OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [mcore-tdep.c] - Blame information for rev 1771

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Target-machine dependent code for Motorola MCore for GDB, the GNU debugger
2
   Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
 
4
   This file is part of GDB.
5
 
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 2 of the License, or
9
   (at your option) any later version.
10
 
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19
 
20
#include "defs.h"
21
#include "frame.h"
22
#include "symtab.h"
23
#include "value.h"
24
#include "gdbcmd.h"
25
#include "regcache.h"
26
#include "symfile.h"
27
#include "gdbcore.h"
28
#include "inferior.h"
29
 
30
/* Functions declared and used only in this file */
31
 
32
static CORE_ADDR mcore_analyze_prologue (struct frame_info *fi, CORE_ADDR pc, int skip_prologue);
33
 
34
static struct frame_info *analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame);
35
 
36
static int get_insn (CORE_ADDR pc);
37
 
38
/* Functions exported from this file */
39
 
40
int mcore_use_struct_convention (int gcc_p, struct type *type);
41
 
42
void _initialize_mcore (void);
43
 
44
void mcore_init_extra_frame_info (struct frame_info *fi);
45
 
46
CORE_ADDR mcore_frame_saved_pc (struct frame_info *fi);
47
 
48
CORE_ADDR mcore_find_callers_reg (struct frame_info *fi, int regnum);
49
 
50
CORE_ADDR mcore_frame_args_address (struct frame_info *fi);
51
 
52
CORE_ADDR mcore_frame_locals_address (struct frame_info *fi);
53
 
54
void mcore_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset);
55
 
56
CORE_ADDR mcore_push_return_address (CORE_ADDR pc, CORE_ADDR sp);
57
 
58
CORE_ADDR mcore_push_arguments (int nargs, value_ptr * args, CORE_ADDR sp,
59
                        unsigned char struct_return, CORE_ADDR struct_addr);
60
 
61
void mcore_pop_frame (struct frame_info *fi);
62
 
63
CORE_ADDR mcore_skip_prologue (CORE_ADDR pc);
64
 
65
CORE_ADDR mcore_frame_chain (struct frame_info *fi);
66
 
67
unsigned char *mcore_breakpoint_from_pc (CORE_ADDR * bp_addr, int *bp_size);
68
 
69
int mcore_use_struct_convention (int gcc_p, struct type *type);
70
 
71
void mcore_store_return_value (struct type *type, char *valbuf);
72
 
73
CORE_ADDR mcore_extract_struct_value_address (char *regbuf);
74
 
75
void mcore_extract_return_value (struct type *type, char *regbuf, char *valbuf);
76
 
77
#ifdef MCORE_DEBUG
78
int mcore_debug = 0;
79
#endif
80
 
81
/* The registers of the Motorola MCore processors */
82
/* *INDENT-OFF* */
83
char *mcore_register_names[] =
84
{ "r0",   "r1",  "r2",    "r3",   "r4",   "r5",   "r6",   "r7",
85
  "r8",   "r9",  "r10",   "r11",  "r12",  "r13",  "r14",  "r15",
86
  "ar0",  "ar1", "ar2",   "ar3",  "ar4",  "ar5",  "ar6",  "ar7",
87
  "ar8",  "ar9", "ar10", "ar11",  "ar12", "ar13", "ar14", "ar15",
88
  "psr",  "vbr", "epsr",  "fpsr", "epc",  "fpc",  "ss0",  "ss1",
89
  "ss2",  "ss3", "ss4",   "gcr",  "gsr",  "cr13", "cr14", "cr15",
90
  "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", "cr22", "cr23",
91
  "cr24", "cr25", "cr26", "cr27", "cr28", "cr29", "cr30", "cr31",
92
  "pc" };
93
/* *INDENT-ON* */
94
 
95
 
96
 
97
/* Additional info that we use for managing frames */
98
struct frame_extra_info
99
  {
100
    /* A generic status word */
101
    int status;
102
 
103
    /* Size of this frame */
104
    int framesize;
105
 
106
    /* The register that is acting as a frame pointer, if
107
       it is being used.  This is undefined if status
108
       does not contain the flag MY_FRAME_IN_FP. */
109
    int fp_regnum;
110
  };
111
 
112
/* frame_extra_info status flags */
113
 
114
/* The base of the current frame is actually in the stack pointer.
115
   This happens when there is no frame pointer (MCore ABI does not
116
   require a frame pointer) or when we're stopped in the prologue or
117
   epilogue itself.  In these cases, mcore_analyze_prologue will need
118
   to update fi->frame before returning or analyzing the register
119
   save instructions. */
120
#define MY_FRAME_IN_SP 0x1
121
 
122
/* The base of the current frame is in a frame pointer register.
123
   This register is noted in frame_extra_info->fp_regnum.
124
 
125
   Note that the existence of an FP might also indicate that the
126
   function has called alloca. */
127
#define MY_FRAME_IN_FP 0x2
128
 
129
/* This flag is set to indicate that this frame is the top-most
130
   frame. This tells frame chain not to bother trying to unwind
131
   beyond this frame. */
132
#define NO_MORE_FRAMES 0x4
133
 
