1 |
578 |
markom |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
3 |
|
|
1998, 1999, 2000, 2001
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "frame.h"
|
25 |
|
|
#include "inferior.h"
|
26 |
|
|
#include "symtab.h"
|
27 |
|
|
#include "target.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "gdbcmd.h"
|
30 |
|
|
#include "symfile.h"
|
31 |
|
|
#include "objfiles.h"
|
32 |
|
|
#include "arch-utils.h"
|
33 |
|
|
#include "regcache.h"
|
34 |
|
|
|
35 |
|
|
#include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
|
36 |
|
|
#include "coff/internal.h" /* for libcoff.h */
|
37 |
|
|
#include "bfd/libcoff.h" /* for xcoff_data */
|
38 |
|
|
|
39 |
|
|
#include "elf-bfd.h"
|
40 |
|
|
|
41 |
|
|
#include "ppc-tdep.h"
|
42 |
|
|
|
43 |
|
|
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
44 |
|
|
structure on the stack and then calls the signal handler, passing
|
45 |
|
|
the address of the sigcontext in an argument register. Usually
|
46 |
|
|
the signal handler doesn't save this register, so we have to
|
47 |
|
|
access the sigcontext structure via an offset from the signal handler
|
48 |
|
|
frame.
|
49 |
|
|
The following constants were determined by experimentation on AIX 3.2. */
|
50 |
|
|
#define SIG_FRAME_PC_OFFSET 96
|
51 |
|
|
#define SIG_FRAME_LR_OFFSET 108
|
52 |
|
|
#define SIG_FRAME_FP_OFFSET 284
|
53 |
|
|
|
54 |
|
|
/* To be used by skip_prologue. */
|
55 |
|
|
|
56 |
|
|
struct rs6000_framedata
|
57 |
|
|
{
|
58 |
|
|
int offset; /* total size of frame --- the distance
|
59 |
|
|
by which we decrement sp to allocate
|
60 |
|
|
the frame */
|
61 |
|
|
int saved_gpr; /* smallest # of saved gpr */
|
62 |
|
|
int saved_fpr; /* smallest # of saved fpr */
|
63 |
|
|
int alloca_reg; /* alloca register number (frame ptr) */
|
64 |
|
|
char frameless; /* true if frameless functions. */
|
65 |
|
|
char nosavedpc; /* true if pc not saved. */
|
66 |
|
|
int gpr_offset; /* offset of saved gprs from prev sp */
|
67 |
|
|
int fpr_offset; /* offset of saved fprs from prev sp */
|
68 |
|
|
int lr_offset; /* offset of saved lr */
|
69 |
|
|
int cr_offset; /* offset of saved cr */
|
70 |
|
|
};
|
71 |
|
|
|
72 |
|
|
/* Description of a single register. */
|
73 |
|
|
|
74 |
|
|
struct reg
|
75 |
|
|
{
|
76 |
|
|
char *name; /* name of register */
|
77 |
|
|
unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
|
78 |
|
|
unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
|
79 |
|
|
unsigned char fpr; /* whether register is floating-point */
|
80 |
|
|
};
|
81 |
|
|
|
82 |
|
|
/* Private data that this module attaches to struct gdbarch. */
|
83 |
|
|
|
84 |
|
|
struct gdbarch_tdep
|
85 |
|
|
{
|
86 |
|
|
int wordsize; /* size in bytes of fixed-point word */
|
87 |
|
|
int osabi; /* OS / ABI from ELF header */
|
88 |
|
|
int *regoff; /* byte offsets in register arrays */
|
89 |
|
|
const struct reg *regs; /* from current variant */
|
90 |
|
|
};
|
91 |
|
|
|
92 |
|
|
/* Return the current architecture's gdbarch_tdep structure. */
|
93 |
|
|
|
94 |
|
|
#define TDEP gdbarch_tdep (current_gdbarch)
|
95 |
|
|
|
96 |
|
|
/* Breakpoint shadows for the single step instructions will be kept here. */
|
97 |
|
|
|
98 |
|
|
static struct sstep_breaks
|
99 |
|
|
{
|
100 |
|
|
/* Address, or 0 if this is not in use. */
|
101 |
|
|
CORE_ADDR address;
|
102 |
|
|
/* Shadow contents. */
|
103 |
|
|
char data[4];
|
104 |
|
|
}
|
105 |
|
|
stepBreaks[2];
|
106 |
|
|
|
107 |
|
|
/* Hook for determining the TOC address when calling functions in the
|
108 |
|
|
inferior under AIX. The initialization code in rs6000-nat.c sets
|
109 |
|
|
this hook to point to find_toc_address. */
|
110 |
|
|
|
111 |
|
|
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
112 |
|
|
|
113 |
|
|
/* Hook to set the current architecture when starting a child process.
|
114 |
|
|
rs6000-nat.c sets this. */
|
115 |
|
|
|
116 |
|
|
void (*rs6000_set_host_arch_hook) (int) = NULL;
|
117 |
|
|
|
118 |
|
|
/* Static function prototypes */
|
119 |
|
|
|
120 |
|
|
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
|
121 |
|
|
CORE_ADDR safety);
|
122 |
|
|
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
|
123 |
|
|
struct rs6000_framedata *);
|
124 |
|
|
static void frame_get_saved_regs (struct frame_info * fi,
|
125 |
|
|
struct rs6000_framedata * fdatap);
|
126 |
|
|
static CORE_ADDR frame_initial_stack_address (struct frame_info *);
|
127 |
|
|
|
128 |
|
|
/* Read a LEN-byte address from debugged memory address MEMADDR. */
|
129 |
|
|
|
130 |
|
|
static CORE_ADDR
|
131 |
|
|
read_memory_addr (CORE_ADDR memaddr, int len)
|
132 |
|
|
{
|
133 |
|
|
return read_memory_unsigned_integer (memaddr, len);
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
static CORE_ADDR
|
137 |
|
|
rs6000_skip_prologue (CORE_ADDR pc)
|
138 |
|
|
{
|
139 |
|
|
struct rs6000_framedata frame;
|
140 |
|
|
pc = skip_prologue (pc, 0, &frame);
|
141 |
|
|
return pc;
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
/* Fill in fi->saved_regs */
|
146 |
|
|
|
147 |
|
|
struct frame_extra_info
|
148 |
|
|
{
|
149 |
|
|
/* Functions calling alloca() change the value of the stack
|
150 |
|
|
pointer. We need to use initial stack pointer (which is saved in
|
151 |
|
|
r31 by gcc) in such cases. If a compiler emits traceback table,
|
152 |
|
|
then we should use the alloca register specified in traceback
|
153 |
|
|
table. FIXME. */
|
154 |
|
|
CORE_ADDR initial_sp; /* initial stack pointer. */
|
155 |
|
|
};
|
156 |
|
|
|
157 |
|
|
void
|
158 |
|
|
rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
159 |
|
|
{
|
160 |
|
|
fi->extra_info = (struct frame_extra_info *)
|
161 |
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
162 |
|
|
fi->extra_info->initial_sp = 0;
|
163 |
|
|
if (fi->next != (CORE_ADDR) 0
|
164 |
|
|
&& fi->pc < TEXT_SEGMENT_BASE)
|
165 |
|
|
/* We're in get_prev_frame */
|
166 |
|
|
/* and this is a special signal frame. */
|
167 |
|
|
/* (fi->pc will be some low address in the kernel, */
|
168 |
|
|
/* to which the signal handler returns). */
|
169 |
|
|
fi->signal_handler_caller = 1;
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
173 |
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
174 |
|
|
This includes special registers such as pc and fp saved in special
|
175 |
|
|
ways in the stack frame. sp is even more special:
|
176 |
|
|
the address we return for it IS the sp for the next frame. */
|
177 |
|
|
|
178 |
|
|
/* In this implementation for RS/6000, we do *not* save sp. I am
|
179 |
|
|
not sure if it will be needed. The following function takes care of gpr's
|
180 |
|
|
and fpr's only. */
|
181 |
|
|
|
182 |
|
|
void
|
183 |
|
|
rs6000_frame_init_saved_regs (struct frame_info *fi)
|
184 |
|
|
{
|
185 |
|
|
frame_get_saved_regs (fi, NULL);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
static CORE_ADDR
|
189 |
|
|
rs6000_frame_args_address (struct frame_info *fi)
|
190 |
|
|
{
|
191 |
|
|
if (fi->extra_info->initial_sp != 0)
|
192 |
|
|
return fi->extra_info->initial_sp;
|
193 |
|
|
else
|
194 |
|
|
return frame_initial_stack_address (fi);
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/* Immediately after a function call, return the saved pc.
|
198 |
|
|
Can't go through the frames for this because on some machines
|
199 |
|
|
the new frame is not set up until the new function executes
|
200 |
|
|
some instructions. */
|
201 |
|
|
|
202 |
|
|
static CORE_ADDR
|
203 |
|
|
rs6000_saved_pc_after_call (struct frame_info *fi)
|
204 |
|
|
{
|
205 |
|
|
return read_register (PPC_LR_REGNUM);
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
209 |
|
|
|
210 |
|
|
static CORE_ADDR
|
211 |
|
|
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
|
212 |
|
|
{
|
213 |
|
|
CORE_ADDR dest;
|
214 |
|
|
int immediate;
|
215 |
|
|
int absolute;
|
216 |
|
|
int ext_op;
|
217 |
|
|
|
218 |
|
|
absolute = (int) ((instr >> 1) & 1);
|
219 |
|
|
|
220 |
|
|
switch (opcode)
|
221 |
|
|
{
|
222 |
|
|
case 18:
|
223 |
|
|
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
224 |
|
|
if (absolute)
|
225 |
|
|
dest = immediate;
|
226 |
|
|
else
|
227 |
|
|
dest = pc + immediate;
|
228 |
|
|
break;
|
229 |
|
|
|
230 |
|
|
case 16:
|
231 |
|
|
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
232 |
|
|
if (absolute)
|
233 |
|
|
dest = immediate;
|
234 |
|
|
else
|
235 |
|
|
dest = pc + immediate;
|
236 |
|
|
break;
|
237 |
|
|
|
238 |
|
|
case 19:
|
239 |
|
|
ext_op = (instr >> 1) & 0x3ff;
|
240 |
|
|
|
241 |
|
|
if (ext_op == 16) /* br conditional register */
|
242 |
|
|
{
|
243 |
|
|
dest = read_register (PPC_LR_REGNUM) & ~3;
|
244 |
|
|
|
245 |
|
|
/* If we are about to return from a signal handler, dest is
|
246 |
|
|
something like 0x3c90. The current frame is a signal handler
|
247 |
|
|
caller frame, upon completion of the sigreturn system call
|
248 |
|
|
execution will return to the saved PC in the frame. */
|
249 |
|
|
if (dest < TEXT_SEGMENT_BASE)
|
250 |
|
|
{
|
251 |
|
|
struct frame_info *fi;
|
252 |
|
|
|
253 |
|
|
fi = get_current_frame ();
|
254 |
|
|
if (fi != NULL)
|
255 |
|
|
dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
|
256 |
|
|
TDEP->wordsize);
|
257 |
|
|
}
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
else if (ext_op == 528) /* br cond to count reg */
|
261 |
|
|
{
|
262 |
|
|
dest = read_register (PPC_CTR_REGNUM) & ~3;
|
263 |
|
|
|
264 |
|
|
/* If we are about to execute a system call, dest is something
|
265 |
|
|
like 0x22fc or 0x3b00. Upon completion the system call
|
266 |
|
|
will return to the address in the link register. */
|
267 |
|
|
if (dest < TEXT_SEGMENT_BASE)
|
268 |
|
|
dest = read_register (PPC_LR_REGNUM) & ~3;
|
269 |
|
|
}
|
270 |
|
|
else
|
271 |
|
|
return -1;
|
272 |
|
|
break;
|
273 |
|
|
|
274 |
|
|
default:
|
275 |
|
|
return -1;
|
276 |
|
|
}
|
277 |
|
|
return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
|
281 |
|
|
/* Sequence of bytes for breakpoint instruction. */
|
282 |
|
|
|
283 |
|
|
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
|
284 |
|
|
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
|
285 |
|
|
|
286 |
|
|
static unsigned char *
|
287 |
|
|
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
288 |
|
|
{
|
289 |
|
|
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
|
290 |
|
|
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
|
291 |
|
|
*bp_size = 4;
|
292 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
293 |
|
|
return big_breakpoint;
|
294 |
|
|
else
|
295 |
|
|
return little_breakpoint;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
|
299 |
|
|
/* AIX does not support PT_STEP. Simulate it. */
|
300 |
|
|
|
301 |
|
|
void
|
302 |
|
|
rs6000_software_single_step (enum target_signal signal,
|
303 |
|
|
int insert_breakpoints_p)
|
304 |
|
|
{
|
305 |
|
|
#define INSNLEN(OPCODE) 4
|
306 |
|
|
|
307 |
|
|
static char le_breakp[] = LITTLE_BREAKPOINT;
|
308 |
|
|
static char be_breakp[] = BIG_BREAKPOINT;
|
309 |
|
|
char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
|
310 |
|
|
int ii, insn;
|
311 |
|
|
CORE_ADDR loc;
|
312 |
|
|
CORE_ADDR breaks[2];
|
313 |
|
|
int opcode;
|
314 |
|
|
|
315 |
|
|
if (insert_breakpoints_p)
|
316 |
|
|
{
|
317 |
|
|
|
318 |
|
|
loc = read_pc ();
|
319 |
|
|
|
320 |
|
|
insn = read_memory_integer (loc, 4);
|
321 |
|
|
|
322 |
|
|
breaks[0] = loc + INSNLEN (insn);
|
323 |
|
|
opcode = insn >> 26;
|
324 |
|
|
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
325 |
|
|
|
326 |
|
|
/* Don't put two breakpoints on the same address. */
|
327 |
|
|
if (breaks[1] == breaks[0])
|
328 |
|
|
breaks[1] = -1;
|
329 |
|
|
|
330 |
|
|
stepBreaks[1].address = 0;
|
331 |
|
|
|
332 |
|
|
for (ii = 0; ii < 2; ++ii)
|
333 |
|
|
{
|
334 |
|
|
|
335 |
|
|
/* ignore invalid breakpoint. */
|
336 |
|
|
if (breaks[ii] == -1)
|
337 |
|
|
continue;
|
338 |
|
|
|
339 |
|
|
read_memory (breaks[ii], stepBreaks[ii].data, 4);
|
340 |
|
|
|
341 |
|
|
write_memory (breaks[ii], breakp, 4);
|
342 |
|
|
stepBreaks[ii].address = breaks[ii];
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
}
|
346 |
|
|
else
|
347 |
|
|
{
|
348 |
|
|
|
349 |
|
|
/* remove step breakpoints. */
|
350 |
|
|
for (ii = 0; ii < 2; ++ii)
|
351 |
|
|
if (stepBreaks[ii].address != 0)
|
352 |
|
|
write_memory
|
353 |
|
|
(stepBreaks[ii].address, stepBreaks[ii].data, 4);
|
354 |
|
|
|
355 |
|
|
}
|
356 |
|
|
errno = 0; /* FIXME, don't ignore errors! */
|
357 |
|
|
/* What errors? {read,write}_memory call error(). */
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
/* return pc value after skipping a function prologue and also return
|
362 |
|
|
information about a function frame.
