1 |
578 |
markom |
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1996, 1997, 1998, 1999, 2000, 2001
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "obstack.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "value.h"
|
28 |
|
|
#include "bfd.h"
|
29 |
|
|
#include "gdb_string.h"
|
30 |
|
|
#include "gdbcore.h"
|
31 |
|
|
#include "symfile.h"
|
32 |
|
|
#include "regcache.h"
|
33 |
|
|
#include "arch-utils.h"
|
34 |
|
|
|
35 |
|
|
extern void _initialize_mn10300_tdep (void);
|
36 |
|
|
static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
|
37 |
|
|
CORE_ADDR pc);
|
38 |
|
|
|
39 |
|
|
/* mn10300 private data */
|
40 |
|
|
struct gdbarch_tdep
|
41 |
|
|
{
|
42 |
|
|
int am33_mode;
|
43 |
|
|
#define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
|
44 |
|
|
};
|
45 |
|
|
|
46 |
|
|
/* Additional info used by the frame */
|
47 |
|
|
|
48 |
|
|
struct frame_extra_info
|
49 |
|
|
{
|
50 |
|
|
int status;
|
51 |
|
|
int stack_size;
|
52 |
|
|
};
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
static char *
|
56 |
|
|
register_name (int reg, char **regs, long sizeof_regs)
|
57 |
|
|
{
|
58 |
|
|
if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
|
59 |
|
|
return NULL;
|
60 |
|
|
else
|
61 |
|
|
return regs[reg];
|
62 |
|
|
}
|
63 |
|
|
|
64 |
|
|
static char *
|
65 |
|
|
mn10300_generic_register_name (int reg)
|
66 |
|
|
{
|
67 |
|
|
static char *regs[] =
|
68 |
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
69 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
|
70 |
|
|
"", "", "", "", "", "", "", "",
|
71 |
|
|
"", "", "", "", "", "", "", "fp"
|
72 |
|
|
};
|
73 |
|
|
return register_name (reg, regs, sizeof regs);
|
74 |
|
|
}
|
75 |
|
|
|
76 |
|
|
|
77 |
|
|
static char *
|
78 |
|
|
am33_register_name (int reg)
|
79 |
|
|
{
|
80 |
|
|
static char *regs[] =
|
81 |
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
82 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "",
|
83 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
84 |
|
|
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
|
85 |
|
|
};
|
86 |
|
|
return register_name (reg, regs, sizeof regs);
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
static CORE_ADDR
|
90 |
|
|
mn10300_saved_pc_after_call (struct frame_info *fi)
|
91 |
|
|
{
|
92 |
|
|
return read_memory_integer (read_register (SP_REGNUM), 4);
|
93 |
|
|
}
|
94 |
|
|
|
95 |
|
|
static void
|
96 |
|
|
mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
97 |
|
|
{
|
98 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
99 |
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
|
100 |
|
|
else
|
101 |
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
static CORE_ADDR
|
105 |
|
|
mn10300_extract_struct_value_address (char *regbuf)
|
106 |
|
|
{
|
107 |
|
|
return extract_address (regbuf + REGISTER_BYTE (4),
|
108 |
|
|
REGISTER_RAW_SIZE (4));
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
static void
|
112 |
|
|
mn10300_store_return_value (struct type *type, char *valbuf)
|
113 |
|
|
{
|
114 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
115 |
|
|
write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
|
116 |
|
|
else
|
117 |
|
|
write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
|
118 |
|
|
}
|
119 |
|
|
|
120 |
|
|
static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
|
121 |
|
|
static struct frame_info *
|
122 |
|
|
analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
|
123 |
|
|
{
|
124 |
|
|
static struct frame_info *dummy = NULL;
|
125 |
|
|
if (dummy == NULL)
|
126 |
|
|
{
|
127 |
|
|
dummy = xmalloc (sizeof (struct frame_info));
|
128 |
|
|
dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
|
129 |
|
|
dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
|
130 |
|
|
}
|
131 |
|
|
dummy->next = NULL;
|
132 |
|
|
dummy->prev = NULL;
|
133 |
|
|
dummy->pc = pc;
|
134 |
|
|
dummy->frame = frame;
|
135 |
|
|
dummy->extra_info->status = 0;
|
136 |
|
|
dummy->extra_info->stack_size = 0;
|
137 |
|
|
memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
|
138 |
|
|
mn10300_analyze_prologue (dummy, 0);
|
139 |
|
|
return dummy;
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
/* Values for frame_info.status */
|
143 |
|
|
|
144 |
|
|
#define MY_FRAME_IN_SP 0x1
|
145 |
|
|
#define MY_FRAME_IN_FP 0x2
|
146 |
|
|
#define NO_MORE_FRAMES 0x4
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
150 |
|
|
static int
|
151 |
|
|
mn10300_use_struct_convention (int gcc_p, struct type *type)
|
152 |
|
|
{
|
153 |
|
|
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
/* The breakpoint instruction must be the same size as the smallest
|
157 |
|
|
instruction in the instruction set.
|
158 |
|
|
|
159 |
|
|
The Matsushita mn10x00 processors have single byte instructions
|
160 |
|
|
so we need a single byte breakpoint. Matsushita hasn't defined
|
161 |
|
|
one, so we defined it ourselves. */
|
162 |
|
|
|
163 |
|
|
static unsigned char *
|
164 |
|
|
mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
165 |
|
|
{
|
166 |
|
|
static char breakpoint[] =
|
167 |
|
|
{0xff};
|
168 |
|
|
*bp_size = 1;
|
169 |
|
|
return breakpoint;
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
|
173 |
|
|
/* Fix fi->frame if it's bogus at this point. This is a helper
|
174 |
|
|
function for mn10300_analyze_prologue. */
|
175 |
|
|
|
176 |
|
|
static void
|
177 |
|
|
fix_frame_pointer (struct frame_info *fi, int stack_size)
|
178 |
|
|
{
|
179 |
|
|
if (fi && fi->next == NULL)
|
180 |
|
|
{
|
181 |
|
|
if (fi->extra_info->status & MY_FRAME_IN_SP)
|
182 |
|
|
fi->frame = read_sp () - stack_size;
|
183 |
|
|
else if (fi->extra_info->status & MY_FRAME_IN_FP)
|
184 |
|
|
fi->frame = read_register (A3_REGNUM);
|
185 |
|
|
}
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
/* Set offsets of registers saved by movm instruction.
