OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [m32r-tdep.c] - Blame information for rev 578

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
 
4
   This file is part of GDB.
5
 
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 2 of the License, or
9
   (at your option) any later version.
10
 
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 59 Temple Place - Suite 330,
19
   Boston, MA 02111-1307, USA.  */
20
 
21
#include "defs.h"
22
#include "frame.h"
23
#include "inferior.h"
24
#include "obstack.h"
25
#include "target.h"
26
#include "value.h"
27
#include "bfd.h"
28
#include "gdb_string.h"
29
#include "gdbcore.h"
30
#include "symfile.h"
31
#include "regcache.h"
32
 
33
/* Function: m32r_use_struct_convention
34
   Return nonzero if call_function should allocate stack space for a
35
   struct return? */
36
int
37
m32r_use_struct_convention (int gcc_p, struct type *type)
38
{
39
  return (TYPE_LENGTH (type) > 8);
40
}
41
 
42
/* Function: frame_find_saved_regs
43
   Return the frame_saved_regs structure for the frame.
44
   Doesn't really work for dummy frames, but it does pass back
45
   an empty frame_saved_regs, so I guess that's better than total failure */
46
 
47
void
48
m32r_frame_find_saved_regs (struct frame_info *fi,
49
                            struct frame_saved_regs *regaddr)
50
{
51
  memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
52
}
53
 
54
/* Turn this on if you want to see just how much instruction decoding
55
   if being done, its quite a lot
56
 */
57
#if 0
58
static void
59
dump_insn (char *commnt, CORE_ADDR pc, int insn)
60
{
61
  printf_filtered ("  %s %08x %08x ",
62
                   commnt, (unsigned int) pc, (unsigned int) insn);
63
  (*tm_print_insn) (pc, &tm_print_insn_info);
64
  printf_filtered ("\n");
65
}
66
#define insn_debug(args) { printf_filtered args; }
67
#else
68
#define dump_insn(a,b,c) {}
69
#define insn_debug(args) {}
70
#endif
71
 
72
#define DEFAULT_SEARCH_LIMIT 44
73
 
74
/* Function: scan_prologue
75
   This function decodes the target function prologue to determine
76
   1) the size of the stack frame, and 2) which registers are saved on it.
77
   It saves the offsets of saved regs in the frame_saved_regs argument,
78
   and returns the frame size.  */
79
 
80
/*
81
   The sequence it currently generates is:
82
 
83
   if (varargs function) { ddi sp,#n }
84
   push registers
85
   if (additional stack <= 256) {       addi sp,#-stack }
86
   else if (additional stack < 65k) { add3 sp,sp,#-stack
87
 
88
   } else if (additional stack) {
89
   seth sp,#(stack & 0xffff0000)
90
   or3 sp,sp,#(stack & 0x0000ffff)
91
   sub sp,r4
92
   }
93
   if (frame pointer) {
94
   mv sp,fp
95
   }
96
 
97
   These instructions are scheduled like everything else, so you should stop at
98
   the first branch instruction.
99
 
100
 */
101
 
102
/* This is required by skip prologue and by m32r_init_extra_frame_info.
103
   The results of decoding a prologue should be cached because this
104
   thrashing is getting nuts.
105
   I am thinking of making a container class with two indexes, name and
106
   address. It may be better to extend the symbol table.
107
 */
108
 
109
static void
110
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr,        /* var parameter */
111
                 unsigned long *framelength, struct frame_info *fi,
112
                 struct frame_saved_regs *fsr)
113
{
114
  unsigned long framesize;
115
  int insn;
116
  int op1;
117
  int maybe_one_more = 0;
118
  CORE_ADDR after_prologue = 0;
119
  CORE_ADDR after_stack_adjust = 0;
120
  CORE_ADDR current_pc;
121
 
122
 
123
  framesize = 0;
124
  after_prologue = 0;
125
  insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
126
 
127
  for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
128
    {
129
 
130
      insn = read_memory_unsigned_integer (current_pc, 2);
131
      dump_insn ("insn-1", current_pc, insn);   /* MTZ */
132
 
