1 |
578 |
markom |
/* Intel 386 target-dependent stuff.
|
2 |
|
|
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
3 |
|
|
1998, 1999, 2000, 2001
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include "frame.h"
|
26 |
|
|
#include "inferior.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "target.h"
|
29 |
|
|
#include "floatformat.h"
|
30 |
|
|
#include "symtab.h"
|
31 |
|
|
#include "gdbcmd.h"
|
32 |
|
|
#include "command.h"
|
33 |
|
|
#include "arch-utils.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
|
36 |
|
|
/* i386_register_byte[i] is the offset into the register file of the
|
37 |
|
|
start of register number i. We initialize this from
|
38 |
|
|
i386_register_raw_size. */
|
39 |
|
|
int i386_register_byte[MAX_NUM_REGS];
|
40 |
|
|
|
41 |
|
|
/* i386_register_raw_size[i] is the number of bytes of storage in
|
42 |
|
|
GDB's register array occupied by register i. */
|
43 |
|
|
int i386_register_raw_size[MAX_NUM_REGS] = {
|
44 |
|
|
4, 4, 4, 4,
|
45 |
|
|
4, 4, 4, 4,
|
46 |
|
|
4, 4, 4, 4,
|
47 |
|
|
4, 4, 4, 4,
|
48 |
|
|
10, 10, 10, 10,
|
49 |
|
|
10, 10, 10, 10,
|
50 |
|
|
4, 4, 4, 4,
|
51 |
|
|
4, 4, 4, 4,
|
52 |
|
|
16, 16, 16, 16,
|
53 |
|
|
16, 16, 16, 16,
|
54 |
|
|
4
|
55 |
|
|
};
|
56 |
|
|
|
57 |
|
|
/* i386_register_virtual_size[i] is the size in bytes of the virtual
|
58 |
|
|
type of register i. */
|
59 |
|
|
int i386_register_virtual_size[MAX_NUM_REGS];
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
/* This is the variable that is set with "set disassembly-flavor", and
|
63 |
|
|
its legitimate values. */
|
64 |
|
|
static const char att_flavor[] = "att";
|
65 |
|
|
static const char intel_flavor[] = "intel";
|
66 |
|
|
static const char *valid_flavors[] =
|
67 |
|
|
{
|
68 |
|
|
att_flavor,
|
69 |
|
|
intel_flavor,
|
70 |
|
|
NULL
|
71 |
|
|
};
|
72 |
|
|
static const char *disassembly_flavor = att_flavor;
|
73 |
|
|
|
74 |
|
|
/* This is used to keep the bfd arch_info in sync with the disassembly
|
75 |
|
|
flavor. */
|
76 |
|
|
static void set_disassembly_flavor_sfunc (char *, int,
|
77 |
|
|
struct cmd_list_element *);
|
78 |
|
|
static void set_disassembly_flavor (void);
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
/* Stdio style buffering was used to minimize calls to ptrace, but
|
82 |
|
|
this buffering did not take into account that the code section
|
83 |
|
|
being accessed may not be an even number of buffers long (even if
|
84 |
|
|
the buffer is only sizeof(int) long). In cases where the code
|
85 |
|
|
section size happened to be a non-integral number of buffers long,
|
86 |
|
|
attempting to read the last buffer would fail. Simply using
|
87 |
|
|
target_read_memory and ignoring errors, rather than read_memory, is
|
88 |
|
|
not the correct solution, since legitimate access errors would then
|
89 |
|
|
be totally ignored. To properly handle this situation and continue
|
90 |
|
|
to use buffering would require that this code be able to determine
|
91 |
|
|
the minimum code section size granularity (not the alignment of the
|
92 |
|
|
section itself, since the actual failing case that pointed out this
|
93 |
|
|
problem had a section alignment of 4 but was not a multiple of 4
|
94 |
|
|
bytes long), on a target by target basis, and then adjust it's
|
95 |
|
|
buffer size accordingly. This is messy, but potentially feasible.
|
96 |
|
|
It probably needs the bfd library's help and support. For now, the
|
97 |
|
|
buffer size is set to 1. (FIXME -fnf) */
|
98 |
|
|
|
99 |
|
|
#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
|
100 |
|
|
static CORE_ADDR codestream_next_addr;
|
101 |
|
|
static CORE_ADDR codestream_addr;
|
102 |
|
|
static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
|
103 |
|
|
static int codestream_off;
|
104 |
|
|
static int codestream_cnt;
|
105 |
|
|
|
106 |
|
|
#define codestream_tell() (codestream_addr + codestream_off)
|
107 |
|
|
#define codestream_peek() \
|
108 |
|
|
(codestream_cnt == 0 ? \
|
109 |
|
|
codestream_fill(1) : codestream_buf[codestream_off])
|
110 |
|
|
#define codestream_get() \
|
111 |
|
|
(codestream_cnt-- == 0 ? \
|
112 |
|
|
codestream_fill(0) : codestream_buf[codestream_off++])
|
113 |
|
|
|
114 |
|
|
static unsigned char
|
115 |
|
|
codestream_fill (int peek_flag)
|
116 |
|
|
{
|
117 |
|
|
codestream_addr = codestream_next_addr;
|
118 |
|
|
codestream_next_addr += CODESTREAM_BUFSIZ;
|
119 |
|
|
codestream_off = 0;
|
120 |
|
|
codestream_cnt = CODESTREAM_BUFSIZ;
|
121 |
|
|
read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
|
122 |
|
|
|
123 |
|
|
if (peek_flag)
|
124 |
|
|
return (codestream_peek ());
|
125 |
|
|
else
|
126 |
|
|
return (codestream_get ());
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
static void
|
130 |
|
|
codestream_seek (CORE_ADDR place)
|
131 |
|
|
{
|
132 |
|
|
codestream_next_addr = place / CODESTREAM_BUFSIZ;
|
133 |
|
|
codestream_next_addr *= CODESTREAM_BUFSIZ;
|
134 |
|
|
codestream_cnt = 0;
|
135 |
|
|
codestream_fill (1);
|
136 |
|
|
while (codestream_tell () != place)
|
137 |
|
|
codestream_get ();
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
static void
|
141 |
|
|
codestream_read (unsigned char *buf, int count)