|
190 |
|
|
This is a helper function for mn10300_analyze_prologue. */
|
191 |
|
|
|
192 |
|
|
static void
|
193 |
|
|
set_movm_offsets (struct frame_info *fi, int movm_args)
|
194 |
|
|
{
|
195 |
|
|
int offset = 0;
|
196 |
|
|
|
197 |
|
|
if (fi == NULL || movm_args == 0)
|
198 |
|
|
return;
|
199 |
|
|
|
200 |
|
|
if (movm_args & movm_other_bit)
|
201 |
|
|
{
|
202 |
|
|
/* The `other' bit leaves a blank area of four bytes at the
|
203 |
|
|
beginning of its block of saved registers, making it 32 bytes
|
204 |
|
|
long in total. */
|
205 |
|
|
fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
|
206 |
|
|
fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
|
207 |
|
|
fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
|
208 |
|
|
fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
|
209 |
|
|
fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
|
210 |
|
|
fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
|
211 |
|
|
fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
|
212 |
|
|
offset += 32;
|
213 |
|
|
}
|
214 |
|
|
if (movm_args & movm_a3_bit)
|
215 |
|
|
{
|
216 |
|
|
fi->saved_regs[A3_REGNUM] = fi->frame + offset;
|
217 |
|
|
offset += 4;
|
218 |
|
|
}
|
219 |
|
|
if (movm_args & movm_a2_bit)
|
220 |
|
|
{
|
221 |
|
|
fi->saved_regs[A2_REGNUM] = fi->frame + offset;
|
222 |
|
|
offset += 4;
|
223 |
|
|
}
|
224 |
|
|
if (movm_args & movm_d3_bit)
|
225 |
|
|
{
|
226 |
|
|
fi->saved_regs[D3_REGNUM] = fi->frame + offset;
|
227 |
|
|
offset += 4;
|
228 |
|
|
}
|
229 |
|
|
if (movm_args & movm_d2_bit)
|
230 |
|
|
{
|
231 |
|
|
fi->saved_regs[D2_REGNUM] = fi->frame + offset;
|
232 |
|
|
offset += 4;
|
233 |
|
|
}
|
234 |
|
|
if (AM33_MODE)
|
235 |
|
|
{
|
236 |
|
|
if (movm_args & movm_exother_bit)
|
237 |
|
|
{
|
238 |
|
|
fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
|
239 |
|
|
fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
|
240 |
|
|
fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
|
241 |
|
|
fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
|
242 |
|
|
fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
|
243 |
|
|
fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
|
244 |
|
|
offset += 24;
|
245 |
|
|
}
|
246 |
|
|
if (movm_args & movm_exreg1_bit)
|
247 |
|
|
{
|
248 |
|
|
fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
|
249 |
|
|
fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
|
250 |
|
|
fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
|
251 |
|
|
fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
|
252 |
|
|
offset += 16;
|
253 |
|
|
}
|
254 |
|
|
if (movm_args & movm_exreg0_bit)
|
255 |
|
|
{
|
256 |
|
|
fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
|
257 |
|
|
fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
|
258 |
|
|
offset += 8;
|
259 |
|
|
}
|
260 |
|
|
}
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
/* The main purpose of this file is dealing with prologues to extract
|
265 |
|
|
information about stack frames and saved registers.
|
266 |
|
|
|
267 |
|
|
For reference here's how prologues look on the mn10300:
|
268 |
|
|
|
269 |
|
|
With frame pointer:
|
270 |
|
|
movm [d2,d3,a2,a3],sp
|
271 |
|
|
mov sp,a3
|
272 |
|
|
add <size>,sp
|
273 |
|
|
|
274 |
|
|
Without frame pointer:
|
275 |
|
|
movm [d2,d3,a2,a3],sp (if needed)
|
276 |
|
|
add <size>,sp
|
277 |
|
|
|
278 |
|
|
One day we might keep the stack pointer constant, that won't
|
279 |
|
|
change the code for prologues, but it will make the frame
|
280 |
|
|
pointerless case much more common. */
|
281 |
|
|
|
282 |
|
|
/* Analyze the prologue to determine where registers are saved,
|
283 |
|
|
the end of the prologue, etc etc. Return the end of the prologue
|
284 |
|
|
scanned.
|
285 |
|
|
|
286 |
|
|
We store into FI (if non-null) several tidbits of information:
|
287 |
|
|
|
288 |
|
|
* stack_size -- size of this stack frame. Note that if we stop in
|
289 |
|
|
certain parts of the prologue/epilogue we may claim the size of the
|
290 |
|
|
current frame is zero. This happens when the current frame has
|
291 |
|
|
not been allocated yet or has already been deallocated.
|
292 |
|
|
|
293 |
|
|
* fsr -- Addresses of registers saved in the stack by this frame.
|
294 |
|
|
|
295 |
|
|
* status -- A (relatively) generic status indicator. It's a bitmask
|
296 |
|
|
with the following bits:
|
297 |
|
|
|
298 |
|
|
MY_FRAME_IN_SP: The base of the current frame is actually in
|
299 |
|
|
the stack pointer. This can happen for frame pointerless
|
300 |
|
|
functions, or cases where we're stopped in the prologue/epilogue
|
301 |
|
|
itself. For these cases mn10300_analyze_prologue will need up
|
302 |
|
|
update fi->frame before returning or analyzing the register
|
303 |
|
|
save instructions.
|
304 |
|
|
|
305 |
|
|
MY_FRAME_IN_FP: The base of the current frame is in the
|
306 |
|
|
frame pointer register ($a2).
