pc)
|
235 |
|
|
{
|
236 |
|
|
if (frame->next)
|
237 |
|
|
/* If this isn't the top frame, the next frame must be for the
|
238 |
|
|
signal handler itself. The sigcontext structure is part of
|
239 |
|
|
the user context. A pointer to the user context is passed
|
240 |
|
|
as the third argument to the signal handler. */
|
241 |
|
|
return read_memory_integer (frame->next->frame + 16, 4) + 20;
|
242 |
|
|
|
243 |
|
|
/* This is the top frame. Again, use the stack pointer to find
|
244 |
|
|
the address of the sigcontext structure. */
|
245 |
|
|
return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
error ("Couldn't recognize signal trampoline.");
|
249 |
|
|
return 0;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
/* Offset to saved PC in sigcontext, from <asm/sigcontext.h>. */
|
253 |
|
|
#define LINUX_SIGCONTEXT_PC_OFFSET (56)
|
254 |
|
|
|
255 |
|
|
/* Assuming FRAME is for a Linux sigtramp routine, return the saved
|
256 |
|
|
program counter. */
|
257 |
|
|
|
258 |
|
|
static CORE_ADDR
|
259 |
|
|
i386_linux_sigtramp_saved_pc (struct frame_info *frame)
|
260 |
|
|
{
|
261 |
|
|
CORE_ADDR addr;
|
262 |
|
|
addr = i386_linux_sigcontext_addr (frame);
|
263 |
|
|
return read_memory_integer (addr + LINUX_SIGCONTEXT_PC_OFFSET, 4);
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
/* Offset to saved SP in sigcontext, from <asm/sigcontext.h>. */
|
267 |
|
|
#define LINUX_SIGCONTEXT_SP_OFFSET (28)
|
268 |
|
|
|
269 |
|
|
/* Assuming FRAME is for a Linux sigtramp routine, return the saved
|
270 |
|
|
stack pointer. */
|
271 |
|
|
|
272 |
|
|
static CORE_ADDR
|
273 |
|
|
i386_linux_sigtramp_saved_sp (struct frame_info *frame)
|
274 |
|
|
{
|
275 |
|
|
CORE_ADDR addr;
|
276 |
|
|
addr = i386_linux_sigcontext_addr (frame);
|
277 |
|
|
return read_memory_integer (addr + LINUX_SIGCONTEXT_SP_OFFSET, 4);
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
/* Signal trampolines don't have a meaningful frame. As in
|
281 |
|
|
"i386/tm-i386.h", the frame pointer value we use is actually the
|
282 |
|
|
frame pointer of the calling frame -- that is, the frame which was
|
283 |
|
|
in progress when the signal trampoline was entered. GDB mostly
|
284 |
|
|
treats this frame pointer value as a magic cookie. We detect the
|
285 |
|
|
case of a signal trampoline by looking at the SIGNAL_HANDLER_CALLER
|
286 |
|
|
field, which is set based on IN_SIGTRAMP.
|
287 |
|
|
|
288 |
|
|
When a signal trampoline is invoked from a frameless function, we
|
289 |
|
|
essentially have two frameless functions in a row. In this case,
|
290 |
|
|
we use the same magic cookie for three frames in a row. We detect
|
291 |
|
|
this case by seeing whether the next frame has
|
292 |
|
|
SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
|
293 |
|
|
current frame is actually frameless. In this case, we need to get
|
294 |
|
|
the PC by looking at the SP register value stored in the signal
|
295 |
|
|
context.
