1 |
578 |
markom |
/* Target-machine dependent code for Motorola 88000 series, for GDB.
|
2 |
|
|
Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 2000,
|
3 |
|
|
2001 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "value.h"
|
26 |
|
|
#include "gdbcore.h"
|
27 |
|
|
#include "symtab.h"
|
28 |
|
|
#include "setjmp.h"
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "regcache.h"
|
31 |
|
|
|
32 |
|
|
/* Size of an instruction */
|
33 |
|
|
#define BYTES_PER_88K_INSN 4
|
34 |
|
|
|
35 |
|
|
void frame_find_saved_regs ();
|
36 |
|
|
|
37 |
|
|
/* Is this target an m88110? Otherwise assume m88100. This has
|
38 |
|
|
relevance for the ways in which we screw with instruction pointers. */
|
39 |
|
|
|
40 |
|
|
int target_is_m88110 = 0;
|
41 |
|
|
|
42 |
|
|
/* The m88k kernel aligns all instructions on 4-byte boundaries. The
|
43 |
|
|
kernel also uses the least significant two bits for its own hocus
|
44 |
|
|
pocus. When gdb receives an address from the kernel, it needs to
|
45 |
|
|
preserve those right-most two bits, but gdb also needs to be careful
|
46 |
|
|
to realize that those two bits are not really a part of the address
|
47 |
|
|
of an instruction. Shrug. */
|
48 |
|
|
|
49 |
|
|
CORE_ADDR
|
50 |
|
|
m88k_addr_bits_remove (CORE_ADDR addr)
|
51 |
|
|
{
|
52 |
|
|
return ((addr) & ~3);
|
53 |
|
|
}
|
54 |
|
|
|
55 |
|
|
|
56 |
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
57 |
|
|
This will be used to create a new GDB frame struct, and then
|
58 |
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
59 |
|
|
|
60 |
|
|
For us, the frame address is its stack pointer value, so we look up
|
61 |
|
|
the function prologue to determine the caller's sp value, and return it. */
|
62 |
|
|
|
63 |
|
|
CORE_ADDR
|
64 |
|
|
frame_chain (struct frame_info *thisframe)
|
65 |
|
|
{
|
66 |
|
|
|
67 |
|
|
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
|
68 |
|
|
/* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
|
69 |
|
|
the ADDRESS, of SP_REGNUM. It also depends on the cache of
|
70 |
|
|
frame_find_saved_regs results. */
|
71 |
|
|
if (thisframe->fsr->regs[SP_REGNUM])
|
72 |
|
|
return thisframe->fsr->regs[SP_REGNUM];
|
73 |
|
|
else
|
74 |
|
|
return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
|
75 |
|
|
}
|
76 |
|
|
|
77 |
|
|
int
|
78 |
|
|
frameless_function_invocation (struct frame_info *frame)
|
79 |
|
|
{
|
80 |
|
|
|
81 |
|
|
frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
|
82 |
|
|
/* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
|
83 |
|
|
the ADDRESS, of SP_REGNUM. It also depends on the cache of
|
84 |
|
|
frame_find_saved_regs results. */
|
85 |
|
|
if (frame->fsr->regs[SP_REGNUM])
|
86 |
|
|
return 0; /* Frameful -- return addr saved somewhere */
|
87 |
|
|
else
|
88 |
|
|
return 1; /* Frameless -- no saved return address */
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
void
|
92 |
|
|
init_extra_frame_info (int fromleaf, struct frame_info *frame)
|
93 |
|
|
{
|
94 |
|
|
frame->fsr = 0; /* Not yet allocated */
|
95 |
|
|
frame->args_pointer = 0; /* Unknown */
|
96 |
|
|
frame->locals_pointer = 0; /* Unknown */
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
/* Examine an m88k function prologue, recording the addresses at which
|
100 |
|
|
registers are saved explicitly by the prologue code, and returning
|
101 |
|
|
the address of the first instruction after the prologue (but not
|
102 |
|
|
after the instruction at address LIMIT, as explained below).