|
307 |
|
|
|
308 |
|
|
NO_MORE_FRAMES: Set this if the current frame is "start" or
|
309 |
|
|
if the first instruction looks like mov <imm>,sp. This tells
|
310 |
|
|
frame chain to not bother trying to unwind past this frame. */
|
311 |
|
|
|
312 |
|
|
static CORE_ADDR
|
313 |
|
|
mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
|
314 |
|
|
{
|
315 |
|
|
CORE_ADDR func_addr, func_end, addr, stop;
|
316 |
|
|
CORE_ADDR stack_size;
|
317 |
|
|
int imm_size;
|
318 |
|
|
unsigned char buf[4];
|
319 |
|
|
int status, movm_args = 0;
|
320 |
|
|
char *name;
|
321 |
|
|
|
322 |
|
|
/* Use the PC in the frame if it's provided to look up the
|
323 |
|
|
start of this function. */
|
324 |
|
|
pc = (fi ? fi->pc : pc);
|
325 |
|
|
|
326 |
|
|
/* Find the start of this function. */
|
327 |
|
|
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
|
328 |
|
|
|
329 |
|
|
/* Do nothing if we couldn't find the start of this function or if we're
|
330 |
|
|
stopped at the first instruction in the prologue. */
|
331 |
|
|
if (status == 0)
|
332 |
|
|
{
|
333 |
|
|
return pc;
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
/* If we're in start, then give up. */
|
337 |
|
|
if (strcmp (name, "start") == 0)
|
338 |
|
|
{
|
339 |
|
|
if (fi != NULL)
|
340 |
|
|
fi->extra_info->status = NO_MORE_FRAMES;
|
341 |
|
|
return pc;
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
/* At the start of a function our frame is in the stack pointer. */
|
345 |
|
|
if (fi)
|
346 |
|
|
fi->extra_info->status = MY_FRAME_IN_SP;
|
347 |
|
|
|
348 |
|
|
/* Get the next two bytes into buf, we need two because rets is a two
|
349 |
|
|
byte insn and the first isn't enough to uniquely identify it. */
|
350 |
|
|
status = read_memory_nobpt (pc, buf, 2);
|
351 |
|
|
if (status != 0)
|
352 |
|
|
return pc;
|
353 |
|
|
|
354 |
|
|
/* If we're physically on an "rets" instruction, then our frame has
|
355 |
|
|
already been deallocated. Note this can also be true for retf
|
356 |
|
|
and ret if they specify a size of zero.
|
357 |
|
|
|
358 |
|
|
In this case fi->frame is bogus, we need to fix it. */
|
359 |
|
|
if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
|
360 |
|
|
{
|
361 |
|
|
if (fi->next == NULL)
|
362 |
|
|
fi->frame = read_sp ();
|
363 |
|
|
return fi->pc;
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
/* Similarly if we're stopped on the first insn of a prologue as our
|
367 |
|
|
frame hasn't been allocated yet. */
|
368 |
|
|
if (fi && fi->pc == func_addr)
|
369 |
|
|
{
|
370 |
|
|
if (fi->next == NULL)
|
371 |
|
|
fi->frame = read_sp ();
|
372 |
|
|
return fi->pc;
|
373 |
|
|
}
|
374 |
|
|
|
375 |
|
|
/* Figure out where to stop scanning. */
|
376 |
|
|
stop = fi ? fi->pc : func_end;
|
377 |
|
|
|
378 |
|
|
/* Don't walk off the end of the function. */
|
379 |
|
|
stop = stop > func_end ? func_end : stop;
|
380 |
|
|
|
381 |
|
|
/* Start scanning on the first instruction of this function. */
|
382 |
|
|
addr = func_addr;
|
383 |
|
|
|
384 |
|
|
/* Suck in two bytes. */
|
385 |
|
|
status = read_memory_nobpt (addr, buf, 2);
|
386 |
|
|
if (status != 0)
|
387 |
|
|
{
|
388 |
|
|
fix_frame_pointer (fi, 0);
|
389 |
|
|
return addr;
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
/* First see if this insn sets the stack pointer; if so, it's something
|
393 |
|
|
we won't understand, so quit now. */
|
394 |
|
|
if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
|
395 |
|
|
{
|
396 |
|
|
if (fi)
|
397 |
|
|
fi->extra_info->status = NO_MORE_FRAMES;
|
398 |
|
|
return addr;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/* Now look for movm [regs],sp, which saves the callee saved registers.
|
402 |
|
|
|
403 |
|
|
At this time we don't know if fi->frame is valid, so we only note
|
404 |
|
|
that we encountered a movm instruction. Later, we'll set the entries
|
405 |
|
|
in fsr.regs as needed. */
|
406 |
|
|
if (buf[0] == 0xcf)
|
407 |
|
|
{
|
408 |
|
|
/* Extract the register list for the movm instruction. */
|
409 |
|
|
status = read_memory_nobpt (addr + 1, buf, 1);
|
410 |
|
|
movm_args = *buf;
|
411 |
|
|
|
412 |
|
|
addr += 2;
|
413 |
|
|
|
414 |
|
|
/* Quit now if we're beyond the stop point. */
|
415 |
|
|
if (addr >= stop)
|
416 |
|
|
{
|
417 |
|
|
/* Fix fi->frame since it's bogus at this point. */
|
418 |
|
|
if (fi && fi->next == NULL)
|
419 |
|
|
fi->frame = read_sp ();
|
420 |
|
|
|
421 |
|
|
/* Note if/where callee saved registers were saved. */
|
422 |
|
|
set_movm_offsets (fi, movm_args);
|
423 |
|
|
return addr;
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
/* Get the next two bytes so the prologue scan can continue. */
|
427 |
|
|
status = read_memory_nobpt (addr, buf, 2);
|
428 |
|
|
if (status != 0)
|
429 |
|
|
{
|
430 |
|
|
/* Fix fi->frame since it's bogus at this point. */
|
431 |
|
|
if (fi && fi->next == NULL)
|
432 |
|
|
fi->frame = read_sp ();
|
433 |
|
|
|
434 |
|
|
/* Note if/where callee saved registers were saved. */
|
435 |
|
|
set_movm_offsets (fi, movm_args);
|
436 |
|
|
return addr;
|
437 |
|
|
}
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
/* Now see if we set up a frame pointer via "mov sp,a3" */
|
441 |
|
|
if (buf[0] == 0x3f)
|
442 |
|
|
{
|
443 |
|
|
addr += 1;
|
444 |
|
|
|
445 |
|
|
/* The frame pointer is now valid. */
|
446 |
|
|
if (fi)
|
447 |
|
|
{
|
448 |
|
|
fi->extra_info->status |= MY_FRAME_IN_FP;
|
449 |
|
|
fi->extra_info->status &= ~MY_FRAME_IN_SP;
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
/* Quit now if we're beyond the stop point. */
|
453 |
|
|
if (addr >= stop)
|
454 |
|
|
{
|
455 |
|
|
/* Fix fi->frame if it's bogus at this point. */
|
456 |
|
|
fix_frame_pointer (fi, 0);
|
457 |
|
|
|
458 |
|
|
/* Note if/where callee saved registers were saved. */
|
459 |
|
|
set_movm_offsets (fi, movm_args);
|
460 |
|
|
return addr;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* Get two more bytes so scanning can continue. */
|
464 |
|
|
status = read_memory_nobpt (addr, buf, 2);
|
465 |
|
|
if (status != 0)
|
466 |
|
|
{
|
467 |
|
|
/* Fix fi->frame if it's bogus at this point. */
|
468 |
|
|
fix_frame_pointer (fi, 0);
|
469 |
|
|
|
470 |
|
|
/* Note if/where callee saved registers were saved. */
|
471 |
|
|
set_movm_offsets (fi, movm_args);
|
472 |
|
|
return addr;
|
473 |
|
|
}
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
/* Next we should allocate the local frame. No more prologue insns
|
477 |
|
|
are found after allocating the local frame.