134
/* Instruction macros used for analyzing the prologue */
135
#define IS_SUBI0(x)   (((x) & 0xfe0f) == 0x2400)        /* subi r0,oimm5    */
136
#define IS_STM(x)     (((x) & 0xfff0) == 0x0070)        /* stm rf-r15,r0    */
137
#define IS_STWx0(x)   (((x) & 0xf00f) == 0x9000)        /* stw rz,(r0,disp) */
138
#define IS_STWxy(x)   (((x) & 0xf000) == 0x9000)        /* stw rx,(ry,disp) */
139
#define IS_MOVx0(x)   (((x) & 0xfff0) == 0x1200)        /* mov rn,r0        */
140
#define IS_LRW1(x)    (((x) & 0xff00) == 0x7100)        /* lrw r1,literal   */
141
#define IS_MOVI1(x)   (((x) & 0xf80f) == 0x6001)        /* movi r1,imm7     */
142
#define IS_BGENI1(x)  (((x) & 0xfe0f) == 0x3201)        /* bgeni r1,imm5    */
143
#define IS_BMASKI1(x) (((x) & 0xfe0f) == 0x2C01)        /* bmaski r1,imm5   */
144
#define IS_ADDI1(x)   (((x) & 0xfe0f) == 0x2001)        /* addi r1,oimm5    */
145
#define IS_SUBI1(x)   (((x) & 0xfe0f) == 0x2401)        /* subi r1,oimm5    */
146
#define IS_RSUBI1(x)  (((x) & 0xfe0f) == 0x2801)        /* rsubi r1,imm5    */
147
#define IS_NOT1(x)    (((x) & 0xffff) == 0x01f1)        /* not r1           */
148
#define IS_ROTLI1(x)  (((x) & 0xfe0f) == 0x3801)        /* rotli r1,imm5    */
149
#define IS_BSETI1(x)  (((x) & 0xfe0f) == 0x3401)        /* bseti r1,imm5    */
150
#define IS_BCLRI1(x)  (((x) & 0xfe0f) == 0x3001)        /* bclri r1,imm5    */
151
#define IS_IXH1(x)    (((x) & 0xffff) == 0x1d11)        /* ixh r1,r1        */
152
#define IS_IXW1(x)    (((x) & 0xffff) == 0x1511)        /* ixw r1,r1        */
153
#define IS_SUB01(x)   (((x) & 0xffff) == 0x0510)        /* subu r0,r1       */
154
#define IS_RTS(x)     (((x) & 0xffff) == 0x00cf)        /* jmp r15          */
155
 
156
#define IS_R1_ADJUSTER(x) \
157
    (IS_ADDI1(x) || IS_SUBI1(x) || IS_ROTLI1(x) || IS_BSETI1(x) \
158
     || IS_BCLRI1(x) || IS_RSUBI1(x) || IS_NOT1(x) \
159
     || IS_IXH1(x) || IS_IXW1(x))
160
 
161
 
162
#ifdef MCORE_DEBUG
163
static void
164
mcore_dump_insn (char *commnt, CORE_ADDR pc, int insn)
165
{
166
  if (mcore_debug)
167
    {
168
      printf_filtered ("MCORE:  %s %08x %08x ",
169
                       commnt, (unsigned int) pc, (unsigned int) insn);
170
      (*tm_print_insn) (pc, &tm_print_insn_info);
171
      printf_filtered ("\n");
172
    }
173
}
174
#define mcore_insn_debug(args) { if (mcore_debug) printf_filtered args; }
175
#else /* !MCORE_DEBUG */
176
#define mcore_dump_insn(a,b,c) {}
177
#define mcore_insn_debug(args) {}
178
#endif
179
 
180
/* Given the address at which to insert a breakpoint (BP_ADDR),
181
   what will that breakpoint be?
182
 
183
   For MCore, we have a breakpoint instruction. Since all MCore
184
   instructions are 16 bits, this is all we need, regardless of
185
   address. bpkt = 0x0000 */
186
 
187
unsigned char *
188
mcore_breakpoint_from_pc (CORE_ADDR * bp_addr, int *bp_size)
189
{
190
  static char breakpoint[] =
191
  {0x00, 0x00};
192
  *bp_size = 2;
193
  return breakpoint;
194
}
195
 
196
/* Helper function for several routines below.  This funtion simply
197
   sets up a fake, aka dummy, frame (not a _call_ dummy frame) that
198
   we can analyze with mcore_analyze_prologue. */
199
 
200
static struct frame_info *
201
analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
202
{
203
  static struct frame_info *dummy = NULL;
204
 
205
  if (dummy == NULL)
206
    {
207
      dummy = (struct frame_info *) xmalloc (sizeof (struct frame_info));
208
      dummy->saved_regs = (CORE_ADDR *) xmalloc (SIZEOF_FRAME_SAVED_REGS);
209
      dummy->extra_info =
210
        (struct frame_extra_info *) xmalloc (sizeof (struct frame_extra_info));
211
    }
212
 
