1 |
578 |
markom |
/* Target-dependent code for the Matsushita MN10200 for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
19 |
|
|
Boston, MA 02111-1307, USA. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "frame.h"
|
23 |
|
|
#include "inferior.h"
|
24 |
|
|
#include "obstack.h"
|
25 |
|
|
#include "target.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "bfd.h"
|
28 |
|
|
#include "gdb_string.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "symfile.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
35 |
|
|
int
|
36 |
|
|
mn10200_use_struct_convention (int gcc_p, struct type *type)
|
37 |
|
|
{
|
38 |
|
|
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
|
39 |
|
|
}
|
40 |
|
|
/* *INDENT-OFF* */
|
41 |
|
|
/* The main purpose of this file is dealing with prologues to extract
|
42 |
|
|
information about stack frames and saved registers.
|
43 |
|
|
|
44 |
|
|
For reference here's how prologues look on the mn10200:
|
45 |
|
|
|
46 |
|
|
With frame pointer:
|
47 |
|
|
mov fp,a0
|
48 |
|
|
mov sp,fp
|
49 |
|
|
add <size>,sp
|
50 |
|
|
Register saves for d2, d3, a1, a2 as needed. Saves start
|
51 |
|
|
at fp - <size> + <outgoing_args_size> and work towards higher
|
52 |
|
|
addresses. Note that the saves are actually done off the stack
|
53 |
|
|
pointer in the prologue! This makes for smaller code and easier
|
54 |
|
|
prologue scanning as the displacement fields will unlikely
|
55 |
|
|
be more than 8 bits!
|
56 |
|
|
|
57 |
|
|
Without frame pointer:
|
58 |
|
|
add <size>,sp
|
59 |
|
|
Register saves for d2, d3, a1, a2 as needed. Saves start
|
60 |
|
|
at sp + <outgoing_args_size> and work towards higher addresses.
|
61 |
|
|
|
62 |
|
|
Out of line prologue:
|
63 |
|
|
add <local size>,sp -- optional
|
64 |
|
|
jsr __prologue
|
65 |
|
|
add <outgoing_size>,sp -- optional
|
66 |
|
|
|
67 |
|
|
The stack pointer remains constant throughout the life of most
|
68 |
|
|
functions. As a result the compiler will usually omit the
|
69 |
|
|
frame pointer, so we must handle frame pointerless functions. */
|
70 |
|
|
|
71 |
|
|
/* Analyze the prologue to determine where registers are saved,
|
72 |
|
|
the end of the prologue, etc etc. Return the end of the prologue
|
73 |
|
|
scanned.
|
74 |
|
|
|
75 |
|
|
We store into FI (if non-null) several tidbits of information:
|
76 |
|
|
|
77 |
|
|
* stack_size -- size of this stack frame. Note that if we stop in
|
78 |
|
|
certain parts of the prologue/epilogue we may claim the size of the
|
79 |
|
|
current frame is zero. This happens when the current frame has
|
80 |
|
|
not been allocated yet or has already been deallocated.
|
81 |
|
|
|
82 |
|
|
* fsr -- Addresses of registers saved in the stack by this frame.
|
83 |
|
|
|
84 |
|
|
* status -- A (relatively) generic status indicator. It's a bitmask
|
85 |
|
|
with the following bits:
|
86 |
|
|
|
87 |
|
|
MY_FRAME_IN_SP: The base of the current frame is actually in
|
88 |
|
|
the stack pointer. This can happen for frame pointerless
|
89 |
|
|
functions, or cases where we're stopped in the prologue/epilogue
|
90 |
|
|
itself. For these cases mn10200_analyze_prologue will need up
|
91 |
|
|
update fi->frame before returning or analyzing the register
|
92 |
|
|
save instructions.
|
93 |
|
|
|
94 |
|
|
MY_FRAME_IN_FP: The base of the current frame is in the
|
95 |
|
|
frame pointer register ($a2).
|
96 |
|
|
|
97 |
|
|
CALLER_A2_IN_A0: $a2 from the caller's frame is temporarily
|
98 |
|
|
in $a0. This can happen if we're stopped in the prologue.
