OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [m88k-tdep.c] - Blame information for rev 1767

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Target-machine dependent code for Motorola 88000 series, for GDB.
2
   Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 2000,
3
   2001 Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 2 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 59 Temple Place - Suite 330,
20
   Boston, MA 02111-1307, USA.  */
21
 
22
#include "defs.h"
23
#include "frame.h"
24
#include "inferior.h"
25
#include "value.h"
26
#include "gdbcore.h"
27
#include "symtab.h"
28
#include "setjmp.h"
29
#include "value.h"
30
#include "regcache.h"
31
 
32
/* Size of an instruction */
33
#define BYTES_PER_88K_INSN      4
34
 
35
void frame_find_saved_regs ();
36
 
37
/* Is this target an m88110?  Otherwise assume m88100.  This has
38
   relevance for the ways in which we screw with instruction pointers.  */
39
 
40
int target_is_m88110 = 0;
41
 
42
/* The m88k kernel aligns all instructions on 4-byte boundaries.  The
43
   kernel also uses the least significant two bits for its own hocus
44
   pocus.  When gdb receives an address from the kernel, it needs to
45
   preserve those right-most two bits, but gdb also needs to be careful
46
   to realize that those two bits are not really a part of the address
47
   of an instruction.  Shrug.  */
48
 
49
CORE_ADDR
50
m88k_addr_bits_remove (CORE_ADDR addr)
51
{
52
  return ((addr) & ~3);
53
}
54
 
55
 
56
/* Given a GDB frame, determine the address of the calling function's frame.
57
   This will be used to create a new GDB frame struct, and then
58
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
59
 
60
   For us, the frame address is its stack pointer value, so we look up
61
   the function prologue to determine the caller's sp value, and return it.  */
62
 
63
CORE_ADDR
64
frame_chain (struct frame_info *thisframe)
65
{
66
 
67
  frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
68
  /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
69
     the ADDRESS, of SP_REGNUM.  It also depends on the cache of
70
     frame_find_saved_regs results.  */
71
  if (thisframe->fsr->regs[SP_REGNUM])
72
    return thisframe->fsr->regs[SP_REGNUM];
73
  else
74
    return thisframe->frame;    /* Leaf fn -- next frame up has same SP. */
75
}
76
 
77
int
78
frameless_function_invocation (struct frame_info *frame)
79
{
80
 
81
  frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
82
  /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
83
     the ADDRESS, of SP_REGNUM.  It also depends on the cache of
84
     frame_find_saved_regs results.  */
85
  if (frame->fsr->regs[SP_REGNUM])
86
    return 0;                    /* Frameful -- return addr saved somewhere */
87
  else
88
    return 1;                   /* Frameless -- no saved return address */
89
}
90
 
91
void
92
init_extra_frame_info (int fromleaf, struct frame_info *frame)
93
{
94
  frame->fsr = 0;                /* Not yet allocated */
95
  frame->args_pointer = 0;       /* Unknown */
96
  frame->locals_pointer = 0;     /* Unknown */
97
}
98
 
99
/* Examine an m88k function prologue, recording the addresses at which
100
   registers are saved explicitly by the prologue code, and returning
101
   the address of the first instruction after the prologue (but not
102
   after the instruction at address LIMIT, as explained below).
103
 
104
   LIMIT places an upper bound on addresses of the instructions to be
105
   examined.  If the prologue code scan reaches LIMIT, the scan is
106
   aborted and LIMIT is returned.  This is used, when examining the
107
   prologue for the current frame, to keep examine_prologue () from
108
   claiming that a given register has been saved when in fact the
109
   instruction that saves it has not yet been executed.  LIMIT is used
110
   at other times to stop the scan when we hit code after the true
111
   function prologue (e.g. for the first source line) which might
112
   otherwise be mistaken for function prologue.
113
 
114
   The format of the function prologue matched by this routine is
115
   derived from examination of the source to gcc 1.95, particularly
116
   the routine output_prologue () in config/out-m88k.c.
117
 
118
   subu r31,r31,n                       # stack pointer update
119
 
120
   (st rn,r31,offset)?                  # save incoming regs
121
   (st.d rn,r31,offset)?
122
 
123
   (addu r30,r31,n)?                    # frame pointer update
124
 
125
   (pic sequence)?                      # PIC code prologue
126
 
127
   (or   rn,rm,0)?                      # Move parameters to other regs
128
 */
129
 