|
296 |
|
|
|
297 |
|
|
This should work in most cases except in horrible situations where
|
298 |
|
|
a signal occurs just as we enter a function but before the frame
|
299 |
|
|
has been set up. */
|
300 |
|
|
|
301 |
|
|
#define FRAMELESS_SIGNAL(frame) \
|
302 |
|
|
((frame)->next != NULL \
|
303 |
|
|
&& (frame)->next->signal_handler_caller \
|
304 |
|
|
&& frameless_look_for_prologue (frame))
|
305 |
|
|
|
306 |
|
|
CORE_ADDR
|
307 |
|
|
i386_linux_frame_chain (struct frame_info *frame)
|
308 |
|
|
{
|
309 |
|
|
if (frame->signal_handler_caller || FRAMELESS_SIGNAL (frame))
|
310 |
|
|
return frame->frame;
|
311 |
|
|
|
312 |
|
|
if (! inside_entry_file (frame->pc))
|
313 |
|
|
return read_memory_unsigned_integer (frame->frame, 4);
|
314 |
|
|
|
315 |
|
|
return 0;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
/* Return the saved program counter for FRAME. */
|
319 |
|
|
|
320 |
|
|
CORE_ADDR
|
321 |
|
|
i386_linux_frame_saved_pc (struct frame_info *frame)
|
322 |
|
|
{
|
323 |
|
|
if (frame->signal_handler_caller)
|
324 |
|
|
return i386_linux_sigtramp_saved_pc (frame);
|
325 |
|
|
|
326 |
|
|
if (FRAMELESS_SIGNAL (frame))
|
327 |
|
|
{
|
328 |
|
|
CORE_ADDR sp = i386_linux_sigtramp_saved_sp (frame->next);
|
329 |
|
|
return read_memory_unsigned_integer (sp, 4);
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
return read_memory_unsigned_integer (frame->frame + 4, 4);
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/* Immediately after a function call, return the saved pc. */
|
336 |
|
|
|
337 |
|
|
CORE_ADDR
|
338 |
|
|
i386_linux_saved_pc_after_call (struct frame_info *frame)
|
339 |
|
|
{
|
340 |
|
|
if (frame->signal_handler_caller)
|
341 |
|
|
return i386_linux_sigtramp_saved_pc (frame);
|
342 |
|
|
|
343 |
|
|
return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
|
347 |
|
|
/* Calling functions in shared libraries. */
|
348 |
|
|
/* Find the minimal symbol named NAME, and return both the minsym
|
349 |
|
|
struct and its objfile. This probably ought to be in minsym.c, but
|
350 |
|
|
everything there is trying to deal with things like C++ and
|
351 |
|
|
SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
|
352 |
|
|
be considered too special-purpose for general consumption. */
|
353 |
|
|
|
354 |
|
|
static struct minimal_symbol *
|
355 |
|
|
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
|
356 |
|
|
{
|
357 |
|
|
struct objfile *objfile;
|
358 |
|
|
|
359 |
|
|
ALL_OBJFILES (objfile)
|
360 |
|
|
{
|
361 |
|
|
struct minimal_symbol *msym;
|
362 |
|
|
|
363 |
|
|
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
364 |
|
|
{
|
365 |
|
|
if (SYMBOL_NAME (msym)
|
366 |
|
|
&& STREQ (SYMBOL_NAME (msym), name))
|
367 |
|
|
{
|
368 |
|
|
*objfile_p = objfile;
|
369 |
|
|
return msym;
|
370 |
|
|
}
|
371 |
|
|
}
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
return 0;
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
static CORE_ADDR
|
378 |
|
|
skip_hurd_resolver (CORE_ADDR pc)
|
379 |
|
|
{
|
380 |
|
|
/* The HURD dynamic linker is part of the GNU C library, so many
|
381 |
|
|
GNU/Linux distributions use it. (All ELF versions, as far as I
|
382 |
|
|
know.) An unresolved PLT entry points to "_dl_runtime_resolve",
|
383 |
|
|
which calls "fixup" to patch the PLT, and then passes control to
|
384 |
|
|
the function.
|
385 |
|
|
|
386 |
|
|
We look for the symbol `_dl_runtime_resolve', and find `fixup' in
|
387 |
|
|
the same objfile. If we are at the entry point of `fixup', then
|
388 |
|
|
we set a breakpoint at the return address (at the top of the
|
389 |
|
|
stack), and continue.
