1 |
578 |
markom |
/* Target dependent code for the Motorola 68000 series.
|
2 |
|
|
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "symtab.h"
|
25 |
|
|
#include "gdbcore.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "gdb_string.h"
|
28 |
|
|
#include "inferior.h"
|
29 |
|
|
#include "regcache.h"
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
#define P_LINKL_FP 0x480e
|
33 |
|
|
#define P_LINKW_FP 0x4e56
|
34 |
|
|
#define P_PEA_FP 0x4856
|
35 |
|
|
#define P_MOVL_SP_FP 0x2c4f
|
36 |
|
|
#define P_MOVL 0x207c
|
37 |
|
|
#define P_JSR 0x4eb9
|
38 |
|
|
#define P_BSR 0x61ff
|
39 |
|
|
#define P_LEAL 0x43fb
|
40 |
|
|
#define P_MOVML 0x48ef
|
41 |
|
|
#define P_FMOVM 0xf237
|
42 |
|
|
#define P_TRAP 0x4e40
|
43 |
|
|
|
44 |
|
|
/* The only reason this is here is the tm-altos.h reference below. It
|
45 |
|
|
was moved back here from tm-m68k.h. FIXME? */
|
46 |
|
|
|
47 |
|
|
extern CORE_ADDR
|
48 |
|
|
altos_skip_prologue (CORE_ADDR pc)
|
49 |
|
|
{
|
50 |
|
|
register int op = read_memory_integer (pc, 2);
|
51 |
|
|
if (op == P_LINKW_FP)
|
52 |
|
|
pc += 4; /* Skip link #word */
|
53 |
|
|
else if (op == P_LINKL_FP)
|
54 |
|
|
pc += 6; /* Skip link #long */
|
55 |
|
|
/* Not sure why branches are here. */
|
56 |
|
|
/* From tm-altos.h */
|
57 |
|
|
else if (op == 0060000)
|
58 |
|
|
pc += 4; /* Skip bra #word */
|
59 |
|
|
else if (op == 00600377)
|
60 |
|
|
pc += 6; /* skip bra #long */
|
61 |
|
|
else if ((op & 0177400) == 0060000)
|
62 |
|
|
pc += 2; /* skip bra #char */
|
63 |
|
|
return pc;
|
64 |
|
|
}
|
65 |
|
|
|
66 |
|
|
/* The only reason this is here is the tm-isi.h reference below. It
|
67 |
|
|
was moved back here from tm-m68k.h. FIXME? */
|
68 |
|
|
|
69 |
|
|
/* OBSOLETE extern CORE_ADDR */
|
70 |
|
|
/* OBSOLETE isi_skip_prologue (CORE_ADDR pc) */
|
71 |
|
|
/* OBSOLETE { */
|
72 |
|
|
/* OBSOLETE register int op = read_memory_integer (pc, 2); */
|
73 |
|
|
/* OBSOLETE if (op == P_LINKW_FP) */
|
74 |
|
|
/* OBSOLETE pc += 4; *//* Skip link #word */
|
75 |
|
|
/* OBSOLETE else if (op == P_LINKL_FP) */
|
76 |
|
|
/* OBSOLETE pc += 6; *//* Skip link #long */
|
77 |
|
|
/* OBSOLETE *//* Not sure why branches are here. */
|
78 |
|
|
/* OBSOLETE *//* From tm-isi.h, tm-altos.h */
|
79 |
|
|
/* OBSOLETE else if (op == 0060000) */
|
80 |
|
|
/* OBSOLETE pc += 4; *//* Skip bra #word */
|
81 |
|
|
/* OBSOLETE else if (op == 00600377) */
|
82 |
|
|
/* OBSOLETE pc += 6; *//* skip bra #long */
|
83 |
|
|
/* OBSOLETE else if ((op & 0177400) == 0060000) */
|
84 |
|
|
/* OBSOLETE pc += 2; *//* skip bra #char */
|
85 |
|
|
/* OBSOLETE return pc; */
|
86 |
|
|
/* OBSOLETE } */
|
87 |
|
|
|
88 |
|
|
int
|
89 |
|
|
delta68_in_sigtramp (CORE_ADDR pc, char *name)
|
90 |
|
|
{
|
91 |
|
|
if (name != NULL)
|
92 |
|
|
return strcmp (name, "_sigcode") == 0;
|
93 |
|
|
else
|
94 |
|
|
return 0;
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
CORE_ADDR
|
98 |
|
|
delta68_frame_args_address (struct frame_info *frame_info)
|
99 |
|
|
{
|
100 |
|
|
/* we assume here that the only frameless functions are the system calls