|
99 |
|
|
|
100 |
|
|
NO_MORE_FRAMES: Set this if the current frame is "start" or
|
101 |
|
|
if the first instruction looks like mov <imm>,sp. This tells
|
102 |
|
|
frame chain to not bother trying to unwind past this frame. */
|
103 |
|
|
/* *INDENT-ON* */
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
#define MY_FRAME_IN_SP 0x1
|
109 |
|
|
#define MY_FRAME_IN_FP 0x2
|
110 |
|
|
#define CALLER_A2_IN_A0 0x4
|
111 |
|
|
#define NO_MORE_FRAMES 0x8
|
112 |
|
|
|
113 |
|
|
static CORE_ADDR
|
114 |
|
|
mn10200_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
|
115 |
|
|
{
|
116 |
|
|
CORE_ADDR func_addr, func_end, addr, stop;
|
117 |
|
|
CORE_ADDR stack_size = 0;
|
118 |
|
|
unsigned char buf[4];
|
119 |
|
|
int status;
|
120 |
|
|
char *name;
|
121 |
|
|
int out_of_line_prologue = 0;
|
122 |
|
|
|
123 |
|
|
/* Use the PC in the frame if it's provided to look up the
|
124 |
|
|
start of this function. */
|
125 |
|
|
pc = (fi ? fi->pc : pc);
|
126 |
|
|
|
127 |
|
|
/* Find the start of this function. */
|
128 |
|
|
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
|
129 |
|
|
|
130 |
|
|
/* Do nothing if we couldn't find the start of this function or if we're
|
131 |
|
|
stopped at the first instruction in the prologue. */
|
132 |
|
|
if (status == 0)
|
133 |
|
|
return pc;
|
134 |
|
|
|
135 |
|
|
/* If we're in start, then give up. */
|
136 |
|
|
if (strcmp (name, "start") == 0)
|
137 |
|
|
{
|
138 |
|
|
if (fi)
|
139 |
|
|
fi->status = NO_MORE_FRAMES;
|
140 |
|
|
return pc;
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* At the start of a function our frame is in the stack pointer. */
|
144 |
|
|
if (fi)
|
145 |
|
|
fi->status = MY_FRAME_IN_SP;
|
146 |
|
|
|
147 |
|
|
/* If we're physically on an RTS instruction, then our frame has already
|
148 |
|
|
been deallocated.
|
149 |
|
|
|
150 |
|
|
fi->frame is bogus, we need to fix it. */
|
151 |
|
|
if (fi && fi->pc + 1 == func_end)
|
152 |
|
|
{
|
153 |
|
|
status = target_read_memory (fi->pc, buf, 1);
|
154 |
|
|
if (status != 0)
|
155 |
|
|
{
|
156 |
|
|
if (fi->next == NULL)
|
157 |
|
|
fi->frame = read_sp ();
|
158 |
|
|
return fi->pc;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
if (buf[0] == 0xfe)
|
162 |
|
|
{
|
163 |
|
|
if (fi->next == NULL)
|
164 |
|
|
fi->frame = read_sp ();
|
165 |
|
|
return fi->pc;
|
166 |
|
|
}
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
/* Similarly if we're stopped on the first insn of a prologue as our
|
170 |
|
|
frame hasn't been allocated yet. */
|
171 |
|
|
if (fi && fi->pc == func_addr)
|
172 |
|
|
{
|
173 |
|
|
if (fi->next == NULL)
|
174 |
|
|
fi->frame = read_sp ();
|
175 |
|
|
return fi->pc;
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
/* Figure out where to stop scanning. */
|
179 |
|
|
stop = fi ? fi->pc : func_end;
|
180 |
|
|
|
181 |
|
|
/* Don't walk off the end of the function. */
|
182 |
|
|
stop = stop > func_end ? func_end : stop;
|
183 |
|
|
|
184 |
|
|
/* Start scanning on the first instruction of this function. */
|
185 |
|
|
addr = func_addr;
|
186 |
|
|
|
187 |
|
|
status = target_read_memory (addr, buf, 2);
|
188 |
|
|
if (status != 0)
|
189 |
|
|
{
|
190 |
|
|
if (fi && fi->next == NULL && fi->status & MY_FRAME_IN_SP)
|
191 |
|
|
fi->frame = read_sp ();
|
192 |
|
|
return addr;
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
/* First see if this insn sets the stack pointer; if so, it's something
|
196 |
|
|
we won't understand, so quit now. */
|
197 |
|
|
if (buf[0] == 0xdf
|
198 |
|
|
|| (buf[0] == 0xf4 && buf[1] == 0x77))
|
199 |
|
|
{
|
200 |
|
|
if (fi)
|
201 |
|
|
fi->status = NO_MORE_FRAMES;
|
202 |
|
|
return addr;
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
/* Now see if we have a frame pointer.
|
206 |
|
|
|
207 |
|
|
Search for mov a2,a0 (0xf278)
|
208 |
|
|
then mov a3,a2 (0xf27e). */
|
209 |
|
|
|
210 |
|
|
if (buf[0] == 0xf2 && buf[1] == 0x78)
|
211 |
|
|
{
|
212 |
|
|
/* Our caller's $a2 will be found in $a0 now. Note it for
|
213 |
|
|
our callers. */
|
214 |
|
|
if (fi)
|
215 |
|
|
fi->status |= CALLER_A2_IN_A0;
|
216 |
|
|
addr += 2;
|
217 |
|
|
if (addr >= stop)
|
218 |
|
|
{
|
219 |
|
|
/* We still haven't allocated our local stack. Handle this
|
220 |
|
|
as if we stopped on the first or last insn of a function. */
|
221 |
|
|
if (fi && fi->next == NULL)
|
222 |
|
|
fi->frame = read_sp ();
|
223 |
|
|
return addr;
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
status = target_read_memory (addr, buf, 2);
|
227 |
|
|
if (status != 0)
|
228 |
|
|
{
|
229 |
|
|
if (fi && fi->next == NULL)
|
230 |
|
|
fi->frame = read_sp ();
|
231 |
|
|
return addr;
|
232 |
|
|
}
|
233 |
|
|
if (buf[0] == 0xf2 && buf[1] == 0x7e)
|
234 |
|
|
{
|
235 |
|
|
addr += 2;
|
236 |
|
|
|
237 |
|
|
/* Our frame pointer is valid now. */
|
238 |
|
|
if (fi)
|
239 |
|
|
{
|
240 |
|
|
fi->status |= MY_FRAME_IN_FP;
|
241 |
|
|
fi->status &= ~MY_FRAME_IN_SP;
|
242 |
|
|
}
|
243 |
|
|
if (addr >= stop)
|
244 |
|
|
return addr;
|
245 |
|
|
}
|
246 |
|
|
else
|
247 |
|
|
{
|
248 |
|
|
if (fi && fi->next == NULL)
|
249 |
|
|
fi->frame = read_sp ();
|
250 |
|
|
return addr;
|
251 |
|
|
}
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
/* Next we should allocate the local frame.