|
103 |
|
|
|
104 |
|
|
LIMIT places an upper bound on addresses of the instructions to be
|
105 |
|
|
examined. If the prologue code scan reaches LIMIT, the scan is
|
106 |
|
|
aborted and LIMIT is returned. This is used, when examining the
|
107 |
|
|
prologue for the current frame, to keep examine_prologue () from
|
108 |
|
|
claiming that a given register has been saved when in fact the
|
109 |
|
|
instruction that saves it has not yet been executed. LIMIT is used
|
110 |
|
|
at other times to stop the scan when we hit code after the true
|
111 |
|
|
function prologue (e.g. for the first source line) which might
|
112 |
|
|
otherwise be mistaken for function prologue.
|
113 |
|
|
|
114 |
|
|
The format of the function prologue matched by this routine is
|
115 |
|
|
derived from examination of the source to gcc 1.95, particularly
|
116 |
|
|
the routine output_prologue () in config/out-m88k.c.
|
117 |
|
|
|
118 |
|
|
subu r31,r31,n # stack pointer update
|
119 |
|
|
|
120 |
|
|
(st rn,r31,offset)? # save incoming regs
|
121 |
|
|
(st.d rn,r31,offset)?
|
122 |
|
|
|
123 |
|
|
(addu r30,r31,n)? # frame pointer update
|
124 |
|
|
|
125 |
|
|
(pic sequence)? # PIC code prologue
|
126 |
|
|
|
127 |
|
|
(or rn,rm,0)? # Move parameters to other regs
|
128 |
|
|
*/
|
129 |
|
|
|
130 |
|
|
/* Macros for extracting fields from instructions. */
|
131 |
|
|
|
132 |
|
|
#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
|
133 |
|
|
#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
|
134 |
|
|
#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
|
135 |
|
|
#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
|
136 |
|
|
#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
|
137 |
|
|
#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
|
138 |
|
|
|
139 |
|
|
/*
|
140 |
|
|
* prologue_insn_tbl is a table of instructions which may comprise a
|
141 |
|
|
* function prologue. Associated with each table entry (corresponding
|
142 |
|
|
* to a single instruction or group of instructions), is an action.
|
143 |
|
|
* This action is used by examine_prologue (below) to determine
|
144 |
|
|
* the state of certain machine registers and where the stack frame lives.
|
145 |
|
|
*/
|
146 |
|
|
|
147 |
|
|
enum prologue_insn_action
|
148 |
|
|
{
|
149 |
|
|
PIA_SKIP, /* don't care what the instruction does */
|
150 |
|
|
PIA_NOTE_ST, /* note register stored and where */
|
151 |
|
|
PIA_NOTE_STD, /* note pair of registers stored and where */
|
152 |
|
|
PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
|
153 |
|
|
PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
|
154 |
|
|
PIA_NOTE_PROLOGUE_END, /* no more prologue */
|
155 |
|
|
};
|
156 |
|
|
|
157 |
|
|
struct prologue_insns
|
158 |
|
|
{
|
159 |
|
|
unsigned long insn;
|
160 |
|
|
unsigned long mask;
|
161 |
|
|
enum prologue_insn_action action;
|
162 |
|
|
};
|
163 |
|
|
|
164 |
|
|
struct prologue_insns prologue_insn_tbl[] =
|
165 |
|
|
{
|
166 |
|
|
/* Various register move instructions */
|
167 |
|
|
{0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */
|
168 |
|
|
{0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */
|
169 |
|
|
{0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */
|
170 |
|
|
|
171 |
|
|
/* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
|
172 |
|
|
{0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
|
173 |
|
|
|
174 |
|
|
/* Frame pointer assignment: "addu r30, r31, n" */
|
175 |
|
|
{0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