|
101 |
|
|
or other functions who do not put anything on the stack. */
|
102 |
|
|
if (frame_info->signal_handler_caller)
|
103 |
|
|
return frame_info->frame + 12;
|
104 |
|
|
else if (frameless_look_for_prologue (frame_info))
|
105 |
|
|
{
|
106 |
|
|
/* Check for an interrupted system call */
|
107 |
|
|
if (frame_info->next && frame_info->next->signal_handler_caller)
|
108 |
|
|
return frame_info->next->frame + 16;
|
109 |
|
|
else
|
110 |
|
|
return frame_info->frame + 4;
|
111 |
|
|
}
|
112 |
|
|
else
|
113 |
|
|
return frame_info->frame;
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
CORE_ADDR
|
117 |
|
|
delta68_frame_saved_pc (struct frame_info *frame_info)
|
118 |
|
|
{
|
119 |
|
|
return read_memory_integer (delta68_frame_args_address (frame_info) + 4, 4);
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
/* Return number of args passed to a frame.
|
123 |
|
|
Can return -1, meaning no way to tell. */
|
124 |
|
|
|
125 |
|
|
int
|
126 |
|
|
isi_frame_num_args (struct frame_info *fi)
|
127 |
|
|
{
|
128 |
|
|
int val;
|
129 |
|
|
CORE_ADDR pc = FRAME_SAVED_PC (fi);
|
130 |
|
|
int insn = 0177777 & read_memory_integer (pc, 2);
|
131 |
|
|
val = 0;
|
132 |
|
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
|
133 |
|
|
val = read_memory_integer (pc + 2, 2);
|
134 |
|
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */
|
135 |
|
|
|| (insn & 0170777) == 0050117) /* addqw */
|
136 |
|
|
{
|
137 |
|
|
val = (insn >> 9) & 7;
|
138 |
|
|
if (val == 0)
|
139 |
|
|
val = 8;
|
140 |
|
|
}
|
141 |
|
|
else if (insn == 0157774) /* addal #WW, sp */
|
142 |
|
|
val = read_memory_integer (pc + 2, 4);
|
143 |
|
|
val >>= 2;
|
144 |
|
|
return val;
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
int
|
148 |
|
|
delta68_frame_num_args (struct frame_info *fi)
|
149 |
|
|
{
|
150 |
|
|
int val;
|
151 |
|
|
CORE_ADDR pc = FRAME_SAVED_PC (fi);
|
152 |
|
|
int insn = 0177777 & read_memory_integer (pc, 2);
|
153 |
|
|
val = 0;
|
154 |
|
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
|
155 |
|
|
val = read_memory_integer (pc + 2, 2);
|
156 |
|
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */
|
157 |
|
|
|| (insn & 0170777) == 0050117) /* addqw */
|
158 |
|
|
{
|
159 |
|
|
val = (insn >> 9) & 7;
|
160 |
|
|
if (val == 0)
|
161 |
|
|
val = 8;
|
162 |
|
|
}
|
163 |
|
|
else if (insn == 0157774) /* addal #WW, sp */
|
164 |
|
|
val = read_memory_integer (pc + 2, 4);
|
165 |
|
|
val >>= 2;
|
166 |
|
|
return val;
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
int
|
170 |
|
|
news_frame_num_args (struct frame_info *fi)
|
171 |
|
|
{
|
172 |
|
|
int val;
|
173 |
|
|
CORE_ADDR pc = FRAME_SAVED_PC (fi);
|
174 |
|
|
int insn = 0177777 & read_memory_integer (pc, 2);
|
175 |
|
|
val = 0;
|
176 |
|
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
|
177 |
|
|
val = read_memory_integer (pc + 2, 2);
|
178 |
|
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */
|
179 |
|
|
|| (insn & 0170777) == 0050117) /* addqw */
|
180 |
|
|
{
|
181 |