|
363 |
|
|
|
364 |
|
|
in struct rs6000_framedata fdata:
|
365 |
|
|
- frameless is TRUE, if function does not have a frame.
|
366 |
|
|
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
367 |
|
|
- offset is the initial size of this stack frame --- the amount by
|
368 |
|
|
which we decrement the sp to allocate the frame.
|
369 |
|
|
- saved_gpr is the number of the first saved gpr.
|
370 |
|
|
- saved_fpr is the number of the first saved fpr.
|
371 |
|
|
- alloca_reg is the number of the register used for alloca() handling.
|
372 |
|
|
Otherwise -1.
|
373 |
|
|
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
374 |
|
|
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
375 |
|
|
- lr_offset is the offset of the saved lr
|
376 |
|
|
- cr_offset is the offset of the saved cr
|
377 |
|
|
*/
|
378 |
|
|
|
379 |
|
|
#define SIGNED_SHORT(x) \
|
380 |
|
|
((sizeof (short) == 2) \
|
381 |
|
|
? ((int)(short)(x)) \
|
382 |
|
|
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
383 |
|
|
|
384 |
|
|
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
385 |
|
|
|
386 |
|
|
/* Limit the number of skipped non-prologue instructions, as the examining
|
387 |
|
|
of the prologue is expensive. */
|
388 |
|
|
static int max_skip_non_prologue_insns = 10;
|
389 |
|
|
|
390 |
|
|
/* Given PC representing the starting address of a function, and
|
391 |
|
|
LIM_PC which is the (sloppy) limit to which to scan when looking
|
392 |
|
|
for a prologue, attempt to further refine this limit by using
|
393 |
|
|
the line data in the symbol table. If successful, a better guess
|
394 |
|
|
on where the prologue ends is returned, otherwise the previous
|
395 |
|
|
value of lim_pc is returned. */
|
396 |
|
|
static CORE_ADDR
|
397 |
|
|
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
|
398 |
|
|
{
|
399 |
|
|
struct symtab_and_line prologue_sal;
|
400 |
|
|
|
401 |
|
|
prologue_sal = find_pc_line (pc, 0);
|
402 |
|
|
if (prologue_sal.line != 0)
|
403 |
|
|
{
|
404 |
|
|
int i;
|
405 |
|
|
CORE_ADDR addr = prologue_sal.end;
|
406 |
|
|
|
407 |
|
|
/* Handle the case in which compiler's optimizer/scheduler
|
408 |
|
|
has moved instructions into the prologue. We scan ahead
|
409 |
|
|
in the function looking for address ranges whose corresponding
|
410 |
|
|
line number is less than or equal to the first one that we
|
411 |
|
|
found for the function. (It can be less than when the
|
412 |
|
|
scheduler puts a body instruction before the first prologue
|
413 |
|
|
instruction.) */
|
414 |
|
|
for (i = 2 * max_skip_non_prologue_insns;
|
415 |
|
|
i > 0 && (lim_pc == 0 || addr < lim_pc);
|
416 |
|
|
i--)
|
417 |
|
|
{
|
418 |
|
|
struct symtab_and_line sal;
|
419 |
|
|
|
420 |
|
|
sal = find_pc_line (addr, 0);
|
421 |
|
|
if (sal.line == 0)
|
422 |
|
|
break;
|
423 |
|
|
if (sal.line <= prologue_sal.line
|
424 |
|
|
&& sal.symtab == prologue_sal.symtab)
|
425 |
|
|
{
|
426 |
|
|
prologue_sal = sal;
|
427 |
|
|
}
|
428 |
|
|
addr = sal.end;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
if (lim_pc == 0 || prologue_sal.end < lim_pc)
|
432 |
|
|
lim_pc = prologue_sal.end;
|
433 |
|
|
}
|
434 |
|
|
return lim_pc;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
static CORE_ADDR
|
439 |
|
|
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
|
440 |
|
|
{
|
441 |
|
|
CORE_ADDR orig_pc = pc;
|
442 |
|
|
CORE_ADDR last_prologue_pc = pc;
|
443 |
|
|
char buf[4];
|
444 |
|
|
unsigned long op;
|
445 |
|
|
long offset = 0;
|
446 |
|
|
int lr_reg = -1;
|
447 |
|
|
int cr_reg = -1;
|
448 |
|
|
int reg;
|
449 |
|
|
int framep = 0;
|
450 |
|
|
int minimal_toc_loaded = 0;
|
451 |
|
|
int prev_insn_was_prologue_insn = 1;
|
452 |
|
|
int num_skip_non_prologue_insns = 0;
|
453 |
|
|
|
454 |
|
|
/* Attempt to find the end of the prologue when no limit is specified.
|
455 |
|
|
Note that refine_prologue_limit() has been written so that it may
|
456 |
|
|
be used to "refine" the limits of non-zero PC values too, but this
|
457 |
|
|
is only safe if we 1) trust the line information provided by the
|
458 |
|
|
compiler and 2) iterate enough to actually find the end of the
|
459 |
|
|
prologue.
|
460 |
|
|
|
461 |
|
|
It may become a good idea at some point (for both performance and
|
462 |
|
|
accuracy) to unconditionally call refine_prologue_limit(). But,
|
463 |
|
|
until we can make a clear determination that this is beneficial,
|
464 |
|
|
we'll play it safe and only use it to obtain a limit when none
|
465 |
|
|
has been specified. */
|
466 |
|
|
if (lim_pc == 0)
|
467 |
|
|
lim_pc = refine_prologue_limit (pc, lim_pc);
|
468 |
|
|
|
469 |
|
|
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
470 |
|
|
fdata->saved_gpr = -1;
|
471 |
|
|
fdata->saved_fpr = -1;
|
472 |
|
|
fdata->alloca_reg = -1;
|
473 |
|
|
fdata->frameless = 1;
|
474 |
|
|
fdata->nosavedpc = 1;
|
475 |
|
|
|
476 |
|
|
for (;; pc += 4)
|
477 |
|
|
{
|
478 |
|
|
/* Sometimes it isn't clear if an instruction is a prologue
|
479 |
|
|
instruction or not. When we encounter one of these ambiguous
|
480 |
|
|
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
481 |
|
|
Otherwise, we'll assume that it really is a prologue instruction. */
|
482 |
|
|
if (prev_insn_was_prologue_insn)
|
483 |
|
|
last_prologue_pc = pc;
|
484 |
|
|
|
485 |
|
|
/* Stop scanning if we've hit the limit. */
|
486 |
|
|
if (lim_pc != 0 && pc >= lim_pc)
|
487 |
|
|
break;
|
488 |
|
|
|
489 |
|
|
prev_insn_was_prologue_insn = 1;
|
490 |
|
|
|
491 |
|
|
/* Fetch the instruction and convert it to an integer. */
|
492 |
|
|
if (target_read_memory (pc, buf, 4))
|
493 |
|
|
break;
|
494 |
|
|
op = extract_signed_integer (buf, 4);
|
495 |
|
|
|
496 |
|
|
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
497 |
|
|
{ /* mflr Rx */
|
498 |
|
|
lr_reg = (op & 0x03e00000) | 0x90010000;
|
499 |
|
|
continue;
|
500 |
|
|
|
501 |
|
|
}
|
502 |
|
|
else if ((op & 0xfc1fffff) == 0x7c000026)
|
503 |
|
|
{ /* mfcr Rx */
|
504 |
|
|
cr_reg = (op & 0x03e00000) | 0x90010000;
|
505 |
|
|
continue;
|
506 |
|
|
|
507 |
|
|
}
|
508 |
|
|
else if ((op & 0xfc1f0000) == 0xd8010000)
|
509 |
|
|
{ /* stfd Rx,NUM(r1) */
|
510 |
|
|
reg = GET_SRC_REG (op);
|
511 |
|
|
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
512 |
|
|
{
|
513 |
|
|
fdata->saved_fpr = reg;
|
514 |
|
|
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
515 |
|
|
}
|
516 |
|
|
continue;
|
517 |
|
|
|
518 |
|
|
}
|
519 |
|
|
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
520 |
|
|
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
521 |
|
|
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
522 |
|
|
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
523 |
|
|
{
|
524 |
|
|
|
525 |
|
|
reg = GET_SRC_REG (op);
|
526 |
|
|
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
527 |
|
|
{
|
528 |
|
|
fdata->saved_gpr = reg;
|
529 |
|
|
if ((op & 0xfc1f0003) == 0xf8010000)
|
530 |
|
|
op = (op >> 1) << 1;
|
531 |
|
|
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
532 |
|
|
}
|
533 |
|
|
continue;
|
534 |
|
|
|
535 |
|
|
}
|
536 |
|
|
else if ((op & 0xffff0000) == 0x60000000)
|
537 |
|
|
{
|
538 |
|
|
/* nop */
|
539 |
|
|
/* Allow nops in the prologue, but do not consider them to
|
540 |
|
|
be part of the prologue unless followed by other prologue
|
541 |
|
|
instructions. */
|
542 |
|
|
prev_insn_was_prologue_insn = 0;
|
543 |
|
|
continue;
|
544 |
|
|
|
545 |
|
|
}
|
546 |
|
|
else if ((op & 0xffff0000) == 0x3c000000)
|
547 |
|
|
{ /* addis 0,0,NUM, used
|
548 |
|
|
for >= 32k frames */
|
549 |
|
|
fdata->offset = (op & 0x0000ffff) << 16;
|
550 |
|
|
fdata->frameless = 0;
|
551 |
|
|
continue;
|
552 |
|
|
|
553 |
|
|
}
|
554 |
|
|
else if ((op & 0xffff0000) == 0x60000000)
|
555 |
|
|
{ /* ori 0,0,NUM, 2nd ha
|
556 |
|
|
lf of >= 32k frames */
|
557 |
|
|
fdata->offset |= (op & 0x0000ffff);
|
558 |
|
|
fdata->frameless = 0;
|
559 |
|
|
continue;
|
560 |
|
|
|
561 |
|
|
}
|
562 |
|
|
else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
|
563 |
|
|
{ /* st Rx,NUM(r1)
|
564 |
|
|
where Rx == lr */
|
565 |
|
|
fdata->lr_offset = SIGNED_SHORT (op) + offset;
|
566 |
|
|
fdata->nosavedpc = 0;
|
567 |
|
|
lr_reg = 0;
|
568 |
|
|
continue;
|
569 |
|
|
|
570 |
|
|
}
|
571 |
|
|
else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
|
572 |
|
|
{ /* st Rx,NUM(r1)
|
573 |
|
|
where Rx == cr */
|
574 |
|
|
fdata->cr_offset = SIGNED_SHORT (op) + offset;
|
575 |
|
|
cr_reg = 0;
|
576 |
|
|
continue;
|
577 |
|
|
|
578 |
|
|
}
|
579 |
|
|
else if (op == 0x48000005)
|
580 |
|
|
{ /* bl .+4 used in
|
581 |
|
|
-mrelocatable */
|
582 |
|
|
continue;
|
583 |
|
|
|
584 |
|
|
}
|
585 |
|
|
else if (op == 0x48000004)
|
586 |
|
|
{ /* b .+4 (xlc) */
|
587 |
|
|
break;
|
588 |
|
|
|
589 |
|
|
}
|
590 |
|
|
else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
|
591 |
|
|
in V.4 -mrelocatable */
|
592 |
|
|
op == 0x7fc0f214) && /* add r30,r0,r30, used
|
593 |
|
|
in V.4 -mrelocatable */
|
594 |
|
|
lr_reg == 0x901e0000)
|
595 |
|
|
{
|
596 |
|
|
continue;
|
597 |
|
|
|
598 |
|
|
}
|
599 |
|
|
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
600 |
|
|
in V.4 -mminimal-toc */
|
601 |
|
|
(op & 0xffff0000) == 0x3bde0000)
|
602 |
|
|
{ /* addi 30,30,foo@l */
|
603 |
|
|
continue;
|
604 |
|
|
|
605 |
|
|
}
|
606 |
|
|
else if ((op & 0xfc000001) == 0x48000001)
|
607 |
|
|
{ /* bl foo,
|
608 |
|
|
to save fprs??? */
|
609 |
|
|
|
610 |
|
|
fdata->frameless = 0;
|
611 |
|
|
/* Don't skip over the subroutine call if it is not within the first
|
612 |
|
|
three instructions of the prologue. */
|
613 |
|
|
if ((pc - orig_pc) > 8)
|
614 |
|
|
break;
|
615 |
|
|
|
616 |
|
|
op = read_memory_integer (pc + 4, 4);
|
617 |
|
|
|
618 |
|
|
/* At this point, make sure this is not a trampoline function
|
619 |
|
|
(a function that simply calls another functions, and nothing else).