133
      /* If this is a 32 bit instruction, we dont want to examine its
134
         immediate data as though it were an instruction */
135
      if (current_pc & 0x02)
136
        {                       /* Clear the parallel execution bit from 16 bit instruction */
137
          if (maybe_one_more)
138
            {                   /* The last instruction was a branch, usually terminates
139
                                   the series, but if this is a parallel instruction,
140
                                   it may be a stack framing instruction */
141
              if (!(insn & 0x8000))
142
                {
143
                  insn_debug (("Really done"));
144
                  break;        /* nope, we are really done */
145
                }
146
            }
147
          insn &= 0x7fff;       /* decode this instruction further */
148
        }
149
      else
150
        {
151
          if (maybe_one_more)
152
            break;              /* This isnt the one more */
153
          if (insn & 0x8000)
154
            {
155
              insn_debug (("32 bit insn\n"));
156
              if (current_pc == scan_limit)
157
                scan_limit += 2;        /* extend the search */
158
              current_pc += 2;  /* skip the immediate data */
159
              if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
160
                /* add 16 bit sign-extended offset */
161
                {
162
                  insn_debug (("stack increment\n"));
163
                  framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
164
                }
165
              else
166
                {
167
                  if (((insn >> 8) == 0xe4) &&  /* ld24 r4, xxxxxx; sub sp, r4 */
168
                  read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
169
                    {           /* subtract 24 bit sign-extended negative-offset */
170
                      dump_insn ("insn-2", current_pc + 2, insn);
171
                      insn = read_memory_unsigned_integer (current_pc - 2, 4);
172
                      dump_insn ("insn-3(l4)", current_pc - 2, insn);
173
                      if (insn & 0x00800000)    /* sign extend */
174
                        insn |= 0xff000000;     /* negative */
175
                      else
176
                        insn &= 0x00ffffff;     /* positive */
177
                      framesize += insn;
178
                    }
179
                }
180
              after_prologue = current_pc;
181
              continue;
182
            }
183
        }
184
      op1 = insn & 0xf000;      /* isolate just the first nibble */
185
 
186
      if ((insn & 0xf0ff) == 0x207f)
187
        {                       /* st reg, @-sp */
188
          int regno;
189
          insn_debug (("push\n"));
190
#if 0                           /* No, PUSH FP is not an indication that we will use a frame pointer. */
191
          if (((insn & 0xffff) == 0x2d7f) && fi)
192
            fi->using_frame_pointer = 1;
193
#endif
194
          framesize += 4;
195
#if 0
196
/* Why should we increase the scan limit, just because we did a push?
197
   And if there is a reason, surely we would only want to do it if we
198
   had already reached the scan limit... */
199
          if (current_pc == scan_limit)
200
            scan_limit += 2;
201
#endif
202
          regno = ((insn >> 8) & 0xf);
203
          if (fsr)              /* save_regs offset */
204
            fsr->regs[regno] = framesize;
205
          after_prologue = 0;
206
          continue;
207
        }
208
      if ((insn >> 8) == 0x4f)  /* addi sp, xx */
209
        /* add 8 bit sign-extended offset */
210
        {
211
          int stack_adjust = (char) (insn & 0xff);
212
 
213
          /* there are probably two of these stack adjustments:
214
             1) A negative one in the prologue, and
215
             2) A positive one in the epilogue.
216
             We are only interested in the first one.  */
217
 
