OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [objfiles.c] - Blame information for rev 1768

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* GDB routines for manipulating objfiles.
2
   Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3
   Free Software Foundation, Inc.
4
   Contributed by Cygnus Support, using pieces from other GDB modules.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 2 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software
20
   Foundation, Inc., 59 Temple Place - Suite 330,
21
   Boston, MA 02111-1307, USA.  */
22
 
23
/* This file contains support routines for creating, manipulating, and
24
   destroying objfile structures. */
25
 
26
#include "defs.h"
27
#include "bfd.h"                /* Binary File Description */
28
#include "symtab.h"
29
#include "symfile.h"
30
#include "objfiles.h"
31
#include "gdb-stabs.h"
32
#include "target.h"
33
 
34
#include <sys/types.h>
35
#include "gdb_stat.h"
36
#include <fcntl.h>
37
#include "obstack.h"
38
#include "gdb_string.h"
39
 
40
#include "breakpoint.h"
41
 
42
/* Prototypes for local functions */
43
 
44
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
45
 
46
static int open_existing_mapped_file (char *, long, int);
47
 
48
static int open_mapped_file (char *filename, long mtime, int flags);
49
 
50
static PTR map_to_file (int);
51
 
52
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
53
 
54
static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
55
 
56
/* Externally visible variables that are owned by this module.
57
   See declarations in objfile.h for more info. */
58
 
59
struct objfile *object_files;   /* Linked list of all objfiles */
60
struct objfile *current_objfile;        /* For symbol file being read in */
61
struct objfile *symfile_objfile;        /* Main symbol table loaded from */
62
struct objfile *rt_common_objfile;      /* For runtime common symbols */
63
 
64
int mapped_symbol_files;        /* Try to use mapped symbol files */
65
 
66
/* Locate all mappable sections of a BFD file.
67
   objfile_p_char is a char * to get it through
68
   bfd_map_over_sections; we cast it back to its proper type.  */
69
 
70
#ifndef TARGET_KEEP_SECTION
71
#define TARGET_KEEP_SECTION(ASECT)      0
72
#endif
73
 
74
/* Called via bfd_map_over_sections to build up the section table that
75
   the objfile references.  The objfile contains pointers to the start
76
   of the table (objfile->sections) and to the first location after
77
   the end of the table (objfile->sections_end). */
78
 
79
static void
80
add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
81
{
82
  struct objfile *objfile = (struct objfile *) objfile_p_char;
83
  struct obj_section section;
84
  flagword aflag;
85
 
86
  aflag = bfd_get_section_flags (abfd, asect);
87
 
88
  if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
89
    return;
90
 
91
  if (0 == bfd_section_size (abfd, asect))
92
    return;
93
  section.offset = 0;
94
  section.objfile = objfile;
95
  section.the_bfd_section = asect;
96
  section.ovly_mapped = 0;
97
  section.addr = bfd_section_vma (abfd, asect);
98
  section.endaddr = section.addr + bfd_section_size (abfd, asect);
99
  obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
100
  objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
101
}
102
 
103
/* Builds a section table for OBJFILE.
104
   Returns 0 if OK, 1 on error (in which case bfd_error contains the
105
   error).
106
 
107
   Note that while we are building the table, which goes into the
108
   psymbol obstack, we hijack the sections_end pointer to instead hold
109
   a count of the number of sections.  When bfd_map_over_sections
110
   returns, this count is used to compute the pointer to the end of
111
   the sections table, which then overwrites the count.
112
 
113
   Also note that the OFFSET and OVLY_MAPPED in each table entry
114
   are initialized to zero.
115
 
116
   Also note that if anything else writes to the psymbol obstack while
117
   we are building the table, we're pretty much hosed. */
118
 
119
int
120
build_objfile_section_table (struct objfile *objfile)
121
{
122
  /* objfile->sections can be already set when reading a mapped symbol
123
     file.  I believe that we do need to rebuild the section table in
124
     this case (we rebuild other things derived from the bfd), but we
125
     can't free the old one (it's in the psymbol_obstack).  So we just
126
     waste some memory.  */
127
 
