OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [m68hc11-tdep.c] - Blame information for rev 1768

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Target-dependent code for Motorola 68HC11 & 68HC12
2
   Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Stephane Carrez, stcarrez@worldnet.fr
4
 
5
This file is part of GDB.
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2 of the License, or
10
(at your option) any later version.
11
 
12
This program is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with this program; if not, write to the Free Software
19
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
 
21
 
22
#include "defs.h"
23
#include "frame.h"
24
#include "obstack.h"
25
#include "symtab.h"
26
#include "gdbtypes.h"
27
#include "gdbcmd.h"
28
#include "gdbcore.h"
29
#include "gdb_string.h"
30
#include "value.h"
31
#include "inferior.h"
32
#include "dis-asm.h"  
33
#include "symfile.h"
34
#include "objfiles.h"
35
#include "arch-utils.h"
36
#include "regcache.h"
37
 
38
#include "target.h"
39
#include "opcode/m68hc11.h"
40
 
41
/* Register numbers of various important registers.
42
   Note that some of these values are "real" register numbers,
43
   and correspond to the general registers of the machine,
44
   and some are "phony" register numbers which are too large
45
   to be actual register numbers as far as the user is concerned
46
   but do serve to get the desired values when passed to read_register.  */
47
 
48
#define HARD_X_REGNUM   0
49
#define HARD_D_REGNUM   1
50
#define HARD_Y_REGNUM   2
51
#define HARD_SP_REGNUM  3
52
#define HARD_PC_REGNUM  4
53
 
54
#define HARD_A_REGNUM   5
55
#define HARD_B_REGNUM   6
56
#define HARD_CCR_REGNUM 7
57
#define M68HC11_LAST_HARD_REG (HARD_CCR_REGNUM)
58
 
59
/* Z is replaced by X or Y by gcc during machine reorg.
60
   ??? There is no way to get it and even know whether
61
   it's in X or Y or in ZS.  */
62
#define SOFT_Z_REGNUM        8
63
 
64
/* Soft registers.  These registers are special.  There are treated
65
   like normal hard registers by gcc and gdb (ie, within dwarf2 info).
66
   They are physically located in memory.  */
67
#define SOFT_FP_REGNUM       9
68
#define SOFT_TMP_REGNUM     10
69
#define SOFT_ZS_REGNUM      11
70
#define SOFT_XY_REGNUM      12
71
#define SOFT_UNUSED_REGNUM  13
72
#define SOFT_D1_REGNUM      14
73
#define SOFT_D32_REGNUM     (SOFT_D1_REGNUM+31)
74
#define M68HC11_MAX_SOFT_REGS 32
75
 
76
#define M68HC11_NUM_REGS        (8)
77
#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
78
#define M68HC11_ALL_REGS        (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
79
 
80
#define M68HC11_REG_SIZE    (2)
81
 
82
struct insn_sequence;
83
struct gdbarch_tdep
84
  {
85
    /* Stack pointer correction value.  For 68hc11, the stack pointer points
86
       to the next push location.  An offset of 1 must be applied to obtain
87
       the address where the last value is saved.  For 68hc12, the stack
88
       pointer points to the last value pushed.  No offset is necessary.  */
89
    int stack_correction;
90
 
91
    /* Description of instructions in the prologue.  */
92
    struct insn_sequence *prologue;
93
  };
94
 
95
#define M6811_TDEP gdbarch_tdep (current_gdbarch)
96
#define STACK_CORRECTION (M6811_TDEP->stack_correction)
97
 
98
struct frame_extra_info
99
{
100
  int frame_reg;
101
  CORE_ADDR return_pc;
102
  CORE_ADDR dummy;
103
  int frameless;
104
  int size;
105
};
106
 
107
/* Table of registers for 68HC11.  This includes the hard registers
108
   and the soft registers used by GCC.  */
109
static char *
110
m68hc11_register_names[] =
111
{
112
  "x",    "d",    "y",    "sp",   "pc",   "a",    "b",
113
  "ccr",  "z",    "frame","tmp",  "zs",   "xy",   0,
114
  "d1",   "d2",   "d3",   "d4",   "d5",   "d6",   "d7",
115
  "d8",   "d9",   "d10",  "d11",  "d12",  "d13",  "d14",
116
  "d15",  "d16",  "d17",  "d18",  "d19",  "d20",  "d21",
117
  "d22",  "d23",  "d24",  "d25",  "d26",  "d27",  "d28",
118
  "d29",  "d30",  "d31",  "d32"
119
};
120
 
121
struct m68hc11_soft_reg
122
{
123
  const char *name;
124
  CORE_ADDR   addr;
125
};
126
 
127
static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
128
 
129
#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
130
 
131
static int soft_min_addr;
132
static int soft_max_addr;
133
static int soft_reg_initialized = 0;
134
 