218
          if (stack_adjust < 0)
219
            {
220
              framesize -= stack_adjust;
221
              after_prologue = 0;
222
              /* A frameless function may have no "mv fp, sp".
223
                 In that case, this is the end of the prologue.  */
224
              after_stack_adjust = current_pc + 2;
225
            }
226
          continue;
227
        }
228
      if (insn == 0x1d8f)
229
        {                       /* mv fp, sp */
230
          if (fi)
231
            fi->using_frame_pointer = 1;        /* fp is now valid */
232
          insn_debug (("done fp found\n"));
233
          after_prologue = current_pc + 2;
234
          break;                /* end of stack adjustments */
235
        }
236
      if (insn == 0x7000)       /* Nop looks like a branch, continue explicitly */
237
        {
238
          insn_debug (("nop\n"));
239
          after_prologue = current_pc + 2;
240
          continue;             /* nop occurs between pushes */
241
        }
242
      /* End of prolog if any of these are branch instructions */
243
      if ((op1 == 0x7000)
244
          || (op1 == 0xb000)
245
          || (op1 == 0xf000))
246
        {
247
          after_prologue = current_pc;
248
          insn_debug (("Done: branch\n"));
249
          maybe_one_more = 1;
250
          continue;
251
        }
252
      /* Some of the branch instructions are mixed with other types */
253
      if (op1 == 0x1000)
254
        {
255
          int subop = insn & 0x0ff0;
256
          if ((subop == 0x0ec0) || (subop == 0x0fc0))
257
            {
258
              insn_debug (("done: jmp\n"));
259
              after_prologue = current_pc;
260
              maybe_one_more = 1;
261
              continue;         /* jmp , jl */
262
            }
263
        }
264
    }
265
 
266
  if (current_pc >= scan_limit)
267
    {
268
      if (pl_endptr)
269
        {
270
#if 1
271
          if (after_stack_adjust != 0)
272
            /* We did not find a "mv fp,sp", but we DID find
273
               a stack_adjust.  Is it safe to use that as the
274
               end of the prologue?  I just don't know. */
275
            {
276
              *pl_endptr = after_stack_adjust;
277
              if (framelength)
278
                *framelength = framesize;
279
            }
280
          else
281
#endif
282
            /* We reached the end of the loop without finding the end
283
               of the prologue.  No way to win -- we should report failure.
284
               The way we do that is to return the original start_pc.
285
               GDB will set a breakpoint at the start of the function (etc.) */
286
            *pl_endptr = start_pc;
287
        }
288
      return;
289
    }
290
  if (after_prologue == 0)
291
    after_prologue = current_pc;
292
 
293
  insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
294
  if (framelength)
295
    *framelength = framesize;
296
  if (pl_endptr)
297
    *pl_endptr = after_prologue;
298
}                               /*  decode_prologue */
299
 
300
/* Function: skip_prologue
301
   Find end of function prologue */
302
 
303
CORE_ADDR
304
m32r_skip_prologue (CORE_ADDR pc)
305
{
306
  CORE_ADDR func_addr, func_end;
307
  struct symtab_and_line sal;
308
 
309
  /* See what the symbol table says */
310
 
311
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
312
    {
313
      sal = find_pc_line (func_addr, 0);
314
 
315
      if (sal.line != 0 && sal.end <= func_end)
316
        {
317
 
318
          insn_debug (("BP after prologue %08x\n", sal.end));
319
          func_end = sal.end;
320
        }
321
      else
322
        /* Either there's no line info, or the line after the prologue is after
323
           the end of the function.  In this case, there probably isn't a
324
           prologue.  */
325
        {
326
          insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
327
                       sal.line, sal.end, func_end));
328
          func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
329
        }
330
    }
331
  else
332
    func_end = pc + DEFAULT_SEARCH_LIMIT;
333
  decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
334
  return sal.end;
335
}
336
 
337
static unsigned long
338
m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
339
{
340
  struct symtab_and_line sal;
341
  CORE_ADDR prologue_start, prologue_end, current_pc;
342
  unsigned long framesize = 0;
343
 
344
  /* this code essentially duplicates skip_prologue,
345
     but we need the start address below.  */
346
 
347
  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
348
    {
349
      sal = find_pc_line (prologue_start, 0);
350
 