128
  objfile->sections_end = 0;
129
  bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
130
  objfile->sections = (struct obj_section *)
131
    obstack_finish (&objfile->psymbol_obstack);
132
  objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
133
  return (0);
134
}
135
 
136
/* Given a pointer to an initialized bfd (ABFD) and some flag bits
137
   allocate a new objfile struct, fill it in as best we can, link it
138
   into the list of all known objfiles, and return a pointer to the
139
   new objfile struct.
140
 
141
   The FLAGS word contains various bits (OBJF_*) that can be taken as
142
   requests for specific operations, like trying to open a mapped
143
   version of the objfile (OBJF_MAPPED).  Other bits like
144
   OBJF_SHARED are simply copied through to the new objfile flags
145
   member. */
146
 
147
struct objfile *
148
allocate_objfile (bfd *abfd, int flags)
149
{
150
  struct objfile *objfile = NULL;
151
  struct objfile *last_one = NULL;
152
 
153
  if (mapped_symbol_files)
154
    flags |= OBJF_MAPPED;
155
 
156
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
157
  if (abfd != NULL)
158
    {
159
 
160
      /* If we can support mapped symbol files, try to open/reopen the
161
         mapped file that corresponds to the file from which we wish to
162
         read symbols.  If the objfile is to be mapped, we must malloc
163
         the structure itself using the mmap version, and arrange that
164
         all memory allocation for the objfile uses the mmap routines.
165
         If we are reusing an existing mapped file, from which we get
166
         our objfile pointer, we have to make sure that we update the
167
         pointers to the alloc/free functions in the obstack, in case
168
         these functions have moved within the current gdb.  */
169
 
170
      int fd;
171
 
172
      fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
173
                             flags);
174
      if (fd >= 0)
175
        {
176
          PTR md;
177
 
178
          if ((md = map_to_file (fd)) == NULL)
179
            {
180
              close (fd);
181
            }
182
          else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
183
            {
184
              /* Update memory corruption handler function addresses. */
185
              init_malloc (md);
186
              objfile->md = md;
187
              objfile->mmfd = fd;
188
              /* Update pointers to functions to *our* copies */
189
              obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
190
              obstack_freefun (&objfile->psymbol_cache.cache, mfree);
191
              obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
192
              obstack_freefun (&objfile->psymbol_obstack, mfree);
193
              obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
194
              obstack_freefun (&objfile->symbol_obstack, mfree);
195
              obstack_chunkfun (&objfile->type_obstack, xmmalloc);
196
              obstack_freefun (&objfile->type_obstack, mfree);
197
              /* If already in objfile list, unlink it. */
198
              unlink_objfile (objfile);
199
              /* Forget things specific to a particular gdb, may have changed. */
200
              objfile->sf = NULL;
201
            }
202
          else
203
            {
204
 
205
              /* Set up to detect internal memory corruption.  MUST be
206
                 done before the first malloc.  See comments in
207
                 init_malloc() and mmcheck().  */
208
 
209
              init_malloc (md);
210
 
211
              objfile = (struct objfile *)
212
                xmmalloc (md, sizeof (struct objfile));
213
              memset (objfile, 0, sizeof (struct objfile));
214
              objfile->md = md;
215
              objfile->mmfd = fd;
216
              objfile->flags |= OBJF_MAPPED;
217
              mmalloc_setkey (objfile->md, 0, objfile);
218
              obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
219
                                                   0, 0, xmmalloc, mfree,
220
                                                   objfile->md);
221
              obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
222
                                                   0, 0, xmmalloc, mfree,
223
                                                   objfile->md);
224
              obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
225
                                                   0, 0, xmmalloc, mfree,
226
                                                   objfile->md);
227
              obstack_specify_allocation_with_arg (&objfile->type_obstack,
228
                                                   0, 0, xmmalloc, mfree,
229
                                                   objfile->md);
230
            }
231
        }
232
 
