OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [target.h] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* Interface between GDB and target environments, including files and processes
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001 Free Software Foundation, Inc.
4
   Contributed by Cygnus Support.  Written by John Gilmore.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 2 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software
20
   Foundation, Inc., 59 Temple Place - Suite 330,
21
   Boston, MA 02111-1307, USA.  */
22
 
23
#if !defined (TARGET_H)
24
#define TARGET_H
25
 
26
/* This include file defines the interface between the main part
27
   of the debugger, and the part which is target-specific, or
28
   specific to the communications interface between us and the
29
   target.
30
 
31
   A TARGET is an interface between the debugger and a particular
32
   kind of file or process.  Targets can be STACKED in STRATA,
33
   so that more than one target can potentially respond to a request.
34
   In particular, memory accesses will walk down the stack of targets
35
   until they find a target that is interested in handling that particular
36
   address.  STRATA are artificial boundaries on the stack, within
37
   which particular kinds of targets live.  Strata exist so that
38
   people don't get confused by pushing e.g. a process target and then
39
   a file target, and wondering why they can't see the current values
40
   of variables any more (the file target is handling them and they
41
   never get to the process target).  So when you push a file target,
42
   it goes into the file stratum, which is always below the process
43
   stratum.  */
44
 
45
#include "bfd.h"
46
#include "symtab.h"
47
#include "dcache.h"
48
#include "memattr.h"
49
 
50
enum strata
51
  {
52
    dummy_stratum,              /* The lowest of the low */
53
    file_stratum,               /* Executable files, etc */
54
    core_stratum,               /* Core dump files */
55
    download_stratum,           /* Downloading of remote targets */
56
    process_stratum,            /* Executing processes */
57
    thread_stratum              /* Executing threads */
58
  };
59
 
60
enum thread_control_capabilities
61
  {
62
    tc_none = 0,         /* Default: can't control thread execution.  */
63
    tc_schedlock = 1,           /* Can lock the thread scheduler.  */
64
    tc_switch = 2               /* Can switch the running thread on demand.  */
65
  };
66
 
67
/* Stuff for target_wait.  */
68
 
69
/* Generally, what has the program done?  */
70
enum target_waitkind
71
  {
72
    /* The program has exited.  The exit status is in value.integer.  */
73
    TARGET_WAITKIND_EXITED,
74
 
75
    /* The program has stopped with a signal.  Which signal is in
76
       value.sig.  */
77
    TARGET_WAITKIND_STOPPED,
78
 
79
    /* The program has terminated with a signal.  Which signal is in
80
       value.sig.  */
81
    TARGET_WAITKIND_SIGNALLED,
82
 
83
    /* The program is letting us know that it dynamically loaded something
84
       (e.g. it called load(2) on AIX).  */
85
    TARGET_WAITKIND_LOADED,
86
 
87
    /* The program has forked.  A "related" process' ID is in
88
       value.related_pid.  I.e., if the child forks, value.related_pid
89
       is the parent's ID.  */
90
 
91
    TARGET_WAITKIND_FORKED,
92
 
93
    /* The program has vforked.  A "related" process's ID is in
94
       value.related_pid.  */
95
 
96
    TARGET_WAITKIND_VFORKED,
97
 
98
    /* The program has exec'ed a new executable file.  The new file's
99
       pathname is pointed to by value.execd_pathname.  */
100
 
101
    TARGET_WAITKIND_EXECD,
102
 
103
    /* The program has entered or returned from a system call.  On
104
       HP-UX, this is used in the hardware watchpoint implementation.
105
       The syscall's unique integer ID number is in value.syscall_id */
106
 
107
    TARGET_WAITKIND_SYSCALL_ENTRY,
108
    TARGET_WAITKIND_SYSCALL_RETURN,
109
 
110
    /* Nothing happened, but we stopped anyway.  This perhaps should be handled
111
       within target_wait, but I'm not sure target_wait should be resuming the
112
       inferior.  */
113
    TARGET_WAITKIND_SPURIOUS,
114
 
115
    /* This is used for target async and extended-async
116
       only. Remote_async_wait() returns this when there is an event
117
       on the inferior, but the rest of the world is not interested in
118
       it. The inferior has not stopped, but has just sent some output
119
       to the console, for instance. In this case, we want to go back
120
       to the event loop and wait there for another event from the
121
       inferior, rather than being stuck in the remote_async_wait()
122
       function. This way the event loop is responsive to other events,
123
       like for instance the user typing.  */
124
    TARGET_WAITKIND_IGNORE
125
  };
126
 
127
struct target_waitstatus
128
  {
129
    enum target_waitkind kind;
130
 
131
    /* Forked child pid, execd pathname, exit status or signal number.  */
132
    union
133
      {
134
        int integer;
135
        enum target_signal sig;
136
        int related_pid;
137
        char *execd_pathname;
138
        int syscall_id;
139
      }
140
    value;
141
  };
142
 
143
/* Possible types of events that the inferior handler will have to
144
   deal with.  */
145
enum inferior_event_type
146
  {
147
    /* There is a request to quit the inferior, abandon it.  */
148
    INF_QUIT_REQ,
149
    /* Process a normal inferior event which will result in target_wait
150
       being called.  */
151
    INF_REG_EVENT,
152
    /* Deal with an error on the inferior.  */
153
    INF_ERROR,
154
    /* We are called because a timer went off.  */
155
    INF_TIMER,
156
    /* We are called to do stuff after the inferior stops.  */
157
    INF_EXEC_COMPLETE,
158
    /* We are called to do some stuff after the inferior stops, but we
159
       are expected to reenter the proceed() and
160
       handle_inferior_event() functions. This is used only in case of
161
       'step n' like commands.  */
162
    INF_EXEC_CONTINUE
163
  };
164
 
165
/* Return the string for a signal.  */
166
extern char *target_signal_to_string (enum target_signal);
167
 
168
/* Return the name (SIGHUP, etc.) for a signal.  */
169
extern char *target_signal_to_name (enum target_signal);
170
 