|
142 |
|
|
{
|
143 |
|
|
unsigned char *p;
|
144 |
|
|
int i;
|
145 |
|
|
p = buf;
|
146 |
|
|
for (i = 0; i < count; i++)
|
147 |
|
|
*p++ = codestream_get ();
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
|
151 |
|
|
/* If the next instruction is a jump, move to its target. */
|
152 |
|
|
|
153 |
|
|
static void
|
154 |
|
|
i386_follow_jump (void)
|
155 |
|
|
{
|
156 |
|
|
unsigned char buf[4];
|
157 |
|
|
long delta;
|
158 |
|
|
|
159 |
|
|
int data16;
|
160 |
|
|
CORE_ADDR pos;
|
161 |
|
|
|
162 |
|
|
pos = codestream_tell ();
|
163 |
|
|
|
164 |
|
|
data16 = 0;
|
165 |
|
|
if (codestream_peek () == 0x66)
|
166 |
|
|
{
|
167 |
|
|
codestream_get ();
|
168 |
|
|
data16 = 1;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
switch (codestream_get ())
|
172 |
|
|
{
|
173 |
|
|
case 0xe9:
|
174 |
|
|
/* Relative jump: if data16 == 0, disp32, else disp16. */
|
175 |
|
|
if (data16)
|
176 |
|
|
{
|
177 |
|
|
codestream_read (buf, 2);
|
178 |
|
|
delta = extract_signed_integer (buf, 2);
|
179 |
|
|
|
180 |
|
|
/* Include the size of the jmp instruction (including the
|
181 |
|
|
0x66 prefix). */
|
182 |
|
|
pos += delta + 4;
|
183 |
|
|
}
|
184 |
|
|
else
|
185 |
|
|
{
|
186 |
|
|
codestream_read (buf, 4);
|
187 |
|
|
delta = extract_signed_integer (buf, 4);
|
188 |
|
|
|
189 |
|
|
pos += delta + 5;
|
190 |
|
|
}
|
191 |
|
|
break;
|
192 |
|
|
case 0xeb:
|
193 |
|
|
/* Relative jump, disp8 (ignore data16). */
|
194 |
|
|
codestream_read (buf, 1);
|
195 |
|
|
/* Sign-extend it. */
|
196 |
|
|
delta = extract_signed_integer (buf, 1);
|
197 |
|
|
|
198 |
|
|
pos += delta + 2;
|
199 |
|
|
break;
|
200 |
|
|
}
|
201 |
|
|
codestream_seek (pos);
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/* Find & return the amount a local space allocated, and advance the
|
205 |
|
|
codestream to the first register push (if any).
|
206 |
|
|
|
207 |
|
|
If the entry sequence doesn't make sense, return -1, and leave
|
208 |
|
|
codestream pointer at a random spot. */
|
209 |
|
|
|
210 |
|
|
static long
|
211 |
|
|
i386_get_frame_setup (CORE_ADDR pc)
|
212 |
|
|
{
|
213 |
|
|
unsigned char op;
|
214 |
|
|
|
215 |
|
|
codestream_seek (pc);
|
216 |
|
|
|
217 |
|
|
i386_follow_jump ();
|
218 |
|
|
|
219 |
|
|
op = codestream_get ();
|
220 |
|
|
|
221 |
|
|
if (op == 0x58) /* popl %eax */
|
222 |
|
|
{
|
223 |
|
|
/* This function must start with
|
224 |
|
|
|
225 |
|
|
popl %eax 0x58
|
226 |
|
|
xchgl %eax, (%esp) 0x87 0x04 0x24
|
227 |
|
|
or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
|
228 |
|
|
|
229 |
|
|
(the System V compiler puts out the second `xchg'
|
230 |
|
|
instruction, and the assembler doesn't try to optimize it, so
|
231 |
|
|
the 'sib' form gets generated). This sequence is used to get
|
232 |
|
|
the address of the return buffer for a function that returns
|
233 |
|
|
a structure. */
|
234 |
|
|
int pos;
|
235 |
|
|
unsigned char buf[4];
|
236 |
|
|
static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
|
237 |
|
|
static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
|
238 |
|
|
|
239 |
|
|
pos = codestream_tell ();
|
240 |
|
|
codestream_read (buf, 4);
|
241 |
|
|
if (memcmp (buf, proto1, 3) == 0)
|
242 |
|
|
pos += 3;
|
243 |
|
|
else if (memcmp (buf, proto2, 4) == 0)
|
244 |
|
|
pos += 4;
|
245 |
|
|
|
246 |
|
|
codestream_seek (pos);
|
247 |
|
|
op = codestream_get (); /* Update next opcode. */
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
if (op == 0x68 || op == 0x6a)
|
251 |
|
|
{
|
252 |
|
|
/* This function may start with
|
253 |
|
|
|
254 |
|
|
pushl constant
|
255 |
|
|
call _probe
|
256 |
|
|
addl $4, %esp
|
257 |
|
|
|
258 |
|
|
followed by
|
259 |
|
|
|
260 |
|
|
pushl %ebp
|
261 |
|
|
|
262 |
|
|
etc. */
|
263 |
|
|
int pos;
|
264 |
|
|
unsigned char buf[8];
|
265 |
|
|
|
266 |
|
|
/* Skip past the `pushl' instruction; it has either a one-byte
|
267 |
|
|
or a four-byte operand, depending on the opcode. */
|
268 |
|
|
pos = codestream_tell ();
|
269 |
|
|
if (op == 0x68)
|
270 |
|
|
pos += 4;
|
271 |
|
|
else
|
272 |
|
|
pos += 1;
|
273 |
|
|
codestream_seek (pos);
|
274 |
|
|
|
275 |
|
|
/* Read the following 8 bytes, which should be "call _probe" (6
|
276 |
|
|
bytes) followed by "addl $4,%esp" (2 bytes). */
|
277 |
|
|
codestream_read (buf, sizeof (buf));
|
278 |
|
|
if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
|
279 |
|
|
pos += sizeof (buf);
|
280 |
|
|
codestream_seek (pos);
|
281 |
|
|
op = codestream_get (); /* Update next opcode. */
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
if (op == 0x55) /* pushl %ebp */
|
285 |
|
|
{
|
286 |
|
|
/* Check for "movl %esp, %ebp" -- can be written in two ways. */
|
287 |
|
|
switch (codestream_get ())
|
288 |
|
|
{
|
289 |
|
|
case 0x8b:
|
290 |
|
|
if (codestream_get () != 0xec)
|
291 |
|
|
return -1;
|
292 |
|
|
break;
|
293 |
|
|
case 0x89:
|
294 |
|
|
if (codestream_get () != 0xe5)
|
295 |
|
|
return -1;
|
296 |
|
|
break;
|
297 |
|
|
default:
|
298 |
|
|
return -1;
|
299 |
|
|
}
|
300 |
|
|
/* Check for stack adjustment
|
301 |
|
|
|
302 |
|
|
subl $XXX, %esp
|
303 |
|
|
|
304 |
|
|
NOTE: You can't subtract a 16 bit immediate from a 32 bit
|
305 |
|
|