|
176 |
|
|
|
177 |
|
|
/* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
|
178 |
|
|
{0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */
|
179 |
|
|
{0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */
|
180 |
|
|
|
181 |
|
|
/* Instructions needed for setting up r25 for pic code. */
|
182 |
|
|
{0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */
|
183 |
|
|
{0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */
|
184 |
|
|
{0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */
|
185 |
|
|
{0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */
|
186 |
|
|
|
187 |
|
|
/* Various branch or jump instructions which have a delay slot -- these
|
188 |
|
|
do not form part of the prologue, but the instruction in the delay
|
189 |
|
|
slot might be a store instruction which should be noted. */
|
190 |
|
|
{0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
|
191 |
|
|
/* br.n, bsr.n, bb0.n, or bb1.n */
|
192 |
|
|
{0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */
|
193 |
|
|
{0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */
|
194 |
|
|
|
195 |
|
|
};
|
196 |
|
|
|
197 |
|
|
|
198 |
|
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
199 |
|
|
is not the address of a valid instruction, the address of the next
|
200 |
|
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
201 |
|
|
of the instruction. */
|
202 |
|
|
|
203 |
|
|
#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
|
204 |
|
|
(((addr) < (lim)) ? next_insn (addr, pword1) : 0)
|
205 |
|
|
|
206 |
|
|
/* Read the m88k instruction at 'memaddr' and return the address of
|
207 |
|
|
the next instruction after that, or 0 if 'memaddr' is not the
|
208 |
|
|
address of a valid instruction. The instruction
|
209 |
|
|
is stored at 'pword1'. */
|
210 |
|
|
|
211 |
|
|
CORE_ADDR
|
212 |
|
|
next_insn (CORE_ADDR memaddr, unsigned long *pword1)
|
213 |
|
|
{
|
214 |
|
|
*pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
|
215 |
|
|
return memaddr + BYTES_PER_88K_INSN;
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
/* Read a register from frames called by us (or from the hardware regs). */
|
219 |
|
|
|
220 |
|
|
static int
|
221 |
|
|
read_next_frame_reg (struct frame_info *frame, int regno)
|
222 |
|
|
{
|
223 |
|
|
for (; frame; frame = frame->next)
|
224 |
|
|
{
|
225 |
|
|
if (regno == SP_REGNUM)
|
226 |
|
|
return FRAME_FP (frame);
|
227 |
|
|
else if (frame->fsr->regs[regno])
|
228 |
|
|
return read_memory_integer (frame->fsr->regs[regno], 4);
|
229 |
|
|
}
|
230 |
|
|
return read_register (regno);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Examine the prologue of a function. `ip' points to the first instruction.
|
234 |
|
|
`limit' is the limit of the prologue (e.g. the addr of the first
|
235 |
|
|
linenumber, or perhaps the program counter if we're stepping through).
|
236 |
|
|
`frame_sp' is the stack pointer value in use in this frame.
|
237 |
|
|
`fsr' is a pointer to a frame_saved_regs structure into which we put
|
238 |
|
|
info about the registers saved by this frame.
|
239 |
|
|
`fi' is a struct frame_info pointer; we fill in various fields in it
|
240 |
|
|
to reflect the offsets of the arg pointer and the locals pointer. */
|
241 |
|
|
|
242 |
|
|
static CORE_ADDR
|
243 |
|
|
examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
|
244 |
|
|
CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
|
245 |
|
|
struct frame_info *fi)
|
246 |
|
|
{
|
247 |
|
|