|
|
val = (insn >> 9) & 7;
|
182 |
|
|
if (val == 0)
|
183 |
|
|
val = 8;
|
184 |
|
|
}
|
185 |
|
|
else if (insn == 0157774) /* addal #WW, sp */
|
186 |
|
|
val = read_memory_integer (pc + 2, 4);
|
187 |
|
|
val >>= 2;
|
188 |
|
|
return val;
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
/* Push an empty stack frame, to record the current PC, etc. */
|
192 |
|
|
|
193 |
|
|
void
|
194 |
|
|
m68k_push_dummy_frame (void)
|
195 |
|
|
{
|
196 |
|
|
register CORE_ADDR sp = read_register (SP_REGNUM);
|
197 |
|
|
register int regnum;
|
198 |
|
|
char raw_buffer[12];
|
199 |
|
|
|
200 |
|
|
sp = push_word (sp, read_register (PC_REGNUM));
|
201 |
|
|
sp = push_word (sp, read_register (FP_REGNUM));
|
202 |
|
|
write_register (FP_REGNUM, sp);
|
203 |
|
|
|
204 |
|
|
/* Always save the floating-point registers, whether they exist on
|
205 |
|
|
this target or not. */
|
206 |
|
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
|
207 |
|
|
{
|
208 |
|
|
read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
209 |
|
|
sp = push_bytes (sp, raw_buffer, 12);
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
|
213 |
|
|
{
|
214 |
|
|
sp = push_word (sp, read_register (regnum));
|
215 |
|
|
}
|
216 |
|
|
sp = push_word (sp, read_register (PS_REGNUM));
|
217 |
|
|
write_register (SP_REGNUM, sp);
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
/* Discard from the stack the innermost frame,
|
221 |
|
|
restoring all saved registers. */
|
222 |
|
|
|
223 |
|
|
void
|
224 |
|
|
m68k_pop_frame (void)
|
225 |
|
|
{
|
226 |
|
|
register struct frame_info *frame = get_current_frame ();
|
227 |
|
|
register CORE_ADDR fp;
|
228 |
|
|
register int regnum;
|
229 |
|
|
struct frame_saved_regs fsr;
|
230 |
|
|
char raw_buffer[12];
|
231 |
|
|
|
232 |
|
|
fp = FRAME_FP (frame);
|
233 |
|
|
get_frame_saved_regs (frame, &fsr);
|
234 |
|
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
|
235 |
|
|
{
|
236 |
|
|
if (fsr.regs[regnum])
|
237 |
|
|
{
|
238 |
|
|
read_memory (fsr.regs[regnum], raw_buffer, 12);
|
239 |
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
240 |
|
|
}
|
241 |
|
|
}
|
242 |
|
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
|
243 |
|
|
{
|
244 |
|
|
if (fsr.regs[regnum])
|
245 |
|
|
{
|
246 |
|
|
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
|
247 |
|
|
}
|
248 |
|
|
}
|
249 |
|
|
if (fsr.regs[PS_REGNUM])
|
250 |
|
|
{
|
251 |
|
|
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
|
252 |
|
|
}
|
253 |
|
|
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
254 |
|
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
255 |
|
|
write_register (SP_REGNUM, fp + 8);
|
256 |
|
|
flush_cached_frames ();
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
/* Given an ip value corresponding to the start of a function,
|
261 |
|
|
return the ip of the first instruction after the function
|
262 |
|
|
prologue. This is the generic m68k support. Machines which
|
263 |
|
|
require something different can override the SKIP_PROLOGUE
|
264 |
|
|
macro to point elsewhere.