171
/* Given a name (SIGHUP, etc.), return its signal.  */
172
enum target_signal target_signal_from_name (char *);
173
 
174
 
175
/* If certain kinds of activity happen, target_wait should perform
176
   callbacks.  */
177
/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178
   on TARGET_ACTIVITY_FD.  */
179
extern int target_activity_fd;
180
/* Returns zero to leave the inferior alone, one to interrupt it.  */
181
extern int (*target_activity_function) (void);
182
 
183
struct thread_info;             /* fwd decl for parameter list below: */
184
 
185
struct target_ops
186
  {
187
    char *to_shortname;         /* Name this target type */
188
    char *to_longname;          /* Name for printing */
189
    char *to_doc;               /* Documentation.  Does not include trailing
190
                                   newline, and starts with a one-line descrip-
191
                                   tion (probably similar to to_longname).  */
192
    void (*to_open) (char *, int);
193
    void (*to_close) (int);
194
    void (*to_attach) (char *, int);
195
    void (*to_post_attach) (int);
196
    void (*to_require_attach) (char *, int);
197
    void (*to_detach) (char *, int);
198
    void (*to_require_detach) (int, char *, int);
199
    void (*to_resume) (ptid_t, int, enum target_signal);
200
    ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201
    void (*to_post_wait) (ptid_t, int);
202
    void (*to_fetch_registers) (int);
203
    void (*to_store_registers) (int);
204
    void (*to_prepare_to_store) (void);
205
 
206
    /* Transfer LEN bytes of memory between GDB address MYADDR and
207
       target address MEMADDR.  If WRITE, transfer them to the target, else
208
       transfer them from the target.  TARGET is the target from which we
209
       get this function.
210
 
211
       Return value, N, is one of the following:
212
 
213
 
214
       error which prevented us from doing it (FIXME: What about bfd_error?).
215
 
216
       positive (call it N) means that we have transferred N bytes
217
       starting at MEMADDR.  We might be able to handle more bytes
218
       beyond this length, but no promises.
219
 
220
       negative (call its absolute value N) means that we cannot
221
       transfer right at MEMADDR, but we could transfer at least
222
       something at MEMADDR + N.  */
223
 
224
    int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
225
                           int len, int write,
226
                           struct mem_attrib *attrib,
227
                           struct target_ops *target);
228
 
229
#if 0
230
    /* Enable this after 4.12.  */
231
 
232
    /* Search target memory.  Start at STARTADDR and take LEN bytes of
233
       target memory, and them with MASK, and compare to DATA.  If they
234
       match, set *ADDR_FOUND to the address we found it at, store the data
235
       we found at LEN bytes starting at DATA_FOUND, and return.  If
236
       not, add INCREMENT to the search address and keep trying until
237
       the search address is outside of the range [LORANGE,HIRANGE).
238
 
239
       If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240
       return.  */
241
 
242
    void (*to_search) (int len, char *data, char *mask,
243
                       CORE_ADDR startaddr, int increment,
244
                       CORE_ADDR lorange, CORE_ADDR hirange,
245
                       CORE_ADDR * addr_found, char *data_found);
246
 
247
#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found)  \
248
    (*current_target.to_search) (len, data, mask, startaddr, increment, \
249
                                 lorange, hirange, addr_found, data_found)
250
#endif                          /* 0 */
251
 
252
    void (*to_files_info) (struct target_ops *);
253
    int (*to_insert_breakpoint) (CORE_ADDR, char *);
254
    int (*to_remove_breakpoint) (CORE_ADDR, char *);
255
    void (*to_terminal_init) (void);
256
    void (*to_terminal_inferior) (void);
257
    void (*to_terminal_ours_for_output) (void);
258
    void (*to_terminal_ours) (void);
259
    void (*to_terminal_info) (char *, int);
260
    void (*to_kill) (void);
261
    void (*to_load) (char *, int);
262
    int (*to_lookup_symbol) (char *, CORE_ADDR *);
263
    void (*to_create_inferior) (char *, char *, char **);
264
    void (*to_post_startup_inferior) (ptid_t);
265
    void (*to_acknowledge_created_inferior) (int);
266
    void (*to_clone_and_follow_inferior) (int, int *);
267
    void (*to_post_follow_inferior_by_clone) (void);
268
    int (*to_insert_fork_catchpoint) (int);
269
    int (*to_remove_fork_catchpoint) (int);
270
    int (*to_insert_vfork_catchpoint) (int);
271
    int (*to_remove_vfork_catchpoint) (int);
272
    int (*to_has_forked) (int, int *);
273
    int (*to_has_vforked) (int, int *);
274
    int (*to_can_follow_vfork_prior_to_exec) (void);
275
    void (*to_post_follow_vfork) (int, int, int, int);
276
    int (*to_insert_exec_catchpoint) (int);
277
    int (*to_remove_exec_catchpoint) (int);
278
    int (*to_has_execd) (int, char **);
279
    int (*to_reported_exec_events_per_exec_call) (void);
280
    int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
281
    int (*to_has_exited) (int, int, int *);
282
    void (*to_mourn_inferior) (void);
283
    int (*to_can_run) (void);
284
    void (*to_notice_signals) (ptid_t ptid);
285
    int (*to_thread_alive) (ptid_t ptid);
286
    void (*to_find_new_threads) (void);
287
    char *(*to_pid_to_str) (ptid_t);
288
    char *(*to_extra_thread_info) (struct thread_info *);
289
    void (*to_stop) (void);
290
    int (*to_query) (int /*char */ , char *, char *, int *);
291
    void (*to_rcmd) (char *command, struct ui_file *output);
292
    struct symtab_and_line *(*to_enable_exception_callback) (enum
293
                                                             exception_event_kind,
294
                                                             int);
295
    struct exception_event_record *(*to_get_current_exception_event) (void);
296
    char *(*to_pid_to_exec_file) (int pid);
297
    enum strata to_stratum;
298
    struct target_ops
299
     *DONT_USE;                 /* formerly to_next */
300
    int to_has_all_memory;
301
    int to_has_memory;
302
    int to_has_stack;
303
    int to_has_registers;
304
    int to_has_execution;
305
    int to_has_thread_control;  /* control thread execution */
306
    struct section_table
307
     *to_sections;
308
    struct section_table
309
     *to_sections_end;
310
    /* ASYNC target controls */
311
    int (*to_can_async_p) (void);
312
    int (*to_is_async_p) (void);
313
    void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
314
                      void *context);
315
    int to_async_mask_value;
316
    int to_magic;
317
    /* Need sub-structure for target machine related rather than comm related?
318
     */
319
  };
320
 