|
478 |
|
|
|
479 |
|
|
Search for add imm8,sp (0xf8feXX)
|
480 |
|
|
or add imm16,sp (0xfafeXXXX)
|
481 |
|
|
or add imm32,sp (0xfcfeXXXXXXXX).
|
482 |
|
|
|
483 |
|
|
If none of the above was found, then this prologue has no
|
484 |
|
|
additional stack. */
|
485 |
|
|
|
486 |
|
|
status = read_memory_nobpt (addr, buf, 2);
|
487 |
|
|
if (status != 0)
|
488 |
|
|
{
|
489 |
|
|
/* Fix fi->frame if it's bogus at this point. */
|
490 |
|
|
fix_frame_pointer (fi, 0);
|
491 |
|
|
|
492 |
|
|
/* Note if/where callee saved registers were saved. */
|
493 |
|
|
set_movm_offsets (fi, movm_args);
|
494 |
|
|
return addr;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
imm_size = 0;
|
498 |
|
|
if (buf[0] == 0xf8 && buf[1] == 0xfe)
|
499 |
|
|
imm_size = 1;
|
500 |
|
|
else if (buf[0] == 0xfa && buf[1] == 0xfe)
|
501 |
|
|
imm_size = 2;
|
502 |
|
|
else if (buf[0] == 0xfc && buf[1] == 0xfe)
|
503 |
|
|
imm_size = 4;
|
504 |
|
|
|
505 |
|
|
if (imm_size != 0)
|
506 |
|
|
{
|
507 |
|
|
/* Suck in imm_size more bytes, they'll hold the size of the
|
508 |
|
|
current frame. */
|
509 |
|
|
status = read_memory_nobpt (addr + 2, buf, imm_size);
|
510 |
|
|
if (status != 0)
|
511 |
|
|
{
|
512 |
|
|
/* Fix fi->frame if it's bogus at this point. */
|
513 |
|
|
fix_frame_pointer (fi, 0);
|
514 |
|
|
|
515 |
|
|
/* Note if/where callee saved registers were saved. */
|
516 |
|
|
set_movm_offsets (fi, movm_args);
|
517 |
|
|
return addr;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/* Note the size of the stack in the frame info structure. */
|
521 |
|
|
stack_size = extract_signed_integer (buf, imm_size);
|
522 |
|
|
if (fi)
|
523 |
|
|
fi->extra_info->stack_size = stack_size;
|
524 |
|
|
|
525 |
|
|
/* We just consumed 2 + imm_size bytes. */
|
526 |
|
|
addr += 2 + imm_size;
|
527 |
|
|
|
528 |
|
|
/* No more prologue insns follow, so begin preparation to return. */
|
529 |
|
|
/* Fix fi->frame if it's bogus at this point. */
|
530 |
|
|
fix_frame_pointer (fi, stack_size);
|
531 |
|
|
|
532 |
|
|
/* Note if/where callee saved registers were saved. */
|
533 |
|
|
set_movm_offsets (fi, movm_args);
|
534 |
|
|
return addr;
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/* We never found an insn which allocates local stack space, regardless
|
538 |
|
|
this is the end of the prologue. */
|
539 |
|
|
/* Fix fi->frame if it's bogus at this point. */
|
540 |
|
|
fix_frame_pointer (fi, 0);
|
541 |
|
|
|
542 |
|
|
/* Note if/where callee saved registers were saved. */
|
543 |
|
|
set_movm_offsets (fi, movm_args);
|
544 |
|
|
return addr;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
/* Function: saved_regs_size
|
549 |
|
|
Return the size in bytes of the register save area, based on the
|
550 |
|
|
saved_regs array in FI. */
|
551 |
|
|
static int
|
552 |
|
|
saved_regs_size (struct frame_info *fi)
|
553 |
|
|
{
|
554 |
|
|
int adjust = 0;
|
555 |
|
|
int i;
|
556 |
|
|
|
557 |
|
|
/* Reserve four bytes for every register saved. */
|
558 |
|
|
for (i = 0; i < NUM_REGS; i++)
|
559 |
|
|
if (fi->saved_regs[i])
|
560 |
|
|
adjust += 4;
|
561 |
|
|
|
562 |
|
|
/* If we saved LIR, then it's most likely we used a `movm'
|
563 |
|
|
instruction with the `other' bit set, in which case the SP is
|
564 |
|
|
decremented by an extra four bytes, "to simplify calculation
|
565 |
|
|
of the transfer area", according to the processor manual. */
|
566 |
|
|
if (fi->saved_regs[LIR_REGNUM])
|
567 |
|
|
adjust += 4;
|
568 |
|
|
|
569 |
|
|
return adjust;
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
|
573 |
|
|
/* Function: frame_chain
|
574 |
|
|
Figure out and return the caller's frame pointer given current
|
575 |
|
|
frame_info struct.