|
265 |
|
|
|
266 |
|
|
Some instructions which typically may appear in a function
|
267 |
|
|
prologue include:
|
268 |
|
|
|
269 |
|
|
A link instruction, word form:
|
270 |
|
|
|
271 |
|
|
link.w %a6,&0 4e56 XXXX
|
272 |
|
|
|
273 |
|
|
A link instruction, long form:
|
274 |
|
|
|
275 |
|
|
link.l %fp,&F%1 480e XXXX XXXX
|
276 |
|
|
|
277 |
|
|
A movm instruction to preserve integer regs:
|
278 |
|
|
|
279 |
|
|
movm.l &M%1,(4,%sp) 48ef XXXX XXXX
|
280 |
|
|
|
281 |
|
|
A fmovm instruction to preserve float regs:
|
282 |
|
|
|
283 |
|
|
fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX
|
284 |
|
|
|
285 |
|
|
Some profiling setup code (FIXME, not recognized yet):
|
286 |
|
|
|
287 |
|
|
lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX
|
288 |
|
|
bsr _mcount 61ff XXXX XXXX
|
289 |
|
|
|
290 |
|
|
*/
|
291 |
|
|
|
292 |
|
|
CORE_ADDR
|
293 |
|
|
m68k_skip_prologue (CORE_ADDR ip)
|
294 |
|
|
{
|
295 |
|
|
register CORE_ADDR limit;
|
296 |
|
|
struct symtab_and_line sal;
|
297 |
|
|
register int op;
|
298 |
|
|
|
299 |
|
|
/* Find out if there is a known limit for the extent of the prologue.
|
300 |
|
|
If so, ensure we don't go past it. If not, assume "infinity". */
|
301 |
|
|
|
302 |
|
|
sal = find_pc_line (ip, 0);
|
303 |
|
|
limit = (sal.end) ? sal.end : (CORE_ADDR) ~ 0;
|
304 |
|
|
|
305 |
|
|
while (ip < limit)
|
306 |
|
|
{
|
307 |
|
|
op = read_memory_integer (ip, 2);
|
308 |
|
|
op &= 0xFFFF;
|
309 |
|
|
|
310 |
|
|
if (op == P_LINKW_FP)
|
311 |
|
|
ip += 4; /* Skip link.w */
|
312 |
|
|
else if (op == P_PEA_FP)
|
313 |
|
|
ip += 2; /* Skip pea %fp */
|
314 |
|
|
else if (op == P_MOVL_SP_FP)
|
315 |
|
|
ip += 2; /* Skip move.l %sp, %fp */
|
316 |
|
|
else if (op == P_LINKL_FP)
|
317 |
|
|
ip += 6; /* Skip link.l */
|
318 |
|
|
else if (op == P_MOVML)
|
319 |
|
|
ip += 6; /* Skip movm.l */
|
320 |
|
|
else if (op == P_FMOVM)
|
321 |
|
|
ip += 10; /* Skip fmovm */
|
322 |
|
|
else
|
323 |
|
|
break; /* Found unknown code, bail out. */
|
324 |
|
|
}
|
325 |
|
|
return (ip);
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
void
|
329 |
|
|
m68k_find_saved_regs (struct frame_info *frame_info,
|
330 |
|
|
struct frame_saved_regs *saved_regs)
|
331 |
|
|
{
|
332 |
|
|
register int regnum;
|
333 |
|
|
register int regmask;
|
334 |
|
|
register CORE_ADDR next_addr;
|
335 |
|
|
register CORE_ADDR pc;
|
336 |
|
|
|
337 |
|
|
/* First possible address for a pc in a call dummy for this frame. */
|
338 |
|
|
CORE_ADDR possible_call_dummy_start =
|
339 |
|
|
(frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4 - 8 * 12;
|
340 |
|
|
|
341 |
|
|
int nextinsn;
|
342 |
|
|
memset (saved_regs, 0, sizeof (*saved_regs));
|
343 |
|
|
if ((frame_info)->pc >= possible_call_dummy_start
|
344 |
|
|
&& (frame_info)->pc <= (frame_info)->frame)
|
345 |
|
|
{
|
346 |
|
|
|
347 |
|
|
/* It is a call dummy. We could just stop now, since we know
|
348 |
|
|
what the call dummy saves and where. But this code proceeds
|
349 |
|
|
to parse the "prologue" which is part of the call dummy.
