1 |
578 |
markom |
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
|
2 |
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
3 |
|
|
1996, 1997, 1998, 1999, 2000
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "gdbtypes.h"
|
27 |
|
|
#include "value.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "command.h"
|
30 |
|
|
#include "gdbcmd.h"
|
31 |
|
|
#include "target.h"
|
32 |
|
|
#include "language.h"
|
33 |
|
|
#include "scm-lang.h"
|
34 |
|
|
#include "demangle.h"
|
35 |
|
|
|
36 |
|
|
/* Prototypes for exported functions. */
|
37 |
|
|
|
38 |
|
|
void _initialize_values (void);
|
39 |
|
|
|
40 |
|
|
/* Prototypes for local functions. */
|
41 |
|
|
|
42 |
|
|
static value_ptr value_headof (value_ptr, struct type *, struct type *);
|
43 |
|
|
|
44 |
|
|
static void show_values (char *, int);
|
45 |
|
|
|
46 |
|
|
static void show_convenience (char *, int);
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
/* The value-history records all the values printed
|
50 |
|
|
by print commands during this session. Each chunk
|
51 |
|
|
records 60 consecutive values. The first chunk on
|
52 |
|
|
the chain records the most recent values.
|
53 |
|
|
The total number of values is in value_history_count. */
|
54 |
|
|
|
55 |
|
|
#define VALUE_HISTORY_CHUNK 60
|
56 |
|
|
|
57 |
|
|
struct value_history_chunk
|
58 |
|
|
{
|
59 |
|
|
struct value_history_chunk *next;
|
60 |
|
|
value_ptr values[VALUE_HISTORY_CHUNK];
|
61 |
|
|
};
|
62 |
|
|
|
63 |
|
|
/* Chain of chunks now in use. */
|
64 |
|
|
|
65 |
|
|
static struct value_history_chunk *value_history_chain;
|
66 |
|
|
|
67 |
|
|
static int value_history_count; /* Abs number of last entry stored */
|
68 |
|
|
|
69 |
|
|
/* List of all value objects currently allocated
|
70 |
|
|
(except for those released by calls to release_value)
|
71 |
|
|
This is so they can be freed after each command. */
|
72 |
|
|
|
73 |
|
|
static value_ptr all_values;
|
74 |
|
|
|
75 |
|
|
/* Allocate a value that has the correct length for type TYPE. */
|
76 |
|
|
|
77 |
|
|
value_ptr
|
78 |
|
|
allocate_value (struct type *type)
|
79 |
|
|
{
|
80 |
|
|
register value_ptr val;
|
81 |
|
|
struct type *atype = check_typedef (type);
|
82 |
|
|
|
83 |
|
|
val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
|
84 |
|
|
VALUE_NEXT (val) = all_values;
|
85 |
|
|
all_values = val;
|
86 |
|
|
VALUE_TYPE (val) = type;
|
87 |
|
|
VALUE_ENCLOSING_TYPE (val) = type;
|
88 |
|
|
VALUE_LVAL (val) = not_lval;
|
89 |
|
|
VALUE_ADDRESS (val) = 0;
|
90 |
|
|
VALUE_FRAME (val) = 0;
|
91 |
|
|
VALUE_OFFSET (val) = 0;
|
92 |
|
|
VALUE_BITPOS (val) = 0;
|
93 |
|
|
VALUE_BITSIZE (val) = 0;
|
94 |
|
|
VALUE_REGNO (val) = -1;
|
95 |
|
|
VALUE_LAZY (val) = 0;
|
96 |
|
|
VALUE_OPTIMIZED_OUT (val) = 0;
|
97 |
|
|
VALUE_BFD_SECTION (val) = NULL;
|
98 |
|
|
VALUE_EMBEDDED_OFFSET (val) = 0;
|
99 |
|
|
VALUE_POINTED_TO_OFFSET (val) = 0;
|
100 |
|
|
val->modifiable = 1;
|
101 |
|
|
return val;
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
/* Allocate a value that has the correct length
|
105 |
|
|
for COUNT repetitions type TYPE. */
|
106 |
|
|
|
107 |
|
|
value_ptr
|
108 |
|
|
allocate_repeat_value (struct type *type, int count)
|
109 |
|
|
{
|
110 |
|
|
int low_bound = current_language->string_lower_bound; /* ??? */
|
111 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
112 |
|
|
done with it. */
|
113 |
|
|
struct type *range_type
|
114 |
|
|
= create_range_type ((struct type *) NULL, builtin_type_int,
|
115 |
|
|
low_bound, count + low_bound - 1);
|
116 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
117 |
|
|
done with it. */
|
118 |
|
|
return allocate_value (create_array_type ((struct type *) NULL,
|
119 |
|
|
type, range_type));
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
/* Return a mark in the value chain. All values allocated after the
|
123 |
|
|
mark is obtained (except for those released) are subject to being freed
|
124 |
|
|
if a subsequent value_free_to_mark is passed the mark. */
|
125 |
|
|
value_ptr
|
126 |
|
|
value_mark (void)
|
127 |
|
|
{
|
128 |
|
|
return all_values;
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Free all values allocated since MARK was obtained by value_mark
|
132 |
|
|
(except for those released). */
|
133 |
|
|
void
|
134 |
|
|
value_free_to_mark (value_ptr mark)
|
135 |
|
|
{
|
136 |
|
|
value_ptr val, next;
|
137 |
|
|
|
138 |
|
|
for (val = all_values; val && val != mark; val = next)
|
139 |
|
|
{
|
140 |
|
|
next = VALUE_NEXT (val);
|
141 |
|
|
value_free (val);
|
142 |
|
|
}
|
143 |
|
|
all_values = val;
|
144 |
|
|
}
|
145 |
|
|
|
146 |
|
|
/* Free all the values that have been allocated (except for those released).