213
  dummy->next = NULL;
214
  dummy->prev = NULL;
215
  dummy->pc = pc;
216
  dummy->frame = frame;
217
  dummy->extra_info->status = 0;
218
  dummy->extra_info->framesize = 0;
219
  memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
220
  mcore_analyze_prologue (dummy, 0, 0);
221
  return dummy;
222
}
223
 
224
/* Function prologues on the Motorola MCore processors consist of:
225
 
226
   - adjustments to the stack pointer (r1 used as scratch register)
227
   - store word/multiples that use r0 as the base address
228
   - making a copy of r0 into another register (a "frame" pointer)
229
 
230
   Note that the MCore really doesn't have a real frame pointer.
231
   Instead, the compiler may copy the SP into a register (usually
232
   r8) to act as an arg pointer.  For our target-dependent purposes,
233
   the frame info's "frame" member will be the beginning of the
234
   frame. The SP could, in fact, point below this.
235
 
236
   The prologue ends when an instruction fails to meet either of
237
   the first two criteria or when an FP is made.  We make a special
238
   exception for gcc. When compiling unoptimized code, gcc will
239
   setup stack slots. We need to make sure that we skip the filling
240
   of these stack slots as much as possible. This is only done
241
   when SKIP_PROLOGUE is set, so that it does not mess up
242
   backtraces. */
243
 
244
/* Analyze the prologue of frame FI to determine where registers are saved,
245
   the end of the prologue, etc. Return the address of the first line
246
   of "real" code (i.e., the end of the prologue). */
247
 
248
static CORE_ADDR
249
mcore_analyze_prologue (struct frame_info *fi, CORE_ADDR pc, int skip_prologue)
250
{
251
  CORE_ADDR func_addr, func_end, addr, stop;
252
  CORE_ADDR stack_size;
253
  int insn, rn;
254
  int status;
255
  int fp_regnum = 0; /* dummy, valid when (flags & MY_FRAME_IN_FP) */
256
  int flags;
257
  int framesize;
258
  int register_offsets[NUM_REGS];
259
  char *name;
260
 
261
  /* If provided, use the PC in the frame to look up the
262
     start of this function. */
263
  pc = (fi == NULL ? pc : fi->pc);
264
 
265
  /* Find the start of this function. */
266
  status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
267
 
268
  /* If the start of this function could not be found or if the debbuger
269
     is stopped at the first instruction of the prologue, do nothing. */
270
  if (status == 0)
271
    return pc;
272
 
273
  /* If the debugger is entry function, give up. */
274
  if (func_addr == entry_point_address ())
275
    {
276
      if (fi != NULL)
277
        fi->extra_info->status |= NO_MORE_FRAMES;
278
      return pc;
279
    }
280
 
281
  /* At the start of a function, our frame is in the stack pointer. */
282
  flags = MY_FRAME_IN_SP;
283
 
284
  /* Start decoding the prologue.  We start by checking two special cases:
285
 
286
     1. We're about to return
287
     2. We're at the first insn of the prologue.
288
 
289
     If we're about to return, our frame has already been deallocated.
290
     If we are stopped at the first instruction of a prologue,
291
     then our frame has not yet been set up. */
292
 
293
  /* Get the first insn from memory (all MCore instructions are 16 bits) */
294
  mcore_insn_debug (("MCORE: starting prologue decoding\n"));
295
  insn = get_insn (pc);
296
  mcore_dump_insn ("got 1: ", pc, insn);
297
 
298
  /* Check for return. */
299
  if (fi != NULL && IS_RTS (insn))
300
    {
301
      mcore_insn_debug (("MCORE: got jmp r15"));
302
      if (fi->next == NULL)
303
        fi->frame = read_sp ();
304
      return fi->pc;
305
    }
306
 
307
  /* Check for first insn of prologue */
308
  if (fi != NULL && fi->pc == func_addr)
309
    {
310
      if (fi->next == NULL)
311
        fi->frame = read_sp ();
312
      return fi->pc;
313
    }
314
 
315
  /* Figure out where to stop scanning */
316
  stop = (fi ? fi->pc : func_end);
317
 
318
  /* Don't walk off the end of the function */
319
  stop = (stop > func_end ? func_end : stop);
320
 
321
  /* REGISTER_OFFSETS will contain offsets, from the top of the frame
322
     (NOT the frame pointer), for the various saved registers or -1
323
     if the register is not saved. */
324
  for (rn = 0; rn < NUM_REGS; rn++)
325
    register_offsets[rn] = -1;
326
 
327
  /* Analyze the prologue. Things we determine from analyzing the
328
     prologue include:
329
     * the size of the frame
330
     * where saved registers are located (and which are saved)
331
     * FP used? */
332
  mcore_insn_debug (("MCORE: Scanning prologue: func_addr=0x%x, stop=0x%x\n",
333
                     (unsigned int) func_addr, (unsigned int) stop));
334
 
335
  framesize = 0;
336
  for (addr = func_addr; addr < stop; addr += 2)
337
    {
338
      /* Get next insn */
339
      insn = get_insn (addr);
340
      mcore_dump_insn ("got 2: ", addr, insn);
341
 