|
350 |
|
|
This is needlessly complex and confusing. FIXME. */
|
351 |
|
|
|
352 |
|
|
next_addr = (frame_info)->frame;
|
353 |
|
|
pc = possible_call_dummy_start;
|
354 |
|
|
}
|
355 |
|
|
else
|
356 |
|
|
{
|
357 |
|
|
pc = get_pc_function_start ((frame_info)->pc);
|
358 |
|
|
|
359 |
|
|
nextinsn = read_memory_integer (pc, 2);
|
360 |
|
|
if (P_PEA_FP == nextinsn
|
361 |
|
|
&& P_MOVL_SP_FP == read_memory_integer (pc + 2, 2))
|
362 |
|
|
{
|
363 |
|
|
/* pea %fp
|
364 |
|
|
move.l %sp, %fp */
|
365 |
|
|
next_addr = frame_info->frame;
|
366 |
|
|
pc += 4;
|
367 |
|
|
}
|
368 |
|
|
else if (P_LINKL_FP == nextinsn)
|
369 |
|
|
/* link.l %fp */
|
370 |
|
|
/* Find the address above the saved
|
371 |
|
|
regs using the amount of storage from the link instruction. */
|
372 |
|
|
{
|
373 |
|
|
next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 4);
|
374 |
|
|
pc += 6;
|
375 |
|
|
}
|
376 |
|
|
else if (P_LINKW_FP == nextinsn)
|
377 |
|
|
/* link.w %fp */
|
378 |
|
|
/* Find the address above the saved
|
379 |
|
|
regs using the amount of storage from the link instruction. */
|
380 |
|
|
{
|
381 |
|
|
next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 2);
|
382 |
|
|
pc += 4;
|
383 |
|
|
}
|
384 |
|
|
else
|
385 |
|
|
goto lose;
|
386 |
|
|
|
387 |
|
|
/* If have an addal #-n, sp next, adjust next_addr. */
|
388 |
|
|
if ((0177777 & read_memory_integer (pc, 2)) == 0157774)
|
389 |
|
|
next_addr += read_memory_integer (pc += 2, 4), pc += 4;
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
for ( ; ; )
|
393 |
|
|
{
|
394 |
|
|
nextinsn = 0xffff & read_memory_integer (pc, 2);
|
395 |
|
|
regmask = read_memory_integer (pc + 2, 2);
|
396 |
|
|
/* fmovemx to -(sp) */
|
397 |
|
|
if (0xf227 == nextinsn && (regmask & 0xff00) == 0xe000)
|
398 |
|
|
{
|
399 |
|
|
/* Regmask's low bit is for register fp7, the first pushed */
|
400 |
|
|
for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
|
401 |
|
|
if (regmask & 1)
|
402 |
|
|
saved_regs->regs[regnum] = (next_addr -= 12);
|
403 |
|
|
pc += 4;
|
404 |
|
|
}
|
405 |
|
|
/* fmovemx to (fp + displacement) */
|
406 |
|
|
else if (0171056 == nextinsn && (regmask & 0xff00) == 0xf000)
|
407 |
|
|
{
|
408 |
|
|
register CORE_ADDR addr;
|
409 |
|
|
|
410 |
|
|
addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
|
411 |
|
|
/* Regmask's low bit is for register fp7, the first pushed */
|
412 |
|
|
for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
|
413 |
|
|
if (regmask & 1)
|
414 |
|
|
{
|
415 |
|
|
saved_regs->regs[regnum] = addr;
|
416 |
|
|
addr += 12;
|
417 |
|
|
}
|
418 |
|
|
pc += 6;
|
419 |
|
|
}
|
420 |
|
|
/* moveml to (sp) */
|
421 |
|
|
else if (0044327 == nextinsn)
|
422 |
|
|
{
|
423 |
|
|
/* Regmask's low bit is for register 0, the first written */
|
424 |
|
|
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
|
425 |
|
|
if (regmask & 1)
|
426 |
|
|
{
|
427 |
|
|
saved_regs->regs[regnum] = next_addr;
|
428 |
|
|
next_addr += 4;
|
429 |
|
|
}
|
430 |
|
|
pc += 4;
|
431 |
|
|
}
|
432 |
|
|
/* moveml to (fp + displacement) */
|
433 |
|
|
else if (0044356 == nextinsn)
|
434 |
|
|
{
|
435 |
|
|
register CORE_ADDR addr;