321
/* Magic number for checking ops size.  If a struct doesn't end with this
322
   number, somebody changed the declaration but didn't change all the
323
   places that initialize one.  */
324
 
325
#define OPS_MAGIC       3840
326
 
327
/* The ops structure for our "current" target process.  This should
328
   never be NULL.  If there is no target, it points to the dummy_target.  */
329
 
330
extern struct target_ops current_target;
331
 
332
/* An item on the target stack.  */
333
 
334
struct target_stack_item
335
  {
336
    struct target_stack_item *next;
337
    struct target_ops *target_ops;
338
  };
339
 
340
/* The target stack.  */
341
 
342
extern struct target_stack_item *target_stack;
343
 
344
/* Define easy words for doing these operations on our current target.  */
345
 
346
#define target_shortname        (current_target.to_shortname)
347
#define target_longname         (current_target.to_longname)
348
 
349
/* The open routine takes the rest of the parameters from the command,
350
   and (if successful) pushes a new target onto the stack.
351
   Targets should supply this routine, if only to provide an error message.  */
352
 
353
#define target_open(name, from_tty)                                     \
354
  do {                                                                  \
355
    dcache_invalidate (target_dcache);                                  \
356
    (*current_target.to_open) (name, from_tty);                         \
357
  } while (0)
358
 
359
/* Does whatever cleanup is required for a target that we are no longer
360
   going to be calling.  Argument says whether we are quitting gdb and
361
   should not get hung in case of errors, or whether we want a clean
362
   termination even if it takes a while.  This routine is automatically
363
   always called just before a routine is popped off the target stack.
364
   Closing file descriptors and freeing memory are typical things it should
365
   do.  */
366
 
367
#define target_close(quitting)  \
368
     (*current_target.to_close) (quitting)
369
 
370
/* Attaches to a process on the target side.  Arguments are as passed
371
   to the `attach' command by the user.  This routine can be called
372
   when the target is not on the target-stack, if the target_can_run
373
   routine returns 1; in that case, it must push itself onto the stack.
374
   Upon exit, the target should be ready for normal operations, and
375
   should be ready to deliver the status of the process immediately
376
   (without waiting) to an upcoming target_wait call.  */
377
 
378
#define target_attach(args, from_tty)   \
379
     (*current_target.to_attach) (args, from_tty)
380
 
381
/* The target_attach operation places a process under debugger control,
382
   and stops the process.
383
 
384
   This operation provides a target-specific hook that allows the
385
   necessary bookkeeping to be performed after an attach completes.  */
386
#define target_post_attach(pid) \
387
     (*current_target.to_post_attach) (pid)
388
 
389
/* Attaches to a process on the target side, if not already attached.
390
   (If already attached, takes no action.)
391
 
392
   This operation can be used to follow the child process of a fork.
393
   On some targets, such child processes of an original inferior process
394
   are automatically under debugger control, and thus do not require an
395
   actual attach operation.  */
396
 
397
#define target_require_attach(args, from_tty)   \
398
     (*current_target.to_require_attach) (args, from_tty)
399
 
400
/* Takes a program previously attached to and detaches it.
401
   The program may resume execution (some targets do, some don't) and will
402
   no longer stop on signals, etc.  We better not have left any breakpoints
403
   in the program or it'll die when it hits one.  ARGS is arguments
404
   typed by the user (e.g. a signal to send the process).  FROM_TTY
405
   says whether to be verbose or not.  */
406
 
407
extern void target_detach (char *, int);
408
 
409
/* Detaches from a process on the target side, if not already dettached.
410
   (If already detached, takes no action.)
411
 
412
   This operation can be used to follow the parent process of a fork.
413
   On some targets, such child processes of an original inferior process
414
   are automatically under debugger control, and thus do require an actual
415
   detach operation.
416
 
417
   PID is the process id of the child to detach from.
418
   ARGS is arguments typed by the user (e.g. a signal to send the process).
419
   FROM_TTY says whether to be verbose or not.  */
420
 
421
#define target_require_detach(pid, args, from_tty)      \
422
     (*current_target.to_require_detach) (pid, args, from_tty)
423
 
424
/* Resume execution of the target process PTID.  STEP says whether to
425
   single-step or to run free; SIGGNAL is the signal to be given to
426
   the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
427
   pass TARGET_SIGNAL_DEFAULT.  */
428
 
429
#define target_resume(ptid, step, siggnal)                              \
430
  do {                                                                  \
431
    dcache_invalidate(target_dcache);                                   \
432
    (*current_target.to_resume) (ptid, step, siggnal);                  \
433
  } while (0)
434
 
435
/* Wait for process pid to do something.  PTID = -1 to wait for any pid
436
   to do something.  Return pid of child, or -1 in case of error;
437
   store status through argument pointer STATUS.  Note that it is
438
   *not* OK to return_to_top_level out of target_wait without popping
439
   the debugging target from the stack; GDB isn't prepared to get back
440
   to the prompt with a debugging target but without the frame cache,
441
   stop_pc, etc., set up.  */
442
 
443
#define target_wait(ptid, status)               \
444
     (*current_target.to_wait) (ptid, status)
445
 
446
/* The target_wait operation waits for a process event to occur, and
447
   thereby stop the process.
448
 
449
   On some targets, certain events may happen in sequences.  gdb's
450
   correct response to any single event of such a sequence may require
451
   knowledge of what earlier events in the sequence have been seen.
452
 
453
   This operation provides a target-specific hook that allows the
454
   necessary bookkeeping to be performed to track such sequences.  */
455
 