reg, so we don't have to worry about a data16 prefix. */
|
306 |
|
|
op = codestream_peek ();
|
307 |
|
|
if (op == 0x83)
|
308 |
|
|
{
|
309 |
|
|
/* `subl' with 8 bit immediate. */
|
310 |
|
|
codestream_get ();
|
311 |
|
|
if (codestream_get () != 0xec)
|
312 |
|
|
/* Some instruction starting with 0x83 other than `subl'. */
|
313 |
|
|
{
|
314 |
|
|
codestream_seek (codestream_tell () - 2);
|
315 |
|
|
return 0;
|
316 |
|
|
}
|
317 |
|
|
/* `subl' with signed byte immediate (though it wouldn't
|
318 |
|
|
make sense to be negative). */
|
319 |
|
|
return (codestream_get ());
|
320 |
|
|
}
|
321 |
|
|
else if (op == 0x81)
|
322 |
|
|
{
|
323 |
|
|
char buf[4];
|
324 |
|
|
/* Maybe it is `subl' with a 32 bit immedediate. */
|
325 |
|
|
codestream_get ();
|
326 |
|
|
if (codestream_get () != 0xec)
|
327 |
|
|
/* Some instruction starting with 0x81 other than `subl'. */
|
328 |
|
|
{
|
329 |
|
|
codestream_seek (codestream_tell () - 2);
|
330 |
|
|
return 0;
|
331 |
|
|
}
|
332 |
|
|
/* It is `subl' with a 32 bit immediate. */
|
333 |
|
|
codestream_read ((unsigned char *) buf, 4);
|
334 |
|
|
return extract_signed_integer (buf, 4);
|
335 |
|
|
}
|
336 |
|
|
else
|
337 |
|
|
{
|
338 |
|
|
return 0;
|
339 |
|
|
}
|
340 |
|
|
}
|
341 |
|
|
else if (op == 0xc8)
|
342 |
|
|
{
|
343 |
|
|
char buf[2];
|
344 |
|
|
/* `enter' with 16 bit unsigned immediate. */
|
345 |
|
|
codestream_read ((unsigned char *) buf, 2);
|
346 |
|
|
codestream_get (); /* Flush final byte of enter instruction. */
|
347 |
|
|
return extract_unsigned_integer (buf, 2);
|
348 |
|
|
}
|
349 |
|
|
return (-1);
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
/* Return the chain-pointer for FRAME. In the case of the i386, the
|
353 |
|
|
frame's nominal address is the address of a 4-byte word containing
|
354 |
|
|
the calling frame's address. */
|
355 |
|
|
|
356 |
|
|
CORE_ADDR
|
357 |
|
|
i386_frame_chain (struct frame_info *frame)
|
358 |
|
|
{
|
359 |
|
|
if (frame->signal_handler_caller)
|
360 |
|
|
return frame->frame;
|
361 |
|
|
|
362 |
|
|
if (! inside_entry_file (frame->pc))
|
363 |
|
|
return read_memory_unsigned_integer (frame->frame, 4);
|
364 |
|
|
|
365 |
|
|
return 0;
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/* Determine whether the function invocation represented by FRAME does
|
369 |
|
|
not have a from on the stack associated with it. If it does not,
|
370 |
|
|
return non-zero, otherwise return zero. */
|
371 |
|
|
|
372 |
|
|
int
|
373 |
|
|
i386_frameless_function_invocation (struct frame_info *frame)
|
374 |
|
|
{
|
375 |
|
|
if (frame->signal_handler_caller)
|
376 |
|
|
return 0;
|
377 |
|
|
|
378 |
|
|
return frameless_look_for_prologue (frame);
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* Return the saved program counter for FRAME. */
|
382 |
|
|
|
383 |
|
|
CORE_ADDR
|
384 |
|
|
i386_frame_saved_pc (struct frame_info *frame)
|
385 |
|
|
{
|
386 |
|
|
/* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
|
387 |
|
|
on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
|
388 |
|
|
considered a temporary hack. I plan to come up with something
|
389 |
|
|
better when we go multi-arch. */
|
390 |
|
|
#if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
|
391 |
|
|
if (frame->signal_handler_caller)
|
392 |
|
|
return sigtramp_saved_pc (frame);
|
393 |
|
|
#endif
|
394 |
|
|
|
395 |
|
|
return read_memory_unsigned_integer (frame->frame + 4, 4);
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
/* Immediately after a function call, return the saved pc. */
|
399 |
|
|
|
400 |
|
|
CORE_ADDR
|
401 |
|
|
i386_saved_pc_after_call (struct frame_info *frame)
|
402 |
|
|
{
|
403 |
|
|
return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
/* Return number of args passed to a frame.
|
407 |
|
|
Can return -1, meaning no way to tell. */
|
408 |
|
|
|
409 |
|
|
int
|
410 |
|
|
i386_frame_num_args (struct frame_info *fi)
|
411 |
|
|
{
|
412 |
|
|
#if 1
|
413 |
|
|
return -1;
|
414 |
|
|
#else
|
415 |
|
|
/* This loses because not only might the compiler not be popping the
|
416 |
|
|
args right after the function call, it might be popping args from
|
417 |
|
|
both this call and a previous one, and we would say there are
|
418 |
|
|
more args than there really are. */
|
419 |
|
|
|
420 |
|
|
int retpc;
|
421 |
|
|
unsigned char op;
|
422 |
|
|
struct frame_info *pfi;
|
423 |
|
|
|
424 |
|
|
/* On the i386, the instruction following the call could be:
|
425 |
|
|
popl %ecx - one arg
|
426 |
|
|
addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
|
427 |
|
|
anything else - zero args. */
|
428 |
|
|
|
429 |
|
|
int frameless;
|
430 |
|
|
|
431 |
|
|
frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
|
432 |
|
|
if (frameless)
|
433 |
|
|
/* In the absence of a frame pointer, GDB doesn't get correct
|
434 |
|
|
values for nameless arguments. Return -1, so it doesn't print
|
435 |
|
|
any nameless arguments. */
|
436 |
|
|
return -1;
|
437 |
|
|
|
438 |
|
|
pfi = get_prev_frame (fi);
|
439 |
|
|
if (pfi == 0)
|
440 |
|
|
{
|
441 |
|
|
/* NOTE: This can happen if we are looking at the frame for
|
442 |
|
|
main, because FRAME_CHAIN_VALID won't let us go into start.