register CORE_ADDR next_ip;
|
248 |
|
|
register int src;
|
249 |
|
|
unsigned long insn;
|
250 |
|
|
int size, offset;
|
251 |
|
|
char must_adjust[32]; /* If set, must adjust offsets in fsr */
|
252 |
|
|
int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
|
253 |
|
|
int fp_offset = -1; /* -1 means not set */
|
254 |
|
|
CORE_ADDR frame_fp;
|
255 |
|
|
CORE_ADDR prologue_end = 0;
|
256 |
|
|
|
257 |
|
|
memset (must_adjust, '\0', sizeof (must_adjust));
|
258 |
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
259 |
|
|
|
260 |
|
|
while (next_ip)
|
261 |
|
|
{
|
262 |
|
|
struct prologue_insns *pip;
|
263 |
|
|
|
264 |
|
|
for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
|
265 |
|
|
if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
|
266 |
|
|
goto end_of_prologue_found; /* not a prologue insn */
|
267 |
|
|
|
268 |
|
|
switch (pip->action)
|
269 |
|
|
{
|
270 |
|
|
case PIA_NOTE_ST:
|
271 |
|
|
case PIA_NOTE_STD:
|
272 |
|
|
if (sp_offset != -1)
|
273 |
|
|
{
|
274 |
|
|
src = ST_SRC (insn);
|
275 |
|
|
offset = ST_OFFSET (insn);
|
276 |
|
|
must_adjust[src] = 1;
|
277 |
|
|
fsr->regs[src++] = offset; /* Will be adjusted later */
|
278 |
|
|
if (pip->action == PIA_NOTE_STD && src < 32)
|
279 |
|
|
{
|
280 |
|
|
offset += 4;
|
281 |
|
|
must_adjust[src] = 1;
|
282 |
|
|
fsr->regs[src++] = offset;
|
283 |
|
|
}
|
284 |
|
|
}
|
285 |
|
|
else
|
286 |
|
|
goto end_of_prologue_found;
|
287 |
|
|
break;
|
288 |
|
|
case PIA_NOTE_SP_ADJUSTMENT:
|
289 |
|
|
if (sp_offset == -1)
|
290 |
|
|
sp_offset = -SUBU_OFFSET (insn);
|
291 |
|
|
else
|
292 |
|
|
goto end_of_prologue_found;
|
293 |
|
|
break;
|
294 |
|
|
case PIA_NOTE_FP_ASSIGNMENT:
|
295 |
|
|
if (fp_offset == -1)
|
296 |
|
|
fp_offset = ADDU_OFFSET (insn);
|
297 |
|
|
else
|
298 |
|
|
goto end_of_prologue_found;
|
299 |
|
|
break;
|
300 |
|
|
case PIA_NOTE_PROLOGUE_END:
|
301 |
|
|
if (!prologue_end)
|
302 |
|
|
prologue_end = ip;
|
303 |
|
|
break;
|
304 |
|
|
case PIA_SKIP:
|
305 |
|
|
default:
|
306 |
|
|
/* Do nothing */
|
307 |
|
|
break;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
ip = next_ip;
|
311 |
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
end_of_prologue_found:
|
315 |
|
|
|
316 |
|
|
if (prologue_end)
|
317 |
|
|
ip = prologue_end;
|
318 |
|
|
|
319 |
|
|
/* We're done with the prologue. If we don't care about the stack
|
320 |
|
|
frame itself, just return. (Note that fsr->regs has been trashed,
|
321 |
|
|
but the one caller who calls with fi==0 passes a dummy there.) */
|
322 |
|
|
|
323 |
|
|
if (fi == 0)
|
324 |
|
|
return ip;
|
325 |
|
|
|
326 |
|
|
/*
|
327 |
|
|
OK, now we have:
|
328 |
|
|
|
329 |
|
|
sp_offset original (before any alloca calls) displacement of SP
|
330 |
|
|
(will be negative).
|
331 |
|
|
|
332 |
|
|
fp_offset displacement from original SP to the FP for this frame
|
333 |
|
|
or -1.
|
334 |
|
|
|
335 |
|
|
fsr->regs[0..31] displacement from original SP to the stack
|
336 |
|
|
location where reg[0..31] is stored.
|
337 |
|
|
|
338 |
|
|
must_adjust[0..31] set if corresponding offset was set.
|
339 |
|
|
|
340 |
|
|
If alloca has been called between the function prologue and the current
|
341 |
|
|
IP, then the current SP (frame_sp) will not be the original SP as set by
|
342 |
|
|
the function prologue. If the current SP is not the original SP, then the
|
343 |
|
|
compiler will have allocated an FP for this frame, fp_offset will be set,
|
344 |
|
|
and we can use it to calculate the original SP.