456
#define target_post_wait(ptid, status) \
457
     (*current_target.to_post_wait) (ptid, status)
458
 
459
/* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
460
 
461
#define target_fetch_registers(regno)   \
462
     (*current_target.to_fetch_registers) (regno)
463
 
464
/* Store at least register REGNO, or all regs if REGNO == -1.
465
   It can store as many registers as it wants to, so target_prepare_to_store
466
   must have been previously called.  Calls error() if there are problems.  */
467
 
468
#define target_store_registers(regs)    \
469
     (*current_target.to_store_registers) (regs)
470
 
471
/* Get ready to modify the registers array.  On machines which store
472
   individual registers, this doesn't need to do anything.  On machines
473
   which store all the registers in one fell swoop, this makes sure
474
   that REGISTERS contains all the registers from the program being
475
   debugged.  */
476
 
477
#define target_prepare_to_store()       \
478
     (*current_target.to_prepare_to_store) ()
479
 
480
extern DCACHE *target_dcache;
481
 
482
extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
483
                           struct mem_attrib *attrib);
484
 
485
extern int target_read_string (CORE_ADDR, char **, int, int *);
486
 
487
extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
488
 
489
extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
490
 
491
extern int xfer_memory (CORE_ADDR, char *, int, int,
492
                        struct mem_attrib *, struct target_ops *);
493
 
494
extern int child_xfer_memory (CORE_ADDR, char *, int, int,
495
                              struct mem_attrib *, struct target_ops *);
496
 
497
/* Make a single attempt at transfering LEN bytes.  On a successful
498
   transfer, the number of bytes actually transfered is returned and
499
   ERR is set to 0.  When a transfer fails, -1 is returned (the number
500
   of bytes actually transfered is not defined) and ERR is set to a
501
   non-zero error indication.  */
502
 
503
extern int
504
target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
505
 
506
extern int
507
target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
508
 
509
extern char *child_pid_to_exec_file (int);
510
 
511
extern char *child_core_file_to_sym_file (char *);
512
 
513
#if defined(CHILD_POST_ATTACH)
514
extern void child_post_attach (int);
515
#endif
516
 
517
extern void child_post_wait (ptid_t, int);
518
 
519
extern void child_post_startup_inferior (ptid_t);
520
 
521
extern void child_acknowledge_created_inferior (int);
522
 
523
extern void child_clone_and_follow_inferior (int, int *);
524
 
525
extern void child_post_follow_inferior_by_clone (void);
526
 
527
extern int child_insert_fork_catchpoint (int);
528
 
529
extern int child_remove_fork_catchpoint (int);
530
 
531
extern int child_insert_vfork_catchpoint (int);
532
 
533
extern int child_remove_vfork_catchpoint (int);
534
 
535
extern int child_has_forked (int, int *);
536
 
537
extern int child_has_vforked (int, int *);
538
 
539
extern void child_acknowledge_created_inferior (int);
540
 
541
extern int child_can_follow_vfork_prior_to_exec (void);
542
 
543
extern void child_post_follow_vfork (int, int, int, int);
544
 
545
extern int child_insert_exec_catchpoint (int);
546
 
547
extern int child_remove_exec_catchpoint (int);
548
 
549
extern int child_has_execd (int, char **);
550
 
551
extern int child_reported_exec_events_per_exec_call (void);
552
 
553
extern int child_has_syscall_event (int, enum target_waitkind *, int *);
554
 
555
extern int child_has_exited (int, int, int *);
556
 
557
extern int child_thread_alive (ptid_t);
558
 
559
/* From exec.c */
560
 
561
extern void print_section_info (struct target_ops *, bfd *);
562
 
563
/* Print a line about the current target.  */
564
 
565
#define target_files_info()     \
566
     (*current_target.to_files_info) (&current_target)
567
 
568
/* Insert a breakpoint at address ADDR in the target machine.
569
   SAVE is a pointer to memory allocated for saving the
570
   target contents.  It is guaranteed by the caller to be long enough
571
   to save "sizeof BREAKPOINT" bytes.  Result is 0 for success, or
572
   an errno value.  */
573
 
574
#define target_insert_breakpoint(addr, save)    \
575
     (*current_target.to_insert_breakpoint) (addr, save)
576
 
577
/* Remove a breakpoint at address ADDR in the target machine.
578
   SAVE is a pointer to the same save area
579
   that was previously passed to target_insert_breakpoint.
580
   Result is 0 for success, or an errno value.  */
581
 
582
#define target_remove_breakpoint(addr, save)    \
583
     (*current_target.to_remove_breakpoint) (addr, save)
584
 
585
/* Initialize the terminal settings we record for the inferior,
586
   before we actually run the inferior.  */
587
 
588
#define target_terminal_init() \
589
     (*current_target.to_terminal_init) ()
590
 
591
/* Put the inferior's terminal settings into effect.
592
   This is preparation for starting or resuming the inferior.  */
593
 
594
#define target_terminal_inferior() \
595
     (*current_target.to_terminal_inferior) ()
596
 
597
/* Put some of our terminal settings into effect,
598
   enough to get proper results from our output,
599
   but do not change into or out of RAW mode
600
   so that no input is discarded.
601
 
602
   After doing this, either terminal_ours or terminal_inferior
603
   should be called to get back to a normal state of affairs.  */
604
 
605
#define target_terminal_ours_for_output() \
606
     (*current_target.to_terminal_ours_for_output) ()
607
 
608
/* Put our terminal settings into effect.
609
   First record the inferior's terminal settings
610
   so they can be restored properly later.  */
611
 
612
#define target_terminal_ours() \
613
     (*current_target.to_terminal_ours) ()
614
 
615
/* Print useful information about our terminal status, if such a thing
616
   exists.  */
617
 
618
#define target_terminal_info(arg, from_tty) \
619
     (*current_target.to_terminal_info) (arg, from_tty)
620
 