135
/* Look in the symbol table for the address of a pseudo register
136
   in memory.  If we don't find it, pretend the register is not used
137
   and not available.  */
138
static void
139
m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
140
{
141
  struct minimal_symbol *msymbol;
142
 
143
  msymbol = lookup_minimal_symbol (name, NULL, NULL);
144
  if (msymbol)
145
    {
146
      reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
147
      reg->name = xstrdup (name);
148
 
149
      /* Keep track of the address range for soft registers.  */
150
      if (reg->addr < (CORE_ADDR) soft_min_addr)
151
        soft_min_addr = reg->addr;
152
      if (reg->addr > (CORE_ADDR) soft_max_addr)
153
        soft_max_addr = reg->addr;
154
    }
155
  else
156
    {
157
      reg->name = 0;
158
      reg->addr = 0;
159
    }
160
}
161
 
162
/* Initialize the table of soft register addresses according
163
   to the symbol table.  */
164
  static void
165
m68hc11_initialize_register_info (void)
166
{
167
  int i;
168
 
169
  if (soft_reg_initialized)
170
    return;
171
 
172
  soft_min_addr = INT_MAX;
173
  soft_max_addr = 0;
174
  for (i = 0; i < M68HC11_ALL_REGS; i++)
175
    {
176
      soft_regs[i].name = 0;
177
    }
178
 
179
  m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
180
  m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
181
  m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
182
  soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
183
  m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
184
 
185
  for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
186
    {
187
      char buf[10];
188
 
189
      sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
190
      m68hc11_get_register_info (&soft_regs[i], buf);
191
    }
192
 
193
  if (soft_regs[SOFT_FP_REGNUM].name == 0)
194
    {
195
      warning ("No frame soft register found in the symbol table.\n");
196
      warning ("Stack backtrace will not work.\n");
197
    }
198
  soft_reg_initialized = 1;
199
}
200
 
201
/* Given an address in memory, return the soft register number if
202
   that address corresponds to a soft register.  Returns -1 if not.  */
203
static int
204
m68hc11_which_soft_register (CORE_ADDR addr)
205
{
206
  int i;
207
 
208
  if (addr < soft_min_addr || addr > soft_max_addr)
209
    return -1;
210
 
211
  for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
212
    {
213
      if (soft_regs[i].name && soft_regs[i].addr == addr)
214
        return i;
215
    }
216
  return -1;
217
}
218
 
219
/* Fetch a pseudo register.  The 68hc11 soft registers are treated like
220
   pseudo registers.  They are located in memory.  Translate the register
221
   fetch into a memory read.  */
222
void
223
m68hc11_fetch_pseudo_register (int regno)
224
{
225
  char buf[MAX_REGISTER_RAW_SIZE];
226
 
227
  m68hc11_initialize_register_info ();
228
 
229
  /* Fetch a soft register: translate into a memory read.  */
230
  if (soft_regs[regno].name)
231
    {
232
      target_read_memory (soft_regs[regno].addr, buf, 2);
233
    }
234
  else
235
    {
236
      memset (buf, 0, 2);
237
    }
238
  supply_register (regno, buf);
239
}
240
 
241
/* Store a pseudo register.  Translate the register store
242
   into a memory write.  */
243
static void
244
m68hc11_store_pseudo_register (int regno)
245
{
246
  m68hc11_initialize_register_info ();
247
 
248
  /* Store a soft register: translate into a memory write.  */
249
  if (soft_regs[regno].name)
250
    {
251
      char buf[MAX_REGISTER_RAW_SIZE];
252
 
253
      read_register_gen (regno, buf);
254
      target_write_memory (soft_regs[regno].addr, buf, 2);
255
    }
256
}
257
 
258
static char *
259
m68hc11_register_name (int reg_nr)
260
{
261
  if (reg_nr < 0)
262
    return NULL;
263
  if (reg_nr >= M68HC11_ALL_REGS)
264
    return NULL;
265
 
266
  /* If we don't know the address of a soft register, pretend it
267
     does not exist.  */
268
  if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
269
    return NULL;
270
  return m68hc11_register_names[reg_nr];
271
}
272
 
273
static unsigned char *
274
m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
275
{
276
  static unsigned char breakpoint[] = {0x0};
277
 
278
  *lenptr = sizeof (breakpoint);
279
  return breakpoint;
280
}
281
 
282
/* Immediately after a function call, return the saved pc before the frame
283
   is setup.  */
284
 
285
static CORE_ADDR
286
m68hc11_saved_pc_after_call (struct frame_info *frame)
287
{
288
  CORE_ADDR addr;
289
 