351
      if (sal.line == 0) /* no line info, use current PC */
352
        if (prologue_start == entry_point_address ())
353
          return 0;
354
    }
355
  else
356
    {
357
      prologue_start = fi->pc;
358
      prologue_end = prologue_start + 48;       /* We're in the boondocks:
359
                                                   allow for 16 pushes, an add,
360
                                                   and "mv fp,sp" */
361
    }
362
#if 0
363
  prologue_end = min (prologue_end, fi->pc);
364
#endif
365
  insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
366
               fi->pc, prologue_start, prologue_end));
367
  prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
368
  decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
369
                   fi, fsr);
370
  return framesize;
371
}
372
 
373
/* Function: init_extra_frame_info
374
   This function actually figures out the frame address for a given pc and
375
   sp.  This is tricky on the m32r because we sometimes don't use an explicit
376
   frame pointer, and the previous stack pointer isn't necessarily recorded
377
   on the stack.  The only reliable way to get this info is to
378
   examine the prologue.  */
379
 
380
void
381
m32r_init_extra_frame_info (struct frame_info *fi)
382
{
383
  int reg;
384
 
385
  if (fi->next)
386
    fi->pc = FRAME_SAVED_PC (fi->next);
387
 
388
  memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
389
 
390
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
391
    {
392
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
393
         by assuming it's always FP.  */
394
      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
395
      fi->framesize = 0;
396
      return;
397
    }
398
  else
399
    {
400
      fi->using_frame_pointer = 0;
401
      fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
402
 
403
      if (!fi->next)
404
        if (fi->using_frame_pointer)
405
          {
406
            fi->frame = read_register (FP_REGNUM);
407
          }
408
        else
409
          fi->frame = read_register (SP_REGNUM);
410
      else
411
        /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
412
        /* we have an FP */
413
        if (fi->next->fsr.regs[FP_REGNUM] != 0)          /* caller saved our FP */
414
          fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
415
      for (reg = 0; reg < NUM_REGS; reg++)
416
        if (fi->fsr.regs[reg] != 0)
417
          fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
418
    }
419
}
420
 
421
/* Function: m32r_virtual_frame_pointer
422
   Return the register that the function uses for a frame pointer,
423
   plus any necessary offset to be applied to the register before
424
   any frame pointer offsets.  */
425
 
426
void
427
m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
428
{
429
  struct frame_info fi;
430
 
431
  /* Set up a dummy frame_info. */
432
  fi.next = NULL;
433
  fi.prev = NULL;
434
  fi.frame = 0;
435
  fi.pc = pc;
436
 
437
  /* Analyze the prolog and fill in the extra info.  */
438
  m32r_init_extra_frame_info (&fi);
439
 
440
 
441
  /* Results will tell us which type of frame it uses.  */
442
  if (fi.using_frame_pointer)
443
    {
444
      *reg = FP_REGNUM;
445
      *offset = 0;
446
    }
447
  else
448
    {
449
      *reg = SP_REGNUM;
450
      *offset = 0;
451
    }
452
}
453
 
454
/* Function: find_callers_reg
455
   Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
456
   we might want to do here is to check REGNUM against the clobber mask, and
457
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
458
   would provide a graceful failure mode when trying to get the value of
459
   caller-saves registers for an inner frame.  */
460
 
461
CORE_ADDR
462
m32r_find_callers_reg (struct frame_info *fi, int regnum)
463
{
464
  for (; fi; fi = fi->next)
465
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
466
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
467
    else if (fi->fsr.regs[regnum] != 0)
468
      return read_memory_integer (fi->fsr.regs[regnum],
469
                                  REGISTER_RAW_SIZE (regnum));
470
  return read_register (regnum);
471
}
472
 
473
/* Function: frame_chain
474
   Given a GDB frame, determine the address of the calling function's frame.
475
   This will be used to create a new GDB frame struct, and then
476
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
477
   For m32r, we save the frame size when we initialize the frame_info.  */
478
 
479
CORE_ADDR
480
m32r_frame_chain (struct frame_info *fi)
481
{
482
  CORE_ADDR fn_start, callers_pc, fp;
483
 
484
  /* is this a dummy frame? */
485
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
486
    return fi->frame;           /* dummy frame same as caller's frame */
487
 