342
      if (IS_SUBI0 (insn))
343
        {
344
          int offset = 1 + ((insn >> 4) & 0x1f);
345
          mcore_insn_debug (("MCORE: got subi r0,%d; continuing\n", offset));
346
          framesize += offset;
347
          continue;
348
        }
349
      else if (IS_STM (insn))
350
        {
351
          /* Spill register(s) */
352
          int offset;
353
          int start_register;
354
 
355
          /* BIG WARNING! The MCore ABI does not restrict functions
356
             to taking only one stack allocation. Therefore, when
357
             we save a register, we record the offset of where it was
358
             saved relative to the current framesize. This will
359
             then give an offset from the SP upon entry to our
360
             function. Remember, framesize is NOT constant until
361
             we're done scanning the prologue. */
362
          start_register = (insn & 0xf);
363
          mcore_insn_debug (("MCORE: got stm r%d-r15,(r0)\n", start_register));
364
 
365
          for (rn = start_register, offset = 0; rn <= 15; rn++, offset += 4)
366
            {
367
              register_offsets[rn] = framesize - offset;
368
              mcore_insn_debug (("MCORE: r%d saved at 0x%x (offset %d)\n", rn,
369
                                 register_offsets[rn], offset));
370
            }
371
          mcore_insn_debug (("MCORE: continuing\n"));
372
          continue;
373
        }
374
      else if (IS_STWx0 (insn))
375
        {
376
          /* Spill register: see note for IS_STM above. */
377
          int imm;
378
 
379
          rn = (insn >> 8) & 0xf;
380
          imm = (insn >> 4) & 0xf;
381
          register_offsets[rn] = framesize - (imm << 2);
382
          mcore_insn_debug (("MCORE: r%d saved at offset 0x%x\n", rn, register_offsets[rn]));
383
          mcore_insn_debug (("MCORE: continuing\n"));
384
          continue;
385
        }
386
      else if (IS_MOVx0 (insn))
387
        {
388
          /* We have a frame pointer, so this prologue is over.  Note
389
             the register which is acting as the frame pointer. */
390
          flags |= MY_FRAME_IN_FP;
391
          flags &= ~MY_FRAME_IN_SP;
392
          fp_regnum = insn & 0xf;
393
          mcore_insn_debug (("MCORE: Found a frame pointer: r%d\n", fp_regnum));
394
 
395
          /* If we found an FP, we're at the end of the prologue. */
396
          mcore_insn_debug (("MCORE: end of prologue\n"));
397
          if (skip_prologue)
398
            continue;
399
 
400
          /* If we're decoding prologue, stop here. */
401
          addr += 2;
402
          break;
403
        }
404
      else if (IS_STWxy (insn) && (flags & MY_FRAME_IN_FP) && ((insn & 0xf) == fp_regnum))
405
        {
406
          /* Special case. Skip over stack slot allocs, too. */
407
          mcore_insn_debug (("MCORE: push arg onto stack.\n"));
408
          continue;
409
        }
410
      else if (IS_LRW1 (insn) || IS_MOVI1 (insn)
411
               || IS_BGENI1 (insn) || IS_BMASKI1 (insn))
412
        {
413
          int adjust = 0;
414
          int offset = 0;
415
          int insn2;
416
 
417
          mcore_insn_debug (("MCORE: looking at large frame\n"));
418
          if (IS_LRW1 (insn))
419
            {
420
              adjust =
421
                read_memory_integer ((addr + 2 + ((insn & 0xff) << 2)) & 0xfffffffc, 4);
422
            }
423
          else if (IS_MOVI1 (insn))
424
            adjust = (insn >> 4) & 0x7f;
425
          else if (IS_BGENI1 (insn))
426
            adjust = 1 << ((insn >> 4) & 0x1f);
427
          else                  /* IS_BMASKI (insn) */
428
            adjust = (1 << (adjust >> 4) & 0x1f) - 1;
429
 
430
          mcore_insn_debug (("MCORE: base framesize=0x%x\n", adjust));
431
 
432
          /* May have zero or more insns which modify r1 */
433
          mcore_insn_debug (("MCORE: looking for r1 adjusters...\n"));
434
          offset = 2;
435
          insn2 = get_insn (addr + offset);
436
          while (IS_R1_ADJUSTER (insn2))
437
            {
438
              int imm;
439
 