|
390 |
|
|
|
391 |
|
|
It's kind of gross to do all these checks every time we're
|
392 |
|
|
called, since they don't change once the executable has gotten
|
393 |
|
|
started. But this is only a temporary hack --- upcoming versions
|
394 |
|
|
of Linux will provide a portable, efficient interface for
|
395 |
|
|
debugging programs that use shared libraries. */
|
396 |
|
|
|
397 |
|
|
struct objfile *objfile;
|
398 |
|
|
struct minimal_symbol *resolver
|
399 |
|
|
= find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
|
400 |
|
|
|
401 |
|
|
if (resolver)
|
402 |
|
|
{
|
403 |
|
|
struct minimal_symbol *fixup
|
404 |
|
|
= lookup_minimal_symbol ("fixup", 0, objfile);
|
405 |
|
|
|
406 |
|
|
if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
|
407 |
|
|
return (SAVED_PC_AFTER_CALL (get_current_frame ()));
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
return 0;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
|
414 |
|
|
This function:
|
415 |
|
|
1) decides whether a PLT has sent us into the linker to resolve
|
416 |
|
|
a function reference, and
|
417 |
|
|
2) if so, tells us where to set a temporary breakpoint that will
|
418 |
|
|
trigger when the dynamic linker is done. */
|
419 |
|
|
|
420 |
|
|
CORE_ADDR
|
421 |
|
|
i386_linux_skip_solib_resolver (CORE_ADDR pc)
|
422 |
|
|
{
|
423 |
|
|
CORE_ADDR result;
|
424 |
|
|
|
425 |
|
|
/* Plug in functions for other kinds of resolvers here. */
|
426 |
|
|
result = skip_hurd_resolver (pc);
|
427 |
|
|
if (result)
|
428 |
|
|
return result;
|
429 |
|
|
|
430 |
|
|
return 0;
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets
|
434 |
|
|
structure for native Linux/x86 targets using the struct offsets
|
435 |
|
|
defined in link.h (but without actual reference to that file).
|
436 |
|
|
|
437 |
|
|
This makes it possible to access Linux/x86 shared libraries from a
|
438 |
|
|
GDB that was not built on an Linux/x86 host (for cross debugging). */
|
439 |
|
|
|
440 |
|
|
struct link_map_offsets *
|
441 |
|
|
i386_linux_svr4_fetch_link_map_offsets (void)
|
442 |
|
|
{
|
443 |
|
|
static struct link_map_offsets lmo;
|
444 |
|
|
static struct link_map_offsets *lmp = NULL;
|
445 |
|
|
|
446 |
|
|
if (lmp == NULL)
|
447 |
|
|
{
|
448 |
|
|
lmp = &lmo;
|
449 |
|
|
|
450 |
|
|
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
|
451 |
|
|
this is all we need. */
|
452 |
|
|
lmo.r_map_offset = 4;
|
453 |
|
|
lmo.r_map_size = 4;
|
454 |
|
|
|
455 |
|
|
lmo.link_map_size = 20; /* The actual size is 552 bytes, but
|
456 |
|
|
this is all we need. */
|
457 |
|
|
lmo.l_addr_offset = 0;
|
458 |
|
|
lmo.l_addr_size = 4;
|
459 |
|
|
|
460 |
|
|
lmo.l_name_offset = 4;
|
461 |
|
|
lmo.l_name_size = 4;
|
462 |
|
|
|
463 |
|
|
lmo.l_next_offset = 12;
|
464 |
|
|
lmo.l_next_size = 4;
|
465 |
|
|
|
466 |
|
|
lmo.l_prev_offset = 16;
|
467 |
|
|
lmo.l_prev_size = 4;
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
return lmp;
|
471 |
|
|
}
|