621
/* Kill the inferior process.   Make it go away.  */
622
 
623
#define target_kill() \
624
     (*current_target.to_kill) ()
625
 
626
/* Load an executable file into the target process.  This is expected
627
   to not only bring new code into the target process, but also to
628
   update GDB's symbol tables to match.  */
629
 
630
extern void target_load (char *arg, int from_tty);
631
 
632
/* Look up a symbol in the target's symbol table.  NAME is the symbol
633
   name.  ADDRP is a CORE_ADDR * pointing to where the value of the
634
   symbol should be returned.  The result is 0 if successful, nonzero
635
   if the symbol does not exist in the target environment.  This
636
   function should not call error() if communication with the target
637
   is interrupted, since it is called from symbol reading, but should
638
   return nonzero, possibly doing a complain().  */
639
 
640
#define target_lookup_symbol(name, addrp) \
641
     (*current_target.to_lookup_symbol) (name, addrp)
642
 
643
/* Start an inferior process and set inferior_ptid to its pid.
644
   EXEC_FILE is the file to run.
645
   ALLARGS is a string containing the arguments to the program.
646
   ENV is the environment vector to pass.  Errors reported with error().
647
   On VxWorks and various standalone systems, we ignore exec_file.  */
648
 
649
#define target_create_inferior(exec_file, args, env)    \
650
     (*current_target.to_create_inferior) (exec_file, args, env)
651
 
652
 
653
/* Some targets (such as ttrace-based HPUX) don't allow us to request
654
   notification of inferior events such as fork and vork immediately
655
   after the inferior is created.  (This because of how gdb gets an
656
   inferior created via invoking a shell to do it.  In such a scenario,
657
   if the shell init file has commands in it, the shell will fork and
658
   exec for each of those commands, and we will see each such fork
659
   event.  Very bad.)
660
 
661
   Such targets will supply an appropriate definition for this function.  */
662
 
663
#define target_post_startup_inferior(ptid) \
664
     (*current_target.to_post_startup_inferior) (ptid)
665
 
666
/* On some targets, the sequence of starting up an inferior requires
667
   some synchronization between gdb and the new inferior process, PID.  */
668
 
669
#define target_acknowledge_created_inferior(pid) \
670
     (*current_target.to_acknowledge_created_inferior) (pid)
671
 
672
/* An inferior process has been created via a fork() or similar
673
   system call.  This function will clone the debugger, then ensure
674
   that CHILD_PID is attached to by that debugger.
675
 
676
   FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
677
   and FALSE otherwise.  (The original and clone debuggers can use this
678
   to determine which they are, if need be.)
679
 
680
   (This is not a terribly useful feature without a GUI to prevent
681
   the two debuggers from competing for shell input.)  */
682
 
683
#define target_clone_and_follow_inferior(child_pid,followed_child) \
684
     (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
685
 
686
/* This operation is intended to be used as the last in a sequence of
687
   steps taken when following both parent and child of a fork.  This
688
   is used by a clone of the debugger, which will follow the child.
689
 
690
   The original debugger has detached from this process, and the
691
   clone has attached to it.
692
 
693
   On some targets, this requires a bit of cleanup to make it work
694
   correctly.  */
695
 
696
#define target_post_follow_inferior_by_clone() \
697
     (*current_target.to_post_follow_inferior_by_clone) ()
698
 
699
/* On some targets, we can catch an inferior fork or vfork event when
700
   it occurs.  These functions insert/remove an already-created
701
   catchpoint for such events.  */
702
 
703
#define target_insert_fork_catchpoint(pid) \
704
     (*current_target.to_insert_fork_catchpoint) (pid)
705
 
706
#define target_remove_fork_catchpoint(pid) \
707
     (*current_target.to_remove_fork_catchpoint) (pid)
708
 
709
#define target_insert_vfork_catchpoint(pid) \
710
     (*current_target.to_insert_vfork_catchpoint) (pid)
711
 
712
#define target_remove_vfork_catchpoint(pid) \
713
     (*current_target.to_remove_vfork_catchpoint) (pid)
714
 
715
/* Returns TRUE if PID has invoked the fork() system call.  And,
716
   also sets CHILD_PID to the process id of the other ("child")
717
   inferior process that was created by that call.  */
718
 
719
#define target_has_forked(pid,child_pid) \
720
     (*current_target.to_has_forked) (pid,child_pid)
721
 
722
/* Returns TRUE if PID has invoked the vfork() system call.  And,
723
   also sets CHILD_PID to the process id of the other ("child")
724
   inferior process that was created by that call.  */
725
 
726
#define target_has_vforked(pid,child_pid) \
727
     (*current_target.to_has_vforked) (pid,child_pid)
728
 
729
/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
730
   anything to a vforked child before it subsequently calls exec().
731
   On such platforms, we say that the debugger cannot "follow" the
732
   child until it has vforked.
733
 
734
   This function should be defined to return 1 by those targets
735
   which can allow the debugger to immediately follow a vforked
736
   child, and 0 if they cannot.  */
737
 
738
#define target_can_follow_vfork_prior_to_exec() \
739
     (*current_target.to_can_follow_vfork_prior_to_exec) ()
740
 
741
/* An inferior process has been created via a vfork() system call.
742
   The debugger has followed the parent, the child, or both.  The
743
   process of setting up for that follow may have required some
744
   target-specific trickery to track the sequence of reported events.
745
   If so, this function should be defined by those targets that
746
   require the debugger to perform cleanup or initialization after
747
   the vfork follow.  */
748
 
749
#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
750
     (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
751
 
752
/* On some targets, we can catch an inferior exec event when it
753
   occurs.  These functions insert/remove an already-created
754
   catchpoint for such events.  */
755
 
756
#define target_insert_exec_catchpoint(pid) \
757
     (*current_target.to_insert_exec_catchpoint) (pid)
758
 
759
#define target_remove_exec_catchpoint(pid) \
760
     (*current_target.to_remove_exec_catchpoint) (pid)
761
 
762
/* Returns TRUE if PID has invoked a flavor of the exec() system call.
763
   And, also sets EXECD_PATHNAME to the pathname of the executable
764
   file that was passed to exec(), and is now being executed.  */
765
 