|
255 |
|
|
|
256 |
|
|
Search for add imm8,a3 (0xd3XX)
|
257 |
|
|
or add imm16,a3 (0xf70bXXXX)
|
258 |
|
|
or add imm24,a3 (0xf467XXXXXX).
|
259 |
|
|
|
260 |
|
|
If none of the above was found, then this prologue has
|
261 |
|
|
no stack, and therefore can't have any register saves,
|
262 |
|
|
so quit now. */
|
263 |
|
|
status = target_read_memory (addr, buf, 2);
|
264 |
|
|
if (status != 0)
|
265 |
|
|
{
|
266 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
267 |
|
|
fi->frame = read_sp ();
|
268 |
|
|
return addr;
|
269 |
|
|
}
|
270 |
|
|
if (buf[0] == 0xd3)
|
271 |
|
|
{
|
272 |
|
|
stack_size = extract_signed_integer (&buf[1], 1);
|
273 |
|
|
if (fi)
|
274 |
|
|
fi->stack_size = stack_size;
|
275 |
|
|
addr += 2;
|
276 |
|
|
if (addr >= stop)
|
277 |
|
|
{
|
278 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
279 |
|
|
fi->frame = read_sp () - stack_size;
|
280 |
|
|
return addr;
|
281 |
|
|
}
|
282 |
|
|
}
|
283 |
|
|
else if (buf[0] == 0xf7 && buf[1] == 0x0b)
|
284 |
|
|
{
|
285 |
|
|
status = target_read_memory (addr + 2, buf, 2);
|
286 |
|
|
if (status != 0)
|
287 |
|
|
{
|
288 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
289 |
|
|
fi->frame = read_sp ();
|
290 |
|
|
return addr;
|
291 |
|
|
}
|
292 |
|
|
stack_size = extract_signed_integer (buf, 2);
|
293 |
|
|
if (fi)
|
294 |
|
|
fi->stack_size = stack_size;
|
295 |
|
|
addr += 4;
|
296 |
|
|
if (addr >= stop)
|
297 |
|
|
{
|
298 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
299 |
|
|
fi->frame = read_sp () - stack_size;
|
300 |
|
|
return addr;
|
301 |
|
|
}
|
302 |
|
|
}
|
303 |
|
|
else if (buf[0] == 0xf4 && buf[1] == 0x67)
|
304 |
|
|
{
|
305 |
|
|
status = target_read_memory (addr + 2, buf, 3);
|
306 |
|
|
if (status != 0)
|
307 |
|
|
{
|
308 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
309 |
|
|
fi->frame = read_sp ();
|
310 |
|
|
return addr;
|
311 |
|
|
}
|
312 |
|
|
stack_size = extract_signed_integer (buf, 3);
|
313 |
|
|
if (fi)
|
314 |
|
|
fi->stack_size = stack_size;
|
315 |
|
|
addr += 5;
|
316 |
|
|
if (addr >= stop)
|
317 |
|
|
{
|
318 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
319 |
|
|
fi->frame = read_sp () - stack_size;
|
320 |
|
|
return addr;
|
321 |
|
|
}
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/* Now see if we have a call to __prologue for an out of line
|
325 |
|
|
prologue. */
|
326 |
|
|
status = target_read_memory (addr, buf, 2);
|
327 |
|
|
if (status != 0)
|
328 |
|
|
return addr;
|
329 |
|
|
|
330 |
|
|
/* First check for 16bit pc-relative call to __prologue. */
|
331 |
|
|
if (buf[0] == 0xfd)
|
332 |
|
|
{
|
333 |
|
|
CORE_ADDR temp;
|
334 |
|
|
status = target_read_memory (addr + 1, buf, 2);
|
335 |
|
|
if (status != 0)
|
336 |
|
|
{
|
337 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
338 |
|
|
fi->frame = read_sp ();
|
339 |
|
|
return addr;
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
/* Get the PC this instruction will branch to. */
|
343 |
|
|
temp = (extract_signed_integer (buf, 2) + addr + 3) & 0xffffff;