|
443 |
|
|
If we have debugging symbols, that's not really a big deal;
|
444 |
|
|
it just means it will only show as many arguments to main as
|
445 |
|
|
are declared. */
|
446 |
|
|
return -1;
|
447 |
|
|
}
|
448 |
|
|
else
|
449 |
|
|
{
|
450 |
|
|
retpc = pfi->pc;
|
451 |
|
|
op = read_memory_integer (retpc, 1);
|
452 |
|
|
if (op == 0x59) /* pop %ecx */
|
453 |
|
|
return 1;
|
454 |
|
|
else if (op == 0x83)
|
455 |
|
|
{
|
456 |
|
|
op = read_memory_integer (retpc + 1, 1);
|
457 |
|
|
if (op == 0xc4)
|
458 |
|
|
/* addl $<signed imm 8 bits>, %esp */
|
459 |
|
|
return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
|
460 |
|
|
else
|
461 |
|
|
return 0;
|
462 |
|
|
}
|
463 |
|
|
else if (op == 0x81) /* `add' with 32 bit immediate. */
|
464 |
|
|
{
|
465 |
|
|
op = read_memory_integer (retpc + 1, 1);
|
466 |
|
|
if (op == 0xc4)
|
467 |
|
|
/* addl $<imm 32>, %esp */
|
468 |
|
|
return read_memory_integer (retpc + 2, 4) / 4;
|
469 |
|
|
else
|
470 |
|
|
return 0;
|
471 |
|
|
}
|
472 |
|
|
else
|
473 |
|
|
{
|
474 |
|
|
return 0;
|
475 |
|
|
}
|
476 |
|
|
}
|
477 |
|
|
#endif
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/* Parse the first few instructions the function to see what registers
|
481 |
|
|
were stored.
|
482 |
|
|
|
483 |
|
|
We handle these cases:
|
484 |
|
|
|
485 |
|
|
The startup sequence can be at the start of the function, or the
|
486 |
|
|
function can start with a branch to startup code at the end.
|
487 |
|
|
|
488 |
|
|
%ebp can be set up with either the 'enter' instruction, or "pushl
|
489 |
|
|
%ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
|
490 |
|
|
once used in the System V compiler).
|
491 |
|
|
|
492 |
|
|
Local space is allocated just below the saved %ebp by either the
|
493 |
|
|
'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
|
494 |
|
|
bit unsigned argument for space to allocate, and the 'addl'
|
495 |
|
|
instruction could have either a signed byte, or 32 bit immediate.
|
496 |
|
|
|
497 |
|
|
Next, the registers used by this function are pushed. With the
|
498 |
|
|
System V compiler they will always be in the order: %edi, %esi,
|
499 |
|
|
%ebx (and sometimes a harmless bug causes it to also save but not
|
500 |
|
|
restore %eax); however, the code below is willing to see the pushes
|
501 |
|
|
in any order, and will handle up to 8 of them.
|
502 |
|
|
|
503 |
|
|
If the setup sequence is at the end of the function, then the next
|
504 |
|
|
instruction will be a branch back to the start. */
|
505 |
|
|
|
506 |
|
|
void
|
507 |
|
|
i386_frame_init_saved_regs (struct frame_info *fip)
|
508 |
|
|
{
|
509 |
|
|
long locals = -1;
|
510 |
|
|
unsigned char op;
|
511 |
|
|
CORE_ADDR dummy_bottom;
|
512 |
|
|
CORE_ADDR addr;
|
513 |
|
|
CORE_ADDR pc;
|
514 |
|
|
int i;
|
515 |
|
|
|
516 |
|
|
if (fip->saved_regs)
|
517 |
|
|
return;
|
518 |
|
|
|
519 |
|
|
frame_saved_regs_zalloc (fip);
|
520 |
|
|
|
521 |
|
|
/* If the frame is the end of a dummy, compute where the beginning
|
522 |
|
|
would be. */
|
523 |
|
|
dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
|
524 |
|
|
|
525 |
|
|
/* Check if the PC points in the stack, in a dummy frame. */
|
526 |
|
|
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
|
527 |
|
|
{
|
528 |
|
|
/* All registers were saved by push_call_dummy. */
|
529 |
|
|
addr = fip->frame;
|
530 |
|
|
for (i = 0; i < NUM_REGS; i++)
|
531 |
|
|
{
|
532 |
|
|
addr -= REGISTER_RAW_SIZE (i);
|
533 |
|
|
fip->saved_regs[i] = addr;
|
534 |
|
|
}
|
535 |
|
|
return;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
pc = get_pc_function_start (fip->pc);
|
539 |
|
|
if (pc != 0)
|
540 |
|
|
locals = i386_get_frame_setup (pc);
|
541 |
|
|
|
542 |
|
|
if (locals >= 0)
|
543 |
|
|
{
|
544 |
|
|
addr = fip->frame - 4 - locals;
|
545 |
|
|
for (i = 0; i < 8; i++)
|
546 |
|
|
{
|
547 |
|
|
op = codestream_get ();
|
548 |
|
|
if (op < 0x50 || op > 0x57)
|
549 |
|
|
break;
|
550 |
|
|
#ifdef I386_REGNO_TO_SYMMETRY
|
551 |
|
|
/* Dynix uses different internal numbering. Ick. */
|
552 |
|
|
fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
|
553 |
|
|
#else
|
554 |
|
|
fip->saved_regs[op - 0x50] = addr;
|
555 |
|
|
#endif
|
556 |
|
|
addr -= 4;
|
557 |
|
|
}
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
fip->saved_regs[PC_REGNUM] = fip->frame + 4;
|
561 |
|
|
fip->saved_regs[FP_REGNUM] = fip->frame;
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
/* Return PC of first real instruction. */
|
565 |
|
|
|
566 |
|
|
int
|
567 |
|
|
i386_skip_prologue (int pc)
|
568 |
|
|
{
|
569 |
|
|
unsigned char op;
|
570 |
|
|
int i;
|
571 |
|
|
static unsigned char pic_pat[6] =
|
572 |
|
|
{ 0xe8, 0, 0, 0, 0, /* call 0x0 */
|
573 |
|
|
0x5b, /* popl %ebx */
|
574 |
|
|
};
|
575 |
|
|
CORE_ADDR pos;
|
576 |
|
|
|
577 |
|
|
if (i386_get_frame_setup (pc) < 0)
|
578 |
|
|
return (pc);
|
579 |
|
|
|
580 |
|
|
/* Found valid frame setup -- codestream now points to start of push
|
581 |
|
|
instructions for saving registers. */
|
582 |
|
|
|
583 |
|
|
/* Skip over register saves. */
|
584 |
|
|
for (i = 0; i < 8; i++)
|
585 |
|
|
{
|
586 |
|
|
op = codestream_peek ();
|
587 |
|
|