233
      if ((flags & OBJF_MAPPED) && (objfile == NULL))
234
        {
235
          warning ("symbol table for '%s' will not be mapped",
236
                   bfd_get_filename (abfd));
237
          flags &= ~OBJF_MAPPED;
238
        }
239
    }
240
#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
241
 
242
  if (flags & OBJF_MAPPED)
243
    {
244
      warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
245
 
246
      /* Turn off the global flag so we don't try to do mapped symbol tables
247
         any more, which shuts up gdb unless the user specifically gives the
248
         "mapped" keyword again. */
249
 
250
      mapped_symbol_files = 0;
251
      flags &= ~OBJF_MAPPED;
252
    }
253
 
254
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
255
 
256
  /* If we don't support mapped symbol files, didn't ask for the file to be
257
     mapped, or failed to open the mapped file for some reason, then revert
258
     back to an unmapped objfile. */
259
 
260
  if (objfile == NULL)
261
    {
262
      objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
263
      memset (objfile, 0, sizeof (struct objfile));
264
      objfile->md = NULL;
265
      obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
266
                                  xmalloc, xfree);
267
      obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
268
                                  xfree);
269
      obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
270
                                  xfree);
271
      obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
272
                                  xfree);
273
      flags &= ~OBJF_MAPPED;
274
    }
275
 
276
  /* Update the per-objfile information that comes from the bfd, ensuring
277
     that any data that is reference is saved in the per-objfile data
278
     region. */
279
 
280
  objfile->obfd = abfd;
281
  if (objfile->name != NULL)
282
    {
283
      mfree (objfile->md, objfile->name);
284
    }
285
  if (abfd != NULL)
286
    {
287
      objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
288
      objfile->mtime = bfd_get_mtime (abfd);
289
 
290
      /* Build section table.  */
291
 
292
      if (build_objfile_section_table (objfile))
293
        {
294
          error ("Can't find the file sections in `%s': %s",
295
                 objfile->name, bfd_errmsg (bfd_get_error ()));
296
        }
297
    }
298
 
299
  /* Initialize the section indexes for this objfile, so that we can
300
     later detect if they are used w/o being properly assigned to. */
301
 
302
    objfile->sect_index_text = -1;
303
    objfile->sect_index_data = -1;
304
    objfile->sect_index_bss = -1;
305
    objfile->sect_index_rodata = -1;
306
 
307
  /* Add this file onto the tail of the linked list of other such files. */
308
 
309
  objfile->next = NULL;
310
  if (object_files == NULL)
311
    object_files = objfile;
312
  else
313
    {
314
      for (last_one = object_files;
315
           last_one->next;
316
           last_one = last_one->next);
317
      last_one->next = objfile;
318
    }
319
 
320
  /* Save passed in flag bits. */
321
  objfile->flags |= flags;
322
 
323
  return (objfile);
324
}
325
 
326
/* Put OBJFILE at the front of the list.  */
327
 
328
void
329
objfile_to_front (struct objfile *objfile)
330
{
331
  struct objfile **objp;
332
  for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
333
    {
334
      if (*objp == objfile)
335
        {
336
          /* Unhook it from where it is.  */
337
          *objp = objfile->next;
338
          /* Put it in the front.  */
339
          objfile->next = object_files;
340
          object_files = objfile;
341
          break;
342
        }
343
    }
344
}
345
 
346
/* Unlink OBJFILE from the list of known objfiles, if it is found in the
347
   list.
348
 
349
   It is not a bug, or error, to call this function if OBJFILE is not known
350
   to be in the current list.  This is done in the case of mapped objfiles,
351
   for example, just to ensure that the mapped objfile doesn't appear twice
352
   in the list.  Since the list is threaded, linking in a mapped objfile
353
   twice would create a circular list.
354
 
355
   If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
356
   unlinking it, just to ensure that we have completely severed any linkages
357
   between the OBJFILE and the list. */
358
 
359
void
360
unlink_objfile (struct objfile *objfile)
361
{
362
  struct objfile **objpp;
363
 