|
344 |
|
|
|
345 |
|
|
/* Get the name of the function at the target address. */
|
346 |
|
|
status = find_pc_partial_function (temp, &name, NULL, NULL);
|
347 |
|
|
if (status == 0)
|
348 |
|
|
{
|
349 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
350 |
|
|
fi->frame = read_sp ();
|
351 |
|
|
return addr;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
/* Note if it is an out of line prologue. */
|
355 |
|
|
out_of_line_prologue = (strcmp (name, "__prologue") == 0);
|
356 |
|
|
|
357 |
|
|
/* This sucks up 3 bytes of instruction space. */
|
358 |
|
|
if (out_of_line_prologue)
|
359 |
|
|
addr += 3;
|
360 |
|
|
|
361 |
|
|
if (addr >= stop)
|
362 |
|
|
{
|
363 |
|
|
if (fi && fi->next == NULL)
|
364 |
|
|
{
|
365 |
|
|
fi->stack_size -= 16;
|
366 |
|
|
fi->frame = read_sp () - fi->stack_size;
|
367 |
|
|
}
|
368 |
|
|
return addr;
|
369 |
|
|
}
|
370 |
|
|
}
|
371 |
|
|
/* Now check for the 24bit pc-relative call to __prologue. */
|
372 |
|
|
else if (buf[0] == 0xf4 && buf[1] == 0xe1)
|
373 |
|
|
{
|
374 |
|
|
CORE_ADDR temp;
|
375 |
|
|
status = target_read_memory (addr + 2, buf, 3);
|
376 |
|
|
if (status != 0)
|
377 |
|
|
{
|
378 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
379 |
|
|
fi->frame = read_sp ();
|
380 |
|
|
return addr;
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
/* Get the PC this instruction will branch to. */
|
384 |
|
|
temp = (extract_signed_integer (buf, 3) + addr + 5) & 0xffffff;
|
385 |
|
|
|
386 |
|
|
/* Get the name of the function at the target address. */
|
387 |
|
|
status = find_pc_partial_function (temp, &name, NULL, NULL);
|
388 |
|
|
if (status == 0)
|
389 |
|
|
{
|
390 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
391 |
|
|
fi->frame = read_sp ();
|
392 |
|
|
return addr;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* Note if it is an out of line prologue. */
|
396 |
|
|
out_of_line_prologue = (strcmp (name, "__prologue") == 0);
|
397 |
|
|
|
398 |
|
|
/* This sucks up 5 bytes of instruction space. */
|
399 |
|
|
if (out_of_line_prologue)
|
400 |
|
|
addr += 5;
|
401 |
|
|
|
402 |
|
|
if (addr >= stop)
|
403 |
|
|
{
|
404 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
|
405 |
|
|
{
|
406 |
|
|
fi->stack_size -= 16;
|
407 |
|
|
fi->frame = read_sp () - fi->stack_size;
|
408 |
|
|
}
|
409 |
|
|
return addr;
|
410 |
|
|
}
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* Now actually handle the out of line prologue. */
|
414 |
|
|
if (out_of_line_prologue)
|
415 |
|
|
{
|
416 |
|
|
int outgoing_args_size = 0;
|
417 |
|
|
|
418 |
|
|
/* First adjust the stack size for this function. The out of
|
419 |
|
|
line prologue saves 4 registers (16bytes of data). */
|
420 |
|
|
if (fi)
|
421 |
|
|
fi->stack_size -= 16;
|
422 |
|
|
|
423 |
|
|
/* Update fi->frame if necessary. */
|
424 |
|
|
if (fi && fi->next == NULL)
|
425 |
|
|
fi->frame = read_sp () - fi->stack_size;
|
426 |
|
|
|
427 |
|
|
/* After the out of line prologue, there may be another
|
428 |
|
|
stack adjustment for the outgoing arguments.