488
  /* is caller-of-this a dummy frame? */
489
  callers_pc = FRAME_SAVED_PC (fi);     /* find out who called us: */
490
  fp = m32r_find_callers_reg (fi, FP_REGNUM);
491
  if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
492
    return fp;                  /* dummy frame's frame may bear no relation to ours */
493
 
494
  if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
495
    if (fn_start == entry_point_address ())
496
      return 0;                  /* in _start fn, don't chain further */
497
  if (fi->framesize == 0)
498
    {
499
      printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
500
                       paddr (fi->frame),
501
                       paddr (fi->pc));
502
      return 0;
503
    }
504
  insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
505
  return fi->frame + fi->framesize;
506
}
507
 
508
/* Function: push_return_address (pc)
509
   Set up the return address for the inferior function call.
510
   Necessary for targets that don't actually execute a JSR/BSR instruction
511
   (ie. when using an empty CALL_DUMMY) */
512
 
513
CORE_ADDR
514
m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
515
{
516
  write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
517
  return sp;
518
}
519
 
520
 
521
/* Function: pop_frame
522
   Discard from the stack the innermost frame,
523
   restoring all saved registers.  */
524
 
525
struct frame_info *
526
m32r_pop_frame (struct frame_info *frame)
527
{
528
  int regnum;
529
 
530
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
531
    generic_pop_dummy_frame ();
532
  else
533
    {
534
      for (regnum = 0; regnum < NUM_REGS; regnum++)
535
        if (frame->fsr.regs[regnum] != 0)
536
          write_register (regnum,
537
                          read_memory_integer (frame->fsr.regs[regnum], 4));
538
 
539
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
540
      write_register (SP_REGNUM, read_register (FP_REGNUM));
541
      if (read_register (PSW_REGNUM) & 0x80)
542
        write_register (SPU_REGNUM, read_register (SP_REGNUM));
543
      else
544
        write_register (SPI_REGNUM, read_register (SP_REGNUM));
545
    }
546
  flush_cached_frames ();
547
  return NULL;
548
}
549
 
550
/* Function: frame_saved_pc
551
   Find the caller of this frame.  We do this by seeing if RP_REGNUM is saved
552
   in the stack anywhere, otherwise we get it from the registers. */
553
 
554
CORE_ADDR
555
m32r_frame_saved_pc (struct frame_info *fi)
556
{
557
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
558
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
559
  else
560
    return m32r_find_callers_reg (fi, RP_REGNUM);
561
}
562
 
563
/* Function: push_arguments
564
   Setup the function arguments for calling a function in the inferior.
565
 
566
   On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
567
   which are dedicated for passing function arguments.  Up to the first
568
   four arguments (depending on size) may go into these registers.
569
   The rest go on the stack.
570
 
571
   Arguments that are smaller than 4 bytes will still take up a whole
572
   register or a whole 32-bit word on the stack, and will be
573
   right-justified in the register or the stack word.  This includes
574
   chars, shorts, and small aggregate types.
575
 
576
   Arguments of 8 bytes size are split between two registers, if
577
   available.  If only one register is available, the argument will
578
   be split between the register and the stack.  Otherwise it is
579
   passed entirely on the stack.  Aggregate types with sizes between
580
   4 and 8 bytes are passed entirely on the stack, and are left-justified
581
   within the double-word (as opposed to aggregates smaller than 4 bytes
582
   which are right-justified).
583
 
584
   Aggregates of greater than 8 bytes are first copied onto the stack,
585
   and then a pointer to the copy is passed in the place of the normal
586
   argument (either in a register if available, or on the stack).
587
 
588
   Functions that must return an aggregate type can return it in the
589
   normal return value registers (R0 and R1) if its size is 8 bytes or
590
   less.  For larger return values, the caller must allocate space for
591
   the callee to copy the return value to.  A pointer to this space is
592
   passed as an implicit first argument, always in R0. */
593
 