|
620 |
|
|
If the next is not a nop, this branch was part of the function
|
621 |
|
|
prologue. */
|
622 |
|
|
|
623 |
|
|
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
624 |
|
|
break; /* don't skip over
|
625 |
|
|
this branch */
|
626 |
|
|
continue;
|
627 |
|
|
|
628 |
|
|
/* update stack pointer */
|
629 |
|
|
}
|
630 |
|
|
else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
|
631 |
|
|
(op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
|
632 |
|
|
{
|
633 |
|
|
fdata->frameless = 0;
|
634 |
|
|
if ((op & 0xffff0003) == 0xf8210001)
|
635 |
|
|
op = (op >> 1) << 1;
|
636 |
|
|
fdata->offset = SIGNED_SHORT (op);
|
637 |
|
|
offset = fdata->offset;
|
638 |
|
|
continue;
|
639 |
|
|
|
640 |
|
|
}
|
641 |
|
|
else if (op == 0x7c21016e)
|
642 |
|
|
{ /* stwux 1,1,0 */
|
643 |
|
|
fdata->frameless = 0;
|
644 |
|
|
offset = fdata->offset;
|
645 |
|
|
continue;
|
646 |
|
|
|
647 |
|
|
/* Load up minimal toc pointer */
|
648 |
|
|
}
|
649 |
|
|
else if ((op >> 22) == 0x20f
|
650 |
|
|
&& !minimal_toc_loaded)
|
651 |
|
|
{ /* l r31,... or l r30,... */
|
652 |
|
|
minimal_toc_loaded = 1;
|
653 |
|
|
continue;
|
654 |
|
|
|
655 |
|
|
/* move parameters from argument registers to local variable
|
656 |
|
|
registers */
|
657 |
|
|
}
|
658 |
|
|
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
659 |
|
|
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
660 |
|
|
(((op >> 21) & 31) <= 10) &&
|
661 |
|
|
(((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
662 |
|
|
{
|
663 |
|
|
continue;
|
664 |
|
|
|
665 |
|
|
/* store parameters in stack */
|
666 |
|
|
}
|
667 |
|
|
else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
668 |
|
|
(op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
|
669 |
|
|
(op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
|
670 |
|
|
(op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
671 |
|
|
{
|
672 |
|
|
continue;
|
673 |
|
|
|
674 |
|
|
/* store parameters in stack via frame pointer */
|
675 |
|
|
}
|
676 |
|
|
else if (framep &&
|
677 |
|
|
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
|
678 |
|
|
(op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
|
679 |
|
|
(op & 0xfc1f0000) == 0xfc1f0000))
|
680 |
|
|
{ /* frsp, fp?,NUM(r1) */
|
681 |
|
|
continue;
|
682 |
|
|
|
683 |
|
|
/* Set up frame pointer */
|
684 |
|
|
}
|
685 |
|
|
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
686 |
|
|
|| op == 0x7c3f0b78)
|
687 |
|
|
{ /* mr r31, r1 */
|
688 |
|
|
fdata->frameless = 0;
|
689 |
|
|
framep = 1;
|
690 |
|
|
fdata->alloca_reg = 31;
|
691 |
|
|
continue;
|
692 |
|
|
|
693 |
|
|
/* Another way to set up the frame pointer. */
|
694 |
|
|
}
|
695 |
|
|
else if ((op & 0xfc1fffff) == 0x38010000)
|
696 |
|
|
{ /* addi rX, r1, 0x0 */
|
697 |
|
|
fdata->frameless = 0;
|
698 |
|
|
framep = 1;
|
699 |
|
|
fdata->alloca_reg = (op & ~0x38010000) >> 21;
|
700 |
|
|
continue;
|
701 |
|
|
|
702 |
|
|
}
|
703 |
|
|
else
|
704 |
|
|
{
|
705 |
|
|
/* Not a recognized prologue instruction.
|
706 |
|
|
Handle optimizer code motions into the prologue by continuing
|
707 |
|
|
the search if we have no valid frame yet or if the return
|
708 |
|
|
address is not yet saved in the frame. */
|
709 |
|
|
if (fdata->frameless == 0
|
710 |
|
|
&& (lr_reg == -1 || fdata->nosavedpc == 0))
|
711 |
|
|
break;
|
712 |
|
|
|
713 |
|
|
if (op == 0x4e800020 /* blr */
|
714 |
|
|
|| op == 0x4e800420) /* bctr */
|
715 |
|
|
/* Do not scan past epilogue in frameless functions or
|
716 |
|
|
trampolines. */
|
717 |
|
|
break;
|
718 |
|
|
if ((op & 0xf4000000) == 0x40000000) /* bxx */
|
719 |
|
|
/* Never skip branches. */
|
720 |
|
|
break;
|
721 |
|
|
|
722 |
|
|
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
|
723 |
|
|
/* Do not scan too many insns, scanning insns is expensive with
|
724 |
|
|
remote targets. */
|
725 |
|
|
break;
|
726 |
|
|
|
727 |
|
|
/* Continue scanning. */
|
728 |
|
|
prev_insn_was_prologue_insn = 0;
|
729 |
|
|
continue;
|
730 |
|
|
}
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
#if 0
|
734 |
|
|
/* I have problems with skipping over __main() that I need to address
|
735 |
|
|
* sometime. Previously, I used to use misc_function_vector which
|
736 |
|
|
* didn't work as well as I wanted to be. -MGO */
|
737 |
|
|
|
738 |
|
|
/* If the first thing after skipping a prolog is a branch to a function,
|
739 |
|
|
this might be a call to an initializer in main(), introduced by gcc2.
|
740 |
|
|
We'd like to skip over it as well. Fortunately, xlc does some extra
|
741 |
|
|
work before calling a function right after a prologue, thus we can
|
742 |
|
|
single out such gcc2 behaviour. */
|
743 |
|
|
|
744 |
|
|
|
745 |
|
|
if ((op & 0xfc000001) == 0x48000001)
|
746 |
|
|
{ /* bl foo, an initializer function? */
|
747 |
|
|
op = read_memory_integer (pc + 4, 4);
|
748 |
|
|
|
749 |
|
|
if (op == 0x4def7b82)
|
750 |
|
|
{ /* cror 0xf, 0xf, 0xf (nop) */
|
751 |
|
|
|
752 |
|
|
/* check and see if we are in main. If so, skip over this initializer
|
753 |
|
|
function as well. */
|
754 |
|
|
|
755 |
|
|
tmp = find_pc_misc_function (pc);
|
756 |
|
|
if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
|
757 |
|
|
return pc + 8;
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
#endif /* 0 */
|
761 |
|
|
|
762 |
|
|
fdata->offset = -fdata->offset;
|
763 |
|
|
return last_prologue_pc;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
|
767 |
|
|
/*************************************************************************
|
768 |
|
|
Support for creating pushing a dummy frame into the stack, and popping
|
769 |
|
|
frames, etc.
|
770 |
|
|
*************************************************************************/
|
771 |
|
|
|
772 |
|
|
|
773 |
|
|
/* Pop the innermost frame, go back to the caller. */
|
774 |
|
|
|
775 |
|
|
static void
|
776 |
|
|
rs6000_pop_frame (void)
|
777 |
|
|
{
|
778 |
|
|
CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
|
779 |
|
|
struct rs6000_framedata fdata;
|
780 |
|
|
struct frame_info *frame = get_current_frame ();
|
781 |
|
|
int ii, wordsize;
|
782 |
|
|
|
783 |
|
|
pc = read_pc ();
|
784 |
|
|
sp = FRAME_FP (frame);
|
785 |
|
|
|
786 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
787 |
|
|
{
|
788 |
|
|
generic_pop_dummy_frame ();
|
789 |
|
|
flush_cached_frames ();
|
790 |
|
|
return;
|
791 |
|
|
}
|
792 |
|
|
|
793 |
|
|
/* Make sure that all registers are valid. */
|
794 |
|
|
read_register_bytes (0, NULL, REGISTER_BYTES);
|
795 |
|
|
|
796 |
|
|
/* figure out previous %pc value. If the function is frameless, it is
|
797 |
|
|
still in the link register, otherwise walk the frames and retrieve the
|
798 |
|
|
saved %pc value in the previous frame. */
|
799 |
|
|
|
800 |
|
|
addr = get_pc_function_start (frame->pc);
|
801 |
|
|
(void) skip_prologue (addr, frame->pc, &fdata);
|
802 |
|
|
|
803 |
|
|
wordsize = TDEP->wordsize;
|
804 |
|
|
if (fdata.frameless)
|
805 |
|
|
prev_sp = sp;
|
806 |
|
|
else
|
807 |
|
|
prev_sp = read_memory_addr (sp, wordsize);
|
808 |
|
|
if (fdata.lr_offset == 0)
|
809 |
|
|
lr = read_register (PPC_LR_REGNUM);
|
810 |
|
|
else
|
811 |
|
|
lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
|
812 |
|
|
|
813 |
|
|
/* reset %pc value. */
|
814 |
|
|
write_register (PC_REGNUM, lr);
|
815 |
|
|
|
816 |
|
|
/* reset register values if any was saved earlier. */
|
817 |
|
|
|
818 |
|
|
if (fdata.saved_gpr != -1)
|
819 |
|
|
{
|
820 |
|
|
addr = prev_sp + fdata.gpr_offset;
|
821 |
|
|
for (ii = fdata.saved_gpr; ii <= 31; ++ii)
|
822 |
|
|
{
|
823 |
|
|
read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize);
|
824 |
|
|
addr += wordsize;
|
825 |
|
|
}
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
if (fdata.saved_fpr != -1)
|
829 |
|
|
{
|
830 |
|
|
addr = prev_sp + fdata.fpr_offset;
|
831 |
|
|
for (ii = fdata.saved_fpr; ii <= 31; ++ii)
|
832 |
|
|
{
|
833 |
|
|
read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
|
834 |
|
|
addr += 8;
|
835 |
|
|
}
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
write_register (SP_REGNUM, prev_sp);
|
839 |
|
|
target_store_registers (-1);
|
840 |
|
|
flush_cached_frames ();
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
/* Fixup the call sequence of a dummy function, with the real function
|
844 |
|
|
address. Its arguments will be passed by gdb. */
|
845 |
|
|
|
846 |
|
|
static void
|
847 |
|
|
rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
|
848 |
|
|
int nargs, value_ptr *args, struct type *type,
|
849 |
|
|
int gcc_p)
|
850 |
|
|
{
|
851 |
|
|
#define TOC_ADDR_OFFSET 20
|
852 |
|
|
#define TARGET_ADDR_OFFSET 28
|
853 |
|
|
|
854 |
|
|
int ii;
|
855 |
|
|
CORE_ADDR target_addr;
|
856 |
|
|
|
857 |
|
|
if (rs6000_find_toc_address_hook != NULL)
|
858 |
|
|
{
|
859 |
|
|
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
|
860 |
|
|
write_register (PPC_TOC_REGNUM, tocvalue);
|
861 |
|
|
}
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
865 |
|
|
the first eight words of the argument list (that might be less than
|
866 |
|
|
eight parameters if some parameters occupy more than one word) are
|
867 |
|
|
passed in r3..r10 registers. float and double parameters are
|
868 |
|
|
passed in fpr's, in addition to that. Rest of the parameters if any
|
869 |
|
|
are passed in user stack. There might be cases in which half of the
|
870 |
|
|
parameter is copied into registers, the other half is pushed into
|
871 |
|
|
stack.
|
872 |
|
|
|
873 |
|
|
Stack must be aligned on 64-bit boundaries when synthesizing
|
874 |
|
|
function calls.
|
875 |
|
|
|
876 |
|
|
If the function is returning a structure, then the return address is passed
|
877 |
|
|
in r3, then the first 7 words of the parameters can be passed in registers,
|
878 |
|
|
starting from r4. */
|
879 |
|
|
|
880 |
|
|
static CORE_ADDR
|
881 |
|
|
rs6000_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
882 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
883 |
|
|
{
|
884 |
|
|
int ii;
|
885 |
|
|
int len = 0;
|
886 |
|
|
int argno; /* current argument number */
|
887 |
|
|
int argbytes; /* current argument byte */
|
888 |
|
|
char tmp_buffer[50];
|
889 |
|
|
int f_argno = 0; /* current floating point argno */
|
890 |
|
|
int wordsize = TDEP->wordsize;
|
891 |
|
|
|
892 |
|
|
value_ptr arg = 0;
|
893 |
|
|
struct type *type;
|
894 |
|
|
|
895 |
|
|
CORE_ADDR saved_sp;
|
896 |
|
|
|
897 |
|
|
/* The first eight words of ther arguments are passed in registers. Copy
|
898 |
|
|
them appropriately.
|
899 |
|
|
|
900 |
|
|
If the function is returning a `struct', then the first word (which
|
901 |
|
|
will be passed in r3) is used for struct return address. In that
|
902 |
|
|
case we should advance one word and start from r4 register to copy
|
903 |
|
|
parameters. */
|
904 |
|
|
|
905 |
|
|
ii = struct_return ? 1 : 0;
|
906 |
|
|
|
907 |
|
|
/*
|
908 |
|
|
effectively indirect call... gcc does...