|
429 |
|
|
|
430 |
|
|
Search for add imm8,a3 (0xd3XX)
|
431 |
|
|
or add imm16,a3 (0xf70bXXXX)
|
432 |
|
|
or add imm24,a3 (0xf467XXXXXX). */
|
433 |
|
|
|
434 |
|
|
status = target_read_memory (addr, buf, 2);
|
435 |
|
|
if (status != 0)
|
436 |
|
|
{
|
437 |
|
|
if (fi)
|
438 |
|
|
{
|
439 |
|
|
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
|
440 |
|
|
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
|
441 |
|
|
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
|
442 |
|
|
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
|
443 |
|
|
}
|
444 |
|
|
return addr;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
if (buf[0] == 0xd3)
|
448 |
|
|
{
|
449 |
|
|
outgoing_args_size = extract_signed_integer (&buf[1], 1);
|
450 |
|
|
addr += 2;
|
451 |
|
|
}
|
452 |
|
|
else if (buf[0] == 0xf7 && buf[1] == 0x0b)
|
453 |
|
|
{
|
454 |
|
|
status = target_read_memory (addr + 2, buf, 2);
|
455 |
|
|
if (status != 0)
|
456 |
|
|
{
|
457 |
|
|
if (fi)
|
458 |
|
|
{
|
459 |
|
|
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
|
460 |
|
|
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
|
461 |
|
|
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
|
462 |
|
|
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
|
463 |
|
|
}
|
464 |
|
|
return addr;
|
465 |
|
|
}
|
466 |
|
|
outgoing_args_size = extract_signed_integer (buf, 2);
|
467 |
|
|
addr += 4;
|
468 |
|
|
}
|
469 |
|
|
else if (buf[0] == 0xf4 && buf[1] == 0x67)
|
470 |
|
|
{
|
471 |
|
|
status = target_read_memory (addr + 2, buf, 3);
|
472 |
|
|
if (status != 0)
|
473 |
|
|
{
|
474 |
|
|
if (fi && fi->next == NULL)
|
475 |
|
|
{
|
476 |
|
|
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
|
477 |
|
|
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
|
478 |
|
|
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
|
479 |
|
|
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
|
480 |
|
|
}
|
481 |
|
|
return addr;
|
482 |
|
|
}
|
483 |
|
|
outgoing_args_size = extract_signed_integer (buf, 3);
|
484 |
|
|
addr += 5;
|
485 |
|
|
}
|
486 |
|
|
else
|
487 |
|
|
outgoing_args_size = 0;
|
488 |
|
|
|
489 |
|
|
/* Now that we know the size of the outgoing arguments, fix
|
490 |
|
|
fi->frame again if this is the innermost frame. */
|
491 |
|
|
if (fi && fi->next == NULL)
|
492 |
|
|
fi->frame -= outgoing_args_size;
|
493 |
|
|
|
494 |
|
|
/* Note the register save information and update the stack
|
495 |
|
|
size for this frame too. */
|
496 |
|
|
if (fi)
|
497 |
|
|
{
|
498 |
|
|
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
|
499 |
|
|
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
|
500 |
|
|
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
|
501 |
|
|
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
|
502 |
|
|
fi->stack_size += outgoing_args_size;
|
503 |
|
|
}
|
504 |
|
|
/* There can be no more prologue insns, so return now. */
|
505 |
|
|
return addr;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
/* At this point fi->frame needs to be correct.
|
509 |
|
|
|
510 |
|
|
If MY_FRAME_IN_SP is set and we're the innermost frame, then we
|
511 |
|
|
need to fix fi->frame so that backtracing, find_frame_saved_regs,
|
512 |
|
|
etc work correctly. */
|
513 |
|
|
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP) != 0)
|
514 |
|
|
fi->frame = read_sp () - fi->stack_size;
|
515 |
|
|
|
516 |
|
|
/* And last we have the register saves. These are relatively
|
517 |
|
|
simple because they're physically done off the stack pointer,
|
518 |
|
|
and thus the number of different instructions we need to
|
519 |
|
|
check is greatly reduced because we know the displacements
|
520 |
|
|
will be small.
|
521 |
|
|
|
522 |
|
|
Search for movx d2,(X,a3) (0xf55eXX)
|
523 |
|
|
then movx d3,(X,a3) (0xf55fXX)
|
524 |
|
|
then mov a1,(X,a3) (0x5dXX) No frame pointer case
|
525 |
|
|
then mov a2,(X,a3) (0x5eXX) No frame pointer case
|