440
              imm = (insn2 >> 4) & 0x1f;
441
              mcore_dump_insn ("got 3: ", addr + offset, insn);
442
              if (IS_ADDI1 (insn2))
443
                {
444
                  adjust += (imm + 1);
445
                  mcore_insn_debug (("MCORE: addi r1,%d\n", imm + 1));
446
                }
447
              else if (IS_SUBI1 (insn2))
448
                {
449
                  adjust -= (imm + 1);
450
                  mcore_insn_debug (("MCORE: subi r1,%d\n", imm + 1));
451
                }
452
              else if (IS_RSUBI1 (insn2))
453
                {
454
                  adjust = imm - adjust;
455
                  mcore_insn_debug (("MCORE: rsubi r1,%d\n", imm + 1));
456
                }
457
              else if (IS_NOT1 (insn2))
458
                {
459
                  adjust = ~adjust;
460
                  mcore_insn_debug (("MCORE: not r1\n"));
461
                }
462
              else if (IS_ROTLI1 (insn2))
463
                {
464
                  adjust <<= imm;
465
                  mcore_insn_debug (("MCORE: rotli r1,%d\n", imm + 1));
466
                }
467
              else if (IS_BSETI1 (insn2))
468
                {
469
                  adjust |= (1 << imm);
470
                  mcore_insn_debug (("MCORE: bseti r1,%d\n", imm));
471
                }
472
              else if (IS_BCLRI1 (insn2))
473
                {
474
                  adjust &= ~(1 << imm);
475
                  mcore_insn_debug (("MCORE: bclri r1,%d\n", imm));
476
                }
477
              else if (IS_IXH1 (insn2))
478
                {
479
                  adjust *= 3;
480
                  mcore_insn_debug (("MCORE: ix.h r1,r1\n"));
481
                }
482
              else if (IS_IXW1 (insn2))
483
                {
484
                  adjust *= 5;
485
                  mcore_insn_debug (("MCORE: ix.w r1,r1\n"));
486
                }
487
 
488
              offset += 2;
489
              insn2 = get_insn (addr + offset);
490
            };
491
 
492
          mcore_insn_debug (("MCORE: done looking for r1 adjusters\n"));
493
 
494
          /* If the next insn adjusts the stack pointer, we keep everything;
495
             if not, we scrap it and we've found the end of the prologue. */
496
          if (IS_SUB01 (insn2))
497
            {
498
              addr += offset;
499
              framesize += adjust;
500
              mcore_insn_debug (("MCORE: found stack adjustment of 0x%x bytes.\n", adjust));
501
              mcore_insn_debug (("MCORE: skipping to new address 0x%x\n", addr));
502
              mcore_insn_debug (("MCORE: continuing\n"));
503
              continue;
504
            }
505
 
506
          /* None of these instructions are prologue, so don't touch
507
             anything. */
508
          mcore_insn_debug (("MCORE: no subu r1,r0, NOT altering framesize.\n"));
509
          break;
510
        }
511
 
512
      /* This is not a prologue insn, so stop here. */
513
      mcore_insn_debug (("MCORE: insn is not a prologue insn -- ending scan\n"));
514
      break;
515
    }
516
 
517
  mcore_insn_debug (("MCORE: done analyzing prologue\n"));
518
  mcore_insn_debug (("MCORE: prologue end = 0x%x\n", addr));
519
 
520
  /* Save everything we have learned about this frame into FI. */
521
  if (fi != NULL)
522
    {
523
      fi->extra_info->framesize = framesize;
524
      fi->extra_info->fp_regnum = fp_regnum;
525
      fi->extra_info->status = flags;
526
 
527
      /* Fix the frame pointer. When gcc uses r8 as a frame pointer,
528
         it is really an arg ptr. We adjust fi->frame to be a "real"
529
         frame pointer. */
530
      if (fi->next == NULL)
531
        {
532
          if (fi->extra_info->status & MY_FRAME_IN_SP)
533
            fi->frame = read_sp () + framesize;
534
          else
535
            fi->frame = read_register (fp_regnum) + framesize;
536
        }
537
 
538
      /* Note where saved registers are stored. The offsets in REGISTER_OFFSETS
539
         are computed relative to the top of the frame. */
540
      for (rn = 0; rn < NUM_REGS; rn++)
541
        {
542
          if (register_offsets[rn] >= 0)
543
            {
544
              fi->saved_regs[rn] = fi->frame - register_offsets[rn];
545
              mcore_insn_debug (("Saved register %s stored at 0x%08x, value=0x%08x\n",
546
                               mcore_register_names[rn], fi->saved_regs[rn],
547
                              read_memory_integer (fi->saved_regs[rn], 4)));
548
            }
549
        }
550
    }
551
 
552
  /* Return addr of first non-prologue insn. */
553
  return addr;
554
}
555
 
556
/* Given a GDB frame, determine the address of the calling function's frame.
557
   This will be used to create a new GDB frame struct, and then
558
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. */
559
 
560
CORE_ADDR
561
mcore_frame_chain (struct frame_info * fi)
562
{
563
  struct frame_info *dummy;
564
  CORE_ADDR callers_addr;
565
 
566
  /* Analyze the prologue of this function. */
567
  if (fi->extra_info->status == 0)
568
    mcore_analyze_prologue (fi, 0, 0);
569
 
570
  /* If mcore_analyze_prologue set NO_MORE_FRAMES, quit now. */
571
  if (fi->extra_info->status & NO_MORE_FRAMES)
572
    return 0;
573
 
574
  /* Now that we've analyzed our prologue, we can start to ask
575
     for information about our caller. The easiest way to do
576
     this is to analyze our caller's prologue.
577
 