|
436 |
|
|
|
437 |
|
|
addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
|
438 |
|
|
/* Regmask's low bit is for register 0, the first written */
|
439 |
|
|
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
|
440 |
|
|
if (regmask & 1)
|
441 |
|
|
{
|
442 |
|
|
saved_regs->regs[regnum] = addr;
|
443 |
|
|
addr += 4;
|
444 |
|
|
}
|
445 |
|
|
pc += 6;
|
446 |
|
|
}
|
447 |
|
|
/* moveml to -(sp) */
|
448 |
|
|
else if (0044347 == nextinsn)
|
449 |
|
|
{
|
450 |
|
|
/* Regmask's low bit is for register 15, the first pushed */
|
451 |
|
|
for (regnum = 16; --regnum >= 0; regmask >>= 1)
|
452 |
|
|
if (regmask & 1)
|
453 |
|
|
saved_regs->regs[regnum] = (next_addr -= 4);
|
454 |
|
|
pc += 4;
|
455 |
|
|
}
|
456 |
|
|
/* movl r,-(sp) */
|
457 |
|
|
else if (0x2f00 == (0xfff0 & nextinsn))
|
458 |
|
|
{
|
459 |
|
|
regnum = 0xf & nextinsn;
|
460 |
|
|
saved_regs->regs[regnum] = (next_addr -= 4);
|
461 |
|
|
pc += 2;
|
462 |
|
|
}
|
463 |
|
|
/* fmovemx to index of sp */
|
464 |
|
|
else if (0xf236 == nextinsn && (regmask & 0xff00) == 0xf000)
|
465 |
|
|
{
|
466 |
|
|
/* Regmask's low bit is for register fp0, the first written */
|
467 |
|
|
for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
|
468 |
|
|
if (regmask & 1)
|
469 |
|
|
{
|
470 |
|
|
saved_regs->regs[regnum] = next_addr;
|
471 |
|
|
next_addr += 12;
|
472 |
|
|
}
|
473 |
|
|
pc += 10;
|
474 |
|
|
}
|
475 |
|
|
/* clrw -(sp); movw ccr,-(sp) */
|
476 |
|
|
else if (0x4267 == nextinsn && 0x42e7 == regmask)
|
477 |
|
|
{
|
478 |
|
|
saved_regs->regs[PS_REGNUM] = (next_addr -= 4);
|
479 |
|
|
pc += 4;
|
480 |
|
|
}
|
481 |
|
|
else
|
482 |
|
|
break;
|
483 |
|
|
}
|
484 |
|
|
lose:;
|
485 |
|
|
saved_regs->regs[SP_REGNUM] = (frame_info)->frame + 8;
|
486 |
|
|
saved_regs->regs[FP_REGNUM] = (frame_info)->frame;
|
487 |
|
|
saved_regs->regs[PC_REGNUM] = (frame_info)->frame + 4;
|
488 |
|
|
#ifdef SIG_SP_FP_OFFSET
|
489 |
|
|
/* Adjust saved SP_REGNUM for fake _sigtramp frames. */
|
490 |
|
|
if (frame_info->signal_handler_caller && frame_info->next)
|
491 |
|
|
saved_regs->regs[SP_REGNUM] = frame_info->next->frame + SIG_SP_FP_OFFSET;
|
492 |
|
|
#endif
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
|
496 |
|
|
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
497 |
|
|
|
498 |
|
|
#include <sys/procfs.h>
|
499 |
|
|
|
500 |
|
|
/* Prototypes for supply_gregset etc. */
|
501 |
|
|
#include "gregset.h"
|
502 |
|
|
|
503 |
|
|
/* The /proc interface divides the target machine's register set up into
|
504 |
|
|
two different sets, the general register set (gregset) and the floating
|
505 |
|
|
point register set (fpregset). For each set, there is an ioctl to get
|
506 |
|
|
the current register set and another ioctl to set the current values.
|
507 |
|
|
|
508 |
|
|
The actual structure passed through the ioctl interface is, of course,
|
509 |
|
|
naturally machine dependent, and is different for each set of registers.
|
510 |
|
|
For the m68k for example, the general register set is typically defined
|
511 |
|
|
by:
|
512 |
|
|
|
513 |
|
|
typedef int gregset_t[18];
|
514 |
|
|
|
515 |
|
|
#define R_D0 0
|
516 |
|
|
...