130
/* Macros for extracting fields from instructions.  */
131
 
132
#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
133
#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
134
#define SUBU_OFFSET(x)  ((unsigned)(x & 0xFFFF))
135
#define ST_OFFSET(x)    ((unsigned)((x) & 0xFFFF))
136
#define ST_SRC(x)       EXTRACT_FIELD ((x), 21, 5)
137
#define ADDU_OFFSET(x)  ((unsigned)(x & 0xFFFF))
138
 
139
/*
140
 * prologue_insn_tbl is a table of instructions which may comprise a
141
 * function prologue.  Associated with each table entry (corresponding
142
 * to a single instruction or group of instructions), is an action.
143
 * This action is used by examine_prologue (below) to determine
144
 * the state of certain machine registers and where the stack frame lives.
145
 */
146
 
147
enum prologue_insn_action
148
{
149
  PIA_SKIP,                     /* don't care what the instruction does */
150
  PIA_NOTE_ST,                  /* note register stored and where */
151
  PIA_NOTE_STD,                 /* note pair of registers stored and where */
152
  PIA_NOTE_SP_ADJUSTMENT,       /* note stack pointer adjustment */
153
  PIA_NOTE_FP_ASSIGNMENT,       /* note frame pointer assignment */
154
  PIA_NOTE_PROLOGUE_END,        /* no more prologue */
155
};
156
 
157
struct prologue_insns
158
  {
159
    unsigned long insn;
160
    unsigned long mask;
161
    enum prologue_insn_action action;
162
  };
163
 
164
struct prologue_insns prologue_insn_tbl[] =
165
{
166
  /* Various register move instructions */
167
  {0x58000000, 0xf800ffff, PIA_SKIP},   /* or/or.u with immed of 0 */
168
  {0xf4005800, 0xfc1fffe0, PIA_SKIP},   /* or rd, r0, rs */
169
  {0xf4005800, 0xfc00ffff, PIA_SKIP},   /* or rd, rs, r0 */
170
 
171
  /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
172
  {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
173
 
174
  /* Frame pointer assignment: "addu r30, r31, n" */
175
  {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
176
 
177
  /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
178
  {0x241f0000, 0xfc1f0000, PIA_NOTE_ST},        /* st rx, sp, n */
179
  {0x201f0000, 0xfc1f0000, PIA_NOTE_STD},       /* st.d rs, sp, n */
180
 
181
  /* Instructions needed for setting up r25 for pic code. */
182
  {0x5f200000, 0xffff0000, PIA_SKIP},   /* or.u r25, r0, offset_high */
183
  {0xcc000002, 0xffffffff, PIA_SKIP},   /* bsr.n Lab */
184
  {0x5b390000, 0xffff0000, PIA_SKIP},   /* or r25, r25, offset_low */
185
  {0xf7396001, 0xffffffff, PIA_SKIP},   /* Lab: addu r25, r25, r1 */
186
 
187
  /* Various branch or jump instructions which have a delay slot -- these
188
     do not form part of the prologue, but the instruction in the delay
189
     slot might be a store instruction which should be noted. */
190
  {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
191
                                        /* br.n, bsr.n, bb0.n, or bb1.n */
192
  {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END},      /* bcnd.n */
193
  {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END}       /* jmp.n or jsr.n */
194
 
195
};
196
 
197
 
198
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
199
   is not the address of a valid instruction, the address of the next
200
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
201
   of the instruction. */
202
 
203
#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
204
  (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
205
 
206
/* Read the m88k instruction at 'memaddr' and return the address of
207
   the next instruction after that, or 0 if 'memaddr' is not the
208
   address of a valid instruction.  The instruction
209
   is stored at 'pword1'.  */
210
 
211
CORE_ADDR
212
next_insn (CORE_ADDR memaddr, unsigned long *pword1)
213
{
214
  *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
215
  return memaddr + BYTES_PER_88K_INSN;
216
}
217
 
218
/* Read a register from frames called by us (or from the hardware regs).  */
219
 
220
static int
221
read_next_frame_reg (struct frame_info *frame, int regno)
222
{
223
  for (; frame; frame = frame->next)
224
    {
225
      if (regno == SP_REGNUM)
226
        return FRAME_FP (frame);
227
      else if (frame->fsr->regs[regno])
228
        return read_memory_integer (frame->fsr->regs[regno], 4);
229
    }
230
  return read_register (regno);
231
}
232
 