578
     If our caller has a frame pointer, then we need to find
579
     the value of that register upon entry to our frame.
580
     This value is either in fi->saved_regs[rn] if it's saved,
581
     or it's still in a register.
582
 
583
     If our caller does not have a frame pointer, then his frame base
584
     is <our base> + -<caller's frame size>. */
585
  dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
586
 
587
  if (dummy->extra_info->status & MY_FRAME_IN_FP)
588
    {
589
      int fp = dummy->extra_info->fp_regnum;
590
 
591
      /* Our caller has a frame pointer. */
592
      if (fi->saved_regs[fp] != 0)
593
        {
594
          /* The "FP" was saved on the stack.  Don't forget to adjust
595
             the "FP" with the framesize to get a real FP. */
596
          callers_addr = read_memory_integer (fi->saved_regs[fp], REGISTER_SIZE)
597
            + dummy->extra_info->framesize;
598
        }
599
      else
600
        {
601
          /* It's still in the register.  Don't forget to adjust
602
             the "FP" with the framesize to get a real FP. */
603
          callers_addr = read_register (fp) + dummy->extra_info->framesize;
604
        }
605
    }
606
  else
607
    {
608
      /* Our caller does not have a frame pointer. */
609
      callers_addr = fi->frame + dummy->extra_info->framesize;
610
    }
611
 
612
  return callers_addr;
613
}
614
 
615
/* Skip the prologue of the function at PC. */
616
 
617
CORE_ADDR
618
mcore_skip_prologue (CORE_ADDR pc)
619
{
620
  CORE_ADDR func_addr, func_end;
621
  struct symtab_and_line sal;
622
 
623
  /* If we have line debugging information, then the end of the
624
     prologue should be the first assembly instruction of the first
625
     source line */
626
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
627
    {
628
      sal = find_pc_line (func_addr, 0);
629
      if (sal.end && sal.end < func_end)
630
        return sal.end;
631
    }
632
 
633
  return mcore_analyze_prologue (NULL, pc, 1);
634
}
635
 
636
/* Return the address at which function arguments are offset. */
637
CORE_ADDR
638
mcore_frame_args_address (struct frame_info * fi)
639
{
640
  return fi->frame - fi->extra_info->framesize;
641
}
642
 
643
CORE_ADDR
644
mcore_frame_locals_address (struct frame_info * fi)
645
{
646
  return fi->frame - fi->extra_info->framesize;
647
}
648
 
649
/* Return the frame pointer in use at address PC. */
650
 
651
void
652
mcore_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
653
{
654
  struct frame_info *dummy = analyze_dummy_frame (pc, 0);
655
  if (dummy->extra_info->status & MY_FRAME_IN_SP)
656
    {
657
      *reg = SP_REGNUM;
658
      *offset = 0;
659
    }
660
  else
661
    {
662
      *reg = dummy->extra_info->fp_regnum;
663
      *offset = 0;
664
    }
665
}
666
 
667
/* Find the value of register REGNUM in frame FI. */
668
 
669
CORE_ADDR
670
mcore_find_callers_reg (struct frame_info *fi, int regnum)
671
{
672
  for (; fi != NULL; fi = fi->next)
673
    {
674
      if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
675
        return generic_read_register_dummy (fi->pc, fi->frame, regnum);
676
      else if (fi->saved_regs[regnum] != 0)
677
        return read_memory_integer (fi->saved_regs[regnum],
678
                                    REGISTER_SIZE);
679
    }
680
 
681
  return read_register (regnum);
682
}
683
 
684
/* Find the saved pc in frame FI. */
685
 
686
CORE_ADDR
687
mcore_frame_saved_pc (struct frame_info * fi)
688
{
689
 
690
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
691
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
692
  else
693
    return mcore_find_callers_reg (fi, PR_REGNUM);
694
}
695
 
696
/* INFERIOR FUNCTION CALLS */
697
 
698
/* This routine gets called when either the user uses the "return"
699
   command, or the call dummy breakpoint gets hit. */
700
 
701
void
702
mcore_pop_frame (struct frame_info *fi)
703
{
704
  int rn;
705
 
706
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
707
    generic_pop_dummy_frame ();
708
  else
709
    {
710
      /* Write out the PC we saved. */
711
      write_register (PC_REGNUM, FRAME_SAVED_PC (fi));
712
 
713
      /* Restore any saved registers. */
714
      for (rn = 0; rn < NUM_REGS; rn++)
715
        {
716
          if (fi->saved_regs[rn] != 0)
717
            {
718
              ULONGEST value;
719
 
720
              value = read_memory_unsigned_integer (fi->saved_regs[rn],
721
                                                    REGISTER_SIZE);
722
              write_register (rn, value);
723
            }
724
        }
725
 
726
      /* Actually cut back the stack. */
727
      write_register (SP_REGNUM, FRAME_FP (fi));
728
    }
729
 
730
  /* Finally, throw away any cached frame information. */
731
  flush_cached_frames ();
732
}
733
 
734
/* Setup arguments and PR for a call to the target. First six arguments
735
   go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on to the stack.
736
 