|
517 |
|
|
#define R_PS 17
|
518 |
|
|
|
519 |
|
|
and the floating point set by:
|
520 |
|
|
|
521 |
|
|
typedef struct fpregset {
|
522 |
|
|
int f_pcr;
|
523 |
|
|
int f_psr;
|
524 |
|
|
int f_fpiaddr;
|
525 |
|
|
int f_fpregs[8][3]; (8 regs, 96 bits each)
|
526 |
|
|
} fpregset_t;
|
527 |
|
|
|
528 |
|
|
These routines provide the packing and unpacking of gregset_t and
|
529 |
|
|
fpregset_t formatted data.
|
530 |
|
|
|
531 |
|
|
*/
|
532 |
|
|
|
533 |
|
|
/* Atari SVR4 has R_SR but not R_PS */
|
534 |
|
|
|
535 |
|
|
#if !defined (R_PS) && defined (R_SR)
|
536 |
|
|
#define R_PS R_SR
|
537 |
|
|
#endif
|
538 |
|
|
|
539 |
|
|
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
540 |
|
|
unpack the register contents and supply them as gdb's idea of the current
|
541 |
|
|
register values. */
|
542 |
|
|
|
543 |
|
|
void
|
544 |
|
|
supply_gregset (gregset_t *gregsetp)
|
545 |
|
|
{
|
546 |
|
|
register int regi;
|
547 |
|
|
register greg_t *regp = (greg_t *) gregsetp;
|
548 |
|
|
|
549 |
|
|
for (regi = 0; regi < R_PC; regi++)
|
550 |
|
|
{
|
551 |
|
|
supply_register (regi, (char *) (regp + regi));
|
552 |
|
|
}
|
553 |
|
|
supply_register (PS_REGNUM, (char *) (regp + R_PS));
|
554 |
|
|
supply_register (PC_REGNUM, (char *) (regp + R_PC));
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
void
|
558 |
|
|
fill_gregset (gregset_t *gregsetp, int regno)
|
559 |
|
|
{
|
560 |
|
|
register int regi;
|
561 |
|
|
register greg_t *regp = (greg_t *) gregsetp;
|
562 |
|
|
|
563 |
|
|
for (regi = 0; regi < R_PC; regi++)
|
564 |
|
|
{
|
565 |
|
|
if ((regno == -1) || (regno == regi))
|
566 |
|
|
{
|
567 |
|
|
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
568 |
|
|
}
|
569 |
|
|
}
|
570 |
|
|
if ((regno == -1) || (regno == PS_REGNUM))
|
571 |
|
|
{
|
572 |
|
|
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
573 |
|
|
}
|
574 |
|
|
if ((regno == -1) || (regno == PC_REGNUM))
|
575 |
|
|
{
|
576 |
|
|
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
577 |
|
|
}
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
#if defined (FP0_REGNUM)
|
581 |
|
|
|
582 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
583 |
|
|
(fpregset_t *), unpack the register contents and supply them as gdb's
|
584 |
|
|
idea of the current floating point register values. */
|
585 |
|
|
|
586 |
|
|
void
|
587 |
|
|
supply_fpregset (fpregset_t *fpregsetp)
|
588 |
|
|
{
|
589 |
|
|
register int regi;
|
590 |
|
|
char *from;
|
591 |
|
|
|
592 |
|
|
for (regi = FP0_REGNUM; regi < FPC_REGNUM; regi++)
|
593 |
|
|
{
|
594 |
|
|
from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
|
595 |
|
|
supply_register (regi, from);
|
596 |
|
|
}
|
597 |
|
|
supply_register (FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
|
598 |
|
|
supply_register (FPS_REGNUM, (char *) &(fpregsetp->f_psr));
|
599 |
|
|
supply_register (FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
603 |
|
|
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
604 |
|
|
of the current floating point register set. If REGNO is -1, update
|
605 |
|
|
them all. */
|
606 |
|
|
|
607 |
|
|
void
|
608 |
|
|
fill_fpregset (fpregset_t *fpregsetp, int regno)
|
609 |
|
|
{
|
610 |
|
|
int regi;
|
611 |
|
|
char *to;
|
612 |
|
|
char *from;
|
613 |
|
|
|
614 |
|
|
for (regi = FP0_REGNUM; regi < FPC_REGNUM; regi++)
|
615 |
|
|
{
|
616 |
|
|
if ((regno == -1) || (regno == regi))
|
617 |
|
|
{
|