233
/* Examine the prologue of a function.  `ip' points to the first instruction.
234
   `limit' is the limit of the prologue (e.g. the addr of the first
235
   linenumber, or perhaps the program counter if we're stepping through).
236
   `frame_sp' is the stack pointer value in use in this frame.
237
   `fsr' is a pointer to a frame_saved_regs structure into which we put
238
   info about the registers saved by this frame.
239
   `fi' is a struct frame_info pointer; we fill in various fields in it
240
   to reflect the offsets of the arg pointer and the locals pointer.  */
241
 
242
static CORE_ADDR
243
examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
244
                  CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
245
                  struct frame_info *fi)
246
{
247
  register CORE_ADDR next_ip;
248
  register int src;
249
  unsigned long insn;
250
  int size, offset;
251
  char must_adjust[32];         /* If set, must adjust offsets in fsr */
252
  int sp_offset = -1;           /* -1 means not set (valid must be mult of 8) */
253
  int fp_offset = -1;           /* -1 means not set */
254
  CORE_ADDR frame_fp;
255
  CORE_ADDR prologue_end = 0;
256
 
257
  memset (must_adjust, '\0', sizeof (must_adjust));
258
  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
259
 
260
  while (next_ip)
261
    {
262
      struct prologue_insns *pip;
263
 
264
      for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
265
        if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
266
          goto end_of_prologue_found;   /* not a prologue insn */
267
 
268
      switch (pip->action)
269
        {
270
        case PIA_NOTE_ST:
271
        case PIA_NOTE_STD:
272
          if (sp_offset != -1)
273
            {
274
              src = ST_SRC (insn);
275
              offset = ST_OFFSET (insn);
276
              must_adjust[src] = 1;
277
              fsr->regs[src++] = offset;        /* Will be adjusted later */
278
              if (pip->action == PIA_NOTE_STD && src < 32)
279
                {
280
                  offset += 4;
281
                  must_adjust[src] = 1;
282
                  fsr->regs[src++] = offset;
283
                }
284
            }
285
          else
286
            goto end_of_prologue_found;
287
          break;
288
        case PIA_NOTE_SP_ADJUSTMENT:
289
          if (sp_offset == -1)
290
            sp_offset = -SUBU_OFFSET (insn);
291
          else
292
            goto end_of_prologue_found;
293
          break;
294
        case PIA_NOTE_FP_ASSIGNMENT:
295
          if (fp_offset == -1)
296
            fp_offset = ADDU_OFFSET (insn);
297
          else
298
            goto end_of_prologue_found;
299
          break;
300
        case PIA_NOTE_PROLOGUE_END:
301
          if (!prologue_end)
302
            prologue_end = ip;
303
          break;
304
        case PIA_SKIP:
305
        default:
306
          /* Do nothing */
307
          break;
308
        }
309
 
310
      ip = next_ip;
311
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
312
    }
313
 
314
end_of_prologue_found:
315
 
316
  if (prologue_end)
317
    ip = prologue_end;
318
 
319
  /* We're done with the prologue.  If we don't care about the stack
320
     frame itself, just return.  (Note that fsr->regs has been trashed,
321
     but the one caller who calls with fi==0 passes a dummy there.)  */
322
 
323
  if (fi == 0)
324
    return ip;
325
 
326
  /*
327
     OK, now we have:
328
 
329
     sp_offset  original (before any alloca calls) displacement of SP
330
     (will be negative).
331
 
332
     fp_offset  displacement from original SP to the FP for this frame
333
     or -1.
334
 
335
     fsr->regs[0..31]   displacement from original SP to the stack
336
     location where reg[0..31] is stored.
337
 
338
     must_adjust[0..31] set if corresponding offset was set.
339
 
340
     If alloca has been called between the function prologue and the current
341
     IP, then the current SP (frame_sp) will not be the original SP as set by
342
     the function prologue.  If the current SP is not the original SP, then the
343
     compiler will have allocated an FP for this frame, fp_offset will be set,
344
     and we can use it to calculate the original SP.
345
 
346
     Then, we figure out where the arguments and locals are, and relocate the
347
     offsets in fsr->regs to absolute addresses.  */
348
 