|
576 |
|
|
|
577 |
|
|
We don't handle dummy frames yet but we would probably just return the
|
578 |
|
|
stack pointer that was in use at the time the function call was made? */
|
579 |
|
|
|
580 |
|
|
static CORE_ADDR
|
581 |
|
|
mn10300_frame_chain (struct frame_info *fi)
|
582 |
|
|
{
|
583 |
|
|
struct frame_info *dummy;
|
584 |
|
|
/* Walk through the prologue to determine the stack size,
|
585 |
|
|
location of saved registers, end of the prologue, etc. */
|
586 |
|
|
if (fi->extra_info->status == 0)
|
587 |
|
|
mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
|
588 |
|
|
|
589 |
|
|
/* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
|
590 |
|
|
if (fi->extra_info->status & NO_MORE_FRAMES)
|
591 |
|
|
return 0;
|
592 |
|
|
|
593 |
|
|
/* Now that we've analyzed our prologue, determine the frame
|
594 |
|
|
pointer for our caller.
|
595 |
|
|
|
596 |
|
|
If our caller has a frame pointer, then we need to
|
597 |
|
|
find the entry value of $a3 to our function.
|
598 |
|
|
|
599 |
|
|
If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
|
600 |
|
|
location pointed to by fsr.regs[A3_REGNUM].
|
601 |
|
|
|
602 |
|
|
Else it's still in $a3.
|
603 |
|
|
|
604 |
|
|
If our caller does not have a frame pointer, then his
|
605 |
|
|
frame base is fi->frame + -caller's stack size. */
|
606 |
|
|
|
607 |
|
|
/* The easiest way to get that info is to analyze our caller's frame.
|
608 |
|
|
So we set up a dummy frame and call mn10300_analyze_prologue to
|
609 |
|
|
find stuff for us. */
|
610 |
|
|
dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
|
611 |
|
|
|
612 |
|
|
if (dummy->extra_info->status & MY_FRAME_IN_FP)
|
613 |
|
|
{
|
614 |
|
|
/* Our caller has a frame pointer. So find the frame in $a3 or
|
615 |
|
|
in the stack. */
|
616 |
|
|
if (fi->saved_regs[A3_REGNUM])
|
617 |
|
|
return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
|
618 |
|
|
else
|
619 |
|
|
return read_register (A3_REGNUM);
|
620 |
|
|
}
|
621 |
|
|
else
|
622 |
|
|
{
|
623 |
|
|
int adjust = saved_regs_size (fi);
|
624 |
|
|
|
625 |
|
|
/* Our caller does not have a frame pointer. So his frame starts
|
626 |
|
|
at the base of our frame (fi->frame) + register save space
|
627 |
|
|
+ <his size>. */
|
628 |
|
|
return fi->frame + adjust + -dummy->extra_info->stack_size;
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
/* Function: skip_prologue
|
633 |
|
|
Return the address of the first inst past the prologue of the function. */
|
634 |
|
|
|
635 |
|
|
static CORE_ADDR
|
636 |
|
|
mn10300_skip_prologue (CORE_ADDR pc)
|
637 |
|
|
{
|
638 |
|
|
/* We used to check the debug symbols, but that can lose if
|
639 |
|
|
we have a null prologue. */
|
640 |
|
|
return mn10300_analyze_prologue (NULL, pc);
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* generic_pop_current_frame calls this function if the current
|
644 |
|
|
frame isn't a dummy frame. */
|
645 |
|
|
static void
|
646 |
|
|
mn10300_pop_frame_regular (struct frame_info *frame)
|
647 |
|
|
{
|
648 |
|
|
int regnum;
|
649 |
|
|
|
650 |
|
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
651 |
|
|
|
652 |
|
|
/* Restore any saved registers. */
|
653 |
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
654 |
|
|
if (frame->saved_regs[regnum] != 0)
|
655 |
|
|
{
|
656 |
|
|
ULONGEST value;
|
657 |
|
|
|
658 |
|
|
value = read_memory_unsigned_integer (frame->saved_regs[regnum],
|
659 |
|
|
REGISTER_RAW_SIZE (regnum));
|
660 |
|
|
write_register (regnum, value);
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
/* Actually cut back the stack. */
|
664 |
|
|
write_register (SP_REGNUM, FRAME_FP (frame));
|
665 |
|
|
|
666 |
|
|
/* Don't we need to set the PC?!? XXX FIXME. */
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/* Function: pop_frame
|
670 |
|
|
This routine gets called when either the user uses the `return'
|
671 |
|
|
command, or the call dummy breakpoint gets hit. */
|
672 |
|
|
static void
|
673 |
|
|
mn10300_pop_frame (void)
|
674 |
|
|
{
|
675 |
|
|
/* This function checks for and handles generic dummy frames, and
|
676 |
|
|
calls back to our function for ordinary frames. */
|
677 |
|
|
generic_pop_current_frame (mn10300_pop_frame_regular);
|
678 |
|
|
|
679 |
|
|
/* Throw away any cached frame information. */
|
680 |
|
|
flush_cached_frames ();
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
/* Function: push_arguments
|
684 |
|
|
Setup arguments for a call to the target. Arguments go in
|
685 |
|
|
order on the stack. */
|
686 |
|
|
|
687 |
|
|
static CORE_ADDR
|
688 |
|
|
mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
689 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
690 |
|
|
{
|
691 |
|
|
int argnum = 0;
|
692 |
|
|
int len = 0;
|
693 |
|
|
int stack_offset = 0;
|
694 |
|
|
int regsused = struct_return ? 1 : 0;
|
695 |
|
|
|
696 |
|
|
/* This should be a nop, but align the stack just in case something
|
697 |
|
|
went wrong. Stacks are four byte aligned on the mn10300. */
|
698 |
|
|
sp &= ~3;
|
699 |
|
|
|
700 |
|
|
/* Now make space on the stack for the args.