290
  addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
291
  addr &= 0x0ffff;
292
  return read_memory_integer (addr, 2) & 0x0FFFF;
293
}
294
 
295
static CORE_ADDR
296
m68hc11_frame_saved_pc (struct frame_info *frame)
297
{
298
  return frame->extra_info->return_pc;
299
}
300
 
301
static CORE_ADDR
302
m68hc11_frame_args_address (struct frame_info *frame)
303
{
304
  return frame->frame + frame->extra_info->size + STACK_CORRECTION + 2;
305
}
306
 
307
static CORE_ADDR
308
m68hc11_frame_locals_address (struct frame_info *frame)
309
{
310
  return frame->frame;
311
}
312
 
313
/* Discard from the stack the innermost frame, restoring all saved
314
   registers.  */
315
 
316
static void
317
m68hc11_pop_frame (void)
318
{
319
  register struct frame_info *frame = get_current_frame ();
320
  register CORE_ADDR fp, sp;
321
  register int regnum;
322
 
323
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
324
    generic_pop_dummy_frame ();
325
  else
326
    {
327
      fp = FRAME_FP (frame);
328
      FRAME_INIT_SAVED_REGS (frame);
329
 
330
      /* Copy regs from where they were saved in the frame.  */
331
      for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
332
        if (frame->saved_regs[regnum])
333
          write_register (regnum,
334
                          read_memory_integer (frame->saved_regs[regnum], 2));
335
 
336
      write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
337
      sp = (fp + frame->extra_info->size + 2) & 0x0ffff;
338
      write_register (HARD_SP_REGNUM, sp);
339
    }
340
  flush_cached_frames ();
341
}
342
 
343
 
344
/* 68HC11 & 68HC12 prologue analysis.
345
 
346
 */
347
#define MAX_CODES 12
348
 
349
/* 68HC11 opcodes.  */
350
#undef M6811_OP_PAGE2
351
#define M6811_OP_PAGE2 (0x18)
352
#define M6811_OP_LDX   (0xde)
353
#define M6811_OP_PSHX  (0x3c)
354
#define M6811_OP_STS   (0x9f)
355
#define M6811_OP_TSX   (0x30)
356
#define M6811_OP_XGDX  (0x8f)
357
#define M6811_OP_ADDD  (0xc3)
358
#define M6811_OP_TXS   (0x35)
359
#define M6811_OP_DES   (0x34)
360
 
361
/* 68HC12 opcodes.  */
362
#define M6812_OP_PAGE2 (0x18)
363
#define M6812_OP_MOVW  (0x01)
364
#define M6812_PB_PSHW  (0xae)
365
#define M6812_OP_STS   (0x7f)
366
#define M6812_OP_LEAS  (0x1b)
367
 
368
/* Operand extraction.  */
369
#define OP_DIRECT      (0x100) /* 8-byte direct addressing.  */
370
#define OP_IMM_LOW     (0x200) /* Low part of 16-bit constant/address.  */
371
#define OP_IMM_HIGH    (0x300) /* High part of 16-bit constant/address.  */
372
#define OP_PBYTE       (0x400) /* 68HC12 indexed operand.  */
373
 
374
/* Identification of the sequence.  */
375
enum m6811_seq_type
376
{
377
  P_LAST = 0,
378
  P_SAVE_REG,  /* Save a register on the stack.  */
379
  P_SET_FRAME, /* Setup the frame pointer.  */
380
  P_LOCAL_1,   /* Allocate 1 byte for locals.  */
381
  P_LOCAL_2,   /* Allocate 2 bytes for locals.  */
382
  P_LOCAL_N    /* Allocate N bytes for locals.  */
383
};
384
 
385
struct insn_sequence {
386
  enum m6811_seq_type type;
387
  unsigned length;
388
  unsigned short code[MAX_CODES];
389
};
390
 
391
/* Sequence of instructions in the 68HC11 function prologue.  */
392
static struct insn_sequence m6811_prologue[] = {
393
  /* Sequences to save a soft-register.  */
394
  { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
395
                     M6811_OP_PSHX } },
396
  { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
397
                     M6811_OP_PAGE2, M6811_OP_PSHX } },
398
 
399
  /* Sequences to allocate local variables.  */
400
  { P_LOCAL_N,  7, { M6811_OP_TSX,
401
                     M6811_OP_XGDX,
402
                     M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
403
                     M6811_OP_XGDX,
404
                     M6811_OP_TXS } },
405
  { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
406
                     M6811_OP_PAGE2, M6811_OP_XGDX,
407
                     M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
408
                     M6811_OP_PAGE2, M6811_OP_XGDX,
409
                     M6811_OP_PAGE2, M6811_OP_TXS } },
410
  { P_LOCAL_1,  1, { M6811_OP_DES } },
411
  { P_LOCAL_2,  1, { M6811_OP_PSHX } },
412
  { P_LOCAL_2,  2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
413
 