766
#define target_has_execd(pid,execd_pathname) \
767
     (*current_target.to_has_execd) (pid,execd_pathname)
768
 
769
/* Returns the number of exec events that are reported when a process
770
   invokes a flavor of the exec() system call on this target, if exec
771
   events are being reported.  */
772
 
773
#define target_reported_exec_events_per_exec_call() \
774
     (*current_target.to_reported_exec_events_per_exec_call) ()
775
 
776
/* Returns TRUE if PID has reported a syscall event.  And, also sets
777
   KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
778
   the unique integer ID of the syscall.  */
779
 
780
#define target_has_syscall_event(pid,kind,syscall_id) \
781
     (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
782
 
783
/* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
784
   exit code of PID, if any.  */
785
 
786
#define target_has_exited(pid,wait_status,exit_status) \
787
     (*current_target.to_has_exited) (pid,wait_status,exit_status)
788
 
789
/* The debugger has completed a blocking wait() call.  There is now
790
   some process event that must be processed.  This function should
791
   be defined by those targets that require the debugger to perform
792
   cleanup or internal state changes in response to the process event.  */
793
 
794
/* The inferior process has died.  Do what is right.  */
795
 
796
#define target_mourn_inferior() \
797
     (*current_target.to_mourn_inferior) ()
798
 
799
/* Does target have enough data to do a run or attach command? */
800
 
801
#define target_can_run(t) \
802
     ((t)->to_can_run) ()
803
 
804
/* post process changes to signal handling in the inferior.  */
805
 
806
#define target_notice_signals(ptid) \
807
     (*current_target.to_notice_signals) (ptid)
808
 
809
/* Check to see if a thread is still alive.  */
810
 
811
#define target_thread_alive(ptid) \
812
     (*current_target.to_thread_alive) (ptid)
813
 
814
/* Query for new threads and add them to the thread list.  */
815
 
816
#define target_find_new_threads() \
817
     (*current_target.to_find_new_threads) (); \
818
 
819
/* Make target stop in a continuable fashion.  (For instance, under
820
   Unix, this should act like SIGSTOP).  This function is normally
821
   used by GUIs to implement a stop button.  */
822
 
823
#define target_stop current_target.to_stop
824
 
825
/* Queries the target side for some information.  The first argument is a
826
   letter specifying the type of the query, which is used to determine who
827
   should process it.  The second argument is a string that specifies which
828
   information is desired and the third is a buffer that carries back the
829
   response from the target side. The fourth parameter is the size of the
830
   output buffer supplied.  */
831
 
832
#define target_query(query_type, query, resp_buffer, bufffer_size)      \
833
     (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
834
 
835
/* Send the specified COMMAND to the target's monitor
836
   (shell,interpreter) for execution.  The result of the query is
837
   placed in OUTBUF.  */
838
 
839
#define target_rcmd(command, outbuf) \
840
     (*current_target.to_rcmd) (command, outbuf)
841
 
842
 
843
/* Get the symbol information for a breakpointable routine called when
844
   an exception event occurs.
845
   Intended mainly for C++, and for those
846
   platforms/implementations where such a callback mechanism is available,
847
   e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
848
   different mechanisms for debugging exceptions.  */
849
 
850
#define target_enable_exception_callback(kind, enable) \
851
     (*current_target.to_enable_exception_callback) (kind, enable)
852
 
853
/* Get the current exception event kind -- throw or catch, etc.  */
854
 
855
#define target_get_current_exception_event() \
856
     (*current_target.to_get_current_exception_event) ()
857
 
858
/* Pointer to next target in the chain, e.g. a core file and an exec file.  */
859
 
860
#define target_next \
861
     (current_target.to_next)
862
 
863
/* Does the target include all of memory, or only part of it?  This
864
   determines whether we look up the target chain for other parts of
865
   memory if this target can't satisfy a request.  */
866
 
867
#define target_has_all_memory   \
868
     (current_target.to_has_all_memory)
869
 
870
/* Does the target include memory?  (Dummy targets don't.)  */
871
 
872
#define target_has_memory       \
873
     (current_target.to_has_memory)
874
 
875
/* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
876
   we start a process.)  */
877
 
878
#define target_has_stack        \
879
     (current_target.to_has_stack)
880
 
881
/* Does the target have registers?  (Exec files don't.)  */
882
 
883
#define target_has_registers    \
884
     (current_target.to_has_registers)
885
 
886
/* Does the target have execution?  Can we make it jump (through
887
   hoops), or pop its stack a few times?  FIXME: If this is to work that
888
   way, it needs to check whether an inferior actually exists.
889
   remote-udi.c and probably other targets can be the current target
890
   when the inferior doesn't actually exist at the moment.  Right now
891
   this just tells us whether this target is *capable* of execution.  */
892
 
893
#define target_has_execution    \
894
     (current_target.to_has_execution)
895
 
896
/* Can the target support the debugger control of thread execution?
897
   a) Can it lock the thread scheduler?
898
   b) Can it switch the currently running thread?  */
899
 
900
#define target_can_lock_scheduler \
901
     (current_target.to_has_thread_control & tc_schedlock)
902
 
903
#define target_can_switch_threads \
904
     (current_target.to_has_thread_control & tc_switch)
905
 
906
/* Can the target support asynchronous execution? */
907
#define target_can_async_p() (current_target.to_can_async_p ())
908
 
909
/* Is the target in asynchronous execution mode? */
910
#define target_is_async_p() (current_target.to_is_async_p())
911
 
912
/* Put the target in async mode with the specified callback function. */
913
#define target_async(CALLBACK,CONTEXT) \
914
     (current_target.to_async((CALLBACK), (CONTEXT)))
915
 
916
/* This is to be used ONLY within run_stack_dummy(). It
917
   provides a workaround, to have inferior function calls done in
918
   sychronous mode, even though the target is asynchronous. After
919
   target_async_mask(0) is called, calls to target_can_async_p() will
920
   return FALSE , so that target_resume() will not try to start the
921
   target asynchronously. After the inferior stops, we IMMEDIATELY
922
   restore the previous nature of the target, by calling
923
   target_async_mask(1). After that, target_can_async_p() will return
924
   TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
925
 