|
345 |
|
|
|
346 |
|
|
Then, we figure out where the arguments and locals are, and relocate the
|
347 |
|
|
offsets in fsr->regs to absolute addresses. */
|
348 |
|
|
|
349 |
|
|
if (fp_offset != -1)
|
350 |
|
|
{
|
351 |
|
|
/* We have a frame pointer, so get it, and base our calc's on it. */
|
352 |
|
|
frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
|
353 |
|
|
frame_sp = frame_fp - fp_offset;
|
354 |
|
|
}
|
355 |
|
|
else
|
356 |
|
|
{
|
357 |
|
|
/* We have no frame pointer, therefore frame_sp is still the same value
|
358 |
|
|
as set by prologue. But where is the frame itself? */
|
359 |
|
|
if (must_adjust[SRP_REGNUM])
|
360 |
|
|
{
|
361 |
|
|
/* Function header saved SRP (r1), the return address. Frame starts
|
362 |
|
|
4 bytes down from where it was saved. */
|
363 |
|
|
frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
|
364 |
|
|
fi->locals_pointer = frame_fp;
|
365 |
|
|
}
|
366 |
|
|
else
|
367 |
|
|
{
|
368 |
|
|
/* Function header didn't save SRP (r1), so we are in a leaf fn or
|
369 |
|
|
are otherwise confused. */
|
370 |
|
|
frame_fp = -1;
|
371 |
|
|
}
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/* The locals are relative to the FP (whether it exists as an allocated
|
375 |
|
|
register, or just as an assumed offset from the SP) */
|
376 |
|
|
fi->locals_pointer = frame_fp;
|
377 |
|
|
|
378 |
|
|
/* The arguments are just above the SP as it was before we adjusted it
|
379 |
|
|
on entry. */
|
380 |
|
|
fi->args_pointer = frame_sp - sp_offset;
|
381 |
|
|
|
382 |
|
|
/* Now that we know the SP value used by the prologue, we know where
|
383 |
|
|
it saved all the registers. */
|
384 |
|
|
for (src = 0; src < 32; src++)
|
385 |
|
|
if (must_adjust[src])
|
386 |
|
|
fsr->regs[src] += frame_sp;
|
387 |
|
|
|
388 |
|
|
/* The saved value of the SP is always known. */
|
389 |
|
|
/* (we hope...) */
|
390 |
|
|
if (fsr->regs[SP_REGNUM] != 0
|
391 |
|
|
&& fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
|
392 |
|
|
fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
|
393 |
|
|
fsr->regs[SP_REGNUM],
|
394 |
|
|
frame_sp - sp_offset, sp_offset);
|
395 |
|
|
|
396 |
|
|
fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
|
397 |
|
|
|
398 |
|
|
return (ip);
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/* Given an ip value corresponding to the start of a function,
|
402 |
|
|
return the ip of the first instruction after the function
|
403 |
|
|
prologue. */
|
404 |
|
|
|
405 |
|
|
CORE_ADDR
|
406 |
|
|
m88k_skip_prologue (CORE_ADDR ip)
|
407 |
|
|
{
|
408 |
|
|
struct frame_saved_regs saved_regs_dummy;
|
409 |
|
|
struct symtab_and_line sal;
|
410 |
|
|
CORE_ADDR limit;
|
411 |
|
|
|
412 |
|
|
sal = find_pc_line (ip, 0);
|
413 |
|
|
limit = (sal.end) ? sal.end : 0xffffffff;
|
414 |
|
|
|
415 |
|
|
return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
|
416 |
|
|
(struct frame_info *) 0));
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
420 |
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
421 |
|
|
This includes special registers such as pc and fp saved in special
|
422 |
|
|
ways in the stack frame. sp is even more special:
|
423 |
|
|
the address we return for it IS the sp for the next frame.