414
  /* Initialize the frame pointer.  */
415
  { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
416
  { P_LAST, 0, { 0 } }
417
};
418
 
419
 
420
/* Sequence of instructions in the 68HC12 function prologue.  */
421
static struct insn_sequence m6812_prologue[] = {
422
  { P_SAVE_REG,  5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
423
                      OP_IMM_HIGH, OP_IMM_LOW } },
424
  { P_SET_FRAME, 3, { M6812_OP_STS, OP_IMM_HIGH, OP_IMM_LOW } },
425
  { P_LOCAL_N,   2, { M6812_OP_LEAS, OP_PBYTE } },
426
  { P_LAST, 0 }
427
};
428
 
429
 
430
/* Analyze the sequence of instructions starting at the given address.
431
   Returns a pointer to the sequence when it is recognized and
432
   the optional value (constant/address) associated with it.
433
   Advance the pc for the next sequence.  */
434
static struct insn_sequence *
435
m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
436
                             CORE_ADDR *val)
437
{
438
  unsigned char buffer[MAX_CODES];
439
  unsigned bufsize;
440
  unsigned j;
441
  CORE_ADDR cur_val;
442
  short v = 0;
443
 
444
  bufsize = 0;
445
  for (; seq->type != P_LAST; seq++)
446
    {
447
      cur_val = 0;
448
      for (j = 0; j < seq->length; j++)
449
        {
450
          if (bufsize < j + 1)
451
            {
452
              buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
453
                                                              1);
454
              bufsize++;
455
            }
456
          /* Continue while we match the opcode.  */
457
          if (seq->code[j] == buffer[j])
458
            continue;
459
 
460
          if ((seq->code[j] & 0xf00) == 0)
461
            break;
462
 
463
          /* Extract a sequence parameter (address or constant).  */
464
          switch (seq->code[j])
465
            {
466
            case OP_DIRECT:
467
              cur_val = (CORE_ADDR) buffer[j];
468
              break;
469
 
470
            case OP_IMM_HIGH:
471
              cur_val = cur_val & 0x0ff;
472
              cur_val |= (buffer[j] << 8);
473
              break;
474
 
475
            case OP_IMM_LOW:
476
              cur_val &= 0x0ff00;
477
              cur_val |= buffer[j];
478
              break;
479
 
480
            case OP_PBYTE:
481
              if ((buffer[j] & 0xE0) == 0x80)
482
                {
483
                  v = buffer[j] & 0x1f;
484
                  if (v & 0x10)
485
                    v |= 0xfff0;
486
                }
487
              else if ((buffer[j] & 0xfe) == 0xf0)
488
                {
489
                  v = read_memory_unsigned_integer (*pc + j + 1, 1);
490
                  if (buffer[j] & 1)
491
                    v |= 0xff00;
492
                  *pc = *pc + 1;
493
                }
494
              else if (buffer[j] == 0xf2)
495
                {
496
                  v = read_memory_unsigned_integer (*pc + j + 1, 2);
497
                  *pc = *pc + 2;
498
                }
499
              cur_val = v;
500
              break;
501
            }
502
        }
503
 
504
      /* We have a full match.  */
505
      if (j == seq->length)
506
        {
507
          *val = cur_val;
508
          *pc = *pc + j;
509
          return seq;
510
        }
511
    }
512
  return 0;
513
}
514
 
515
/* Analyze the function prologue to find some information
516
   about the function:
517
    - the PC of the first line (for m68hc11_skip_prologue)
518
    - the offset of the previous frame saved address (from current frame)
519
    - the soft registers which are pushed.  */
520
static void
521
m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
522
                             CORE_ADDR *first_line,
523
                             int *frame_offset, CORE_ADDR *pushed_regs)
524
{
525
  CORE_ADDR save_addr;
526
  CORE_ADDR func_end;
527
  int size;
528
  int found_frame_point;
529
  int saved_reg;
530
  CORE_ADDR first_pc;
531
  int done = 0;
532
  struct insn_sequence *seq_table;
533
 
534
  first_pc = get_pc_function_start (pc);
535
  size = 0;
536
 
537
  m68hc11_initialize_register_info ();
538
  if (first_pc == 0)
539
    {
540
      *frame_offset = 0;
541
      *first_line   = pc;
542
      return;
543
    }
544
 
545
  seq_table = gdbarch_tdep (current_gdbarch)->prologue;
546
 
547
  /* The 68hc11 stack is as follows:
548
 
549
 
550
     |           |
551
     +-----------+
552
     |           |
553
     | args      |
554
     |           |
555
     +-----------+
556
     | PC-return |
557
     +-----------+
558
     | Old frame |
559
     +-----------+
560
     |           |
561
     | Locals    |
562
     |           |
563
     +-----------+ <--- current frame
564
     |           |
565
 