926
   FIXME ezannoni 1999-12-13: we won't need this once we move
927
   the turning async on and off to the single execution commands,
928
   from where it is done currently, in remote_resume().  */
929
 
930
#define target_async_mask_value \
931
     (current_target.to_async_mask_value)
932
 
933
extern int target_async_mask (int mask);
934
 
935
extern void target_link (char *, CORE_ADDR *);
936
 
937
/* Converts a process id to a string.  Usually, the string just contains
938
   `process xyz', but on some systems it may contain
939
   `process xyz thread abc'.  */
940
 
941
#undef target_pid_to_str
942
#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
943
 
944
#ifndef target_tid_to_str
945
#define target_tid_to_str(PID) \
946
     target_pid_to_str (PID)
947
extern char *normal_pid_to_str (ptid_t ptid);
948
#endif
949
 
950
/* Return a short string describing extra information about PID,
951
   e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
952
   is okay.  */
953
 
954
#define target_extra_thread_info(TP) \
955
     (current_target.to_extra_thread_info (TP))
956
 
957
/*
958
 * New Objfile Event Hook:
959
 *
960
 * Sometimes a GDB component wants to get notified whenever a new
961
 * objfile is loaded.  Mainly this is used by thread-debugging
962
 * implementations that need to know when symbols for the target
963
 * thread implemenation are available.
964
 *
965
 * The old way of doing this is to define a macro 'target_new_objfile'
966
 * that points to the function that you want to be called on every
967
 * objfile/shlib load.
968
 *
969
 * The new way is to grab the function pointer, 'target_new_objfile_hook',
970
 * and point it to the function that you want to be called on every
971
 * objfile/shlib load.
972
 *
973
 * If multiple clients are willing to be cooperative, they can each
974
 * save a pointer to the previous value of target_new_objfile_hook
975
 * before modifying it, and arrange for their function to call the
976
 * previous function in the chain.  In that way, multiple clients
977
 * can receive this notification (something like with signal handlers).
978
 */
979
 
980
extern void (*target_new_objfile_hook) (struct objfile *);
981
 
982
#ifndef target_pid_or_tid_to_str
983
#define target_pid_or_tid_to_str(ID) \
984
     target_pid_to_str (ID)
985
#endif
986
 
987
/* Attempts to find the pathname of the executable file
988
   that was run to create a specified process.
989
 
990
   The process PID must be stopped when this operation is used.
991
 
992
   If the executable file cannot be determined, NULL is returned.
993
 
994
   Else, a pointer to a character string containing the pathname
995
   is returned.  This string should be copied into a buffer by
996
   the client if the string will not be immediately used, or if
997
   it must persist.  */
998
 
999
#define target_pid_to_exec_file(pid) \
1000
     (current_target.to_pid_to_exec_file) (pid)
1001
 
1002
/* Hook to call target-dependent code after reading in a new symbol table.  */
1003
 
1004
#ifndef TARGET_SYMFILE_POSTREAD
1005
#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1006
#endif
1007
 
1008
/* Hook to call target dependent code just after inferior target process has
1009
   started.  */
1010
 
1011
#ifndef TARGET_CREATE_INFERIOR_HOOK
1012
#define TARGET_CREATE_INFERIOR_HOOK(PID)
1013
#endif
1014
 
1015
/* Hardware watchpoint interfaces.  */
1016
 
1017
/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1018
   write).  */
1019
 
1020
#ifndef STOPPED_BY_WATCHPOINT
1021
#define STOPPED_BY_WATCHPOINT(w) 0
1022
#endif
1023
 
1024
/* HP-UX supplies these operations, which respectively disable and enable
1025
   the memory page-protections that are used to implement hardware watchpoints
1026
   on that platform.  See wait_for_inferior's use of these.  */
1027
 
1028
#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1029
#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1030
#endif
1031
 
1032
#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1033
#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1034
#endif
1035
 
1036
/* Provide defaults for systems that don't support hardware watchpoints.  */
1037
 
1038
#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1039
 
1040
/* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1041
   one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1042
   bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1043
   (including this one?).  OTHERTYPE is who knows what...  */
1044
 
1045
#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1046
 
1047
#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1048
#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1049
     ((LONGEST)(byte_count) <= REGISTER_SIZE)
1050
#endif
1051
 
1052
/* However, some addresses may not be profitable to use hardware to watch,
1053
   or may be difficult to understand when the addressed object is out of
1054
   scope, and hence should be unwatched.  On some targets, this may have
1055
   severe performance penalties, such that we might as well use regular
1056
   watchpoints, and save (possibly precious) hardware watchpoints for other
1057
   locations.  */
1058
 
1059
#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1060
#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1061
#endif
1062
 
1063
 
1064
/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1065
   for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1066
   success, non-zero for failure.  */
1067
 
1068
#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1069
#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1070
 
1071
#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1072
 
1073
#ifndef target_insert_hw_breakpoint
1074
#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1075
#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1076
#endif
1077
 
1078
#ifndef target_stopped_data_address
1079
#define target_stopped_data_address() 0
1080
#endif
1081
 
1082
/* If defined, then we need to decr pc by this much after a hardware break-
1083
   point.  Presumably this overrides DECR_PC_AFTER_BREAK...  */
1084
 
1085
#ifndef DECR_PC_AFTER_HW_BREAK
1086
#define DECR_PC_AFTER_HW_BREAK 0
1087
#endif
1088
 
1089
/* Sometimes gdb may pick up what appears to be a valid target address
1090
   from a minimal symbol, but the value really means, essentially,
1091
   "This is an index into a table which is populated when the inferior
1092
   is run.  Therefore, do not attempt to use this as a PC."  */
1093
 
1094
#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1095
#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1096
#endif
1097
 
1098
/* This will only be defined by a target that supports catching vfork events,
1099
   such as HP-UX.
1100
 