526 |
|
|
or mov a0,(X,a3) (0x5cXX) Frame pointer case. */
|
527 |
|
|
|
528 |
|
|
status = target_read_memory (addr, buf, 2);
|
529 |
|
|
if (status != 0)
|
530 |
|
|
return addr;
|
531 |
|
|
if (buf[0] == 0xf5 && buf[1] == 0x5e)
|
532 |
|
|
{
|
533 |
|
|
if (fi)
|
534 |
|
|
{
|
535 |
|
|
status = target_read_memory (addr + 2, buf, 1);
|
536 |
|
|
if (status != 0)
|
537 |
|
|
return addr;
|
538 |
|
|
fi->fsr.regs[2] = (fi->frame + stack_size
|
539 |
|
|
+ extract_signed_integer (buf, 1));
|
540 |
|
|
}
|
541 |
|
|
addr += 3;
|
542 |
|
|
if (addr >= stop)
|
543 |
|
|
return addr;
|
544 |
|
|
status = target_read_memory (addr, buf, 2);
|
545 |
|
|
if (status != 0)
|
546 |
|
|
return addr;
|
547 |
|
|
}
|
548 |
|
|
if (buf[0] == 0xf5 && buf[1] == 0x5f)
|
549 |
|
|
{
|
550 |
|
|
if (fi)
|
551 |
|
|
{
|
552 |
|
|
status = target_read_memory (addr + 2, buf, 1);
|
553 |
|
|
if (status != 0)
|
554 |
|
|
return addr;
|
555 |
|
|
fi->fsr.regs[3] = (fi->frame + stack_size
|
556 |
|
|
+ extract_signed_integer (buf, 1));
|
557 |
|
|
}
|
558 |
|
|
addr += 3;
|
559 |
|
|
if (addr >= stop)
|
560 |
|
|
return addr;
|
561 |
|
|
status = target_read_memory (addr, buf, 2);
|
562 |
|
|
if (status != 0)
|
563 |
|
|
return addr;
|
564 |
|
|
}
|
565 |
|
|
if (buf[0] == 0x5d)
|
566 |
|
|
{
|
567 |
|
|
if (fi)
|
568 |
|
|
{
|
569 |
|
|
status = target_read_memory (addr + 1, buf, 1);
|
570 |
|
|
if (status != 0)
|
571 |
|
|
return addr;
|
572 |
|
|
fi->fsr.regs[5] = (fi->frame + stack_size
|
573 |
|
|
+ extract_signed_integer (buf, 1));
|
574 |
|
|
}
|
575 |
|
|
addr += 2;
|
576 |
|
|
if (addr >= stop)
|
577 |
|
|
return addr;
|
578 |
|
|
status = target_read_memory (addr, buf, 2);
|
579 |
|
|
if (status != 0)
|
580 |
|
|
return addr;
|
581 |
|
|
}
|
582 |
|
|
if (buf[0] == 0x5e || buf[0] == 0x5c)
|
583 |
|
|
{
|
584 |
|
|
if (fi)
|
585 |
|
|
{
|
586 |
|
|
status = target_read_memory (addr + 1, buf, 1);
|
587 |
|
|
if (status != 0)
|
588 |
|
|
return addr;
|
589 |
|
|
fi->fsr.regs[6] = (fi->frame + stack_size
|
590 |
|
|
+ extract_signed_integer (buf, 1));
|
591 |
|
|
fi->status &= ~CALLER_A2_IN_A0;
|
592 |
|
|
}
|
593 |
|
|
addr += 2;
|
594 |
|
|
if (addr >= stop)
|
595 |
|
|
return addr;
|
596 |
|
|
return addr;
|
597 |
|
|
}
|
598 |
|
|
return addr;
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
/* Function: frame_chain
|
602 |
|
|
Figure out and return the caller's frame pointer given current
|
603 |
|
|
frame_info struct.
|
604 |
|
|
|
605 |
|
|
We don't handle dummy frames yet but we would probably just return the
|
606 |
|
|
stack pointer that was in use at the time the function call was made? */
|
607 |
|
|
|
608 |
|
|
CORE_ADDR
|
609 |
|
|
mn10200_frame_chain (struct frame_info *fi)
|
610 |
|
|
{
|
611 |
|
|
struct frame_info dummy_frame;
|
612 |
|
|
|
613 |
|
|
/* Walk through the prologue to determine the stack size,
|
614 |
|
|
location of saved registers, end of the prologue, etc. */
|
615 |
|
|
if (fi->status == 0)
|
616 |
|
|
mn10200_analyze_prologue (fi, (CORE_ADDR) 0);
|
617 |
|
|
|
618 |
|
|
/* Quit now if mn10200_analyze_prologue set NO_MORE_FRAMES. */
|
619 |
|
|
if (fi->status & NO_MORE_FRAMES)
|
620 |
|
|
return 0;
|
621 |
|
|
|
622 |
|
|
/* Now that we've analyzed our prologue, determine the frame
|
623 |
|
|
pointer for our caller.
|
624 |
|
|
|
625 |
|
|
If our caller has a frame pointer, then we need to
|
626 |
|
|
find the entry value of $a2 to our function.
|
627 |
|
|
|
628 |
|
|
If CALLER_A2_IN_A0, then the chain is in $a0.
|
629 |
|
|
|
630 |
|
|
If fsr.regs[6] is nonzero, then it's at the memory
|
631 |
|
|
location pointed to by fsr.regs[6].
|
632 |
|
|
|
633 |
|
|
Else it's still in $a2.
|
634 |
|
|
|
635 |
|
|
If our caller does not have a frame pointer, then his
|
636 |
|
|
frame base is fi->frame + -caller's stack size + 4. */
|
637 |
|
|
|
638 |
|
|
/* The easiest way to get that info is to analyze our caller's frame.