594
CORE_ADDR
595
m32r_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
596
                     unsigned char struct_return, CORE_ADDR struct_addr)
597
{
598
  int stack_offset, stack_alloc;
599
  int argreg;
600
  int argnum;
601
  struct type *type;
602
  CORE_ADDR regval;
603
  char *val;
604
  char valbuf[4];
605
  int len;
606
  int odd_sized_struct;
607
 
608
  /* first force sp to a 4-byte alignment */
609
  sp = sp & ~3;
610
 
611
  argreg = ARG0_REGNUM;
612
  /* The "struct return pointer" pseudo-argument goes in R0 */
613
  if (struct_return)
614
    write_register (argreg++, struct_addr);
615
 
616
  /* Now make sure there's space on the stack */
617
  for (argnum = 0, stack_alloc = 0;
618
       argnum < nargs; argnum++)
619
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
620
  sp -= stack_alloc;            /* make room on stack for args */
621
 
622
 
623
  /* Now load as many as possible of the first arguments into
624
     registers, and push the rest onto the stack.  There are 16 bytes
625
     in four registers available.  Loop thru args from first to last.  */
626
 
627
  argreg = ARG0_REGNUM;
628
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
629
    {
630
      type = VALUE_TYPE (args[argnum]);
631
      len = TYPE_LENGTH (type);
632
      memset (valbuf, 0, sizeof (valbuf));
633
      if (len < 4)
634
        {                       /* value gets right-justified in the register or stack word */
635
          memcpy (valbuf + (4 - len),
636
                  (char *) VALUE_CONTENTS (args[argnum]), len);
637
          val = valbuf;
638
        }
639
      else
640
        val = (char *) VALUE_CONTENTS (args[argnum]);
641
 
642
      if (len > 4 && (len & 3) != 0)
643
        odd_sized_struct = 1;   /* such structs go entirely on stack */
644
      else
645
        odd_sized_struct = 0;
646
      while (len > 0)
647
        {
648
          if (argreg > ARGLAST_REGNUM || odd_sized_struct)
649
            {                   /* must go on the stack */
650
              write_memory (sp + stack_offset, val, 4);
651
              stack_offset += 4;
652
            }
653
          /* NOTE WELL!!!!!  This is not an "else if" clause!!!
654
             That's because some *&^%$ things get passed on the stack
655
             AND in the registers!   */
656
          if (argreg <= ARGLAST_REGNUM)
657
            {                   /* there's room in a register */
658
              regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
659
              write_register (argreg++, regval);
660
            }
661
          /* Store the value 4 bytes at a time.  This means that things
662
             larger than 4 bytes may go partly in registers and partly
663
             on the stack.  */
664
          len -= REGISTER_RAW_SIZE (argreg);
665
          val += REGISTER_RAW_SIZE (argreg);
666
        }
667
    }
668
  return sp;
669
}
670
 
671
/* Function: fix_call_dummy
672
   If there is real CALL_DUMMY code (eg. on the stack), this function
673
   has the responsability to insert the address of the actual code that
674
   is the target of the target function call.  */
675
 
676
void
677
m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
678
                     value_ptr *args, struct type *type, int gcc_p)
679
{
680
  /* ld24 r8, <(imm24) fun> */
681
  *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
682
}
683
 
684
 
685
/* Function: m32r_write_sp
686
   Because SP is really a read-only register that mirrors either SPU or SPI,
687
   we must actually write one of those two as well, depending on PSW. */
688
 
689
void
690
m32r_write_sp (CORE_ADDR val)
691
{
692
  unsigned long psw = read_register (PSW_REGNUM);
693
 
694
  if (psw & 0x80)               /* stack mode: user or interrupt */
695
    write_register (SPU_REGNUM, val);
696
  else
697
    write_register (SPI_REGNUM, val);
698
  write_register (SP_REGNUM, val);
699
}
700
 
701
void
702
_initialize_m32r_tdep (void)
703
{
704
  tm_print_insn = print_insn_m32r;
705
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.