|
701 |
|
|
|
702 |
|
|
XXX This doesn't appear to handle pass-by-invisible reference
|
703 |
|
|
arguments. */
|
704 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
705 |
|
|
{
|
706 |
|
|
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
|
707 |
|
|
|
708 |
|
|
while (regsused < 2 && arg_length > 0)
|
709 |
|
|
{
|
710 |
|
|
regsused++;
|
711 |
|
|
arg_length -= 4;
|
712 |
|
|
}
|
713 |
|
|
len += arg_length;
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
/* Allocate stack space. */
|
717 |
|
|
sp -= len;
|
718 |
|
|
|
719 |
|
|
regsused = struct_return ? 1 : 0;
|
720 |
|
|
/* Push all arguments onto the stack. */
|
721 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
722 |
|
|
{
|
723 |
|
|
int len;
|
724 |
|
|
char *val;
|
725 |
|
|
|
726 |
|
|
/* XXX Check this. What about UNIONS? */
|
727 |
|
|
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
728 |
|
|
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
729 |
|
|
{
|
730 |
|
|
/* XXX Wrong, we want a pointer to this argument. */
|
731 |
|
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
732 |
|
|
val = (char *) VALUE_CONTENTS (*args);
|
733 |
|
|
}
|
734 |
|
|
else
|
735 |
|
|
{
|
736 |
|
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
737 |
|
|
val = (char *) VALUE_CONTENTS (*args);
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
while (regsused < 2 && len > 0)
|
741 |
|
|
{
|
742 |
|
|
write_register (regsused, extract_unsigned_integer (val, 4));
|
743 |
|
|
val += 4;
|
744 |
|
|
len -= 4;
|
745 |
|
|
regsused++;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
while (len > 0)
|
749 |
|
|
{
|
750 |
|
|
write_memory (sp + stack_offset, val, 4);
|
751 |
|
|
len -= 4;
|
752 |
|
|
val += 4;
|
753 |
|
|
stack_offset += 4;
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
args++;
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
/* Make space for the flushback area. */
|
760 |
|
|
sp -= 8;
|
761 |
|
|
return sp;
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
/* Function: push_return_address (pc)
|
765 |
|
|
Set up the return address for the inferior function call.
|
766 |
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
767 |
|
|
|
768 |
|
|
static CORE_ADDR
|
769 |
|
|
mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
770 |
|
|
{
|
771 |
|
|
unsigned char buf[4];
|
772 |
|
|
|
773 |
|
|
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
|
774 |
|
|
write_memory (sp - 4, buf, 4);
|
775 |
|
|
return sp - 4;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
/* Function: store_struct_return (addr,sp)
|
779 |
|
|
Store the structure value return address for an inferior function
|
780 |
|
|
call. */
|
781 |
|
|
|
782 |
|
|
static void
|
783 |
|
|
mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
784 |
|
|
{
|
785 |
|
|
/* The structure return address is passed as the first argument. */
|
786 |
|
|
write_register (0, addr);
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* Function: frame_saved_pc
|
790 |
|
|
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
791 |
|
|
is saved in the stack anywhere, otherwise we get it from the
|
792 |
|
|
registers. If the inner frame is a dummy frame, return its PC
|
793 |
|
|
instead of RP, because that's where "caller" of the dummy-frame
|
794 |
|
|
will be found. */
|
795 |
|
|
|
796 |
|
|
static CORE_ADDR
|
797 |
|
|
mn10300_frame_saved_pc (struct frame_info *fi)
|
798 |
|
|
{
|
799 |
|
|
int adjust = saved_regs_size (fi);
|
800 |
|
|
|
801 |
|
|
return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
/* Function: mn10300_init_extra_frame_info
|
805 |
|
|
Setup the frame's frame pointer, pc, and frame addresses for saved
|
806 |
|
|
registers. Most of the work is done in mn10300_analyze_prologue().
|
807 |
|
|
|
808 |
|
|
Note that when we are called for the last frame (currently active frame),
|
809 |
|
|
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
810 |
|
|
be valid only if this routine uses FP. For previous frames, fi-frame will
|
811 |
|
|
always be correct. mn10300_analyze_prologue will fix fi->frame if
|
812 |
|
|
it's not valid.
|
813 |
|
|
|
814 |
|
|
We can be called with the PC in the call dummy under two circumstances.