566
     With most processors (like 68K) the previous frame can be computed
567
     easily because it is always at a fixed offset (see link/unlink).
568
     That is, locals are accessed with negative offsets, arguments are
569
     accessed with positive ones.  Since 68hc11 only supports offsets
570
     in the range [0..255], the frame is defined at the bottom of
571
     locals (see picture).
572
 
573
     The purpose of the analysis made here is to find out the size
574
     of locals in this function.  An alternative to this is to use
575
     DWARF2 info.  This would be better but I don't know how to
576
     access dwarf2 debug from this function.
577
 
578
     Walk from the function entry point to the point where we save
579
     the frame.  While walking instructions, compute the size of bytes
580
     which are pushed.  This gives us the index to access the previous
581
     frame.
582
 
583
     We limit the search to 128 bytes so that the algorithm is bounded
584
     in case of random and wrong code.  We also stop and abort if
585
     we find an instruction which is not supposed to appear in the
586
     prologue (as generated by gcc 2.95, 2.96).
587
  */
588
  pc = first_pc;
589
  func_end = pc + 128;
590
  found_frame_point = 0;
591
  *frame_offset = 0;
592
  save_addr = fp + STACK_CORRECTION;
593
  while (!done && pc + 2 < func_end)
594
    {
595
      struct insn_sequence *seq;
596
      CORE_ADDR val;
597
 
598
      seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
599
      if (seq == 0)
600
        break;
601
 
602
      if (seq->type == P_SAVE_REG)
603
        {
604
          if (found_frame_point)
605
            {
606
              saved_reg = m68hc11_which_soft_register (val);
607
              if (saved_reg < 0)
608
                break;
609
 
610
              save_addr -= 2;
611
              if (pushed_regs)
612
                pushed_regs[saved_reg] = save_addr;
613
            }
614
          else
615
            {
616
              size += 2;
617
            }
618
        }
619
      else if (seq->type == P_SET_FRAME)
620
        {
621
          found_frame_point = 1;
622
          *frame_offset = size;
623
        }
624
      else if (seq->type == P_LOCAL_1)
625
        {
626
          size += 1;
627
        }
628
      else if (seq->type == P_LOCAL_2)
629
        {
630
          size += 2;
631
        }
632
      else if (seq->type == P_LOCAL_N)
633
        {
634
          /* Stack pointer is decremented for the allocation.  */
635
          if (val & 0x8000)
636
            size -= (int) (val) | 0xffff0000;
637
          else
638
            size -= val;
639
        }
640
    }
641
  *first_line  = pc;
642
}
643
 
644
static CORE_ADDR
645
m68hc11_skip_prologue (CORE_ADDR pc)
646
{
647
  CORE_ADDR func_addr, func_end;
648
  struct symtab_and_line sal;
649
  int frame_offset;
650
 
651
  /* If we have line debugging information, then the end of the
652
     prologue should be the first assembly instruction of the
653
     first source line.  */
654
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
655
    {
656
      sal = find_pc_line (func_addr, 0);
657
      if (sal.end && sal.end < func_end)
658
        return sal.end;
659
    }
660
 
661
  m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
662
  return pc;
663
}
664
 
665
/* Given a GDB frame, determine the address of the calling function's frame.
666
   This will be used to create a new GDB frame struct, and then
667
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
668
*/
669
 
670
static CORE_ADDR
671
m68hc11_frame_chain (struct frame_info *frame)
672
{
673
  CORE_ADDR addr;
674
 
675
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
676
    return frame->frame;        /* dummy frame same as caller's frame */
677
 
678
  if (frame->extra_info->return_pc == 0
679
      || inside_entry_file (frame->extra_info->return_pc))
680
    return (CORE_ADDR) 0;
681
 
682
  if (frame->frame == 0)
683
    {
684
      return (CORE_ADDR) 0;
685
    }
686
 
687
  addr = frame->frame + frame->extra_info->size + STACK_CORRECTION - 2;
688
  addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
689
  if (addr == 0)
690
    {
691
      return (CORE_ADDR) 0;
692
    }
693
 
694
  return addr;
695
}
696
 
697
/* Put here the code to store, into a struct frame_saved_regs, the
698
   addresses of the saved registers of frame described by FRAME_INFO.
699
   This includes special registers such as pc and fp saved in special
700
   ways in the stack frame.   sp is even more special: the address we
701
   return for it IS the sp for the next frame.  */
702
static void
703
m68hc11_frame_init_saved_regs (struct frame_info *fi)
704
{
705
  CORE_ADDR pc;
706
  CORE_ADDR addr;
707
 