618 |
|
|
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
619 |
|
|
to = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
|
620 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
621 |
|
|
}
|
622 |
|
|
}
|
623 |
|
|
if ((regno == -1) || (regno == FPC_REGNUM))
|
624 |
|
|
{
|
625 |
|
|
fpregsetp->f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)];
|
626 |
|
|
}
|
627 |
|
|
if ((regno == -1) || (regno == FPS_REGNUM))
|
628 |
|
|
{
|
629 |
|
|
fpregsetp->f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
|
630 |
|
|
}
|
631 |
|
|
if ((regno == -1) || (regno == FPI_REGNUM))
|
632 |
|
|
{
|
633 |
|
|
fpregsetp->f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)];
|
634 |
|
|
}
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
#endif /* defined (FP0_REGNUM) */
|
638 |
|
|
|
639 |
|
|
#endif /* USE_PROC_FS */
|
640 |
|
|
|
641 |
|
|
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
642 |
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
643 |
|
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
644 |
|
|
This routine returns true on success. */
|
645 |
|
|
|
646 |
|
|
/* NOTE: cagney/2000-11-08: For this function to be fully multi-arched
|
647 |
|
|
the macro's JB_PC and JB_ELEMENT_SIZE would need to be moved into
|
648 |
|
|
the ``struct gdbarch_tdep'' object and then set on a target ISA/ABI
|
649 |
|
|
dependant basis. */
|
650 |
|
|
|
651 |
|
|
int
|
652 |
|
|
m68k_get_longjmp_target (CORE_ADDR *pc)
|
653 |
|
|
{
|
654 |
|
|
#if defined (JB_PC) && defined (JB_ELEMENT_SIZE)
|
655 |
|
|
char *buf;
|
656 |
|
|
CORE_ADDR sp, jb_addr;
|
657 |
|
|
|
658 |
|
|
buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
659 |
|
|
sp = read_register (SP_REGNUM);
|
660 |
|
|
|
661 |
|
|
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
|
662 |
|
|
buf,
|
663 |
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
664 |
|
|
return 0;
|
665 |
|
|
|
666 |
|
|
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
667 |
|
|
|
668 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
669 |
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
670 |
|
|
return 0;
|
671 |
|
|
|
672 |
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
673 |
|
|
|
674 |
|
|
return 1;
|
675 |
|
|
#else
|
676 |
|
|
internal_error (__FILE__, __LINE__,
|
677 |
|
|
"m68k_get_longjmp_target: not implemented");
|
678 |
|
|
return 0;
|
679 |
|
|
#endif
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Immediately after a function call, return the saved pc before the frame
|
683 |
|
|
is setup. For sun3's, we check for the common case of being inside of a
|
684 |
|
|
system call, and if so, we know that Sun pushes the call # on the stack
|
685 |
|
|
prior to doing the trap. */
|
686 |
|
|
|
687 |
|
|
CORE_ADDR
|
688 |
|
|
m68k_saved_pc_after_call (struct frame_info *frame)
|
689 |
|
|
{
|
690 |
|
|
#ifdef SYSCALL_TRAP
|
691 |
|
|
int op;
|
692 |
|
|
|
693 |
|
|
op = read_memory_integer (frame->pc - SYSCALL_TRAP_OFFSET, 2);
|
694 |
|
|
|
695 |
|
|
if (op == SYSCALL_TRAP)
|
696 |
|
|
return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
|
697 |
|
|
else
|
698 |
|
|
#endif /* SYSCALL_TRAP */
|
699 |
|
|
return read_memory_integer (read_register (SP_REGNUM), 4);
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
|
703 |
|
|
void
|
704 |
|
|
_initialize_m68k_tdep (void)
|
705 |
|
|
{
|
706 |
|
|
tm_print_insn = print_insn_m68k;
|
707 |
|
|
}
|