|
424 |
|
|
|
425 |
|
|
We cache the result of doing this in the frame_obstack, since it is
|
426 |
|
|
fairly expensive. */
|
427 |
|
|
|
428 |
|
|
void
|
429 |
|
|
frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
|
430 |
|
|
{
|
431 |
|
|
register struct frame_saved_regs *cache_fsr;
|
432 |
|
|
CORE_ADDR ip;
|
433 |
|
|
struct symtab_and_line sal;
|
434 |
|
|
CORE_ADDR limit;
|
435 |
|
|
|
436 |
|
|
if (!fi->fsr)
|
437 |
|
|
{
|
438 |
|
|
cache_fsr = (struct frame_saved_regs *)
|
439 |
|
|
frame_obstack_alloc (sizeof (struct frame_saved_regs));
|
440 |
|
|
memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
|
441 |
|
|
fi->fsr = cache_fsr;
|
442 |
|
|
|
443 |
|
|
/* Find the start and end of the function prologue. If the PC
|
444 |
|
|
is in the function prologue, we only consider the part that
|
445 |
|
|
has executed already. In the case where the PC is not in
|
446 |
|
|
the function prologue, we set limit to two instructions beyond
|
447 |
|
|
where the prologue ends in case if any of the prologue instructions
|
448 |
|
|
were moved into a delay slot of a branch instruction. */
|
449 |
|
|
|
450 |
|
|
ip = get_pc_function_start (fi->pc);
|
451 |
|
|
sal = find_pc_line (ip, 0);
|
452 |
|
|
limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
|
453 |
|
|
: fi->pc;
|
454 |
|
|
|
455 |
|
|
/* This will fill in fields in *fi as well as in cache_fsr. */
|
456 |
|
|
#ifdef SIGTRAMP_FRAME_FIXUP
|
457 |
|
|
if (fi->signal_handler_caller)
|
458 |
|
|
SIGTRAMP_FRAME_FIXUP (fi->frame);
|
459 |
|
|
#endif
|
460 |
|
|
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
|
461 |
|
|
#ifdef SIGTRAMP_SP_FIXUP
|
462 |
|
|
if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
|
463 |
|
|
SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
|
464 |
|
|
#endif
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
if (fsr)
|
468 |
|
|
*fsr = *fi->fsr;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Return the address of the locals block for the frame
|
472 |
|
|
described by FI. Returns 0 if the address is unknown.
|
473 |
|
|
NOTE! Frame locals are referred to by negative offsets from the
|
474 |
|
|
argument pointer, so this is the same as frame_args_address(). */
|
475 |
|
|
|
476 |
|
|
CORE_ADDR
|
477 |
|
|
frame_locals_address (struct frame_info *fi)
|
478 |
|
|
{
|
479 |
|
|
struct frame_saved_regs fsr;
|
480 |
|
|
|
481 |
|
|
if (fi->args_pointer) /* Cached value is likely there. */
|
482 |
|
|
return fi->args_pointer;
|
483 |
|
|
|
484 |
|
|
/* Nope, generate it. */
|
485 |
|
|
|
486 |
|
|
get_frame_saved_regs (fi, &fsr);
|
487 |
|
|
|
488 |
|
|
return fi->args_pointer;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/* Return the address of the argument block for the frame
|
492 |
|
|
described by FI. Returns 0 if the address is unknown. */
|
493 |
|
|
|
494 |
|
|
CORE_ADDR
|
495 |
|
|
frame_args_address (struct frame_info *fi)
|
496 |
|
|
{
|
497 |
|
|
struct frame_saved_regs fsr;
|
498 |
|
|
|
499 |
|
|
if (fi->args_pointer) /* Cached value is likely there. */
|
500 |
|
|
return fi->args_pointer;
|
501 |
|
|
|
502 |
|
|
/* Nope, generate it. */
|
503 |
|
|
|
504 |
|
|
get_frame_saved_regs (fi, &fsr);
|
505 |
|
|
|
506 |
|
|
return fi->args_pointer;
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* Return the saved PC from this frame.