708
  if (fi->saved_regs == NULL)
709
    frame_saved_regs_zalloc (fi);
710
  else
711
    memset (fi->saved_regs, 0, sizeof (fi->saved_regs));
712
 
713
  pc = fi->pc;
714
  m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
715
                               fi->saved_regs);
716
 
717
  addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
718
  if (soft_regs[SOFT_FP_REGNUM].name)
719
    fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
720
  fi->saved_regs[HARD_SP_REGNUM] = addr;
721
  fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
722
}
723
 
724
static void
725
m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
726
{
727
  CORE_ADDR addr;
728
 
729
  fi->extra_info = (struct frame_extra_info *)
730
    frame_obstack_alloc (sizeof (struct frame_extra_info));
731
 
732
  if (fi->next)
733
    fi->pc = FRAME_SAVED_PC (fi->next);
734
 
735
  m68hc11_frame_init_saved_regs (fi);
736
 
737
  if (fromleaf)
738
    {
739
      fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
740
    }
741
  else
742
    {
743
      addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
744
      addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
745
      fi->extra_info->return_pc = addr;
746
#if 0
747
      printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
748
              fi->pc,
749
              fi->frame, fi->size,
750
              addr & 0x0ffff,
751
              fi->return_pc);
752
#endif
753
    }
754
}
755
 
756
/* Same as 'info reg' but prints the registers in a different way.  */
757
static void
758
show_regs (char *args, int from_tty)
759
{
760
  int ccr = read_register (HARD_CCR_REGNUM);
761
  int i;
762
  int nr;
763
 
764
  printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
765
                   (int) read_register (HARD_PC_REGNUM),
766
                   (int) read_register (HARD_SP_REGNUM),
767
                   (int) read_register (SOFT_FP_REGNUM),
768
                   ccr,
769
                   ccr & M6811_S_BIT ? 'S' : '-',
770
                   ccr & M6811_X_BIT ? 'X' : '-',
771
                   ccr & M6811_H_BIT ? 'H' : '-',
772
                   ccr & M6811_I_BIT ? 'I' : '-',
773
                   ccr & M6811_N_BIT ? 'N' : '-',
774
                   ccr & M6811_Z_BIT ? 'Z' : '-',
775
                   ccr & M6811_V_BIT ? 'V' : '-',
776
                   ccr & M6811_C_BIT ? 'C' : '-');
777
 
778
  printf_filtered ("D=%04x IX=%04x IY=%04x\n",
779
                   (int) read_register (HARD_D_REGNUM),
780
                   (int) read_register (HARD_X_REGNUM),
781
                   (int) read_register (HARD_Y_REGNUM));
782
 
783
  nr = 0;
784
  for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
785
    {
786
      /* Skip registers which are not defined in the symbol table.  */
787
      if (soft_regs[i].name == 0)
788
        continue;
789
 
790
      printf_filtered ("D%d=%04x",
791
                       i - SOFT_D1_REGNUM + 1,
792
                       (int) read_register (i));
793
      nr++;
794
      if ((nr % 8) == 7)
795
        printf_filtered ("\n");
796
      else
797
        printf_filtered (" ");
798
    }
799
  if (nr && (nr % 8) != 7)
800
    printf_filtered ("\n");
801
}
802
 
803
static CORE_ADDR
804
m68hc11_stack_align (CORE_ADDR addr)
805
{
806
  return ((addr + 1) & -2);
807
}
808
 
809
static CORE_ADDR
810
m68hc11_push_arguments (int nargs,
811
                        value_ptr *args,
812
                        CORE_ADDR sp,
813
                        int struct_return,
814
                        CORE_ADDR struct_addr)
815
{
816
  int stack_alloc;
817
  int argnum;
818
  int first_stack_argnum;
819
  int stack_offset;
820
  struct type *type;
821
  char *val;
822
  int len;
823
 
824
  stack_alloc = 0;
825
  first_stack_argnum = 0;
826
  if (struct_return)
827
    {
828
      /* The struct is allocated on the stack and gdb used the stack
829
         pointer for the address of that struct.  We must apply the
830
         stack offset on the address.  */
831
      write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
832
    }
833
  else if (nargs > 0)
834
    {
835
      type = VALUE_TYPE (args[0]);
836
      len = TYPE_LENGTH (type);
837
 
838
      /* First argument is passed in D and X registers.  */
839
      if (len <= 4)
840
        {
841
          LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
842
          first_stack_argnum = 1;
843
          write_register (HARD_D_REGNUM, v);
844
          if (len > 2)
845
            {
846
              v >>= 16;
847
              write_register (HARD_X_REGNUM, v);
848
            }
849
        }
850
    }
851
  for (argnum = first_stack_argnum; argnum < nargs; argnum++)
852
    {
853
      type = VALUE_TYPE (args[argnum]);
854
      stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
855
    }
856
  sp -= stack_alloc;
857
 