/* Break if not `pushl' instrunction. */
|
588 |
|
|
if (op < 0x50 || op > 0x57)
|
589 |
|
|
break;
|
590 |
|
|
codestream_get ();
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
/* The native cc on SVR4 in -K PIC mode inserts the following code
|
594 |
|
|
to get the address of the global offset table (GOT) into register
|
595 |
|
|
%ebx
|
596 |
|
|
|
597 |
|
|
call 0x0
|
598 |
|
|
popl %ebx
|
599 |
|
|
movl %ebx,x(%ebp) (optional)
|
600 |
|
|
addl y,%ebx
|
601 |
|
|
|
602 |
|
|
This code is with the rest of the prologue (at the end of the
|
603 |
|
|
function), so we have to skip it to get to the first real
|
604 |
|
|
instruction at the start of the function. */
|
605 |
|
|
|
606 |
|
|
pos = codestream_tell ();
|
607 |
|
|
for (i = 0; i < 6; i++)
|
608 |
|
|
{
|
609 |
|
|
op = codestream_get ();
|
610 |
|
|
if (pic_pat[i] != op)
|
611 |
|
|
break;
|
612 |
|
|
}
|
613 |
|
|
if (i == 6)
|
614 |
|
|
{
|
615 |
|
|
unsigned char buf[4];
|
616 |
|
|
long delta = 6;
|
617 |
|
|
|
618 |
|
|
op = codestream_get ();
|
619 |
|
|
if (op == 0x89) /* movl %ebx, x(%ebp) */
|
620 |
|
|
{
|
621 |
|
|
op = codestream_get ();
|
622 |
|
|
if (op == 0x5d) /* One byte offset from %ebp. */
|
623 |
|
|
{
|
624 |
|
|
delta += 3;
|
625 |
|
|
codestream_read (buf, 1);
|
626 |
|
|
}
|
627 |
|
|
else if (op == 0x9d) /* Four byte offset from %ebp. */
|
628 |
|
|
{
|
629 |
|
|
delta += 6;
|
630 |
|
|
codestream_read (buf, 4);
|
631 |
|
|
}
|
632 |
|
|
else /* Unexpected instruction. */
|
633 |
|
|
delta = -1;
|
634 |
|
|
op = codestream_get ();
|
635 |
|
|
}
|
636 |
|
|
/* addl y,%ebx */
|
637 |
|
|
if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
|
638 |
|
|
{
|
639 |
|
|
pos += delta + 6;
|
640 |
|
|
}
|
641 |
|
|
}
|
642 |
|
|
codestream_seek (pos);
|
643 |
|
|
|
644 |
|
|
i386_follow_jump ();
|
645 |
|
|
|
646 |
|
|
return (codestream_tell ());
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
void
|
650 |
|
|
i386_push_dummy_frame (void)
|
651 |
|
|
{
|
652 |
|
|
CORE_ADDR sp = read_register (SP_REGNUM);
|
653 |
|
|
int regnum;
|
654 |
|
|
char regbuf[MAX_REGISTER_RAW_SIZE];
|
655 |
|
|
|
656 |
|
|
sp = push_word (sp, read_register (PC_REGNUM));
|
657 |
|
|
sp = push_word (sp, read_register (FP_REGNUM));
|
658 |
|
|
write_register (FP_REGNUM, sp);
|
659 |
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
660 |
|
|
{
|
661 |
|
|
read_register_gen (regnum, regbuf);
|
662 |
|
|
sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
|
663 |
|
|
}
|
664 |
|
|
write_register (SP_REGNUM, sp);
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
/* Insert the (relative) function address into the call sequence
|
668 |
|
|
stored at DYMMY. */
|
669 |
|
|
|
670 |
|
|
void
|
671 |
|
|
i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
672 |
|
|
value_ptr *args, struct type *type, int gcc_p)
|
673 |
|
|
{
|
674 |
|
|
int from, to, delta, loc;
|
675 |
|
|
|
676 |
|
|
loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
|
677 |
|
|
from = loc + 5;
|
678 |
|
|
to = (int)(fun);
|
679 |
|
|
delta = to - from;
|
680 |
|
|
|
681 |
|
|
*((char *)(dummy) + 1) = (delta & 0xff);
|
682 |
|
|
*((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
|
683 |
|
|
*((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
|
684 |
|
|
*((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
void
|
688 |
|
|
i386_pop_frame (void)
|
689 |
|
|
{
|
690 |
|
|
struct frame_info *frame = get_current_frame ();
|
691 |
|
|
CORE_ADDR fp;
|
692 |
|
|
int regnum;
|
693 |
|
|
char regbuf[MAX_REGISTER_RAW_SIZE];
|
694 |
|
|
|
695 |
|
|
fp = FRAME_FP (frame);
|
696 |
|
|
i386_frame_init_saved_regs (frame);
|
697 |
|
|
|
698 |
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
699 |
|
|
{
|
700 |
|
|
CORE_ADDR addr;
|
701 |
|
|
addr = frame->saved_regs[regnum];
|
702 |
|
|
if (addr)
|
703 |
|
|
{
|
704 |
|
|
read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
|
705 |
|
|
write_register_bytes (REGISTER_BYTE (regnum), regbuf,
|
706 |
|
|
REGISTER_RAW_SIZE (regnum));
|
707 |
|
|
}
|
708 |
|
|
}
|
709 |
|
|
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
710 |
|
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
711 |
|
|
write_register (SP_REGNUM, fp + 8);
|
712 |
|
|
flush_cached_frames ();
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
|
716 |
|
|
#ifdef GET_LONGJMP_TARGET
|
717 |
|
|
|
718 |
|
|
/* Figure out where the longjmp will land. Slurp the args out of the
|
719 |
|
|
stack. We expect the first arg to be a pointer to the jmp_buf
|
720 |
|
|
structure from which we extract the pc (JB_PC) that we will land
|
721 |
|
|
at. The pc is copied into PC. This routine returns true on
|
722 |
|
|
success. */
|
723 |
|
|
|
724 |
|
|
int
|
725 |
|
|
get_longjmp_target (CORE_ADDR *pc)
|
726 |
|
|
{
|
727 |
|
|
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
728 |
|
|
CORE_ADDR sp, jb_addr;
|
729 |
|
|
|
730 |
|
|
sp = read_register (SP_REGNUM);
|
731 |
|
|
|
732 |
|
|
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
|
733 |
|
|
buf,
|
734 |
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
735 |
|
|
return 0;
|
736 |
|
|
|
737 |
|
|
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
738 |
|