|
639 |
|
|
|
640 |
|
|
So we set up a dummy frame and call mn10200_analyze_prologue to
|
641 |
|
|
find stuff for us. */
|
642 |
|
|
dummy_frame.pc = FRAME_SAVED_PC (fi);
|
643 |
|
|
dummy_frame.frame = fi->frame;
|
644 |
|
|
memset (dummy_frame.fsr.regs, '\000', sizeof dummy_frame.fsr.regs);
|
645 |
|
|
dummy_frame.status = 0;
|
646 |
|
|
dummy_frame.stack_size = 0;
|
647 |
|
|
mn10200_analyze_prologue (&dummy_frame, 0);
|
648 |
|
|
|
649 |
|
|
if (dummy_frame.status & MY_FRAME_IN_FP)
|
650 |
|
|
{
|
651 |
|
|
/* Our caller has a frame pointer. So find the frame in $a2, $a0,
|
652 |
|
|
or in the stack. */
|
653 |
|
|
if (fi->fsr.regs[6])
|
654 |
|
|
return (read_memory_integer (fi->fsr.regs[FP_REGNUM], REGISTER_SIZE)
|
655 |
|
|
& 0xffffff);
|
656 |
|
|
else if (fi->status & CALLER_A2_IN_A0)
|
657 |
|
|
return read_register (4);
|
658 |
|
|
else
|
659 |
|
|
return read_register (FP_REGNUM);
|
660 |
|
|
}
|
661 |
|
|
else
|
662 |
|
|
{
|
663 |
|
|
/* Our caller does not have a frame pointer. So his frame starts
|
664 |
|
|
at the base of our frame (fi->frame) + <his size> + 4 (saved pc). */
|
665 |
|
|
return fi->frame + -dummy_frame.stack_size + 4;
|
666 |
|
|
}
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/* Function: skip_prologue
|
670 |
|
|
Return the address of the first inst past the prologue of the function. */
|
671 |
|
|
|
672 |
|
|
CORE_ADDR
|
673 |
|
|
mn10200_skip_prologue (CORE_ADDR pc)
|
674 |
|
|
{
|
675 |
|
|
/* We used to check the debug symbols, but that can lose if
|
676 |
|
|
we have a null prologue. */
|
677 |
|
|
return mn10200_analyze_prologue (NULL, pc);
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
/* Function: pop_frame
|
681 |
|
|
This routine gets called when either the user uses the `return'
|
682 |
|
|
command, or the call dummy breakpoint gets hit. */
|
683 |
|
|
|
684 |
|
|
void
|
685 |
|
|
mn10200_pop_frame (struct frame_info *frame)
|
686 |
|
|
{
|
687 |
|
|
int regnum;
|
688 |
|
|
|
689 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
690 |
|
|
generic_pop_dummy_frame ();
|
691 |
|
|
else
|
692 |
|
|
{
|
693 |
|
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
694 |
|
|
|
695 |
|
|
/* Restore any saved registers. */
|
696 |
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
697 |
|
|
if (frame->fsr.regs[regnum] != 0)
|
698 |
|
|
{
|
699 |
|
|
ULONGEST value;
|
700 |
|
|
|
701 |
|
|
value = read_memory_unsigned_integer (frame->fsr.regs[regnum],
|
702 |
|
|
REGISTER_RAW_SIZE (regnum));
|
703 |
|
|
write_register (regnum, value);
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Actually cut back the stack. */
|
707 |
|
|
write_register (SP_REGNUM, FRAME_FP (frame));
|
708 |
|
|
|
709 |
|
|
/* Don't we need to set the PC?!? XXX FIXME. */
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* Throw away any cached frame information. */
|
713 |
|
|
flush_cached_frames ();
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
/* Function: push_arguments
|
717 |
|
|
Setup arguments for a call to the target. Arguments go in
|
718 |
|
|
order on the stack. */
|
719 |
|
|
|
720 |
|
|
CORE_ADDR
|
721 |
|
|
mn10200_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
722 |
|
|
unsigned char struct_return, CORE_ADDR struct_addr)
|
723 |
|
|
{
|
724 |
|
|
int argnum = 0;
|
725 |
|
|
int len = 0;
|
726 |
|
|
int stack_offset = 0;
|
727 |
|
|
int regsused = struct_return ? 1 : 0;
|
728 |
|
|
|
729 |
|
|
/* This should be a nop, but align the stack just in case something
|
730 |
|
|
went wrong. Stacks are two byte aligned on the mn10200. */
|
731 |
|
|
sp &= ~1;
|
732 |
|
|
|
733 |
|
|
/* Now make space on the stack for the args.
|
734 |
|
|
|
735 |
|
|
XXX This doesn't appear to handle pass-by-invisible reference
|
736 |
|
|
arguments. */
|
737 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
738 |
|
|
{
|
739 |
|
|
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 1) & ~1;
|
740 |
|
|
|
741 |
|
|
/* If we've used all argument registers, then this argument is
|
742 |
|
|
pushed. */
|
743 |
|
|
if (regsused >= 2 || arg_length > 4)
|
744 |
|
|
{
|
745 |
|
|
regsused = 2;
|
746 |
|
|
len += arg_length;
|
747 |
|
|
}
|
748 |
|
|
/* We know we've got some arg register space left. If this argument
|
749 |
|
|
will fit entirely in regs, then put it there. */
|
750 |
|
|
else if (arg_length <= 2
|
751 |
|
|
|| TYPE_CODE (VALUE_TYPE (args[argnum])) == TYPE_CODE_PTR)
|
752 |
|
|
{
|
753 |
|
|
regsused++;
|
754 |
|
|
}
|
755 |
|
|
else if (regsused == 0)
|
756 |
|
|
{
|
757 |
|
|
regsused = 2;
|
758 |
|
|
}
|
759 |
|
|
else
|
760 |
|
|
{
|
761 |
|
|
regsused = 2;
|
762 |
|
|
len += arg_length;
|
763 |
|
|
}
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
/* Allocate stack space. */
|
767 |
|
|
sp -= len;