|
815 |
|
|
First, during normal backtracing, second, while figuring out the frame
|
816 |
|
|
pointer just prior to calling the target function (see run_stack_dummy). */
|
817 |
|
|
|
818 |
|
|
static void
|
819 |
|
|
mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
820 |
|
|
{
|
821 |
|
|
if (fi->next)
|
822 |
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
823 |
|
|
|
824 |
|
|
frame_saved_regs_zalloc (fi);
|
825 |
|
|
fi->extra_info = (struct frame_extra_info *)
|
826 |
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
827 |
|
|
|
828 |
|
|
fi->extra_info->status = 0;
|
829 |
|
|
fi->extra_info->stack_size = 0;
|
830 |
|
|
|
831 |
|
|
mn10300_analyze_prologue (fi, 0);
|
832 |
|
|
}
|
833 |
|
|
|
834 |
|
|
|
835 |
|
|
/* This function's job is handled by init_extra_frame_info. */
|
836 |
|
|
static void
|
837 |
|
|
mn10300_frame_init_saved_regs (struct frame_info *frame)
|
838 |
|
|
{
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
|
842 |
|
|
/* Function: mn10300_virtual_frame_pointer
|
843 |
|
|
Return the register that the function uses for a frame pointer,
|
844 |
|
|
plus any necessary offset to be applied to the register before
|
845 |
|
|
any frame pointer offsets. */
|
846 |
|
|
|
847 |
|
|
void
|
848 |
|
|
mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
|
849 |
|
|
{
|
850 |
|
|
struct frame_info *dummy = analyze_dummy_frame (pc, 0);
|
851 |
|
|
/* Set up a dummy frame_info, Analyze the prolog and fill in the
|
852 |
|
|
extra info. */
|
853 |
|
|
/* Results will tell us which type of frame it uses. */
|
854 |
|
|
if (dummy->extra_info->status & MY_FRAME_IN_SP)
|
855 |
|
|
{
|
856 |
|
|
*reg = SP_REGNUM;
|
857 |
|
|
*offset = -(dummy->extra_info->stack_size);
|
858 |
|
|
}
|
859 |
|
|
else
|
860 |
|
|
{
|
861 |
|
|
*reg = A3_REGNUM;
|
862 |
|
|
*offset = 0;
|
863 |
|
|
}
|
864 |
|
|
}
|
865 |
|
|
|
866 |
|
|
static int
|
867 |
|
|
mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
|
868 |
|
|
{
|
869 |
|
|
return (TYPE_LENGTH (type) > 8);
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
static struct type *
|
873 |
|
|
mn10300_register_virtual_type (int reg)
|
874 |
|
|
{
|
875 |
|
|
return builtin_type_int;
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
static int
|
879 |
|
|
mn10300_register_byte (int reg)
|
880 |
|
|
{
|
881 |
|
|
return (reg * 4);
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
static int
|
885 |
|
|
mn10300_register_virtual_size (int reg)
|
886 |
|
|
{
|
887 |
|
|
return 4;
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
static int
|
891 |
|
|
mn10300_register_raw_size (int reg)
|
892 |
|
|
{
|
893 |
|
|
return 4;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
|
897 |
|
|
mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
|
898 |
|
|
register number. Why don't Dwarf2 and GDB use the same numbering?
|
899 |
|
|
Who knows? But since people have object files lying around with
|
900 |
|
|
the existing Dwarf2 numbering, and other people have written stubs
|
901 |
|
|
to work with the existing GDB, neither of them can change. So we
|
902 |
|
|
just have to cope. */
|
903 |
|
|
static int
|
904 |
|
|
mn10300_dwarf2_reg_to_regnum (int dwarf2)
|
905 |
|
|
{
|
906 |
|
|
/* This table is supposed to be shaped like the REGISTER_NAMES
|
907 |
|
|
initializer in gcc/config/mn10300/mn10300.h. Registers which
|
908 |
|
|
appear in GCC's numbering, but have no counterpart in GDB's
|
909 |
|
|
world, are marked with a -1. */
|
910 |
|
|
static int dwarf2_to_gdb[] = {
|
911 |
|
|
0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
|
912 |
|
|
15, 16, 17, 18, 19, 20, 21, 22
|
913 |
|
|
};
|
914 |
|
|
int gdb;
|
915 |
|
|
|
916 |
|
|
if (dwarf2 < 0
|
917 |
|
|
|| dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
|
918 |
|
|
|| dwarf2_to_gdb[dwarf2] == -1)
|
919 |
|
|
internal_error (__FILE__, __LINE__,
|
920 |
|
|
"bogus register number in debug info: %d", dwarf2);
|
921 |
|
|
|
922 |
|
|
return dwarf2_to_gdb[dwarf2];
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
static void
|
926 |
|
|
mn10300_print_register (const char *name, int regnum, int reg_width)
|
927 |
|
|
{
|
928 |
|
|
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
|
929 |
|
|
|
930 |
|
|
if (reg_width)
|
931 |
|
|
printf_filtered ("%*s: ", reg_width, name);
|
932 |
|
|
else
|
933 |
|
|
printf_filtered ("%s: ", name);
|
934 |
|
|
|
935 |
|
|
/* Get the data */
|
936 |
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
937 |
|
|
{
|
938 |
|
|
printf_filtered ("[invalid]");
|
939 |
|
|
return;
|
940 |
|
|
}
|
941 |
|
|
else
|
942 |
|
|
{
|
943 |
|
|
int byte;
|
944 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
945 |
|
|
{
|
946 |
|
|
for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
|
947 |
|
|
byte < REGISTER_RAW_SIZE (regnum);
|
948 |
|
|
byte++)
|
949 |
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
|
950 |
|
|
}
|
951 |
|
|
else
|
952 |
|
|
{
|
953 |
|
|
for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
|
954 |
|
|
byte >= 0;
|
955 |
|
|
byte--)
|
956 |
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
|
957 |
|
|
}
|
958 |
|
|
}
|
959 |
|
|
}
|
960 |
|
|
|
961 |
|
|
static void
|
962 |
|
|
mn10300_do_registers_info (int regnum, int fpregs)
|
963 |
|
|
{
|
964 |
|
|
if (regnum >= 0)
|
965 |
|
|
{
|
966 |
|
|
const char *name = REGISTER_NAME (regnum);
|
967 |
|
|
if (name == NULL || name[0] == '\0')
|
968 |
|
|
error ("Not a valid register for the current processor type");
|
969 |
|
|
mn10300_print_register (name, regnum, 0);
|
970 |
|
|
printf_filtered ("\n");
|
971 |
|
|
}
|
972 |
|
|
else
|
973 |
|
|
{
|
974 |
|
|
/* print registers in an array 4x8 */
|
975 |
|
|
int r;
|
976 |
|
|
int reg;
|
977 |
|
|
const int nr_in_row = 4;
|
978 |
|
|
const int reg_width = 4;
|
979 |
|
|
for (r = 0; r < NUM_REGS; r += nr_in_row)
|
980 |
|
|
{
|
981 |
|
|
int c;
|
982 |
|
|
int printing = 0;
|
983 |
|
|
int padding = 0;
|
984 |
|
|
for (c = r; c < r + nr_in_row; c++)
|
985 |
|
|
{
|
986 |
|
|
const char *name = REGISTER_NAME (c);
|
987 |
|
|
if (name != NULL && *name != '\0')
|
988 |
|
|
{
|
989 |
|
|
printing = 1;
|
990 |
|
|
while (padding > 0)
|
991 |
|
|
{
|
992 |
|
|
printf_filtered (" ");
|
993 |
|
|
padding--;
|
994 |
|
|
}
|
995 |
|
|
mn10300_print_register (name, c, reg_width);
|
996 |
|
|
printf_filtered (" ");
|
997 |
|
|
}
|
998 |
|
|
else
|
999 |
|
|
{
|
1000 |
|
|
padding += (reg_width + 2 + 8 + 1);
|
1001 |
|
|
}
|
1002 |
|
|
}