349
  if (fp_offset != -1)
350
    {
351
      /* We have a frame pointer, so get it, and base our calc's on it.  */
352
      frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
353
      frame_sp = frame_fp - fp_offset;
354
    }
355
  else
356
    {
357
      /* We have no frame pointer, therefore frame_sp is still the same value
358
         as set by prologue.  But where is the frame itself?  */
359
      if (must_adjust[SRP_REGNUM])
360
        {
361
          /* Function header saved SRP (r1), the return address.  Frame starts
362
             4 bytes down from where it was saved.  */
363
          frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
364
          fi->locals_pointer = frame_fp;
365
        }
366
      else
367
        {
368
          /* Function header didn't save SRP (r1), so we are in a leaf fn or
369
             are otherwise confused.  */
370
          frame_fp = -1;
371
        }
372
    }
373
 
374
  /* The locals are relative to the FP (whether it exists as an allocated
375
     register, or just as an assumed offset from the SP) */
376
  fi->locals_pointer = frame_fp;
377
 
378
  /* The arguments are just above the SP as it was before we adjusted it
379
     on entry.  */
380
  fi->args_pointer = frame_sp - sp_offset;
381
 
382
  /* Now that we know the SP value used by the prologue, we know where
383
     it saved all the registers.  */
384
  for (src = 0; src < 32; src++)
385
    if (must_adjust[src])
386
      fsr->regs[src] += frame_sp;
387
 
388
  /* The saved value of the SP is always known.  */
389
  /* (we hope...) */
390
  if (fsr->regs[SP_REGNUM] != 0
391
      && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
392
    fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
393
                        fsr->regs[SP_REGNUM],
394
                        frame_sp - sp_offset, sp_offset);
395
 
396
  fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
397
 
398
  return (ip);
399
}
400
 
401
/* Given an ip value corresponding to the start of a function,
402
   return the ip of the first instruction after the function
403
   prologue.  */
404
 
405
CORE_ADDR
406
m88k_skip_prologue (CORE_ADDR ip)
407
{
408
  struct frame_saved_regs saved_regs_dummy;
409
  struct symtab_and_line sal;
410
  CORE_ADDR limit;
411
 
412
  sal = find_pc_line (ip, 0);
413
  limit = (sal.end) ? sal.end : 0xffffffff;
414
 
415
  return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
416
                            (struct frame_info *) 0));
417
}
418
 
419
/* Put here the code to store, into a struct frame_saved_regs,
420
   the addresses of the saved registers of frame described by FRAME_INFO.
421
   This includes special registers such as pc and fp saved in special
422
   ways in the stack frame.  sp is even more special:
423
   the address we return for it IS the sp for the next frame.
424
 
425
   We cache the result of doing this in the frame_obstack, since it is
426
   fairly expensive.  */
427
 
428
void
429
frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
430
{
431
  register struct frame_saved_regs *cache_fsr;
432
  CORE_ADDR ip;
433
  struct symtab_and_line sal;
434
  CORE_ADDR limit;
435
 
436
  if (!fi->fsr)
437
    {
438
      cache_fsr = (struct frame_saved_regs *)
439
        frame_obstack_alloc (sizeof (struct frame_saved_regs));
440
      memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
441
      fi->fsr = cache_fsr;
442
 
443
      /* Find the start and end of the function prologue.  If the PC
444
         is in the function prologue, we only consider the part that
445
         has executed already.  In the case where the PC is not in
446
         the function prologue, we set limit to two instructions beyond
447
         where the prologue ends in case if any of the prologue instructions
448
         were moved into a delay slot of a branch instruction. */
449
 
450
      ip = get_pc_function_start (fi->pc);
451
      sal = find_pc_line (ip, 0);
452
      limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
453
        : fi->pc;
454
 
455
      /* This will fill in fields in *fi as well as in cache_fsr.  */
456
#ifdef SIGTRAMP_FRAME_FIXUP
457
      if (fi->signal_handler_caller)
458
        SIGTRAMP_FRAME_FIXUP (fi->frame);
459
#endif
460
      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
461
#ifdef SIGTRAMP_SP_FIXUP
462
      if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
463
        SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
464
#endif
465
    }
466
 
467
  if (fsr)
468
    *fsr = *fi->fsr;
469
}
470
 
471
/* Return the address of the locals block for the frame
472
   described by FI.  Returns 0 if the address is unknown.
473
   NOTE!  Frame locals are referred to by negative offsets from the
474
   argument pointer, so this is the same as frame_args_address().  */
475
 