|
|
739 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
740 |
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
741 |
|
|
return 0;
|
742 |
|
|
|
743 |
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
744 |
|
|
|
745 |
|
|
return 1;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
#endif /* GET_LONGJMP_TARGET */
|
749 |
|
|
|
750 |
|
|
|
751 |
|
|
CORE_ADDR
|
752 |
|
|
i386_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
753 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
754 |
|
|
{
|
755 |
|
|
sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
|
756 |
|
|
|
757 |
|
|
if (struct_return)
|
758 |
|
|
{
|
759 |
|
|
char buf[4];
|
760 |
|
|
|
761 |
|
|
sp -= 4;
|
762 |
|
|
store_address (buf, 4, struct_addr);
|
763 |
|
|
write_memory (sp, buf, 4);
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
return sp;
|
767 |
|
|
}
|
768 |
|
|
|
769 |
|
|
void
|
770 |
|
|
i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
771 |
|
|
{
|
772 |
|
|
/* Do nothing. Everything was already done by i386_push_arguments. */
|
773 |
|
|
}
|
774 |
|
|
|
775 |
|
|
/* These registers are used for returning integers (and on some
|
776 |
|
|
targets also for returning `struct' and `union' values when their
|
777 |
|
|
size and alignment match an integer type). */
|
778 |
|
|
#define LOW_RETURN_REGNUM 0 /* %eax */
|
779 |
|
|
#define HIGH_RETURN_REGNUM 2 /* %edx */
|
780 |
|
|
|
781 |
|
|
/* Extract from an array REGBUF containing the (raw) register state, a
|
782 |
|
|
function return value of TYPE, and copy that, in virtual format,
|
783 |
|
|
into VALBUF. */
|
784 |
|
|
|
785 |
|
|
void
|
786 |
|
|
i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
787 |
|
|
{
|
788 |
|
|
int len = TYPE_LENGTH (type);
|
789 |
|
|
|
790 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
791 |
|
|
&& TYPE_NFIELDS (type) == 1)
|
792 |
|
|
{
|
793 |
|
|
i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
|
794 |
|
|
return;
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
798 |
|
|
{
|
799 |
|
|
if (NUM_FREGS == 0)
|
800 |
|
|
{
|
801 |
|
|
warning ("Cannot find floating-point return value.");
|
802 |
|
|
memset (valbuf, 0, len);
|
803 |
|
|
return;
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* Floating-point return values can be found in %st(0). */
|
807 |
|
|
if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
|
808 |
|
|
&& TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
|
809 |
|
|
{
|
810 |
|
|
/* Copy straight over, but take care of the padding. */
|
811 |
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)],
|
812 |
|
|
FPU_REG_RAW_SIZE);
|
813 |
|
|
memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
|
814 |
|
|
}
|
815 |
|
|
else
|
816 |
|
|
{
|
817 |
|
|
/* Convert the extended floating-point number found in
|
818 |
|
|
%st(0) to the desired type. This is probably not exactly
|
819 |
|
|
how it would happen on the target itself, but it is the
|
820 |
|
|
best we can do. */
|
821 |
|
|
DOUBLEST val;
|
822 |
|
|
floatformat_to_doublest (&floatformat_i387_ext,
|
823 |
|
|
®buf[REGISTER_BYTE (FP0_REGNUM)], &val);
|
824 |
|
|
store_floating (valbuf, TYPE_LENGTH (type), val);
|
825 |
|
|
}
|
826 |
|
|
}
|
827 |
|
|
else
|
828 |
|
|
{
|
829 |
|
|
int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
|
830 |
|
|
int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
|
831 |
|
|
|
832 |
|
|
if (len <= low_size)
|
833 |
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
|
834 |
|
|
else if (len <= (low_size + high_size))
|
835 |
|
|
{
|
836 |
|
|
memcpy (valbuf,
|
837 |
|
|
®buf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
|
838 |
|
|
memcpy (valbuf + low_size,
|
839 |
|
|
®buf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
|
840 |
|
|
}
|
841 |
|
|
else
|
842 |
|
|
internal_error (__FILE__, __LINE__,
|
843 |
|
|
"Cannot extract return value of %d bytes long.", len);
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/* Write into the appropriate registers a function return value stored
|
848 |
|
|
in VALBUF of type TYPE, given in virtual format. */
|
849 |
|
|
|
850 |
|
|
void
|
851 |
|
|
i386_store_return_value (struct type *type, char *valbuf)
|
852 |
|
|
{
|
853 |
|
|
int len = TYPE_LENGTH (type);
|
854 |
|
|
|
855 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
856 |
|
|
&& TYPE_NFIELDS (type) == 1)
|
857 |
|
|
{
|
858 |
|
|
i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
|
859 |
|
|
return;
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
863 |
|
|
{
|
864 |
|
|
if (NUM_FREGS == 0)
|
865 |
|
|
{
|
866 |
|
|
warning ("Cannot set floating-point return value.");
|
867 |
|
|
return;
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
/* Floating-point return values can be found in %st(0). */
|
871 |
|
|
if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
|
872 |
|
|
&& TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
|
873 |
|
|
{
|
874 |
|
|
/* Copy straight over. */
|
875 |
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
|
876 |
|
|
FPU_REG_RAW_SIZE);
|
877 |
|
|
}
|
878 |
|
|
else
|
879 |
|
|
{
|
880 |
|
|
char buf[FPU_REG_RAW_SIZE];
|
881 |
|
|
DOUBLEST val;
|
882 |
|