364
  for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
365
    {
366
      if (*objpp == objfile)
367
        {
368
          *objpp = (*objpp)->next;
369
          objfile->next = NULL;
370
          return;
371
        }
372
    }
373
 
374
  internal_error (__FILE__, __LINE__,
375
                  "unlink_objfile: objfile already unlinked");
376
}
377
 
378
 
379
/* Destroy an objfile and all the symtabs and psymtabs under it.  Note
380
   that as much as possible is allocated on the symbol_obstack and
381
   psymbol_obstack, so that the memory can be efficiently freed.
382
 
383
   Things which we do NOT free because they are not in malloc'd memory
384
   or not in memory specific to the objfile include:
385
 
386
   objfile -> sf
387
 
388
   FIXME:  If the objfile is using reusable symbol information (via mmalloc),
389
   then we need to take into account the fact that more than one process
390
   may be using the symbol information at the same time (when mmalloc is
391
   extended to support cooperative locking).  When more than one process
392
   is using the mapped symbol info, we need to be more careful about when
393
   we free objects in the reusable area. */
394
 
395
void
396
free_objfile (struct objfile *objfile)
397
{
398
  /* First do any symbol file specific actions required when we are
399
     finished with a particular symbol file.  Note that if the objfile
400
     is using reusable symbol information (via mmalloc) then each of
401
     these routines is responsible for doing the correct thing, either
402
     freeing things which are valid only during this particular gdb
403
     execution, or leaving them to be reused during the next one. */
404
 
405
  if (objfile->sf != NULL)
406
    {
407
      (*objfile->sf->sym_finish) (objfile);
408
    }
409
 
410
  /* We always close the bfd. */
411
 
412
  if (objfile->obfd != NULL)
413
    {
414
      char *name = bfd_get_filename (objfile->obfd);
415
      if (!bfd_close (objfile->obfd))
416
        warning ("cannot close \"%s\": %s",
417
                 name, bfd_errmsg (bfd_get_error ()));
418
      xfree (name);
419
    }
420
 
421
  /* Remove it from the chain of all objfiles. */
422
 
423
  unlink_objfile (objfile);
424
 
425
  /* If we are going to free the runtime common objfile, mark it
426
     as unallocated.  */
427
 
428
  if (objfile == rt_common_objfile)
429
    rt_common_objfile = NULL;
430
 
431
  /* Before the symbol table code was redone to make it easier to
432
     selectively load and remove information particular to a specific
433
     linkage unit, gdb used to do these things whenever the monolithic
434
     symbol table was blown away.  How much still needs to be done
435
     is unknown, but we play it safe for now and keep each action until
436
     it is shown to be no longer needed. */
437
 
438
  /* I *think* all our callers call clear_symtab_users.  If so, no need
439
     to call this here.  */
440
  clear_pc_function_cache ();
441
 
442
  /* The last thing we do is free the objfile struct itself for the
443
     non-reusable case, or detach from the mapped file for the reusable
444
     case.  Note that the mmalloc_detach or the mfree is the last thing
445
     we can do with this objfile. */
446
 
447
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
448
 
449
  if (objfile->flags & OBJF_MAPPED)
450
    {
451
      /* Remember the fd so we can close it.  We can't close it before
452
         doing the detach, and after the detach the objfile is gone. */
453
      int mmfd;
454
 
455
      mmfd = objfile->mmfd;
456
      mmalloc_detach (objfile->md);
457
      objfile = NULL;
458
      close (mmfd);
459
    }
460
 
461
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
462
 
463
  /* If we still have an objfile, then either we don't support reusable
464
     objfiles or this one was not reusable.  So free it normally. */
465
 