|
768 |
|
|
|
769 |
|
|
regsused = struct_return ? 1 : 0;
|
770 |
|
|
/* Push all arguments onto the stack. */
|
771 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
772 |
|
|
{
|
773 |
|
|
int len;
|
774 |
|
|
char *val;
|
775 |
|
|
|
776 |
|
|
/* XXX Check this. What about UNIONS? */
|
777 |
|
|
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
778 |
|
|
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
779 |
|
|
{
|
780 |
|
|
/* XXX Wrong, we want a pointer to this argument. */
|
781 |
|
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
782 |
|
|
val = (char *) VALUE_CONTENTS (*args);
|
783 |
|
|
}
|
784 |
|
|
else
|
785 |
|
|
{
|
786 |
|
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
787 |
|
|
val = (char *) VALUE_CONTENTS (*args);
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
if (regsused < 2
|
791 |
|
|
&& (len <= 2
|
792 |
|
|
|| TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_PTR))
|
793 |
|
|
{
|
794 |
|
|
write_register (regsused, extract_unsigned_integer (val, 4));
|
795 |
|
|
regsused++;
|
796 |
|
|
}
|
797 |
|
|
else if (regsused == 0 && len == 4)
|
798 |
|
|
{
|
799 |
|
|
write_register (regsused, extract_unsigned_integer (val, 2));
|
800 |
|
|
write_register (regsused + 1, extract_unsigned_integer (val + 2, 2));
|
801 |
|
|
regsused = 2;
|
802 |
|
|
}
|
803 |
|
|
else
|
804 |
|
|
{
|
805 |
|
|
regsused = 2;
|
806 |
|
|
while (len > 0)
|
807 |
|
|
{
|
808 |
|
|
write_memory (sp + stack_offset, val, 2);
|
809 |
|
|
|
810 |
|
|
len -= 2;
|
811 |
|
|
val += 2;
|
812 |
|
|
stack_offset += 2;
|
813 |
|
|
}
|
814 |
|
|
}
|
815 |
|
|
args++;
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
return sp;
|
819 |
|
|
}
|
820 |
|
|
|
821 |
|
|
/* Function: push_return_address (pc)
|
822 |
|
|
Set up the return address for the inferior function call.
|
823 |
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
824 |
|
|
|
825 |
|
|
CORE_ADDR
|
826 |
|
|
mn10200_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
827 |
|
|
{
|
828 |
|
|
unsigned char buf[4];
|
829 |
|
|
|
830 |
|
|
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
|
831 |
|
|
write_memory (sp - 4, buf, 4);
|
832 |
|
|
return sp - 4;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
/* Function: store_struct_return (addr,sp)
|
836 |
|
|
Store the structure value return address for an inferior function
|
837 |
|
|
call. */
|
838 |
|
|
|
839 |
|
|
CORE_ADDR
|
840 |
|
|
mn10200_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
841 |
|
|
{
|
842 |
|
|
/* The structure return address is passed as the first argument. */
|
843 |
|
|
write_register (0, addr);
|
844 |
|
|
return sp;
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/* Function: frame_saved_pc
|
848 |
|
|
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
849 |
|
|
is saved in the stack anywhere, otherwise we get it from the
|
850 |
|
|
registers. If the inner frame is a dummy frame, return its PC
|
851 |
|
|
instead of RP, because that's where "caller" of the dummy-frame
|
852 |
|
|
will be found. */
|
853 |
|
|
|
854 |
|
|
CORE_ADDR
|
855 |
|
|
mn10200_frame_saved_pc (struct frame_info *fi)
|
856 |
|
|
{
|
857 |
|
|
/* The saved PC will always be at the base of the current frame. */
|
858 |
|
|
return (read_memory_integer (fi->frame, REGISTER_SIZE) & 0xffffff);
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
/* Function: init_extra_frame_info
|
862 |
|
|
Setup the frame's frame pointer, pc, and frame addresses for saved
|
863 |
|
|
registers. Most of the work is done in mn10200_analyze_prologue().
|
864 |
|
|
|
865 |
|
|
Note that when we are called for the last frame (currently active frame),
|
866 |
|
|
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
867 |
|
|
be valid only if this routine uses FP. For previous frames, fi-frame will
|
868 |
|
|
always be correct. mn10200_analyze_prologue will fix fi->frame if
|
869 |
|
|
it's not valid.
|
870 |
|
|
|
871 |
|
|
We can be called with the PC in the call dummy under two circumstances.
|
872 |
|
|
First, during normal backtracing, second, while figuring out the frame
|
873 |
|
|
pointer just prior to calling the target function (see run_stack_dummy). */
|
874 |
|
|
|
875 |
|
|
void
|
876 |
|
|
mn10200_init_extra_frame_info (struct frame_info *fi)
|
877 |
|
|
{
|
878 |
|
|
if (fi->next)
|
879 |
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
880 |
|
|
|
881 |
|
|
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
882 |
|
|
fi->status = 0;
|
883 |
|
|
fi->stack_size = 0;
|
884 |
|
|
|
885 |
|
|
mn10200_analyze_prologue (fi, 0);
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
void
|
889 |
|
|
_initialize_mn10200_tdep (void)
|
890 |
|
|
{
|
891 |
|
|
tm_print_insn = print_insn_mn10200;
|
892 |
|
|
}
|