|
|
883 |
|
|
/* Convert the value found in VALBUF to the extended
|
884 |
|
|
floating point format used by the FPU. This is probably
|
885 |
|
|
not exactly how it would happen on the target itself, but
|
886 |
|
|
it is the best we can do. */
|
887 |
|
|
val = extract_floating (valbuf, TYPE_LENGTH (type));
|
888 |
|
|
floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
|
889 |
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
|
890 |
|
|
FPU_REG_RAW_SIZE);
|
891 |
|
|
}
|
892 |
|
|
}
|
893 |
|
|
else
|
894 |
|
|
{
|
895 |
|
|
int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
|
896 |
|
|
int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
|
897 |
|
|
|
898 |
|
|
if (len <= low_size)
|
899 |
|
|
write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
|
900 |
|
|
else if (len <= (low_size + high_size))
|
901 |
|
|
{
|
902 |
|
|
write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
|
903 |
|
|
valbuf, low_size);
|
904 |
|
|
write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
|
905 |
|
|
valbuf + low_size, len - low_size);
|
906 |
|
|
}
|
907 |
|
|
else
|
908 |
|
|
internal_error (__FILE__, __LINE__,
|
909 |
|
|
"Cannot store return value of %d bytes long.", len);
|
910 |
|
|
}
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
914 |
|
|
the address in which a function should return its structure value,
|
915 |
|
|
as a CORE_ADDR. */
|
916 |
|
|
|
917 |
|
|
CORE_ADDR
|
918 |
|
|
i386_extract_struct_value_address (char *regbuf)
|
919 |
|
|
{
|
920 |
|
|
return extract_address (®buf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
|
921 |
|
|
REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
|
925 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
926 |
|
|
register REGNUM. Perhaps %esi and %edi should go here, but
|
927 |
|
|
potentially they could be used for things other than address. */
|
928 |
|
|
|
929 |
|
|
struct type *
|
930 |
|
|
i386_register_virtual_type (int regnum)
|
931 |
|
|
{
|
932 |
|
|
if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
|
933 |
|
|
return lookup_pointer_type (builtin_type_void);
|
934 |
|
|
|
935 |
|
|
if (IS_FP_REGNUM (regnum))
|
936 |
|
|
return builtin_type_long_double;
|
937 |
|
|
|
938 |
|
|
if (IS_SSE_REGNUM (regnum))
|
939 |
|
|
return builtin_type_v4sf;
|
940 |
|
|
|
941 |
|
|
return builtin_type_int;
|
942 |
|
|
}
|
943 |
|
|
|
944 |
|
|
/* Return true iff register REGNUM's virtual format is different from
|
945 |
|
|
its raw format. Note that this definition assumes that the host
|
946 |
|
|
supports IEEE 32-bit floats, since it doesn't say that SSE
|
947 |
|
|
registers need conversion. Even if we can't find a counterexample,
|
948 |
|
|
this is still sloppy. */
|
949 |
|
|
|
950 |
|
|
int
|
951 |
|
|
i386_register_convertible (int regnum)
|
952 |
|
|
{
|
953 |
|
|
return IS_FP_REGNUM (regnum);
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
/* Convert data from raw format for register REGNUM in buffer FROM to
|
957 |
|
|
virtual format with type TYPE in buffer TO. In principle both
|
958 |
|
|
formats are identical except that the virtual format has two extra
|
959 |
|
|
bytes appended that aren't used. We set these to zero. */
|
960 |
|
|
|
961 |
|
|
void
|
962 |
|
|
i386_register_convert_to_virtual (int regnum, struct type *type,
|
963 |
|
|
char *from, char *to)
|
964 |
|
|
{
|
965 |
|
|
/* Copy straight over, but take care of the padding. */
|
966 |
|
|
memcpy (to, from, FPU_REG_RAW_SIZE);
|
967 |
|
|
memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
|
968 |
|
|
}
|
969 |
|
|
|
970 |
|
|
/* Convert data from virtual format with type TYPE in buffer FROM to
|
971 |
|
|
raw format for register REGNUM in buffer TO. Simply omit the two
|
972 |
|
|
unused bytes. */
|
973 |
|
|
|
974 |
|
|
void
|
975 |
|
|
i386_register_convert_to_raw (struct type *type, int regnum,
|
976 |
|
|
char *from, char *to)
|
977 |
|
|
{
|
978 |
|
|
memcpy (to, from, FPU_REG_RAW_SIZE);
|
979 |
|
|
}
|
980 |
|
|
|
981 |
|
|
|
982 |
|
|
#ifdef I386V4_SIGTRAMP_SAVED_PC
|
983 |
|
|
/* Get saved user PC for sigtramp from the pushed ucontext on the
|
984 |
|
|
stack for all three variants of SVR4 sigtramps. */
|
985 |
|
|
|
986 |
|
|
CORE_ADDR
|
987 |
|
|
i386v4_sigtramp_saved_pc (struct frame_info *frame)
|
988 |
|
|
{
|
989 |
|
|
CORE_ADDR saved_pc_offset = 4;
|
990 |
|
|
char *name = NULL;
|
991 |
|
|
|
992 |
|
|
find_pc_partial_function (frame->pc, &name, NULL, NULL);
|
993 |
|
|
if (name)
|
994 |
|
|
{
|
995 |
|
|
if (STREQ (name, "_sigreturn"))
|
996 |
|
|
saved_pc_offset = 132 + 14 * 4;
|
997 |
|
|
else if (STREQ (name, "_sigacthandler"))
|
998 |
|
|
saved_pc_offset = 80 + 14 * 4;
|
999 |
|
|
else if (STREQ (name, "sigvechandler"))
|
1000 |
|
|
saved_pc_offset = 120 + 14 * 4;
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
if (frame->next)
|
1004 |
|
|
return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
|
1005 |
|
|
return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
|
1006 |
|
|
}
|
1007 |
|
|
#endif /* I386V4_SIGTRAMP_SAVED_PC */
|
1008 |
|
|
|
1009 |
|
|
|
1010 |
|
|
#ifdef STATIC_TRANSFORM_NAME
|
1011 |
|
|
/* SunPRO encodes the static variables. This is not related to C++