|
510 |
|
|
|
511 |
|
|
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
512 |
|
|
just use the register SRP_REGNUM itself. */
|
513 |
|
|
|
514 |
|
|
CORE_ADDR
|
515 |
|
|
frame_saved_pc (struct frame_info *frame)
|
516 |
|
|
{
|
517 |
|
|
return read_next_frame_reg (frame, SRP_REGNUM);
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
|
521 |
|
|
#define DUMMY_FRAME_SIZE 192
|
522 |
|
|
|
523 |
|
|
static void
|
524 |
|
|
write_word (CORE_ADDR sp, ULONGEST word)
|
525 |
|
|
{
|
526 |
|
|
register int len = REGISTER_SIZE;
|
527 |
|
|
char buffer[MAX_REGISTER_RAW_SIZE];
|
528 |
|
|
|
529 |
|
|
store_unsigned_integer (buffer, len, word);
|
530 |
|
|
write_memory (sp, buffer, len);
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
void
|
534 |
|
|
m88k_push_dummy_frame (void)
|
535 |
|
|
{
|
536 |
|
|
register CORE_ADDR sp = read_register (SP_REGNUM);
|
537 |
|
|
register int rn;
|
538 |
|
|
int offset;
|
539 |
|
|
|
540 |
|
|
sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
|
541 |
|
|
|
542 |
|
|
for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
|
543 |
|
|
write_word (sp + offset, read_register (rn));
|
544 |
|
|
|
545 |
|
|
write_word (sp + offset, read_register (SXIP_REGNUM));
|
546 |
|
|
offset += 4;
|
547 |
|
|
|
548 |
|
|
write_word (sp + offset, read_register (SNIP_REGNUM));
|
549 |
|
|
offset += 4;
|
550 |
|
|
|
551 |
|
|
write_word (sp + offset, read_register (SFIP_REGNUM));
|
552 |
|
|
offset += 4;
|
553 |
|
|
|
554 |
|
|
write_word (sp + offset, read_register (PSR_REGNUM));
|
555 |
|
|
offset += 4;
|
556 |
|
|
|
557 |
|
|
write_word (sp + offset, read_register (FPSR_REGNUM));
|
558 |
|
|
offset += 4;
|
559 |
|
|
|
560 |
|
|
write_word (sp + offset, read_register (FPCR_REGNUM));
|
561 |
|
|
offset += 4;
|
562 |
|
|
|
563 |
|
|
write_register (SP_REGNUM, sp);
|
564 |
|
|
write_register (ACTUAL_FP_REGNUM, sp);
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
void
|
568 |
|
|
pop_frame (void)
|
569 |
|
|
{
|
570 |
|
|
register struct frame_info *frame = get_current_frame ();
|
571 |
|
|
register int regnum;
|
572 |
|
|
struct frame_saved_regs fsr;
|
573 |
|
|
|
574 |
|
|
get_frame_saved_regs (frame, &fsr);
|
575 |
|
|
|
576 |
|
|
if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
|
577 |
|
|
{
|
578 |
|
|
/* FIXME: I think get_frame_saved_regs should be handling this so
|
579 |
|
|
that we can deal with the saved registers properly (e.g. frame
|
580 |
|
|
1 is a call dummy, the user types "frame 2" and then "print $ps"). */
|
581 |
|
|
register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
|
582 |
|
|
int offset;
|
583 |
|
|
|
584 |
|
|
for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
|
585 |
|
|
(void) write_register (regnum, read_memory_integer (sp + offset, 4));
|
586 |
|
|
|
587 |
|
|
write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
|
588 |
|
|
offset += 4;
|
589 |
|
|
|
590 |
|
|
write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
|
591 |
|
|
offset += 4;
|
592 |
|
|
|
593 |
|
|
write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
|
594 |
|
|
offset += 4;
|
595 |
|
|
|
596 |
|
|
write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
|
597 |
|
|
offset += 4;
|
598 |
|
|
|
599 |
|
|
write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
|
600 |
|
|
offset += 4;
|
601 |
|
|
|
602 |
|
|
write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
|
603 |
|
|
offset += 4;
|
604 |
|
|
|
605 |
|
|
}
|
606 |
|
|
else
|
607 |
|
|
{
|
608 |
|
|
for (regnum = FP_REGNUM; regnum > 0; regnum--)
|
609 |
|
|
if (fsr.regs[regnum])
|
610 |
|
|
write_register (regnum,
|
611 |
|
|
read_memory_integer (fsr.regs[regnum], 4));
|
612 |
|
|
write_pc (frame_saved_pc (frame));
|
613 |
|
|
}
|
614 |
|
|
reinit_frame_cache ();
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
void
|
618 |
|
|
_initialize_m88k_tdep (void)
|
619 |
|
|
{
|
620 |
|
|
tm_print_insn = print_insn_m88k;
|
621 |
|
|
}
|