858
  stack_offset = STACK_CORRECTION;
859
  for (argnum = first_stack_argnum; argnum < nargs; argnum++)
860
    {
861
      type = VALUE_TYPE (args[argnum]);
862
      len = TYPE_LENGTH (type);
863
 
864
      val = (char*) VALUE_CONTENTS (args[argnum]);
865
      write_memory (sp + stack_offset, val, len);
866
      stack_offset += len;
867
      if (len & 1)
868
        {
869
          static char zero = 0;
870
 
871
          write_memory (sp + stack_offset, &zero, 1);
872
          stack_offset++;
873
        }
874
    }
875
  return sp;
876
}
877
 
878
 
879
/* Return a location where we can set a breakpoint that will be hit
880
   when an inferior function call returns.  */
881
CORE_ADDR
882
m68hc11_call_dummy_address (void)
883
{
884
  return entry_point_address ();
885
}
886
 
887
static struct type *
888
m68hc11_register_virtual_type (int reg_nr)
889
{
890
  return builtin_type_uint16;
891
}
892
 
893
static void
894
m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
895
{
896
  /* The struct address computed by gdb is on the stack.
897
     It uses the stack pointer so we must apply the stack
898
     correction offset.  */
899
  write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
900
}
901
 
902
static void
903
m68hc11_store_return_value (struct type *type, char *valbuf)
904
{
905
  int len;
906
 
907
  len = TYPE_LENGTH (type);
908
 
909
  /* First argument is passed in D and X registers.  */
910
  if (len <= 4)
911
    {
912
      LONGEST v = extract_unsigned_integer (valbuf, len);
913
 
914
      write_register (HARD_D_REGNUM, v);
915
      if (len > 2)
916
        {
917
          v >>= 16;
918
          write_register (HARD_X_REGNUM, v);
919
        }
920
    }
921
  else
922
    error ("return of value > 4 is not supported.");
923
}
924
 
925
 
926
/* Given a return value in `regbuf' with a type `type',
927
   extract and copy its value into `valbuf'.  */
928
 
929
static void
930
m68hc11_extract_return_value (struct type *type,
931
                              char *regbuf,
932
                              char *valbuf)
933
{
934
  int len = TYPE_LENGTH (type);
935
 
936
  switch (len)
937
    {
938
    case 1:
939
      memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
940
      break;
941
 
942
    case 2:
943
      memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
944
      break;
945
 
946
    case 3:
947
      memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
948
      memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
949
      break;
950
 
951
    case 4:
952
      memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
953
      memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
954
      break;
955
 
956
    default:
957
      error ("bad size for return value");
958
    }
959
}
960
 
961
/* Should call_function allocate stack space for a struct return?  */
962
static int
963
m68hc11_use_struct_convention (int gcc_p, struct type *type)
964
{
965
  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
966
          || TYPE_CODE (type) == TYPE_CODE_UNION
967
          || TYPE_LENGTH (type) > 4);
968
}
969
 
970
static int
971
m68hc11_return_value_on_stack (struct type *type)
972
{
973
  return TYPE_LENGTH (type) > 4;
974
}
975
 
976
/* Extract from an array REGBUF containing the (raw) register state
977
   the address in which a function should return its structure value,
978
   as a CORE_ADDR (or an expression that can be used as one).  */
979
static CORE_ADDR
980
m68hc11_extract_struct_value_address (char *regbuf)
981
{
982
  return extract_address (&regbuf[HARD_D_REGNUM * 2],
983
                          REGISTER_RAW_SIZE (HARD_D_REGNUM));
984
}
985
 
986
/* Function: push_return_address (pc)
987
   Set up the return address for the inferior function call.
988
   Needed for targets where we don't actually execute a JSR/BSR instruction */
989
 
990
static CORE_ADDR
991
m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
992
{
993
  char valbuf[2];
994
 
995
  pc = CALL_DUMMY_ADDRESS ();
996
  sp -= 2;
997
  store_unsigned_integer (valbuf, 2, pc);
998
  write_memory (sp + STACK_CORRECTION, valbuf, 2);
999
  return sp;
1000
}
1001
 
1002
/* Index within `registers' of the first byte of the space for
1003
   register N.  */
1004
static int
1005
m68hc11_register_byte (int reg_nr)
1006
{
1007
  return (reg_nr * M68HC11_REG_SIZE);
1008
}
1009
 
1010
static int
1011
m68hc11_register_raw_size (int reg_nr)
1012
{
1013
  return M68HC11_REG_SIZE;
1014
}
1015
 