|
909 |
|
|
|
910 |
|
|
return_val example( float, int);
|
911 |
|
|
|
912 |
|
|
eabi:
|
913 |
|
|
float in fp0, int in r3
|
914 |
|
|
offset of stack on overflow 8/16
|
915 |
|
|
for varargs, must go by type.
|
916 |
|
|
power open:
|
917 |
|
|
float in r3&r4, int in r5
|
918 |
|
|
offset of stack on overflow different
|
919 |
|
|
both:
|
920 |
|
|
return in r3 or f0. If no float, must study how gcc emulates floats;
|
921 |
|
|
pay attention to arg promotion.
|
922 |
|
|
User may have to cast\args to handle promotion correctly
|
923 |
|
|
since gdb won't know if prototype supplied or not.
|
924 |
|
|
*/
|
925 |
|
|
|
926 |
|
|
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
927 |
|
|
{
|
928 |
|
|
int reg_size = REGISTER_RAW_SIZE (ii + 3);
|
929 |
|
|
|
930 |
|
|
arg = args[argno];
|
931 |
|
|
type = check_typedef (VALUE_TYPE (arg));
|
932 |
|
|
len = TYPE_LENGTH (type);
|
933 |
|
|
|
934 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
935 |
|
|
{
|
936 |
|
|
|
937 |
|
|
/* floating point arguments are passed in fpr's, as well as gpr's.
|
938 |
|
|
There are 13 fpr's reserved for passing parameters. At this point
|
939 |
|
|
there is no way we would run out of them. */
|
940 |
|
|
|
941 |
|
|
if (len > 8)
|
942 |
|
|
printf_unfiltered (
|
943 |
|
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
944 |
|
|
|
945 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
946 |
|
|
VALUE_CONTENTS (arg),
|
947 |
|
|
len);
|
948 |
|
|
++f_argno;
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
if (len > reg_size)
|
952 |
|
|
{
|
953 |
|
|
|
954 |
|
|
/* Argument takes more than one register. */
|
955 |
|
|
while (argbytes < len)
|
956 |
|
|
{
|
957 |
|
|
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
958 |
|
|
memcpy (®isters[REGISTER_BYTE (ii + 3)],
|
959 |
|
|
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
960 |
|
|
(len - argbytes) > reg_size
|
961 |
|
|
? reg_size : len - argbytes);
|
962 |
|
|
++ii, argbytes += reg_size;
|
963 |
|
|
|
964 |
|
|
if (ii >= 8)
|
965 |
|
|
goto ran_out_of_registers_for_arguments;
|
966 |
|
|
}
|
967 |
|
|
argbytes = 0;
|
968 |
|
|
--ii;
|
969 |
|
|
}
|
970 |
|
|
else
|
971 |
|
|
{ /* Argument can fit in one register. No problem. */
|
972 |
|
|
int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
|
973 |
|
|
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
974 |
|
|
memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
|
975 |
|
|
VALUE_CONTENTS (arg), len);
|
976 |
|
|
}
|
977 |
|
|
++argno;
|
978 |
|
|
}
|
979 |
|
|
|
980 |
|
|
ran_out_of_registers_for_arguments:
|
981 |
|
|
|
982 |
|
|
saved_sp = read_sp ();
|
983 |
|
|
#ifndef ELF_OBJECT_FORMAT
|
984 |
|
|
/* location for 8 parameters are always reserved. */
|
985 |
|
|
sp -= wordsize * 8;
|
986 |
|
|
|
987 |
|
|
/* another six words for back chain, TOC register, link register, etc. */
|
988 |
|
|
sp -= wordsize * 6;
|
989 |
|
|
|
990 |
|
|
/* stack pointer must be quadword aligned */
|
991 |
|
|
sp &= -16;
|
992 |
|
|
#endif
|
993 |
|
|
|
994 |
|
|
/* if there are more arguments, allocate space for them in
|
995 |
|
|
the stack, then push them starting from the ninth one. */
|
996 |
|
|
|
997 |
|
|
if ((argno < nargs) || argbytes)
|
998 |
|
|
{
|
999 |
|
|
int space = 0, jj;
|
1000 |
|
|
|
1001 |
|
|
if (argbytes)
|
1002 |
|
|
{
|
1003 |
|
|
space += ((len - argbytes + 3) & -4);
|
1004 |
|
|
jj = argno + 1;
|
1005 |
|
|
}
|
1006 |
|
|
else
|
1007 |
|
|
jj = argno;
|
1008 |
|
|
|
1009 |
|
|
for (; jj < nargs; ++jj)
|
1010 |
|
|
{
|
1011 |
|
|
value_ptr val = args[jj];
|
1012 |
|
|
space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
/* add location required for the rest of the parameters */
|
1016 |
|
|
space = (space + 15) & -16;
|
1017 |
|
|
sp -= space;
|
1018 |
|
|
|
1019 |
|
|
/* This is another instance we need to be concerned about securing our
|
1020 |
|
|
stack space. If we write anything underneath %sp (r1), we might conflict
|
1021 |
|
|
with the kernel who thinks he is free to use this area. So, update %sp
|
1022 |
|
|
first before doing anything else. */
|
1023 |
|
|
|
1024 |
|
|
write_register (SP_REGNUM, sp);
|
1025 |
|
|
|
1026 |
|
|
/* if the last argument copied into the registers didn't fit there
|
1027 |
|
|
completely, push the rest of it into stack. */
|
1028 |
|
|
|
1029 |
|
|
if (argbytes)
|
1030 |
|
|
{
|
1031 |
|
|
write_memory (sp + 24 + (ii * 4),
|
1032 |
|
|
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
1033 |
|
|
len - argbytes);
|
1034 |
|
|
++argno;
|
1035 |
|
|
ii += ((len - argbytes + 3) & -4) / 4;
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
/* push the rest of the arguments into stack. */
|
1039 |
|
|
for (; argno < nargs; ++argno)
|
1040 |
|
|
{
|
1041 |
|
|
|
1042 |
|
|
arg = args[argno];
|
1043 |
|
|
type = check_typedef (VALUE_TYPE (arg));
|
1044 |
|
|
len = TYPE_LENGTH (type);
|
1045 |
|
|
|
1046 |
|
|
|
1047 |
|
|
/* float types should be passed in fpr's, as well as in the stack. */
|
1048 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
1049 |
|
|
{
|
1050 |
|
|
|
1051 |
|
|
if (len > 8)
|
1052 |
|
|
printf_unfiltered (
|
1053 |
|
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
1054 |
|
|
|
1055 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
1056 |
|
|
VALUE_CONTENTS (arg),
|
1057 |
|
|
len);
|
1058 |
|
|
++f_argno;
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
|
1062 |
|
|
ii += ((len + 3) & -4) / 4;
|
1063 |
|
|
}
|
1064 |
|
|
}
|
1065 |
|
|
else
|
1066 |
|
|
/* Secure stack areas first, before doing anything else. */
|
1067 |
|
|
write_register (SP_REGNUM, sp);
|
1068 |
|
|
|
1069 |
|
|
/* set back chain properly */
|
1070 |
|
|
store_address (tmp_buffer, 4, saved_sp);
|
1071 |
|
|
write_memory (sp, tmp_buffer, 4);
|
1072 |
|
|
|
1073 |
|
|
target_store_registers (-1);
|
1074 |
|
|
return sp;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Function: ppc_push_return_address (pc, sp)
|
1078 |
|
|
Set up the return address for the inferior function call. */
|
1079 |
|
|
|
1080 |
|
|
static CORE_ADDR
|
1081 |
|
|
ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
1082 |
|
|
{
|
1083 |
|
|
write_register (PPC_LR_REGNUM, CALL_DUMMY_ADDRESS ());
|
1084 |
|
|
return sp;
|
1085 |
|
|
}
|
1086 |
|
|
|
1087 |
|
|
/* Extract a function return value of type TYPE from raw register array
|
1088 |
|
|
REGBUF, and copy that return value into VALBUF in virtual format. */
|
1089 |
|
|
|
1090 |
|
|
static void
|
1091 |
|
|
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
|
1092 |
|
|
{
|
1093 |
|
|
int offset = 0;
|
1094 |
|
|
|
1095 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
1096 |
|
|
{
|
1097 |
|
|
|
1098 |
|
|
double dd;
|
1099 |
|
|
float ff;
|
1100 |
|
|
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
1101 |
|
|
We need to truncate the return value into float size (4 byte) if
|
1102 |
|
|
necessary. */
|
1103 |
|
|
|
1104 |
|
|
if (TYPE_LENGTH (valtype) > 4) /* this is a double */
|
1105 |
|
|
memcpy (valbuf,
|
1106 |
|
|
®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
|
1107 |
|
|
TYPE_LENGTH (valtype));
|
1108 |
|
|
else
|
1109 |
|
|
{ /* float */
|
1110 |
|
|
memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
|
1111 |
|
|
ff = (float) dd;
|
1112 |
|
|
memcpy (valbuf, &ff, sizeof (float));
|
1113 |
|
|
}
|
1114 |
|
|
}
|
1115 |
|
|
else
|
1116 |
|
|
{
|
1117 |
|
|
/* return value is copied starting from r3. */
|
1118 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
1119 |
|
|
&& TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
|
1120 |
|
|
offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
|
1121 |
|
|
|
1122 |
|
|
memcpy (valbuf,
|
1123 |
|
|
regbuf + REGISTER_BYTE (3) + offset,
|
1124 |
|
|
TYPE_LENGTH (valtype));
|
1125 |
|
|
}
|
1126 |
|
|
}
|
1127 |
|
|
|
1128 |
|
|
/* Keep structure return address in this variable.
|
1129 |
|
|
FIXME: This is a horrid kludge which should not be allowed to continue
|
1130 |
|
|
living. This only allows a single nested call to a structure-returning
|
1131 |
|
|
function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
|
1132 |
|
|
|
1133 |
|
|
static CORE_ADDR rs6000_struct_return_address;
|
1134 |
|
|
|
1135 |
|
|
/* Return whether handle_inferior_event() should proceed through code
|
1136 |
|
|
starting at PC in function NAME when stepping.
|
1137 |
|
|
|
1138 |
|
|
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
|
1139 |
|
|
handle memory references that are too distant to fit in instructions
|
1140 |
|
|
generated by the compiler. For example, if 'foo' in the following
|
1141 |
|
|
instruction:
|
1142 |
|
|
|
1143 |
|
|
lwz r9,foo(r2)
|
1144 |
|
|
|
1145 |
|
|
is greater than 32767, the linker might replace the lwz with a branch to
|
1146 |
|
|
somewhere in @FIX1 that does the load in 2 instructions and then branches
|
1147 |
|
|
back to where execution should continue.
|
1148 |
|
|
|
1149 |
|
|
GDB should silently step over @FIX code, just like AIX dbx does.
|
1150 |
|
|
Unfortunately, the linker uses the "b" instruction for the branches,
|
1151 |
|
|
meaning that the link register doesn't get set. Therefore, GDB's usual
|
1152 |
|
|
step_over_function() mechanism won't work.
|
1153 |
|
|
|
1154 |
|
|
Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
|
1155 |
|
|
in handle_inferior_event() to skip past @FIX code. */
|
1156 |
|
|
|
1157 |
|
|
int
|
1158 |
|
|
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
1159 |
|
|
{
|
1160 |
|
|
return name && !strncmp (name, "@FIX", 4);
|
1161 |
|
|
}
|
1162 |
|
|
|
1163 |
|
|
/* Skip code that the user doesn't want to see when stepping:
|
1164 |
|
|
|
1165 |
|
|
1. Indirect function calls use a piece of trampoline code to do context
|
1166 |
|
|
switching, i.e. to set the new TOC table. Skip such code if we are on
|
1167 |
|
|
its first instruction (as when we have single-stepped to here).
|
1168 |
|
|
|
1169 |
|
|
2. Skip shared library trampoline code (which is different from
|
1170 |
|
|
indirect function call trampolines).