1101
   On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1102
   child process after it has exec'd, causes the parent process to resume as
1103
   well.  To prevent the parent from running spontaneously, such targets should
1104
   define this to a function that prevents that from happening.  */
1105
#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1106
#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1107
#endif
1108
 
1109
/* This will only be defined by a target that supports catching vfork events,
1110
   such as HP-UX.
1111
 
1112
   On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1113
   process must be resumed when it delivers its exec event, before the parent
1114
   vfork event will be delivered to us.  */
1115
 
1116
#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1117
#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1118
#endif
1119
 
1120
/* Routines for maintenance of the target structures...
1121
 
1122
   add_target:   Add a target to the list of all possible targets.
1123
 
1124
   push_target:  Make this target the top of the stack of currently used
1125
   targets, within its particular stratum of the stack.  Result
1126
   is 0 if now atop the stack, nonzero if not on top (maybe
1127
   should warn user).
1128
 
1129
   unpush_target: Remove this from the stack of currently used targets,
1130
   no matter where it is on the list.  Returns 0 if no
1131
   change, 1 if removed from stack.
1132
 
1133
   pop_target:   Remove the top thing on the stack of current targets.  */
1134
 
1135
extern void add_target (struct target_ops *);
1136
 
1137
extern int push_target (struct target_ops *);
1138
 
1139
extern int unpush_target (struct target_ops *);
1140
 
1141
extern void target_preopen (int);
1142
 
1143
extern void pop_target (void);
1144
 
1145
/* Struct section_table maps address ranges to file sections.  It is
1146
   mostly used with BFD files, but can be used without (e.g. for handling
1147
   raw disks, or files not in formats handled by BFD).  */
1148
 
1149
struct section_table
1150
  {
1151
    CORE_ADDR addr;             /* Lowest address in section */
1152
    CORE_ADDR endaddr;          /* 1+highest address in section */
1153
 
1154
    sec_ptr the_bfd_section;
1155
 
1156
    bfd *bfd;                   /* BFD file pointer */
1157
  };
1158
 
1159
/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1160
   Returns 0 if OK, 1 on error.  */
1161
 
1162
extern int
1163
build_section_table (bfd *, struct section_table **, struct section_table **);
1164
 
1165
/* From mem-break.c */
1166
 
1167
extern int memory_remove_breakpoint (CORE_ADDR, char *);
1168
 
1169
extern int memory_insert_breakpoint (CORE_ADDR, char *);
1170
 
1171
extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1172
 
1173
extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1174
 
1175
extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1176
 
1177
 
1178
/* From target.c */
1179
 
1180
extern void initialize_targets (void);
1181
 
1182
extern void noprocess (void);
1183
 
1184
extern void find_default_attach (char *, int);
1185
 
1186
extern void find_default_require_attach (char *, int);
1187
 
1188
extern void find_default_require_detach (int, char *, int);
1189
 
1190
extern void find_default_create_inferior (char *, char *, char **);
1191
 
1192
extern void find_default_clone_and_follow_inferior (int, int *);
1193
 
1194
extern struct target_ops *find_run_target (void);
1195
 
1196
extern struct target_ops *find_core_target (void);
1197
 
1198
extern struct target_ops *find_target_beneath (struct target_ops *);
1199
 
1200
extern int
1201
target_resize_to_sections (struct target_ops *target, int num_added);
1202
 
1203
extern void remove_target_sections (bfd *abfd);
1204
 
1205
 
1206
/* Stuff that should be shared among the various remote targets.  */
1207
 
1208
/* Debugging level.  0 is off, and non-zero values mean to print some debug
1209
   information (higher values, more information).  */
1210
extern int remote_debug;
1211
 
1212
/* Speed in bits per second, or -1 which means don't mess with the speed.  */
1213
extern int baud_rate;
1214
/* Timeout limit for response from target. */
1215
extern int remote_timeout;
1216
 
1217
 
1218
/* Functions for helping to write a native target.  */
1219
 
1220
/* This is for native targets which use a unix/POSIX-style waitstatus.  */
1221
extern void store_waitstatus (struct target_waitstatus *, int);
1222
 
1223
/* Predicate to target_signal_to_host(). Return non-zero if the enum
1224
   targ_signal SIGNO has an equivalent ``host'' representation.  */
1225
/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1226
   to the shorter target_signal_p() because it is far less ambigious.
1227
   In this context ``target_signal'' refers to GDB's internal
1228
   representation of the target's set of signals while ``host signal''
1229
   refers to the target operating system's signal.  Confused?  */
1230
 
1231
extern int target_signal_to_host_p (enum target_signal signo);
1232
 
1233
/* Convert between host signal numbers and enum target_signal's.
1234
   target_signal_to_host() returns 0 and prints a warning() on GDB's
1235
   console if SIGNO has no equivalent host representation.  */
1236
/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1237
   refering to the target operating system's signal numbering.
1238
   Similarly, ``enum target_signal'' is named incorrectly, ``enum
1239
   gdb_signal'' would probably be better as it is refering to GDB's
1240
   internal representation of a target operating system's signal.  */
1241
 
1242
extern enum target_signal target_signal_from_host (int);
1243
extern int target_signal_to_host (enum target_signal);
1244
 
1245
/* Convert from a number used in a GDB command to an enum target_signal.  */
1246
extern enum target_signal target_signal_from_command (int);
1247
 
1248
/* Any target can call this to switch to remote protocol (in remote.c). */
1249
extern void push_remote_target (char *name, int from_tty);
1250
 
1251
/* Imported from machine dependent code */
1252
 
1253
/* Blank target vector entries are initialized to target_ignore. */
1254
void target_ignore (void);
1255
 
1256
/* Macro for getting target's idea of a frame pointer.
1257
   FIXME: GDB's whole scheme for dealing with "frames" and
1258
   "frame pointers" needs a serious shakedown.  */
1259
#ifndef TARGET_VIRTUAL_FRAME_POINTER
1260
#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1261
   do { *(REGP) = FP_REGNUM; *(OFFP) =  0; } while (0)
1262
#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1263
 
1264
#endif /* !defined (TARGET_H) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.