466
  if (objfile != NULL)
467
    {
468
      if (objfile->name != NULL)
469
        {
470
          mfree (objfile->md, objfile->name);
471
        }
472
      if (objfile->global_psymbols.list)
473
        mfree (objfile->md, objfile->global_psymbols.list);
474
      if (objfile->static_psymbols.list)
475
        mfree (objfile->md, objfile->static_psymbols.list);
476
      /* Free the obstacks for non-reusable objfiles */
477
      free_bcache (&objfile->psymbol_cache);
478
      obstack_free (&objfile->psymbol_obstack, 0);
479
      obstack_free (&objfile->symbol_obstack, 0);
480
      obstack_free (&objfile->type_obstack, 0);
481
      mfree (objfile->md, objfile);
482
      objfile = NULL;
483
    }
484
}
485
 
486
static void
487
do_free_objfile_cleanup (void *obj)
488
{
489
  free_objfile (obj);
490
}
491
 
492
struct cleanup *
493
make_cleanup_free_objfile (struct objfile *obj)
494
{
495
  return make_cleanup (do_free_objfile_cleanup, obj);
496
}
497
 
498
/* Free all the object files at once and clean up their users.  */
499
 
500
void
501
free_all_objfiles (void)
502
{
503
  struct objfile *objfile, *temp;
504
 
505
  ALL_OBJFILES_SAFE (objfile, temp)
506
  {
507
    free_objfile (objfile);
508
  }
509
  clear_symtab_users ();
510
}
511
 
512
/* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
513
   entries in new_offsets.  */
514
void
515
objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
516
{
517
  struct section_offsets *delta =
518
    (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
519
 
520
  {
521
    int i;
522
    int something_changed = 0;
523
    for (i = 0; i < objfile->num_sections; ++i)
524
      {
525
        delta->offsets[i] =
526
          ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
527
        if (ANOFFSET (delta, i) != 0)
528
          something_changed = 1;
529
      }
530
    if (!something_changed)
531
      return;
532
  }
533
 
534
  /* OK, get all the symtabs.  */
535
  {
536
    struct symtab *s;
537
 
538
    ALL_OBJFILE_SYMTABS (objfile, s)
539
    {
540
      struct linetable *l;
541
      struct blockvector *bv;
542
      int i;
543
 
544
      /* First the line table.  */
545
      l = LINETABLE (s);
546
      if (l)
547
        {
548
          for (i = 0; i < l->nitems; ++i)
549
            l->item[i].pc += ANOFFSET (delta, s->block_line_section);
550
        }
551
 
552
      /* Don't relocate a shared blockvector more than once.  */
553
      if (!s->primary)
554
        continue;
555
 
556
      bv = BLOCKVECTOR (s);
557
      for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
558
        {
559
          struct block *b;
560
          int j;
561
 
562
          b = BLOCKVECTOR_BLOCK (bv, i);
563
          BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
564
          BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
565
 
566
          for (j = 0; j < BLOCK_NSYMS (b); ++j)
567
            {
568
              struct symbol *sym = BLOCK_SYM (b, j);
569
 
570
              fixup_symbol_section (sym, objfile);
571
 
572
              /* The RS6000 code from which this was taken skipped
573
                 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
574
                 But I'm leaving out that test, on the theory that
575
                 they can't possibly pass the tests below.  */
576
              if ((SYMBOL_CLASS (sym) == LOC_LABEL
577
                   || SYMBOL_CLASS (sym) == LOC_STATIC
578
                   || SYMBOL_CLASS (sym) == LOC_INDIRECT)
579
                  && SYMBOL_SECTION (sym) >= 0)
580
                {
581
                  SYMBOL_VALUE_ADDRESS (sym) +=
582
                    ANOFFSET (delta, SYMBOL_SECTION (sym));
583
                }
584
#ifdef MIPS_EFI_SYMBOL_NAME
585
              /* Relocate Extra Function Info for ecoff.  */
586
 
587
              else if (SYMBOL_CLASS (sym) == LOC_CONST
588
                       && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
589
                       && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
590
                ecoff_relocate_efi (sym, ANOFFSET (delta,
591
                                                   s->block_line_section));
592
#endif
593
            }
594
        }
595
    }
596
  }
597
 
598
  {
599
    struct partial_symtab *p;
600
 
601
    ALL_OBJFILE_PSYMTABS (objfile, p)
602
    {
603
      p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
604
      p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
605
    }
606
  }
607
 