|
1171 |
|
|
|
1172 |
|
|
3. Skip bigtoc fixup code.
|
1173 |
|
|
|
1174 |
|
|
Result is desired PC to step until, or NULL if we are not in
|
1175 |
|
|
code that should be skipped. */
|
1176 |
|
|
|
1177 |
|
|
CORE_ADDR
|
1178 |
|
|
rs6000_skip_trampoline_code (CORE_ADDR pc)
|
1179 |
|
|
{
|
1180 |
|
|
register unsigned int ii, op;
|
1181 |
|
|
int rel;
|
1182 |
|
|
CORE_ADDR solib_target_pc;
|
1183 |
|
|
struct minimal_symbol *msymbol;
|
1184 |
|
|
|
1185 |
|
|
static unsigned trampoline_code[] =
|
1186 |
|
|
{
|
1187 |
|
|
0x800b0000, /* l r0,0x0(r11) */
|
1188 |
|
|
0x90410014, /* st r2,0x14(r1) */
|
1189 |
|
|
0x7c0903a6, /* mtctr r0 */
|
1190 |
|
|
0x804b0004, /* l r2,0x4(r11) */
|
1191 |
|
|
0x816b0008, /* l r11,0x8(r11) */
|
1192 |
|
|
0x4e800420, /* bctr */
|
1193 |
|
|
0x4e800020, /* br */
|
1194 |
|
|
|
1195 |
|
|
};
|
1196 |
|
|
|
1197 |
|
|
/* Check for bigtoc fixup code. */
|
1198 |
|
|
msymbol = lookup_minimal_symbol_by_pc (pc);
|
1199 |
|
|
if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
|
1200 |
|
|
{
|
1201 |
|
|
/* Double-check that the third instruction from PC is relative "b". */
|
1202 |
|
|
op = read_memory_integer (pc + 8, 4);
|
1203 |
|
|
if ((op & 0xfc000003) == 0x48000000)
|
1204 |
|
|
{
|
1205 |
|
|
/* Extract bits 6-29 as a signed 24-bit relative word address and
|
1206 |
|
|
add it to the containing PC. */
|
1207 |
|
|
rel = ((int)(op << 6) >> 6);
|
1208 |
|
|
return pc + 8 + rel;
|
1209 |
|
|
}
|
1210 |
|
|
}
|
1211 |
|
|
|
1212 |
|
|
/* If pc is in a shared library trampoline, return its target. */
|
1213 |
|
|
solib_target_pc = find_solib_trampoline_target (pc);
|
1214 |
|
|
if (solib_target_pc)
|
1215 |
|
|
return solib_target_pc;
|
1216 |
|
|
|
1217 |
|
|
for (ii = 0; trampoline_code[ii]; ++ii)
|
1218 |
|
|
{
|
1219 |
|
|
op = read_memory_integer (pc + (ii * 4), 4);
|
1220 |
|
|
if (op != trampoline_code[ii])
|
1221 |
|
|
return 0;
|
1222 |
|
|
}
|
1223 |
|
|
ii = read_register (11); /* r11 holds destination addr */
|
1224 |
|
|
pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
|
1225 |
|
|
return pc;
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
/* Determines whether the function FI has a frame on the stack or not. */
|
1229 |
|
|
|
1230 |
|
|
int
|
1231 |
|
|
rs6000_frameless_function_invocation (struct frame_info *fi)
|
1232 |
|
|
{
|
1233 |
|
|
CORE_ADDR func_start;
|
1234 |
|
|
struct rs6000_framedata fdata;
|
1235 |
|
|
|
1236 |
|
|
/* Don't even think about framelessness except on the innermost frame
|
1237 |
|
|
or if the function was interrupted by a signal. */
|
1238 |
|
|
if (fi->next != NULL && !fi->next->signal_handler_caller)
|
1239 |
|
|
return 0;
|
1240 |
|
|
|
1241 |
|
|
func_start = get_pc_function_start (fi->pc);
|
1242 |
|
|
|
1243 |
|
|
/* If we failed to find the start of the function, it is a mistake
|
1244 |
|
|
to inspect the instructions. */
|
1245 |
|
|
|
1246 |
|
|
if (!func_start)
|
1247 |
|
|
{
|
1248 |
|
|
/* A frame with a zero PC is usually created by dereferencing a NULL
|
1249 |
|
|
function pointer, normally causing an immediate core dump of the
|
1250 |
|
|
inferior. Mark function as frameless, as the inferior has no chance
|
1251 |
|
|
of setting up a stack frame. */
|
1252 |
|
|
if (fi->pc == 0)
|
1253 |
|
|
return 1;
|
1254 |
|
|
else
|
1255 |
|
|
return 0;
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
(void) skip_prologue (func_start, fi->pc, &fdata);
|
1259 |
|
|
return fdata.frameless;
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
/* Return the PC saved in a frame */
|
1263 |
|
|
|
1264 |
|
|
CORE_ADDR
|
1265 |
|
|
rs6000_frame_saved_pc (struct frame_info *fi)
|
1266 |
|
|
{
|
1267 |
|
|
CORE_ADDR func_start;
|
1268 |
|
|
struct rs6000_framedata fdata;
|
1269 |
|
|
int wordsize = TDEP->wordsize;
|
1270 |
|
|
|
1271 |
|
|
if (fi->signal_handler_caller)
|
1272 |
|
|
return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
|
1273 |
|
|
|
1274 |
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
1275 |
|
|
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
1276 |
|
|
|
1277 |
|
|
func_start = get_pc_function_start (fi->pc);
|
1278 |
|
|
|
1279 |
|
|
/* If we failed to find the start of the function, it is a mistake
|
1280 |
|
|
to inspect the instructions. */
|
1281 |
|
|
if (!func_start)
|
1282 |
|
|
return 0;
|
1283 |
|
|
|
1284 |
|
|
(void) skip_prologue (func_start, fi->pc, &fdata);
|
1285 |
|
|
|
1286 |
|
|
if (fdata.lr_offset == 0 && fi->next != NULL)
|
1287 |
|
|
{
|
1288 |
|
|
if (fi->next->signal_handler_caller)
|
1289 |
|
|
return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
|
1290 |
|
|
wordsize);
|
1291 |
|
|
else
|
1292 |
|
|
return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
|
1293 |
|
|
wordsize);
|
1294 |
|
|
}
|
1295 |
|
|
|
1296 |
|
|
if (fdata.lr_offset == 0)
|
1297 |
|
|
return read_register (PPC_LR_REGNUM);
|
1298 |
|
|
|
1299 |
|
|
return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
/* If saved registers of frame FI are not known yet, read and cache them.
|
1303 |
|
|
&FDATAP contains rs6000_framedata; TDATAP can be NULL,
|
1304 |
|
|
in which case the framedata are read. */
|
1305 |
|
|
|
1306 |
|
|
static void
|
1307 |
|
|
frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
|
1308 |
|
|
{
|
1309 |
|
|
CORE_ADDR frame_addr;
|
1310 |
|
|
struct rs6000_framedata work_fdata;
|
1311 |
|
|
int wordsize = TDEP->wordsize;
|
1312 |
|
|
|
1313 |
|
|
if (fi->saved_regs)
|
1314 |
|
|
return;
|
1315 |
|
|
|
1316 |
|
|
if (fdatap == NULL)
|
1317 |
|
|
{
|
1318 |
|
|
fdatap = &work_fdata;
|
1319 |
|
|
(void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
frame_saved_regs_zalloc (fi);
|
1323 |
|
|
|
1324 |
|
|
/* If there were any saved registers, figure out parent's stack
|
1325 |
|
|
pointer. */
|
1326 |
|
|
/* The following is true only if the frame doesn't have a call to
|
1327 |
|
|
alloca(), FIXME. */
|
1328 |
|
|
|
1329 |
|
|
if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
|
1330 |
|
|
&& fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
|
1331 |
|
|
frame_addr = 0;
|
1332 |
|
|
else if (fi->prev && fi->prev->frame)
|
1333 |
|
|
frame_addr = fi->prev->frame;
|
1334 |
|
|
else
|
1335 |
|
|
frame_addr = read_memory_addr (fi->frame, wordsize);
|
1336 |
|
|
|
1337 |
|
|
/* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
|
1338 |
|
|
All fpr's from saved_fpr to fp31 are saved. */
|
1339 |
|
|
|
1340 |
|
|
if (fdatap->saved_fpr >= 0)
|
1341 |
|
|
{
|
1342 |
|
|
int i;
|
1343 |
|
|
CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
|
1344 |
|
|
for (i = fdatap->saved_fpr; i < 32; i++)
|
1345 |
|
|
{
|
1346 |
|
|
fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
|
1347 |
|
|
fpr_addr += 8;
|
1348 |
|
|
}
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
/* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
|
1352 |
|
|
All gpr's from saved_gpr to gpr31 are saved. */
|
1353 |
|
|
|
1354 |
|
|
if (fdatap->saved_gpr >= 0)
|
1355 |
|
|
{
|
1356 |
|
|
int i;
|
1357 |
|
|
CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
|
1358 |
|
|
for (i = fdatap->saved_gpr; i < 32; i++)
|
1359 |
|
|
{
|
1360 |
|
|
fi->saved_regs[i] = gpr_addr;
|
1361 |
|
|
gpr_addr += wordsize;
|
1362 |
|
|
}
|
1363 |
|
|
}
|
1364 |
|
|
|
1365 |
|
|
/* If != 0, fdatap->cr_offset is the offset from the frame that holds
|
1366 |
|
|
the CR. */
|
1367 |
|
|
if (fdatap->cr_offset != 0)
|
1368 |
|
|
fi->saved_regs[PPC_CR_REGNUM] = frame_addr + fdatap->cr_offset;
|
1369 |
|
|
|
1370 |
|
|
/* If != 0, fdatap->lr_offset is the offset from the frame that holds
|
1371 |
|
|
the LR. */
|
1372 |
|
|
if (fdatap->lr_offset != 0)
|
1373 |
|
|
fi->saved_regs[PPC_LR_REGNUM] = frame_addr + fdatap->lr_offset;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
/* Return the address of a frame. This is the inital %sp value when the frame
|
1377 |
|
|
was first allocated. For functions calling alloca(), it might be saved in
|
1378 |
|
|
an alloca register. */
|
1379 |
|
|
|
1380 |
|
|
static CORE_ADDR
|
1381 |
|
|
frame_initial_stack_address (struct frame_info *fi)
|
1382 |
|
|
{
|
1383 |
|
|
CORE_ADDR tmpaddr;
|
1384 |
|
|
struct rs6000_framedata fdata;
|
1385 |
|
|
struct frame_info *callee_fi;
|
1386 |
|
|
|
1387 |
|
|
/* if the initial stack pointer (frame address) of this frame is known,
|
1388 |
|
|
just return it. */
|
1389 |
|
|
|
1390 |
|
|
if (fi->extra_info->initial_sp)
|
1391 |
|
|
return fi->extra_info->initial_sp;
|
1392 |
|
|
|
1393 |
|
|
/* find out if this function is using an alloca register.. */
|
1394 |
|
|
|
1395 |
|
|
(void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
|
1396 |
|
|
|
1397 |
|
|
/* if saved registers of this frame are not known yet, read and cache them. */
|
1398 |
|
|
|
1399 |
|
|
if (!fi->saved_regs)
|
1400 |
|
|
frame_get_saved_regs (fi, &fdata);
|
1401 |
|
|
|
1402 |
|
|
/* If no alloca register used, then fi->frame is the value of the %sp for
|
1403 |
|
|
this frame, and it is good enough. */
|
1404 |
|
|
|
1405 |
|
|
if (fdata.alloca_reg < 0)
|
1406 |
|
|
{
|
1407 |
|
|
fi->extra_info->initial_sp = fi->frame;
|
1408 |
|
|
return fi->extra_info->initial_sp;
|
1409 |
|
|
}
|
1410 |
|
|
|
1411 |
|
|
/* This function has an alloca register. If this is the top-most frame
|
1412 |
|
|
(with the lowest address), the value in alloca register is good. */
|
1413 |
|
|
|
1414 |
|
|
if (!fi->next)
|
1415 |
|
|
return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
1416 |
|
|
|
1417 |
|
|
/* Otherwise, this is a caller frame. Callee has usually already saved
|
1418 |
|
|
registers, but there are exceptions (such as when the callee
|
1419 |
|
|
has no parameters). Find the address in which caller's alloca
|
1420 |
|
|
register is saved. */
|
1421 |
|
|
|
1422 |
|
|
for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
|
1423 |
|
|
{
|
1424 |
|
|
|
1425 |
|
|
if (!callee_fi->saved_regs)
|
1426 |
|
|
frame_get_saved_regs (callee_fi, NULL);
|
1427 |
|
|
|
1428 |
|
|
/* this is the address in which alloca register is saved. */
|
1429 |
|
|
|
1430 |
|
|
tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
|
1431 |
|
|
if (tmpaddr)
|
1432 |
|
|
{
|
1433 |
|
|
fi->extra_info->initial_sp =
|
1434 |
|
|
read_memory_addr (tmpaddr, TDEP->wordsize);
|
1435 |
|
|
return fi->extra_info->initial_sp;
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
/* Go look into deeper levels of the frame chain to see if any one of
|
1439 |
|
|
the callees has saved alloca register. */
|
1440 |
|
|
}
|
1441 |
|
|
|
1442 |
|
|
/* If alloca register was not saved, by the callee (or any of its callees)
|
1443 |
|
|
then the value in the register is still good. */
|
1444 |
|
|
|
1445 |
|
|
fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
1446 |
|
|
return fi->extra_info->initial_sp;
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
/* Describe the pointer in each stack frame to the previous stack frame
|
1450 |
|
|
(its caller). */
|
1451 |
|
|
|
1452 |
|
|
/* FRAME_CHAIN takes a frame's nominal address
|
1453 |
|
|
and produces the frame's chain-pointer. */
|
1454 |
|
|
|
1455 |
|
|
/* In the case of the RS/6000, the frame's nominal address
|
1456 |
|
|
is the address of a 4-byte word containing the calling frame's address. */
|
1457 |
|
|
|
1458 |
|
|
CORE_ADDR
|
1459 |
|
|
rs6000_frame_chain (struct frame_info *thisframe)
|
1460 |
|
|
{
|
1461 |
|
|
CORE_ADDR fp, fpp, lr;
|
1462 |
|
|
int wordsize = TDEP->wordsize;
|
1463 |
|
|
|
1464 |
|
|
if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
|
1465 |
|
|
return thisframe->frame; /* dummy frame same as caller's frame */
|
1466 |
|
|
|
1467 |
|
|
if (inside_entry_file (thisframe->pc) ||
|
1468 |
|
|
thisframe->pc == entry_point_address ())
|
1469 |
|
|
return 0;
|
1470 |
|
|
|
1471 |
|
|
if (thisframe->signal_handler_caller)
|
1472 |
|
|
fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
|
1473 |
|
|
wordsize);
|
1474 |
|
|
else if (thisframe->next != NULL
|
1475 |
|
|
&& thisframe->next->signal_handler_caller
|
1476 |
|
|
&& FRAMELESS_FUNCTION_INVOCATION (thisframe))
|
1477 |
|
|
/* A frameless function interrupted by a signal did not change the
|
1478 |
|
|
frame pointer. */
|
1479 |
|
|
fp = FRAME_FP (thisframe);
|
1480 |
|
|
else
|
1481 |
|
|
fp = read_memory_addr ((thisframe)->frame, wordsize);
|
1482 |
|
|
|
1483 |
|
|
lr = read_register (PPC_LR_REGNUM);
|
1484 |
|
|
if (lr == entry_point_address ())
|
1485 |
|
|
if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
|
1486 |
|
|
if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
|
1487 |
|
|
return fpp;
|
1488 |
|
|
|
1489 |
|
|
return fp;
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
/* Return the size of register REG when words are WORDSIZE bytes long. If REG
|
1493 |
|
|
isn't available with that word size, return 0. */
|
1494 |
|
|
|
1495 |
|
|
static int
|
1496 |
|
|
regsize (const struct reg *reg, int wordsize)
|
1497 |
|
|
{
|
1498 |
|
|
return wordsize == 8 ? reg->sz64 : reg->sz32;
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
/* Return the name of register number N, or null if no such register exists
|
1502 |
|
|
in the current architecture. */
|
1503 |
|
|
|
1504 |
|
|
static char *
|
1505 |
|
|
rs6000_register_name (int n)
|
1506 |
|
|
{
|
1507 |
|
|
struct gdbarch_tdep *tdep = TDEP;
|
1508 |
|
|
const struct reg *reg = tdep->regs + n;
|
1509 |
|
|
|
1510 |
|
|
if (!regsize (reg, tdep->wordsize))
|
1511 |
|
|
return NULL;
|
1512 |
|
|
return reg->name;
|
1513 |
|
|
}
|
1514 |
|
|
|
1515 |
|
|
/* Index within `registers' of the first byte of the space for
|
1516 |
|
|
register N. */
|
1517 |
|
|
|
1518 |
|
|
static int
|
1519 |
|
|
rs6000_register_byte (int n)
|
1520 |
|
|
{
|
1521 |
|
|
return TDEP->regoff[n];
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
/* Return the number of bytes of storage in the actual machine representation
|
1525 |
|
|
for register N if that register is available, else return 0. */
|
1526 |
|
|
|
1527 |
|
|
static int
|
1528 |
|
|
rs6000_register_raw_size (int n)
|
1529 |
|
|
{
|
1530 |
|
|
struct gdbarch_tdep *tdep = TDEP;
|
1531 |
|
|
const struct reg *reg = tdep->regs + n;
|
1532 |
|
|
return regsize (reg, tdep->wordsize);
|
1533 |
|
|
}
|
1534 |
|
|
|
1535 |
|
|
/* Number of bytes of storage in the program's representation
|
1536 |
|
|
for register N. */
|
1537 |
|
|
|
1538 |
|
|
static int
|
1539 |
|
|
rs6000_register_virtual_size (int n)
|
1540 |
|
|
{
|
1541 |
|
|
return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (n));
|
1542 |
|
|
}
|
1543 |
|
|
|
1544 |
|
|
/* Return the GDB type object for the "standard" data type
|
1545 |
|
|
of data in register N. */
|
1546 |
|
|
|
1547 |
|
|
static struct type *
|
1548 |
|
|
rs6000_register_virtual_type (int n)
|
1549 |
|
|
{
|
1550 |
|
|
struct gdbarch_tdep *tdep = TDEP;
|
1551 |
|
|
const struct reg *reg = tdep->regs + n;
|
1552 |
|
|
|
1553 |
|
|
return reg->fpr ? builtin_type_double :
|
1554 |
|
|
regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 :
|
1555 |
|
|
builtin_type_int32;
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
/* For the PowerPC, it appears that the debug info marks float parameters as
|
1559 |
|
|
floats regardless of whether the function is prototyped, but the actual
|
1560 |
|
|
values are always passed in as doubles. Tell gdb to always assume that
|
1561 |
|
|
floats are passed as doubles and then converted in the callee. */
|
1562 |
|
|
|
1563 |
|
|
static int
|
1564 |
|
|
rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
|
1565 |
|
|
{
|
1566 |
|
|
return 1;
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
/* Return whether register N requires conversion when moving from raw format
|
1570 |
|
|
to virtual format.