|
1012 |
|
|
mangling, it is done for C too. */
|
1013 |
|
|
|
1014 |
|
|
char *
|
1015 |
|
|
sunpro_static_transform_name (char *name)
|
1016 |
|
|
{
|
1017 |
|
|
char *p;
|
1018 |
|
|
if (IS_STATIC_TRANSFORM_NAME (name))
|
1019 |
|
|
{
|
1020 |
|
|
/* For file-local statics there will be a period, a bunch of
|
1021 |
|
|
junk (the contents of which match a string given in the
|
1022 |
|
|
N_OPT), a period and the name. For function-local statics
|
1023 |
|
|
there will be a bunch of junk (which seems to change the
|
1024 |
|
|
second character from 'A' to 'B'), a period, the name of the
|
1025 |
|
|
function, and the name. So just skip everything before the
|
1026 |
|
|
last period. */
|
1027 |
|
|
p = strrchr (name, '.');
|
1028 |
|
|
if (p != NULL)
|
1029 |
|
|
name = p + 1;
|
1030 |
|
|
}
|
1031 |
|
|
return name;
|
1032 |
|
|
}
|
1033 |
|
|
#endif /* STATIC_TRANSFORM_NAME */
|
1034 |
|
|
|
1035 |
|
|
|
1036 |
|
|
/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
|
1037 |
|
|
|
1038 |
|
|
CORE_ADDR
|
1039 |
|
|
skip_trampoline_code (CORE_ADDR pc, char *name)
|
1040 |
|
|
{
|
1041 |
|
|
if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
|
1042 |
|
|
{
|
1043 |
|
|
unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
|
1044 |
|
|
struct minimal_symbol *indsym =
|
1045 |
|
|
indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
|
1046 |
|
|
char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
|
1047 |
|
|
|
1048 |
|
|
if (symname)
|
1049 |
|
|
{
|
1050 |
|
|
if (strncmp (symname, "__imp_", 6) == 0
|
1051 |
|
|
|| strncmp (symname, "_imp_", 5) == 0)
|
1052 |
|
|
return name ? 1 : read_memory_unsigned_integer (indirect, 4);
|
1053 |
|
|
}
|
1054 |
|
|
}
|
1055 |
|
|
return 0; /* Not a trampoline. */
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
|
1059 |
|
|
/* We have two flavours of disassembly. The machinery on this page
|
1060 |
|
|
deals with switching between those. */
|
1061 |
|
|
|
1062 |
|
|
static int
|
1063 |
|
|
gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
|
1064 |
|
|
{
|
1065 |
|
|
if (disassembly_flavor == att_flavor)
|
1066 |
|
|
return print_insn_i386_att (memaddr, info);
|
1067 |
|
|
else if (disassembly_flavor == intel_flavor)
|
1068 |
|
|
return print_insn_i386_intel (memaddr, info);
|
1069 |
|
|
/* Never reached -- disassembly_flavour is always either att_flavor
|
1070 |
|
|
or intel_flavor. */
|
1071 |
|
|
internal_error (__FILE__, __LINE__, "failed internal consistency check");
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/* If the disassembly mode is intel, we have to also switch the bfd
|
1075 |
|
|
mach_type. This function is run in the set disassembly_flavor
|
1076 |
|
|
command, and does that. */
|
1077 |
|
|
|
1078 |
|
|
static void
|
1079 |
|
|
set_disassembly_flavor_sfunc (char *args, int from_tty,
|
1080 |
|
|
struct cmd_list_element *c)
|
1081 |
|
|
{
|
1082 |
|
|
set_disassembly_flavor ();
|
1083 |
|
|
}
|
1084 |
|
|
|
1085 |
|
|
static void
|
1086 |
|
|
set_disassembly_flavor (void)
|
1087 |
|
|
{
|
1088 |
|
|
if (disassembly_flavor == att_flavor)
|
1089 |
|
|
set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
|
1090 |
|
|
else if (disassembly_flavor == intel_flavor)
|
1091 |
|
|
set_architecture_from_arch_mach (bfd_arch_i386,
|
1092 |
|
|
bfd_mach_i386_i386_intel_syntax);
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
|
1096 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
1097 |
|
|
void _initialize_i386_tdep (void);
|
1098 |
|
|
|
1099 |
|
|
void
|
1100 |
|
|
_initialize_i386_tdep (void)
|
1101 |
|
|
{
|
1102 |
|
|
/* Initialize the table saying where each register starts in the
|
1103 |
|
|
register file. */
|
1104 |
|
|
{
|
1105 |
|
|
int i, offset;
|
1106 |
|
|
|
1107 |
|
|
offset = 0;
|
1108 |
|
|
for (i = 0; i < MAX_NUM_REGS; i++)
|
1109 |
|
|
{
|
1110 |
|
|
i386_register_byte[i] = offset;
|
1111 |
|
|
offset += i386_register_raw_size[i];
|
1112 |
|
|
}
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
/* Initialize the table of virtual register sizes. */
|
1116 |
|
|
{
|
1117 |
|
|
int i;
|
1118 |
|
|
|
1119 |
|
|
for (i = 0; i < MAX_NUM_REGS; i++)
|
1120 |
|
|
i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
|
1121 |
|
|
}
|
1122 |
|
|
|
1123 |
|
|
tm_print_insn = gdb_print_insn_i386;
|
1124 |
|
|
tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
|
1125 |
|
|
|
1126 |
|
|
/* Add the variable that controls the disassembly flavor. */
|
1127 |
|
|
{
|
1128 |
|
|
struct cmd_list_element *new_cmd;
|
1129 |
|
|
|
1130 |
|
|
new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
|
1131 |
|
|
valid_flavors,
|
1132 |
|
|
&disassembly_flavor,
|
1133 |
|
|
"\
|
1134 |
|
|
Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
|
1135 |
|
|
and the default value is \"att\".",
|
1136 |
|
|
&setlist);
|
1137 |
|
|
new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
|
1138 |
|
|
add_show_from_set (new_cmd, &showlist);
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
/* Finally, initialize the disassembly flavor to the default given
|
1142 |
|
|
in the disassembly_flavor variable. */
|
1143 |
|
|
set_disassembly_flavor ();
|
1144 |
|
|
}
|