608
  {
609
    struct partial_symbol **psym;
610
 
611
    for (psym = objfile->global_psymbols.list;
612
         psym < objfile->global_psymbols.next;
613
         psym++)
614
      {
615
        fixup_psymbol_section (*psym, objfile);
616
        if (SYMBOL_SECTION (*psym) >= 0)
617
          SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
618
                                                    SYMBOL_SECTION (*psym));
619
      }
620
    for (psym = objfile->static_psymbols.list;
621
         psym < objfile->static_psymbols.next;
622
         psym++)
623
      {
624
        fixup_psymbol_section (*psym, objfile);
625
        if (SYMBOL_SECTION (*psym) >= 0)
626
          SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
627
                                                    SYMBOL_SECTION (*psym));
628
      }
629
  }
630
 
631
  {
632
    struct minimal_symbol *msym;
633
    ALL_OBJFILE_MSYMBOLS (objfile, msym)
634
      if (SYMBOL_SECTION (msym) >= 0)
635
      SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
636
  }
637
  /* Relocating different sections by different amounts may cause the symbols
638
     to be out of order.  */
639
  msymbols_sort (objfile);
640
 
641
  {
642
    int i;
643
    for (i = 0; i < objfile->num_sections; ++i)
644
      (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
645
  }
646
 
647
  if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
648
    {
649
      /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
650
         only as a fallback.  */
651
      struct obj_section *s;
652
      s = find_pc_section (objfile->ei.entry_point);
653
      if (s)
654
        objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
655
      else
656
        objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
657
    }
658
 
659
  {
660
    struct obj_section *s;
661
    bfd *abfd;
662
 
663
    abfd = objfile->obfd;
664
 
665
    ALL_OBJFILE_OSECTIONS (objfile, s)
666
      {
667
        int idx = s->the_bfd_section->index;
668
 
669
        s->addr += ANOFFSET (delta, idx);
670
        s->endaddr += ANOFFSET (delta, idx);
671
      }
672
  }
673
 
674
  if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
675
    {
676
      objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
677
      objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
678
    }
679
 
680
  if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
681
    {
682
      objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
683
      objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
684
    }
685
 
686
  if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
687
    {
688
      objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
689
      objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
690
    }
691
 
692
  /* Relocate breakpoints as necessary, after things are relocated. */
693
  breakpoint_re_set ();
694
}
695
 
696
/* Many places in gdb want to test just to see if we have any partial
697
   symbols available.  This function returns zero if none are currently
698
   available, nonzero otherwise. */
699
 
700
int
701
have_partial_symbols (void)
702
{
703
  struct objfile *ofp;
704
 
705
  ALL_OBJFILES (ofp)
706
  {
707
    if (ofp->psymtabs != NULL)
708
      {
709
        return 1;
710
      }
711
  }
712
  return 0;
713
}
714
 
715
/* Many places in gdb want to test just to see if we have any full
716
   symbols available.  This function returns zero if none are currently
717
   available, nonzero otherwise. */
718
 
719
int
720
have_full_symbols (void)
721
{
722
  struct objfile *ofp;
723
 
724
  ALL_OBJFILES (ofp)
725
  {
726
    if (ofp->symtabs != NULL)
727
      {
728
        return 1;
729
      }
730
  }
731
  return 0;
732
}
733
 
734
 
735
/* This operations deletes all objfile entries that represent solibs that
736
   weren't explicitly loaded by the user, via e.g., the add-symbol-file
737
   command.
738
 */
739
void
740
objfile_purge_solibs (void)
741
{
742
  struct objfile *objf;
743
  struct objfile *temp;
744
 
745
  ALL_OBJFILES_SAFE (objf, temp)
746
  {
747
    /* We assume that the solib package has been purged already, or will
748
       be soon.
749
     */
750
    if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
751
      free_objfile (objf);
752
  }
753
}
754
 
755
 
756
/* Many places in gdb want to test just to see if we have any minimal
757
   symbols available.  This function returns zero if none are currently
758
   available, nonzero otherwise. */
759
 