|
1571 |
|
|
|
1572 |
|
|
The register format for RS/6000 floating point registers is always
|
1573 |
|
|
double, we need a conversion if the memory format is float. */
|
1574 |
|
|
|
1575 |
|
|
static int
|
1576 |
|
|
rs6000_register_convertible (int n)
|
1577 |
|
|
{
|
1578 |
|
|
const struct reg *reg = TDEP->regs + n;
|
1579 |
|
|
return reg->fpr;
|
1580 |
|
|
}
|
1581 |
|
|
|
1582 |
|
|
/* Convert data from raw format for register N in buffer FROM
|
1583 |
|
|
to virtual format with type TYPE in buffer TO. */
|
1584 |
|
|
|
1585 |
|
|
static void
|
1586 |
|
|
rs6000_register_convert_to_virtual (int n, struct type *type,
|
1587 |
|
|
char *from, char *to)
|
1588 |
|
|
{
|
1589 |
|
|
if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
|
1590 |
|
|
{
|
1591 |
|
|
double val = extract_floating (from, REGISTER_RAW_SIZE (n));
|
1592 |
|
|
store_floating (to, TYPE_LENGTH (type), val);
|
1593 |
|
|
}
|
1594 |
|
|
else
|
1595 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (n));
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
/* Convert data from virtual format with type TYPE in buffer FROM
|
1599 |
|
|
to raw format for register N in buffer TO. */
|
1600 |
|
|
|
1601 |
|
|
static void
|
1602 |
|
|
rs6000_register_convert_to_raw (struct type *type, int n,
|
1603 |
|
|
char *from, char *to)
|
1604 |
|
|
{
|
1605 |
|
|
if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
|
1606 |
|
|
{
|
1607 |
|
|
double val = extract_floating (from, TYPE_LENGTH (type));
|
1608 |
|
|
store_floating (to, REGISTER_RAW_SIZE (n), val);
|
1609 |
|
|
}
|
1610 |
|
|
else
|
1611 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (n));
|
1612 |
|
|
}
|
1613 |
|
|
|
1614 |
|
|
/* Store the address of the place in which to copy the structure the
|
1615 |
|
|
subroutine will return. This is called from call_function.
|
1616 |
|
|
|
1617 |
|
|
In RS/6000, struct return addresses are passed as an extra parameter in r3.
|
1618 |
|
|
In function return, callee is not responsible of returning this address
|
1619 |
|
|
back. Since gdb needs to find it, we will store in a designated variable
|
1620 |
|
|
`rs6000_struct_return_address'. */
|
1621 |
|
|
|
1622 |
|
|
static void
|
1623 |
|
|
rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
1624 |
|
|
{
|
1625 |
|
|
write_register (3, addr);
|
1626 |
|
|
rs6000_struct_return_address = addr;
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
/* Write into appropriate registers a function return value
|
1630 |
|
|
of type TYPE, given in virtual format. */
|
1631 |
|
|
|
1632 |
|
|
static void
|
1633 |
|
|
rs6000_store_return_value (struct type *type, char *valbuf)
|
1634 |
|
|
{
|
1635 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
1636 |
|
|
|
1637 |
|
|
/* Floating point values are returned starting from FPR1 and up.
|
1638 |
|
|
Say a double_double_double type could be returned in
|
1639 |
|
|
FPR1/FPR2/FPR3 triple. */
|
1640 |
|
|
|
1641 |
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
|
1642 |
|
|
TYPE_LENGTH (type));
|
1643 |
|
|
else
|
1644 |
|
|
/* Everything else is returned in GPR3 and up. */
|
1645 |
|
|
write_register_bytes (REGISTER_BYTE (PPC_GP0_REGNUM + 3), valbuf,
|
1646 |
|
|
TYPE_LENGTH (type));
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
1650 |
|
|
the address in which a function should return its structure value,
|
1651 |
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
1652 |
|
|
|
1653 |
|
|
static CORE_ADDR
|
1654 |
|
|
rs6000_extract_struct_value_address (char *regbuf)
|
1655 |
|
|
{
|
1656 |
|
|
return rs6000_struct_return_address;
|
1657 |
|
|
}
|
1658 |
|
|
|
1659 |
|
|
/* Return whether PC is in a dummy function call.
|
1660 |
|
|
|
1661 |
|
|
FIXME: This just checks for the end of the stack, which is broken
|
1662 |
|
|
for things like stepping through gcc nested function stubs. */
|
1663 |
|
|
|
1664 |
|
|
static int
|
1665 |
|
|
rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
|
1666 |
|
|
{
|
1667 |
|
|
return sp < pc && pc < fp;
|
1668 |
|
|
}
|
1669 |
|
|
|
1670 |
|
|
/* Hook called when a new child process is started. */
|
1671 |
|
|
|
1672 |
|
|
void
|
1673 |
|
|
rs6000_create_inferior (int pid)
|
1674 |
|
|
{
|
1675 |
|
|
if (rs6000_set_host_arch_hook)
|
1676 |
|
|
rs6000_set_host_arch_hook (pid);
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
|
1680 |
|
|
|
1681 |
|
|
Usually a function pointer's representation is simply the address
|
1682 |
|
|
of the function. On the RS/6000 however, a function pointer is
|
1683 |
|
|
represented by a pointer to a TOC entry. This TOC entry contains
|
1684 |
|
|
three words, the first word is the address of the function, the
|
1685 |
|
|
second word is the TOC pointer (r2), and the third word is the
|
1686 |
|
|
static chain value. Throughout GDB it is currently assumed that a
|
1687 |
|
|
function pointer contains the address of the function, which is not
|
1688 |
|
|
easy to fix. In addition, the conversion of a function address to
|
1689 |
|
|
a function pointer would require allocation of a TOC entry in the
|
1690 |
|
|
inferior's memory space, with all its drawbacks. To be able to
|
1691 |
|
|
call C++ virtual methods in the inferior (which are called via
|
1692 |
|
|
function pointers), find_function_addr uses this function to get the
|
1693 |
|
|
function address from a function pointer. */
|
1694 |
|
|
|
1695 |
|
|
/* Return real function address if ADDR (a function pointer) is in the data
|
1696 |
|
|
space and is therefore a special function pointer. */
|
1697 |
|
|
|
1698 |
|
|
CORE_ADDR
|
1699 |
|
|
rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
|
1700 |
|
|
{
|
1701 |
|
|
struct obj_section *s;
|
1702 |
|
|
|
1703 |
|
|
s = find_pc_section (addr);
|
1704 |
|
|
if (s && s->the_bfd_section->flags & SEC_CODE)
|
1705 |
|
|
return addr;
|
1706 |
|
|
|
1707 |
|
|
/* ADDR is in the data space, so it's a special function pointer. */
|
1708 |
|
|
return read_memory_addr (addr, TDEP->wordsize);
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
|
1712 |
|
|
/* Handling the various POWER/PowerPC variants. */
|
1713 |
|
|
|
1714 |
|
|
|
1715 |
|
|
/* The arrays here called registers_MUMBLE hold information about available
|
1716 |
|
|
registers.