476
CORE_ADDR
477
frame_locals_address (struct frame_info *fi)
478
{
479
  struct frame_saved_regs fsr;
480
 
481
  if (fi->args_pointer)         /* Cached value is likely there.  */
482
    return fi->args_pointer;
483
 
484
  /* Nope, generate it.  */
485
 
486
  get_frame_saved_regs (fi, &fsr);
487
 
488
  return fi->args_pointer;
489
}
490
 
491
/* Return the address of the argument block for the frame
492
   described by FI.  Returns 0 if the address is unknown.  */
493
 
494
CORE_ADDR
495
frame_args_address (struct frame_info *fi)
496
{
497
  struct frame_saved_regs fsr;
498
 
499
  if (fi->args_pointer)         /* Cached value is likely there.  */
500
    return fi->args_pointer;
501
 
502
  /* Nope, generate it.  */
503
 
504
  get_frame_saved_regs (fi, &fsr);
505
 
506
  return fi->args_pointer;
507
}
508
 
509
/* Return the saved PC from this frame.
510
 
511
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
512
   just use the register SRP_REGNUM itself.  */
513
 
514
CORE_ADDR
515
frame_saved_pc (struct frame_info *frame)
516
{
517
  return read_next_frame_reg (frame, SRP_REGNUM);
518
}
519
 
520
 
521
#define DUMMY_FRAME_SIZE 192
522
 
523
static void
524
write_word (CORE_ADDR sp, ULONGEST word)
525
{
526
  register int len = REGISTER_SIZE;
527
  char buffer[MAX_REGISTER_RAW_SIZE];
528
 
529
  store_unsigned_integer (buffer, len, word);
530
  write_memory (sp, buffer, len);
531
}
532
 
533
void
534
m88k_push_dummy_frame (void)
535
{
536
  register CORE_ADDR sp = read_register (SP_REGNUM);
537
  register int rn;
538
  int offset;
539
 
540
  sp -= DUMMY_FRAME_SIZE;       /* allocate a bunch of space */
541
 
542
  for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
543
    write_word (sp + offset, read_register (rn));
544
 
545
  write_word (sp + offset, read_register (SXIP_REGNUM));
546
  offset += 4;
547
 
548
  write_word (sp + offset, read_register (SNIP_REGNUM));
549
  offset += 4;
550
 
551
  write_word (sp + offset, read_register (SFIP_REGNUM));
552
  offset += 4;
553
 
554
  write_word (sp + offset, read_register (PSR_REGNUM));
555
  offset += 4;
556
 
557
  write_word (sp + offset, read_register (FPSR_REGNUM));
558
  offset += 4;
559
 
560
  write_word (sp + offset, read_register (FPCR_REGNUM));
561
  offset += 4;
562
 
563
  write_register (SP_REGNUM, sp);
564
  write_register (ACTUAL_FP_REGNUM, sp);
565
}
566
 
567
void
568
pop_frame (void)
569
{
570
  register struct frame_info *frame = get_current_frame ();
571
  register int regnum;
572
  struct frame_saved_regs fsr;
573
 
574
  get_frame_saved_regs (frame, &fsr);
575
 
576
  if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
577
    {
578
      /* FIXME: I think get_frame_saved_regs should be handling this so
579
         that we can deal with the saved registers properly (e.g. frame
580
         1 is a call dummy, the user types "frame 2" and then "print $ps").  */
581
      register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
582
      int offset;
583
 
584
      for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
585
        (void) write_register (regnum, read_memory_integer (sp + offset, 4));
586
 
587
      write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
588
      offset += 4;
589
 
590
      write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
591
      offset += 4;
592
 
593
      write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
594
      offset += 4;
595
 
596
      write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
597
      offset += 4;
598
 
599
      write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
600
      offset += 4;
601
 
602
      write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
603
      offset += 4;
604
 
605
    }
606
  else
607
    {
608
      for (regnum = FP_REGNUM; regnum > 0; regnum--)
609
        if (fsr.regs[regnum])
610
          write_register (regnum,
611
                          read_memory_integer (fsr.regs[regnum], 4));
612
      write_pc (frame_saved_pc (frame));
613
    }
614
  reinit_frame_cache ();
615
}
616
 
617
void
618
_initialize_m88k_tdep (void)
619
{
620
  tm_print_insn = print_insn_m88k;
621
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.