760
int
761
have_minimal_symbols (void)
762
{
763
  struct objfile *ofp;
764
 
765
  ALL_OBJFILES (ofp)
766
  {
767
    if (ofp->msymbols != NULL)
768
      {
769
        return 1;
770
      }
771
  }
772
  return 0;
773
}
774
 
775
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
776
 
777
/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
778
   of the corresponding symbol file in MTIME, try to open an existing file
779
   with the name SYMSFILENAME and verify it is more recent than the base
780
   file by checking it's timestamp against MTIME.
781
 
782
   If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
783
 
784
   If SYMSFILENAME does exist, but is out of date, we check to see if the
785
   user has specified creation of a mapped file.  If so, we don't issue
786
   any warning message because we will be creating a new mapped file anyway,
787
   overwriting the old one.  If not, then we issue a warning message so that
788
   the user will know why we aren't using this existing mapped symbol file.
789
   In either case, we return -1.
790
 
791
   If SYMSFILENAME does exist and is not out of date, but can't be opened for
792
   some reason, then prints an appropriate system error message and returns -1.
793
 
794
   Otherwise, returns the open file descriptor.  */
795
 
796
static int
797
open_existing_mapped_file (char *symsfilename, long mtime, int flags)
798
{
799
  int fd = -1;
800
  struct stat sbuf;
801
 
802
  if (stat (symsfilename, &sbuf) == 0)
803
    {
804
      if (sbuf.st_mtime < mtime)
805
        {
806
          if (!(flags & OBJF_MAPPED))
807
            {
808
              warning ("mapped symbol file `%s' is out of date, ignored it",
809
                       symsfilename);
810
            }
811
        }
812
      else if ((fd = open (symsfilename, O_RDWR)) < 0)
813
        {
814
          if (error_pre_print)
815
            {
816
              printf_unfiltered (error_pre_print);
817
            }
818
          print_sys_errmsg (symsfilename, errno);
819
        }
820
    }
821
  return (fd);
822
}
823
 
824
/* Look for a mapped symbol file that corresponds to FILENAME and is more
825
   recent than MTIME.  If MAPPED is nonzero, the user has asked that gdb
826
   use a mapped symbol file for this file, so create a new one if one does
827
   not currently exist.
828
 
829
   If found, then return an open file descriptor for the file, otherwise
830
   return -1.
831
 
832
   This routine is responsible for implementing the policy that generates
833
   the name of the mapped symbol file from the name of a file containing
834
   symbols that gdb would like to read.  Currently this policy is to append
835
   ".syms" to the name of the file.
836
 
837
   This routine is also responsible for implementing the policy that
838
   determines where the mapped symbol file is found (the search path).
839
   This policy is that when reading an existing mapped file, a file of
840
   the correct name in the current directory takes precedence over a
841
   file of the correct name in the same directory as the symbol file.
842
   When creating a new mapped file, it is always created in the current
843
   directory.  This helps to minimize the chances of a user unknowingly
844
   creating big mapped files in places like /bin and /usr/local/bin, and
845
   allows a local copy to override a manually installed global copy (in
846
   /bin for example).  */
847
 
848
static int
849
open_mapped_file (char *filename, long mtime, int flags)
850
{
851
  int fd;
852
  char *symsfilename;
853
 
854
  /* First try to open an existing file in the current directory, and
855
     then try the directory where the symbol file is located. */
856
 
857
  symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
858
  if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
859
    {
860
      xfree (symsfilename);
861
      symsfilename = concat (filename, ".syms", (char *) NULL);
862
      fd = open_existing_mapped_file (symsfilename, mtime, flags);
863
    }
864
 
865
  /* If we don't have an open file by now, then either the file does not
866
     already exist, or the base file has changed since it was created.  In
867
     either case, if the user has specified use of a mapped file, then
868
     create a new mapped file, truncating any existing one.  If we can't
869
     create one, print a system error message saying why we can't.
870
 