1016
static int
1017
gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1018
{
1019
  if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1020
    return print_insn_m68hc11 (memaddr, info);
1021
  else
1022
    return print_insn_m68hc12 (memaddr, info);
1023
}
1024
 
1025
static struct gdbarch *
1026
m68hc11_gdbarch_init (struct gdbarch_info info,
1027
                      struct gdbarch_list *arches)
1028
{
1029
  static LONGEST m68hc11_call_dummy_words[] =
1030
  {0};
1031
  struct gdbarch *gdbarch;
1032
  struct gdbarch_tdep *tdep;
1033
 
1034
  soft_reg_initialized = 0;
1035
 
1036
  /* try to find a pre-existing architecture */
1037
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
1038
       arches != NULL;
1039
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
1040
    {
1041
      return arches->gdbarch;
1042
    }
1043
 
1044
  /* Need a new architecture. Fill in a target specific vector.  */
1045
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1046
  gdbarch = gdbarch_alloc (&info, tdep);
1047
 
1048
  switch (info.bfd_arch_info->arch)
1049
    {
1050
    case bfd_arch_m68hc11:
1051
      tdep->stack_correction = 1;
1052
      tdep->prologue = m6811_prologue;
1053
      break;
1054
 
1055
    case bfd_arch_m68hc12:
1056
      tdep->stack_correction = 0;
1057
      tdep->prologue = m6812_prologue;
1058
      break;
1059
 
1060
    default:
1061
      break;
1062
    }
1063
 
1064
  /* Initially set everything according to the ABI.  */
1065
  set_gdbarch_short_bit (gdbarch, 16);
1066
  set_gdbarch_int_bit (gdbarch, 32);
1067
  set_gdbarch_float_bit (gdbarch, 32);
1068
  set_gdbarch_double_bit (gdbarch, 64);
1069
  set_gdbarch_long_double_bit (gdbarch, 64);
1070
  set_gdbarch_long_bit (gdbarch, 32);
1071
  set_gdbarch_ptr_bit (gdbarch, 16);
1072
  set_gdbarch_long_long_bit (gdbarch, 64);
1073
 
1074
  /* Set register info.  */
1075
  set_gdbarch_fp0_regnum (gdbarch, -1);
1076
  set_gdbarch_max_register_raw_size (gdbarch, 2);
1077
  set_gdbarch_max_register_virtual_size (gdbarch, 2);
1078
  set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
1079
  set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
1080
  set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
1081
  set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1082
  set_gdbarch_frame_args_skip (gdbarch, 0);
1083
 
1084
  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1085
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1086
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1087
  set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
1088
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1089
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1090
 
1091
  set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1092
  set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1093
  set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1094
  set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1095
  set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1096
  set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1097
  set_gdbarch_register_size (gdbarch, 2);
1098
  set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1099
  set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
1100
  set_gdbarch_fetch_pseudo_register (gdbarch, m68hc11_fetch_pseudo_register);
1101
  set_gdbarch_store_pseudo_register (gdbarch, m68hc11_store_pseudo_register);
1102
 
1103
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1104
  set_gdbarch_call_dummy_length (gdbarch, 0);
1105
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1106
  set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1107
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
1108
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1109
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1110
  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1111
  set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1112
  set_gdbarch_sizeof_call_dummy_words (gdbarch,
1113
                                       sizeof (m68hc11_call_dummy_words));
1114
  set_gdbarch_call_dummy_p (gdbarch, 1);
1115
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1116
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1117
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1118
  set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1119
  set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
1120
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1121
  set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
1122
  set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1123
 
1124
  set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1125
  set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1126
  set_gdbarch_extract_struct_value_address (gdbarch,
1127
                                            m68hc11_extract_struct_value_address);
1128
  set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1129
 
1130
 
1131
  set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
1132
  set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1133
  set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1134
  set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1135
  set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1136
  set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1137
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1138
 
1139
  set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1140
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1141
 
1142
  set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1143
  set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1144
  set_gdbarch_extract_struct_value_address
1145
    (gdbarch, m68hc11_extract_struct_value_address);
1146
  set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1147
  set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1148
  set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
1149
  set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1150
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1151
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
1152
  set_gdbarch_function_start_offset (gdbarch, 0);
1153
  set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1154
  set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1155
 
1156
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1157
  set_gdbarch_ieee_float (gdbarch, 1);
1158
 
1159
  return gdbarch;
1160
}
1161
 
1162
void
1163
_initialize_m68hc11_tdep (void)
1164
{
1165
  register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1166
  register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1167
  if (!tm_print_insn)           /* Someone may have already set it */
1168
    tm_print_insn = gdb_print_insn_m68hc11;
1169
 
1170
  add_com ("regs", class_vars, show_regs, "Print all registers");
1171
}
1172
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.