737
   * Types with lengths greater than REGISTER_SIZE may not be split
738
   between registers and the stack, and they must start in an even-numbered
739
   register. Subsequent args will go onto the stack.
740
 
741
   * Structs may be split between registers and stack, left-aligned.
742
 
743
   * If the function returns a struct which will not fit into registers (it's
744
   more than eight bytes), we must allocate for that, too. Gdb will tell
745
   us where this buffer is (STRUCT_ADDR), and we simply place it into
746
   FIRST_ARGREG, since the MCORE treats struct returns (of less than eight
747
   bytes) as hidden first arguments. */
748
 
749
CORE_ADDR
750
mcore_push_arguments (int nargs, value_ptr * args, CORE_ADDR sp,
751
                      unsigned char struct_return, CORE_ADDR struct_addr)
752
{
753
  int argreg;
754
  int argnum;
755
  struct stack_arg
756
    {
757
      int len;
758
      char *val;
759
    }
760
   *stack_args;
761
  int nstack_args = 0;
762
 
763
  stack_args = (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
764
 
765
  argreg = FIRST_ARGREG;
766
 
767
  /* Align the stack. This is mostly a nop, but not always. It will be needed
768
     if we call a function which has argument overflow. */
769
  sp &= ~3;
770
 
771
  /* If this function returns a struct which does not fit in the
772
     return registers, we must pass a buffer to the function
773
     which it can use to save the return value. */
774
  if (struct_return)
775
    write_register (argreg++, struct_addr);
776
 
777
  /* FIXME: what about unions? */
778
  for (argnum = 0; argnum < nargs; argnum++)
779
    {
780
      char *val = (char *) VALUE_CONTENTS (args[argnum]);
781
      int len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
782
      struct type *type = VALUE_TYPE (args[argnum]);
783
      int olen;
784
 
785
      mcore_insn_debug (("MCORE PUSH: argreg=%d; len=%d; %s\n",
786
                         argreg, len, TYPE_CODE (type) == TYPE_CODE_STRUCT ? "struct" : "not struct"));
787
      /* Arguments larger than a register must start in an even
788
         numbered register. */
789
      olen = len;
790
 
791
      if (TYPE_CODE (type) != TYPE_CODE_STRUCT && len > REGISTER_SIZE && argreg % 2)
792
        {
793
          mcore_insn_debug (("MCORE PUSH: %d > REGISTER_SIZE: and %s is not even\n",
794
                             len, mcore_register_names[argreg]));
795
          argreg++;
796
        }
797
 
798
      if ((argreg <= LAST_ARGREG && len <= (LAST_ARGREG - argreg + 1) * REGISTER_SIZE)
799
          || (TYPE_CODE (type) == TYPE_CODE_STRUCT))
800
        {
801
          /* Something that will fit entirely into registers (or a struct
802
             which may be split between registers and stack). */
803
          mcore_insn_debug (("MCORE PUSH: arg %d going into regs\n", argnum));
804
 
805
          if (TYPE_CODE (type) == TYPE_CODE_STRUCT && olen < REGISTER_SIZE)
806
            {
807
              /* Small structs must be right aligned within the register,
808
                 the most significant bits are undefined. */
809
              write_register (argreg, extract_unsigned_integer (val, len));
810
              argreg++;
811
              len = 0;
812
            }
813
 
814
          while (len > 0 && argreg <= LAST_ARGREG)
815
            {
816
              write_register (argreg, extract_unsigned_integer (val, REGISTER_SIZE));
817
              argreg++;
818
              val += REGISTER_SIZE;
819
              len -= REGISTER_SIZE;
820
            }
821
 
822
          /* Any remainder for the stack is noted below... */
823
        }
824
      else if (TYPE_CODE (VALUE_TYPE (args[argnum])) != TYPE_CODE_STRUCT
825
               && len > REGISTER_SIZE)
826
        {
827
          /* All subsequent args go onto the stack. */
828
          mcore_insn_debug (("MCORE PUSH: does not fit into regs, going onto stack\n"));
829
          argnum = LAST_ARGREG + 1;
830
        }
831
 
832
      if (len > 0)
833
        {
834
          /* Note that this must be saved onto the stack */
835
          mcore_insn_debug (("MCORE PUSH: adding arg %d to stack\n", argnum));
836
          stack_args[nstack_args].val = val;
837
          stack_args[nstack_args].len = len;
838
          nstack_args++;
839
        }
840
 
841
    }
842
 
843
  /* We're done with registers and stack allocation. Now do the actual
844
     stack pushes. */
845
  while (nstack_args--)
846
    {
847
      sp -= stack_args[nstack_args].len;
848
      write_memory (sp, stack_args[nstack_args].val, stack_args[nstack_args].len);
849
    }
850
 
851
  /* Return adjusted stack pointer.  */
852
  return sp;
853
}
854
 
855
/* Store the return address for the call dummy. For MCore, we've
856
   opted to use generic call dummies, so we simply store the
857
   CALL_DUMMY_ADDRESS into the PR register (r15). */
858
 