871
     By default the file is rw for everyone, with the user's umask taking
872
     care of turning off the permissions the user wants off. */
873
 
874
  if ((fd < 0) && (flags & OBJF_MAPPED))
875
    {
876
      xfree (symsfilename);
877
      symsfilename = concat ("./", lbasename (filename), ".syms",
878
                             (char *) NULL);
879
      if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
880
        {
881
          if (error_pre_print)
882
            {
883
              printf_unfiltered (error_pre_print);
884
            }
885
          print_sys_errmsg (symsfilename, errno);
886
        }
887
    }
888
 
889
  xfree (symsfilename);
890
  return (fd);
891
}
892
 
893
static PTR
894
map_to_file (int fd)
895
{
896
  PTR md;
897
  CORE_ADDR mapto;
898
 
899
  md = mmalloc_attach (fd, (PTR) 0);
900
  if (md != NULL)
901
    {
902
      mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
903
      md = mmalloc_detach (md);
904
      if (md != NULL)
905
        {
906
          /* FIXME: should figure out why detach failed */
907
          md = NULL;
908
        }
909
      else if (mapto != (CORE_ADDR) NULL)
910
        {
911
          /* This mapping file needs to be remapped at "mapto" */
912
          md = mmalloc_attach (fd, (PTR) mapto);
913
        }
914
      else
915
        {
916
          /* This is a freshly created mapping file. */
917
          mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
918
          if (mapto != 0)
919
            {
920
              /* To avoid reusing the freshly created mapping file, at the
921
                 address selected by mmap, we must truncate it before trying
922
                 to do an attach at the address we want. */
923
              ftruncate (fd, 0);
924
              md = mmalloc_attach (fd, (PTR) mapto);
925
              if (md != NULL)
926
                {
927
                  mmalloc_setkey (md, 1, (PTR) mapto);
928
                }
929
            }
930
        }
931
    }
932
  return (md);
933
}
934
 
935
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
936
 
937
/* Returns a section whose range includes PC and SECTION,
938
   or NULL if none found.  Note the distinction between the return type,
939
   struct obj_section (which is defined in gdb), and the input type
940
   struct sec (which is a bfd-defined data type).  The obj_section
941
   contains a pointer to the bfd struct sec section.  */
942
 
943
struct obj_section *
944
find_pc_sect_section (CORE_ADDR pc, struct sec *section)
945
{
946
  struct obj_section *s;
947
  struct objfile *objfile;
948
 
949
  ALL_OBJSECTIONS (objfile, s)
950
    if ((section == 0 || section == s->the_bfd_section) &&
951
        s->addr <= pc && pc < s->endaddr)
952
      return (s);
953
 
954
  return (NULL);
955
}
956
 
957
/* Returns a section whose range includes PC or NULL if none found.
958
   Backward compatibility, no section.  */
959
 
960
struct obj_section *
961
find_pc_section (CORE_ADDR pc)
962
{
963
  return find_pc_sect_section (pc, find_pc_mapped_section (pc));
964
}
965
 
966
 
967
/* In SVR4, we recognize a trampoline by it's section name.
968
   That is, if the pc is in a section named ".plt" then we are in
969
   a trampoline.  */
970
 
971
int
972
in_plt_section (CORE_ADDR pc, char *name)
973
{
974
  struct obj_section *s;
975
  int retval = 0;
976
 
977
  s = find_pc_section (pc);
978
 
979
  retval = (s != NULL
980
            && s->the_bfd_section->name != NULL
981
            && STREQ (s->the_bfd_section->name, ".plt"));
982
  return (retval);
983
}
984
 
985
/* Return nonzero if NAME is in the import list of OBJFILE.  Else
986
   return zero.  */
987
 
988
int
989
is_in_import_list (char *name, struct objfile *objfile)
990
{
991
  register int i;
992
 
993
  if (!objfile || !name || !*name)
994
    return 0;
995
 
996
  for (i = 0; i < objfile->import_list_size; i++)
997
    if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
998
      return 1;
999
  return 0;
1000
}
1001
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.