|
1717 |
|
|
|
1718 |
|
|
For each family of PPC variants, I've tried to isolate out the
|
1719 |
|
|
common registers and put them up front, so that as long as you get
|
1720 |
|
|
the general family right, GDB will correctly identify the registers
|
1721 |
|
|
common to that family. The common register sets are:
|
1722 |
|
|
|
1723 |
|
|
For the 60x family: hid0 hid1 iabr dabr pir
|
1724 |
|
|
|
1725 |
|
|
For the 505 and 860 family: eie eid nri
|
1726 |
|
|
|
1727 |
|
|
For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
|
1728 |
|
|
tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
|
1729 |
|
|
pbu1 pbl2 pbu2
|
1730 |
|
|
|
1731 |
|
|
Most of these register groups aren't anything formal. I arrived at
|
1732 |
|
|
them by looking at the registers that occurred in more than one
|
1733 |
|
|
processor. */
|
1734 |
|
|
|
1735 |
|
|
/* Convenience macros for populating register arrays. */
|
1736 |
|
|
|
1737 |
|
|
/* Within another macro, convert S to a string. */
|
1738 |
|
|
|
1739 |
|
|
#define STR(s) #s
|
1740 |
|
|
|
1741 |
|
|
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
|
1742 |
|
|
and 64 bits on 64-bit systems. */
|
1743 |
|
|
#define R(name) { STR(name), 4, 8, 0 }
|
1744 |
|
|
|
1745 |
|
|
/* Return a struct reg defining register NAME that's 32 bits on all
|
1746 |
|
|
systems. */
|
1747 |
|
|
#define R4(name) { STR(name), 4, 4, 0 }
|
1748 |
|
|
|
1749 |
|
|
/* Return a struct reg defining register NAME that's 64 bits on all
|
1750 |
|
|
systems. */
|
1751 |
|
|
#define R8(name) { STR(name), 8, 8, 0 }
|
1752 |
|
|
|
1753 |
|
|
/* Return a struct reg defining floating-point register NAME. */
|
1754 |
|
|
#define F(name) { STR(name), 8, 8, 1 }
|
1755 |
|
|
|
1756 |
|
|
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
|
1757 |
|
|
systems and that doesn't exist on 64-bit systems. */
|
1758 |
|
|
#define R32(name) { STR(name), 4, 0, 0 }
|
1759 |
|
|
|
1760 |
|
|
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
|
1761 |
|
|
systems and that doesn't exist on 32-bit systems. */
|
1762 |
|
|
#define R64(name) { STR(name), 0, 8, 0 }
|
1763 |
|
|
|
1764 |
|
|
/* Return a struct reg placeholder for a register that doesn't exist. */
|
1765 |
|
|
#define R0 { 0, 0, 0, 0 }
|
1766 |
|
|
|
1767 |
|
|
/* UISA registers common across all architectures, including POWER. */
|
1768 |
|
|
|
1769 |
|
|
#define COMMON_UISA_REGS \
|
1770 |
|
|
/* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
|
1771 |
|
|
/* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
|
1772 |
|
|
/* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
|
1773 |
|
|
/* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
|
1774 |
|
|
/* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
|
1775 |
|
|
/* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
|
1776 |
|
|
/* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
|
1777 |
|
|
/* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
|
1778 |
|
|
/* 64 */ R(pc), R(ps)
|
1779 |
|
|
|
1780 |
|
|
/* UISA-level SPRs for PowerPC. */
|
1781 |
|
|
#define PPC_UISA_SPRS \
|
1782 |
|
|
/* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
|
1783 |
|
|
|
1784 |
|
|
/* Segment registers, for PowerPC. */
|
1785 |
|
|
#define PPC_SEGMENT_REGS \
|
1786 |
|
|
/* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
|
1787 |
|
|
/* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
|
1788 |
|
|
/* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
|
1789 |
|
|
/* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
|
1790 |
|
|
|
1791 |
|
|
/* OEA SPRs for PowerPC. */
|
1792 |
|
|
#define PPC_OEA_SPRS \
|
1793 |
|
|
/* 87 */ R4(pvr), \
|
1794 |
|
|
/* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
|
1795 |
|
|
/* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
|
1796 |
|
|
/* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
|
1797 |
|
|
/* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
|
1798 |
|
|
/* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
|
1799 |
|
|
/* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
|
1800 |
|
|
/* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
|
1801 |
|
|
/* 116 */ R4(dec), R(dabr), R4(ear)
|
1802 |
|
|
|
1803 |
|
|
/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
|
1804 |
|
|
user-level SPR's. */
|
1805 |
|
|
static const struct reg registers_power[] =
|
1806 |
|
|
{
|
1807 |
|
|
COMMON_UISA_REGS,
|
1808 |
|
|
/* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
|
1809 |
|
|
};
|
1810 |
|
|
|
1811 |
|
|
/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
|
1812 |
|
|
view of the PowerPC. */
|
1813 |
|
|
static const struct reg registers_powerpc[] =
|
1814 |
|
|
{
|
1815 |
|
|
COMMON_UISA_REGS,
|
1816 |
|
|
PPC_UISA_SPRS
|
1817 |
|
|
};
|
1818 |
|
|
|
1819 |
|
|
/* IBM PowerPC 403. */
|
1820 |
|
|
static const struct reg registers_403[] =
|
1821 |
|
|
{
|
1822 |
|
|
COMMON_UISA_REGS,
|
1823 |
|
|
PPC_UISA_SPRS,
|
1824 |
|
|
PPC_SEGMENT_REGS,
|
1825 |
|
|
PPC_OEA_SPRS,
|
1826 |
|
|
/* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
|
1827 |
|
|
/* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
|
1828 |
|
|
/* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
|
1829 |
|
|
/* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
|
1830 |
|
|
/* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
|
1831 |
|
|
/* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
|
1832 |
|
|
};
|
1833 |
|
|
|
1834 |
|
|
/* IBM PowerPC 403GC. */
|
1835 |
|
|
static const struct reg registers_403GC[] =
|
1836 |
|
|
{
|
1837 |
|
|
COMMON_UISA_REGS,
|
1838 |
|
|
PPC_UISA_SPRS,
|
1839 |
|
|
PPC_SEGMENT_REGS,
|
1840 |
|
|
PPC_OEA_SPRS,
|
1841 |
|
|
/* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
|
1842 |
|
|
/* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
|
1843 |
|
|
/* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
|
1844 |
|
|
/* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
|
1845 |
|
|
/* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
|
1846 |
|
|
/* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
|
1847 |
|
|
/* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
|
1848 |
|
|
/* 147 */ R(tbhu), R(tblu)
|
1849 |
|
|
};
|
1850 |
|
|
|
1851 |
|
|
/* Motorola PowerPC 505. */
|
1852 |
|
|
static const struct reg registers_505[] =
|
1853 |
|
|
{
|
1854 |
|
|
COMMON_UISA_REGS,
|
1855 |
|
|
PPC_UISA_SPRS,
|
1856 |
|
|
PPC_SEGMENT_REGS,
|
1857 |
|
|
PPC_OEA_SPRS,
|
1858 |
|
|
/* 119 */ R(eie), R(eid), R(nri)
|
1859 |
|
|
};
|
1860 |
|
|
|
1861 |
|
|
/* Motorola PowerPC 860 or 850. */
|
1862 |
|
|
static const struct reg registers_860[] =
|
1863 |
|
|
{
|
1864 |
|
|
COMMON_UISA_REGS,
|
1865 |
|
|
PPC_UISA_SPRS,
|
1866 |
|
|
PPC_SEGMENT_REGS,
|
1867 |
|
|
PPC_OEA_SPRS,
|
1868 |
|
|
/* 119 */ R(eie), R(eid), R(nri), R(cmpa),
|
1869 |
|
|
/* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
|
1870 |
|
|
/* 127 */ R(der), R(counta), R(countb), R(cmpe),
|
1871 |
|
|
/* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
|
1872 |
|
|
/* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
|
1873 |
|
|
/* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
|
1874 |
|
|
/* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
|
1875 |
|
|
/* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
|
1876 |
|
|
/* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
|
1877 |
|
|
/* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
|
1878 |
|
|
/* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
|
1879 |
|
|
/* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
|
1880 |
|
|
};
|
1881 |
|
|
|
1882 |
|
|
/* Motorola PowerPC 601. Note that the 601 has different register numbers
|
1883 |
|
|
for reading and writing RTCU and RTCL. However, how one reads and writes a
|
1884 |
|
|
register is the stub's problem. */
|
1885 |
|
|
static const struct reg registers_601[] =
|
1886 |
|
|
{
|
1887 |
|
|
COMMON_UISA_REGS,
|
1888 |
|
|
PPC_UISA_SPRS,
|
1889 |
|
|
PPC_SEGMENT_REGS,
|
1890 |
|
|
PPC_OEA_SPRS,
|
1891 |
|
|
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
1892 |
|
|
/* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
|
1893 |
|
|
};
|
1894 |
|
|
|
1895 |
|
|
/* Motorola PowerPC 602. */
|
1896 |
|
|
static const struct reg registers_602[] =
|
1897 |
|
|
{
|
1898 |
|
|
COMMON_UISA_REGS,
|
1899 |
|
|
PPC_UISA_SPRS,
|
1900 |
|
|
PPC_SEGMENT_REGS,
|
1901 |
|
|
PPC_OEA_SPRS,
|
1902 |
|
|
/* 119 */ R(hid0), R(hid1), R(iabr), R0,
|
1903 |
|
|
/* 123 */ R0, R(tcr), R(ibr), R(esassr),
|
1904 |
|
|
/* 127 */ R(sebr), R(ser), R(sp), R(lt)
|
1905 |
|
|
};
|
1906 |
|
|
|
1907 |
|
|
/* Motorola/IBM PowerPC 603 or 603e. */
|
1908 |
|
|
static const struct reg registers_603[] =
|
1909 |
|
|
{
|
1910 |
|
|
COMMON_UISA_REGS,
|
1911 |
|
|
PPC_UISA_SPRS,
|
1912 |
|
|
PPC_SEGMENT_REGS,
|
1913 |
|
|
PPC_OEA_SPRS,
|
1914 |
|
|
/* 119 */ R(hid0), R(hid1), R(iabr), R0,
|
1915 |
|
|
/* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
|
1916 |
|
|
/* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
|
1917 |
|
|
};
|
1918 |
|
|
|
1919 |
|
|
/* Motorola PowerPC 604 or 604e. */
|
1920 |
|
|
static const struct reg registers_604[] =
|
1921 |
|
|
{
|
1922 |
|
|
COMMON_UISA_REGS,
|
1923 |
|
|
PPC_UISA_SPRS,
|
1924 |
|
|
PPC_SEGMENT_REGS,
|
1925 |
|
|
PPC_OEA_SPRS,
|
1926 |
|
|
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
1927 |
|
|
/* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
|
1928 |
|
|
/* 127 */ R(sia), R(sda)
|
1929 |
|
|
};
|
1930 |
|
|
|
1931 |
|
|
/* Motorola/IBM PowerPC 750 or 740. */
|
1932 |
|
|
static const struct reg registers_750[] =
|
1933 |
|
|
{
|
1934 |
|
|
COMMON_UISA_REGS,
|
1935 |
|
|
PPC_UISA_SPRS,
|
1936 |
|
|
PPC_SEGMENT_REGS,
|
1937 |
|
|
PPC_OEA_SPRS,
|
1938 |
|
|
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
1939 |
|
|
/* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
|
1940 |
|
|
/* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
|
1941 |
|
|
/* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
|
1942 |
|
|
/* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
|
1943 |
|
|
/* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
|
1944 |
|
|
};
|
1945 |
|
|
|
1946 |
|
|
|
1947 |
|
|
/* Information about a particular processor variant. */
|
1948 |
|
|
|
1949 |
|
|
struct variant
|
1950 |
|
|
{
|
1951 |
|
|
/* Name of this variant. */
|
1952 |
|
|
char *name;
|
1953 |
|
|
|
1954 |
|
|
/* English description of the variant. */
|
1955 |
|
|
char *description;
|
1956 |
|
|
|
1957 |
|
|
/* bfd_arch_info.arch corresponding to variant. */
|
1958 |
|
|
enum bfd_architecture arch;
|
1959 |
|
|
|
1960 |
|
|
/* bfd_arch_info.mach corresponding to variant. */
|
1961 |
|
|
unsigned long mach;
|
1962 |
|
|
|
1963 |
|
|
/* Table of register names; registers[R] is the name of the register
|
1964 |
|
|
number R. */
|
1965 |
|
|
int nregs;
|
1966 |
|
|
const struct reg *regs;
|
1967 |
|
|
};
|
1968 |
|
|
|
1969 |
|
|
#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
|
1970 |
|
|
|
1971 |
|
|
|
1972 |
|
|
/* Information in this table comes from the following web sites:
|
1973 |
|
|
IBM: http://www.chips.ibm.com:80/products/embedded/
|
1974 |
|
|
Motorola: http://www.mot.com/SPS/PowerPC/
|
1975 |
|
|
|
1976 |
|
|
I'm sure I've got some of the variant descriptions not quite right.
|
1977 |
|
|
Please report any inaccuracies you find to GDB's maintainer.