859
CORE_ADDR
860
mcore_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
861
{
862
  write_register (PR_REGNUM, CALL_DUMMY_ADDRESS ());
863
  return sp;
864
}
865
 
866
/* Setting/getting return values from functions.
867
 
868
   The Motorola MCore processors use r2/r3 to return anything
869
   not larger than 32 bits. Everything else goes into a caller-
870
   supplied buffer, which is passed in via a hidden first
871
   argument.
872
 
873
   For gdb, this leaves us two routes, based on what
874
   USE_STRUCT_CONVENTION (mcore_use_struct_convention) returns.
875
   If this macro returns 1, gdb will call STORE_STRUCT_RETURN and
876
   EXTRACT_STRUCT_VALUE_ADDRESS.
877
 
878
   If USE_STRUCT_CONVENTION retruns 0, then gdb uses STORE_RETURN_VALUE
879
   and EXTRACT_RETURN_VALUE to store/fetch the functions return value. */
880
 
881
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
882
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
883
   and TYPE is the type (which is known to be struct, union or array). */
884
 
885
int
886
mcore_use_struct_convention (int gcc_p, struct type *type)
887
{
888
  return (TYPE_LENGTH (type) > 8);
889
}
890
 
891
/* Where is the return value saved? For MCore, a pointer to
892
   this buffer was passed as a hidden first argument, so
893
   just return that address. */
894
 
895
CORE_ADDR
896
mcore_extract_struct_value_address (char *regbuf)
897
{
898
  return extract_address (regbuf + REGISTER_BYTE (FIRST_ARGREG), REGISTER_SIZE);
899
}
900
 
901
/* Given a function which returns a value of type TYPE, extract the
902
   the function's return value and place the result into VALBUF.
903
   REGBUF is the register contents of the target. */
904
 
905
void
906
mcore_extract_return_value (struct type *type, char *regbuf, char *valbuf)
907
{
908
  /* Copy the return value (starting) in RETVAL_REGNUM to VALBUF. */
909
  /* Only getting the first byte! if len = 1, we need the last byte of
910
     the register, not the first. */
911
  memcpy (valbuf, regbuf + REGISTER_BYTE (RETVAL_REGNUM) +
912
  (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0), TYPE_LENGTH (type));
913
}
914
 
915
/* Store the return value in VALBUF (of type TYPE) where the caller
916
   expects to see it.
917
 
918
   Values less than 32 bits are stored in r2, right justified and
919
   sign or zero extended.
920
 
921
   Values between 32 and 64 bits are stored in r2 (most
922
   significant word) and r3 (least significant word, left justified).
923
   Note that this includes structures of less than eight bytes, too. */
924
 
925
void
926
mcore_store_return_value (struct type *type, char *valbuf)
927
{
928
  int value_size;
929
  int return_size;
930
  int offset;
931
  char *zeros;
932
 
933
  value_size = TYPE_LENGTH (type);
934
 
935
  /* Return value fits into registers. */
936
  return_size = (value_size + REGISTER_SIZE - 1) & ~(REGISTER_SIZE - 1);
937
  offset = REGISTER_BYTE (RETVAL_REGNUM) + (return_size - value_size);
938
  zeros = alloca (return_size);
939
  memset (zeros, 0, return_size);
940
 
941
  write_register_bytes (REGISTER_BYTE (RETVAL_REGNUM), zeros, return_size);
942
  write_register_bytes (offset, valbuf, value_size);
943
}
944
 
945
/* Initialize our target-dependent "stuff" for this newly created frame.
946
 
947
   This includes allocating space for saved registers and analyzing
948
   the prologue of this frame. */
949
 
950
void
951
mcore_init_extra_frame_info (struct frame_info *fi)
952
{
953
  if (fi->next)
954
    fi->pc = FRAME_SAVED_PC (fi->next);
955
 
956
  frame_saved_regs_zalloc (fi);
957
 
958
  fi->extra_info = (struct frame_extra_info *)
959
    frame_obstack_alloc (sizeof (struct frame_extra_info));
960
  fi->extra_info->status = 0;
961
  fi->extra_info->framesize = 0;
962
 
963
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
964
    {
965
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
966
         by assuming it's always FP.  */
967
      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
968
    }
969
  else
970
    mcore_analyze_prologue (fi, 0, 0);
971
}
972
 
973
/* Get an insturction from memory. */
974
 
975
static int
976
get_insn (CORE_ADDR pc)
977
{
978
  char buf[4];
979
  int status = read_memory_nobpt (pc, buf, 2);
980
  if (status != 0)
981
    return 0;
982
 
983
  return extract_unsigned_integer (buf, 2);
984
}
985
 
986
void
987
_initialize_mcore_tdep (void)
988
{
989
  extern int print_insn_mcore (bfd_vma, disassemble_info *);
990
  tm_print_insn = print_insn_mcore;
991
 
992
#ifdef MCORE_DEBUG
993
  add_show_from_set (add_set_cmd ("mcoredebug", no_class,
994
                                  var_boolean, (char *) &mcore_debug,
995
                                  "Set mcore debugging.\n", &setlist),
996
                     &showlist);
997
#endif
998
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.