|
1003 |
|
|
if (printing)
|
1004 |
|
|
printf_filtered ("\n");
|
1005 |
|
|
}
|
1006 |
|
|
}
|
1007 |
|
|
}
|
1008 |
|
|
|
1009 |
|
|
/* Dump out the mn10300 speciic architecture information. */
|
1010 |
|
|
|
1011 |
|
|
static void
|
1012 |
|
|
mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
1013 |
|
|
{
|
1014 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
1015 |
|
|
fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
|
1016 |
|
|
tdep->am33_mode);
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
static struct gdbarch *
|
1020 |
|
|
mn10300_gdbarch_init (struct gdbarch_info info,
|
1021 |
|
|
struct gdbarch_list *arches)
|
1022 |
|
|
{
|
1023 |
|
|
static LONGEST mn10300_call_dummy_words[] = { 0 };
|
1024 |
|
|
struct gdbarch *gdbarch;
|
1025 |
|
|
struct gdbarch_tdep *tdep = NULL;
|
1026 |
|
|
int am33_mode;
|
1027 |
|
|
gdbarch_register_name_ftype *register_name;
|
1028 |
|
|
int mach;
|
1029 |
|
|
int num_regs;
|
1030 |
|
|
|
1031 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1032 |
|
|
if (arches != NULL)
|
1033 |
|
|
return arches->gdbarch;
|
1034 |
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
1035 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
1036 |
|
|
|
1037 |
|
|
if (info.bfd_arch_info != NULL
|
1038 |
|
|
&& info.bfd_arch_info->arch == bfd_arch_mn10300)
|
1039 |
|
|
mach = info.bfd_arch_info->mach;
|
1040 |
|
|
else
|
1041 |
|
|
mach = 0;
|
1042 |
|
|
switch (mach)
|
1043 |
|
|
{
|
1044 |
|
|
case 0:
|
1045 |
|
|
case bfd_mach_mn10300:
|
1046 |
|
|
am33_mode = 0;
|
1047 |
|
|
register_name = mn10300_generic_register_name;
|
1048 |
|
|
num_regs = 32;
|
1049 |
|
|
break;
|
1050 |
|
|
case bfd_mach_am33:
|
1051 |
|
|
am33_mode = 1;
|
1052 |
|
|
register_name = am33_register_name;
|
1053 |
|
|
num_regs = 32;
|
1054 |
|
|
break;
|
1055 |
|
|
default:
|
1056 |
|
|
internal_error (__FILE__, __LINE__,
|
1057 |
|
|
"mn10300_gdbarch_init: Unknown mn10300 variant");
|
1058 |
|
|
return NULL; /* keep GCC happy. */
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
/* Registers. */
|
1062 |
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
1063 |
|
|
set_gdbarch_register_name (gdbarch, register_name);
|
1064 |
|
|
set_gdbarch_register_size (gdbarch, 4);
|
1065 |
|
|
set_gdbarch_register_bytes (gdbarch,
|
1066 |
|
|
num_regs * gdbarch_register_size (gdbarch));
|
1067 |
|
|
set_gdbarch_max_register_raw_size (gdbarch, 4);
|
1068 |
|
|
set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
|
1069 |
|
|
set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
|
1070 |
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 4);
|
1071 |
|
|
set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
|
1072 |
|
|
set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
|
1073 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
|
1074 |
|
|
set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
|
1075 |
|
|
set_gdbarch_fp_regnum (gdbarch, 31);
|
1076 |
|
|
|
1077 |
|
|
/* Breakpoints. */
|
1078 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
|
1079 |
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
1080 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
1081 |
|
|
|
1082 |
|
|
/* Stack unwinding. */
|
1083 |
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
1084 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
1085 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1086 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
1087 |
|
|
set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
|
1088 |
|
|
set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
|
1089 |
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
|
1090 |
|
|
set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
|
1091 |
|
|
set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
|
1092 |
|
|
set_gdbarch_extract_return_value (gdbarch, mn10300_extract_return_value);
|
1093 |
|
|
set_gdbarch_extract_struct_value_address
|
1094 |
|
|
(gdbarch, mn10300_extract_struct_value_address);
|
1095 |
|
|
set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
|
1096 |
|
|
set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
|
1097 |
|
|
set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
|
1098 |
|
|
set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
|
1099 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
1100 |
|
|
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
1101 |
|
|
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
1102 |
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
1103 |
|
|
/* That's right, we're using the stack pointer as our frame pointer. */
|
1104 |
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
|
1105 |
|
|
|
1106 |
|
|
/* Calling functions in the inferior from GDB. */
|
1107 |
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
1108 |
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
1109 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
1110 |
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
1111 |
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
1112 |
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
1113 |
|
|
set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
|
1114 |
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch,
|
1115 |
|
|
sizeof (mn10300_call_dummy_words));
|
1116 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
1117 |
|
|
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
1118 |
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
1119 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
1120 |
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
1121 |
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
1122 |
|
|
set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
|
1123 |
|
|
set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
|
1124 |
|
|
set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
|
1125 |
|
|
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
1126 |
|
|
set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
|
1127 |
|
|
|
1128 |
|
|
tdep->am33_mode = am33_mode;
|
1129 |
|
|
|
1130 |
|
|
return gdbarch;
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
void
|
1134 |
|
|
_initialize_mn10300_tdep (void)
|
1135 |
|
|
{
|
1136 |
|
|
/* printf("_initialize_mn10300_tdep\n"); */
|
1137 |
|
|
|
1138 |
|
|
tm_print_insn = print_insn_mn10300;
|
1139 |
|
|
|
1140 |
|
|
register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
|
1141 |
|
|
}
|