|
1978 |
|
|
|
1979 |
|
|
If you add entries to this table, please be sure to allow the new
|
1980 |
|
|
value as an argument to the --with-cpu flag, in configure.in. */
|
1981 |
|
|
|
1982 |
|
|
static const struct variant variants[] =
|
1983 |
|
|
{
|
1984 |
|
|
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
1985 |
|
|
bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
|
1986 |
|
|
{"power", "POWER user-level", bfd_arch_rs6000,
|
1987 |
|
|
bfd_mach_rs6k, num_registers (registers_power), registers_power},
|
1988 |
|
|
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
1989 |
|
|
bfd_mach_ppc_403, num_registers (registers_403), registers_403},
|
1990 |
|
|
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
1991 |
|
|
bfd_mach_ppc_601, num_registers (registers_601), registers_601},
|
1992 |
|
|
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
1993 |
|
|
bfd_mach_ppc_602, num_registers (registers_602), registers_602},
|
1994 |
|
|
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
1995 |
|
|
bfd_mach_ppc_603, num_registers (registers_603), registers_603},
|
1996 |
|
|
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
1997 |
|
|
604, num_registers (registers_604), registers_604},
|
1998 |
|
|
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
1999 |
|
|
bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
|
2000 |
|
|
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
2001 |
|
|
bfd_mach_ppc_505, num_registers (registers_505), registers_505},
|
2002 |
|
|
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
2003 |
|
|
bfd_mach_ppc_860, num_registers (registers_860), registers_860},
|
2004 |
|
|
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
2005 |
|
|
bfd_mach_ppc_750, num_registers (registers_750), registers_750},
|
2006 |
|
|
|
2007 |
|
|
/* FIXME: I haven't checked the register sets of the following. */
|
2008 |
|
|
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
2009 |
|
|
bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
|
2010 |
|
|
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
2011 |
|
|
bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
|
2012 |
|
|
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
2013 |
|
|
bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
|
2014 |
|
|
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
2015 |
|
|
bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
|
2016 |
|
|
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
2017 |
|
|
bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
|
2018 |
|
|
|
2019 |
|
|
{0, 0, 0, 0}
|
2020 |
|
|
};
|
2021 |
|
|
|
2022 |
|
|
#undef num_registers
|
2023 |
|
|
|
2024 |
|
|
/* Look up the variant named NAME in the `variants' table. Return a
|
2025 |
|
|
pointer to the struct variant, or null if we couldn't find it. */
|
2026 |
|
|
|
2027 |
|
|
static const struct variant *
|
2028 |
|
|
find_variant_by_name (char *name)
|
2029 |
|
|
{
|
2030 |
|
|
const struct variant *v;
|
2031 |
|
|
|
2032 |
|
|
for (v = variants; v->name; v++)
|
2033 |
|
|
if (!strcmp (name, v->name))
|
2034 |
|
|
return v;
|
2035 |
|
|
|
2036 |
|
|
return NULL;
|
2037 |
|
|
}
|
2038 |
|
|
|
2039 |
|
|
/* Return the variant corresponding to architecture ARCH and machine number
|
2040 |
|
|
MACH. If no such variant exists, return null. */
|
2041 |
|
|
|
2042 |
|
|
static const struct variant *
|
2043 |
|
|
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
2044 |
|
|
{
|
2045 |
|
|
const struct variant *v;
|
2046 |
|
|
|
2047 |
|
|
for (v = variants; v->name; v++)
|
2048 |
|
|
if (arch == v->arch && mach == v->mach)
|
2049 |
|
|
return v;
|
2050 |
|
|
|
2051 |
|
|
return NULL;
|
2052 |
|
|
}
|
2053 |
|
|
|
2054 |
|
|
|
2055 |
|
|
|
2056 |
|
|
|
2057 |
|
|
static void
|
2058 |
|
|
process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
|
2059 |
|
|
{
|
2060 |
|
|
int *os_ident_ptr = obj;
|
2061 |
|
|
const char *name;
|
2062 |
|
|
unsigned int sectsize;
|
2063 |
|
|
|
2064 |
|
|
name = bfd_get_section_name (abfd, sect);
|
2065 |
|
|
sectsize = bfd_section_size (abfd, sect);
|
2066 |
|
|
if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
|
2067 |
|
|
{
|
2068 |
|
|
unsigned int name_length, data_length, note_type;
|
2069 |
|
|
char *note = alloca (sectsize);
|
2070 |
|
|
|
2071 |
|
|
bfd_get_section_contents (abfd, sect, note,
|
2072 |
|
|
(file_ptr) 0, (bfd_size_type) sectsize);
|
2073 |
|
|
|
2074 |
|
|
name_length = bfd_h_get_32 (abfd, note);
|
2075 |
|
|
data_length = bfd_h_get_32 (abfd, note + 4);
|
2076 |
|
|
note_type = bfd_h_get_32 (abfd, note + 8);
|
2077 |
|
|
|
2078 |
|
|
if (name_length == 4 && data_length == 16 && note_type == 1
|
2079 |
|
|
&& strcmp (note + 12, "GNU") == 0)
|
2080 |
|
|
{
|
2081 |
|
|
int os_number = bfd_h_get_32 (abfd, note + 16);
|
2082 |
|
|
|
2083 |
|
|
/* The case numbers are from abi-tags in glibc */
|
2084 |
|
|
switch (os_number)
|
2085 |
|
|
{
|
2086 |
|
|
case 0 :
|
2087 |
|
|
*os_ident_ptr = ELFOSABI_LINUX;
|
2088 |
|
|
break;
|
2089 |
|
|
case 1 :
|
2090 |
|
|
*os_ident_ptr = ELFOSABI_HURD;
|
2091 |
|
|
break;
|
2092 |
|
|
case 2 :
|
2093 |
|
|
*os_ident_ptr = ELFOSABI_SOLARIS;
|
2094 |
|
|
break;
|
2095 |
|
|
default :
|
2096 |
|
|
internal_error (__FILE__, __LINE__,
|
2097 |
|
|
"process_note_abi_sections: unknown OS number %d",
|
2098 |
|
|
os_number);
|
2099 |
|
|
break;
|
2100 |
|
|
}
|
2101 |
|
|
}
|
2102 |
|
|
}
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
/* Return one of the ELFOSABI_ constants for BFDs representing ELF
|
2106 |
|
|
executables. If it's not an ELF executable or if the OS/ABI couldn't
|
2107 |
|
|
be determined, simply return -1. */
|
2108 |
|
|
|
2109 |
|
|
static int
|
2110 |
|
|
get_elfosabi (bfd *abfd)
|
2111 |
|
|
{
|
2112 |
|
|
int elfosabi = -1;
|
2113 |
|
|
|
2114 |
|
|
if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
2115 |
|
|
{
|
2116 |
|
|
elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
|
2117 |
|
|
|
2118 |
|
|
/* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
|
2119 |
|
|
that we're on a SYSV system. However, GNU/Linux uses a note section
|
2120 |
|
|
to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
|
2121 |
|
|
have to check the note sections too. */
|
2122 |
|
|
if (elfosabi == 0)
|
2123 |
|
|
{
|
2124 |
|
|
bfd_map_over_sections (abfd,
|
2125 |
|
|
process_note_abi_tag_sections,
|
2126 |
|
|
&elfosabi);
|
2127 |
|
|
}
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
return elfosabi;
|
2131 |
|
|
}
|
2132 |
|
|
|
2133 |
|
|
|
2134 |
|
|
|
2135 |
|
|
/* Initialize the current architecture based on INFO. If possible, re-use an
|
2136 |
|
|
architecture from ARCHES, which is a list of architectures already created
|
2137 |
|
|
during this debugging session.
|
2138 |
|
|
|
2139 |
|
|
Called e.g. at program startup, when reading a core file, and when reading
|
2140 |
|
|
a binary file. */
|
2141 |
|
|
|
2142 |
|
|
static struct gdbarch *
|
2143 |
|
|
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
2144 |
|
|
{
|
2145 |
|
|
struct gdbarch *gdbarch;
|
2146 |
|
|
struct gdbarch_tdep *tdep;
|
2147 |
|
|
int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
|
2148 |
|
|
struct reg *regs;
|
2149 |
|
|
const struct variant *v;
|
2150 |
|
|
enum bfd_architecture arch;
|
2151 |
|
|
unsigned long mach;
|
2152 |
|
|
bfd abfd;
|
2153 |
|
|
int osabi, sysv_abi;
|
2154 |
|
|
|
2155 |
|
|
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
|
2156 |
|
|
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
2157 |
|
|
|
2158 |
|
|
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
2159 |
|
|
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
2160 |
|
|
|
2161 |
|
|
sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
2162 |
|
|
|
2163 |
|
|
osabi = get_elfosabi (info.abfd);
|
2164 |
|
|
|
2165 |
|
|
/* Check word size. If INFO is from a binary file, infer it from that,
|
2166 |
|
|
else use the previously-inferred size. */
|
2167 |
|
|
if (from_xcoff_exec)
|
2168 |
|
|
{
|
2169 |
|
|
if (xcoff_data (info.abfd)->xcoff64)
|
2170 |
|
|
wordsize = 8;
|
2171 |
|
|
else
|
2172 |
|
|
wordsize = 4;
|
2173 |
|
|
}
|
2174 |
|
|
else if (from_elf_exec)
|
2175 |
|
|
{
|
2176 |
|
|
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
2177 |
|
|
wordsize = 8;
|
2178 |
|
|
else
|
2179 |
|
|
wordsize = 4;
|
2180 |
|
|
}
|
2181 |
|
|
else
|
2182 |
|
|
{
|
2183 |
|
|
tdep = TDEP;
|
2184 |
|
|
if (tdep)
|
2185 |
|
|
wordsize = tdep->wordsize;
|
2186 |
|
|
else
|
2187 |
|
|
wordsize = 4;
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
/* Find a candidate among extant architectures. */
|
2191 |
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
2192 |
|
|
arches != NULL;
|
2193 |
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
2194 |
|
|
{
|
2195 |
|
|
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
2196 |
|
|
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
2197 |
|
|
separate word size check. */
|
2198 |
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
2199 |
|
|
if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
|
2200 |
|
|
return arches->gdbarch;
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
2204 |
|
|
validity depends on the source:
|
2205 |
|
|
- executable useless
|
2206 |
|
|
- rs6000_host_arch() good
|
2207 |
|
|
- core file good
|
2208 |
|
|
- "set arch" trust blindly
|
2209 |
|
|
- GDB startup useless but harmless */
|
2210 |
|
|
|
2211 |
|
|
if (!from_xcoff_exec)
|
2212 |
|
|
{
|
2213 |
|
|
arch = info.bfd_arch_info->arch;
|
2214 |
|
|
mach = info.bfd_arch_info->mach;
|
2215 |
|
|
}
|
2216 |
|
|
else
|
2217 |
|
|
{
|
2218 |
|
|
arch = bfd_arch_powerpc;
|
2219 |
|
|
mach = 0;
|
2220 |
|
|
bfd_default_set_arch_mach (&abfd, arch, mach);
|
2221 |
|
|
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
2222 |
|
|
}
|
2223 |
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
2224 |
|
|
tdep->wordsize = wordsize;
|
2225 |
|
|
tdep->osabi = osabi;
|
2226 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
2227 |
|
|
power = arch == bfd_arch_rs6000;
|
2228 |
|
|
|
2229 |
|
|
/* Select instruction printer. */
|
2230 |
|
|
tm_print_insn = arch == power ? print_insn_rs6000 :
|
2231 |
|
|
info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
|
2232 |
|
|
print_insn_little_powerpc;
|
2233 |
|
|
|
2234 |
|
|
/* Choose variant. */
|
2235 |
|
|
v = find_variant_by_arch (arch, mach);
|
2236 |
|
|
if (!v)
|
2237 |
|
|
v = find_variant_by_name (power ? "power" : "powerpc");
|
2238 |
|
|
tdep->regs = v->regs;
|
2239 |
|
|
|
2240 |
|
|
/* Calculate byte offsets in raw register array. */
|
2241 |
|
|
tdep->regoff = xmalloc (v->nregs * sizeof (int));
|
2242 |
|
|
for (i = off = 0; i < v->nregs; i++)
|
2243 |
|
|
{
|
2244 |
|
|
tdep->regoff[i] = off;
|
2245 |
|
|
off += regsize (v->regs + i, wordsize);
|
2246 |
|
|
}
|
2247 |
|
|
|
2248 |
|
|
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
2249 |
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
2250 |
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
2251 |
|
|
set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
|
2252 |
|
|
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
2253 |
|
|
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
2254 |
|
|
|
2255 |
|
|
set_gdbarch_num_regs (gdbarch, v->nregs);
|
2256 |
|
|
set_gdbarch_sp_regnum (gdbarch, 1);
|
2257 |
|
|
set_gdbarch_fp_regnum (gdbarch, 1);
|
2258 |
|
|
set_gdbarch_pc_regnum (gdbarch, 64);
|
2259 |
|
|
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
2260 |
|
|
set_gdbarch_register_size (gdbarch, wordsize);
|
2261 |
|
|
set_gdbarch_register_bytes (gdbarch, off);
|
2262 |
|
|
set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
|
2263 |
|
|
set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
|
2264 |
|
|
set_gdbarch_max_register_raw_size (gdbarch, 8);
|
2265 |
|
|
set_gdbarch_register_virtual_size (gdbarch, rs6000_register_virtual_size);
|
2266 |
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 8);
|
2267 |
|
|
set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
|
2268 |
|
|
|
2269 |
|
|
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
2270 |
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
2271 |
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
2272 |
|
|
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
2273 |
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
2274 |
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
2275 |
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
2276 |
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
2277 |
|
|
|
2278 |
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
2279 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
2280 |
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
2281 |
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
2282 |
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
2283 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
2284 |
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
2285 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
2286 |
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
2287 |
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
2288 |
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
2289 |
|
|
set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
|
2290 |
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
2291 |
|
|
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
2292 |
|
|
set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
|
2293 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
2294 |
|
|
set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
|
2295 |
|
|
|
2296 |
|
|
set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
|
2297 |
|
|
set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
|
2298 |
|
|
set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
|
2299 |
|
|
|
2300 |
|
|
set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
|
2301 |
|
|
|
2302 |
|
|
if (sysv_abi)
|
2303 |
|
|
set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
|
2304 |
|
|
else
|
2305 |
|
|
set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
|
2306 |
|
|
|
2307 |
|
|
set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
|
2308 |
|
|
set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
|
2309 |
|
|
set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
|
2310 |
|
|
set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
|
2311 |
|
|
|
2312 |
|
|
set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
|
2313 |
|
|
|
2314 |
|
|
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
2315 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
2316 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
2317 |
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
2318 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
2319 |
|
|
|
2320 |
|
|
/* Not sure on this. FIXMEmgo */
|
2321 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 8);
|
2322 |
|
|
|
2323 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
2324 |
|
|
if (osabi == ELFOSABI_LINUX)
|
2325 |
|
|
{
|
2326 |
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
2327 |
|
|
ppc_linux_frameless_function_invocation);
|
2328 |
|
|
set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
|
2329 |
|
|
set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
|
2330 |
|
|
|
2331 |
|
|
set_gdbarch_frame_init_saved_regs (gdbarch,
|
2332 |
|
|
ppc_linux_frame_init_saved_regs);
|
2333 |
|
|
set_gdbarch_init_extra_frame_info (gdbarch,
|
2334 |
|
|
ppc_linux_init_extra_frame_info);
|
2335 |
|
|
|
2336 |
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
2337 |
|
|
ppc_linux_memory_remove_breakpoint);
|
2338 |
|
|
}
|
2339 |
|
|
else
|
2340 |
|
|
{
|
2341 |
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
2342 |
|
|
rs6000_frameless_function_invocation);
|
2343 |
|
|
set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
|
2344 |
|
|
set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
|
2345 |
|
|
|
2346 |
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
|
2347 |
|
|
set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
|
2348 |
|
|
|
2349 |
|
|
/* Handle RS/6000 function pointers. */
|
2350 |
|
|
set_gdbarch_convert_from_func_ptr_addr (gdbarch,
|
2351 |
|
|
rs6000_convert_from_func_ptr_addr);
|
2352 |
|
|
}
|
2353 |
|
|
set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
|
2354 |
|
|
set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
|
2355 |
|
|
set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
|
2356 |
|
|
|
2357 |
|
|
/* We can't tell how many args there are
|
2358 |
|
|
now that the C compiler delays popping them. */
|
2359 |
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
2360 |
|
|
|
2361 |
|
|
return gdbarch;
|
2362 |
|
|
}
|
2363 |
|
|
|
2364 |
|
|
/* Initialization code. */
|
2365 |
|
|
|
2366 |
|
|
void
|
2367 |
|
|
_initialize_rs6000_tdep (void)
|
2368 |
|
|
{
|
2369 |
|
|
register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
|
2370 |
|
|
register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
|
2371 |
|
|
}
|