|
147 |
|
|
Called after each command, successful or not. */
|
148 |
|
|
|
149 |
|
|
void
|
150 |
|
|
free_all_values (void)
|
151 |
|
|
{
|
152 |
|
|
register value_ptr val, next;
|
153 |
|
|
|
154 |
|
|
for (val = all_values; val; val = next)
|
155 |
|
|
{
|
156 |
|
|
next = VALUE_NEXT (val);
|
157 |
|
|
value_free (val);
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
all_values = 0;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/* Remove VAL from the chain all_values
|
164 |
|
|
so it will not be freed automatically. */
|
165 |
|
|
|
166 |
|
|
void
|
167 |
|
|
release_value (register value_ptr val)
|
168 |
|
|
{
|
169 |
|
|
register value_ptr v;
|
170 |
|
|
|
171 |
|
|
if (all_values == val)
|
172 |
|
|
{
|
173 |
|
|
all_values = val->next;
|
174 |
|
|
return;
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
for (v = all_values; v; v = v->next)
|
178 |
|
|
{
|
179 |
|
|
if (v->next == val)
|
180 |
|
|
{
|
181 |
|
|
v->next = val->next;
|
182 |
|
|
break;
|
183 |
|
|
}
|
184 |
|
|
}
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
/* Release all values up to mark */
|
188 |
|
|
value_ptr
|
189 |
|
|
value_release_to_mark (value_ptr mark)
|
190 |
|
|
{
|
191 |
|
|
value_ptr val, next;
|
192 |
|
|
|
193 |
|
|
for (val = next = all_values; next; next = VALUE_NEXT (next))
|
194 |
|
|
if (VALUE_NEXT (next) == mark)
|
195 |
|
|
{
|
196 |
|
|
all_values = VALUE_NEXT (next);
|
197 |
|
|
VALUE_NEXT (next) = 0;
|
198 |
|
|
return val;
|
199 |
|
|
}
|
200 |
|
|
all_values = 0;
|
201 |
|
|
return val;
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/* Return a copy of the value ARG.
|
205 |
|
|
It contains the same contents, for same memory address,
|
206 |
|
|
but it's a different block of storage. */
|
207 |
|
|
|
208 |
|
|
value_ptr
|
209 |
|
|
value_copy (value_ptr arg)
|
210 |
|
|
{
|
211 |
|
|
register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
|
212 |
|
|
register value_ptr val = allocate_value (encl_type);
|
213 |
|
|
VALUE_TYPE (val) = VALUE_TYPE (arg);
|
214 |
|
|
VALUE_LVAL (val) = VALUE_LVAL (arg);
|
215 |
|
|
VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
|
216 |
|
|
VALUE_OFFSET (val) = VALUE_OFFSET (arg);
|
217 |
|
|
VALUE_BITPOS (val) = VALUE_BITPOS (arg);
|
218 |
|
|
VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
|
219 |
|
|
VALUE_FRAME (val) = VALUE_FRAME (arg);
|
220 |
|
|
VALUE_REGNO (val) = VALUE_REGNO (arg);
|
221 |
|
|
VALUE_LAZY (val) = VALUE_LAZY (arg);
|
222 |
|
|
VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
|
223 |
|
|
VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
|
224 |
|
|
VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
|
225 |
|
|
VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
|
226 |
|
|
val->modifiable = arg->modifiable;
|
227 |
|
|
if (!VALUE_LAZY (val))
|
228 |
|
|
{
|
229 |
|
|
memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
|
230 |
|
|
TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
|
231 |
|
|
|
232 |
|
|
}
|
233 |
|
|
return val;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* Access to the value history. */
|
237 |
|
|
|
238 |
|
|
/* Record a new value in the value history.
|
239 |
|
|
Returns the absolute history index of the entry.
|
240 |
|
|
Result of -1 indicates the value was not saved; otherwise it is the
|
241 |
|
|
value history index of this new item. */
|
242 |
|
|
|
243 |
|
|
int
|
244 |
|
|
record_latest_value (value_ptr val)
|
245 |
|
|
{
|
246 |
|
|
int i;
|
247 |
|
|
|
248 |
|
|
/* We don't want this value to have anything to do with the inferior anymore.
|
249 |
|
|
In particular, "set $1 = 50" should not affect the variable from which
|
250 |
|
|
the value was taken, and fast watchpoints should be able to assume that
|
251 |
|
|
a value on the value history never changes. */
|
252 |
|
|
if (VALUE_LAZY (val))
|
253 |
|
|
value_fetch_lazy (val);
|
254 |
|
|
/* We preserve VALUE_LVAL so that the user can find out where it was fetched
|
255 |
|
|
from. This is a bit dubious, because then *&$1 does not just return $1
|
256 |
|
|
but the current contents of that location. c'est la vie... */
|
257 |
|
|
val->modifiable = 0;
|
258 |
|
|
release_value (val);
|
259 |
|
|
|
260 |
|
|
/* Here we treat value_history_count as origin-zero
|
261 |
|
|
and applying to the value being stored now. */
|
262 |
|
|
|
263 |
|
|
i = value_history_count % VALUE_HISTORY_CHUNK;
|
264 |
|
|
if (i == 0)
|
265 |
|
|
{
|
266 |
|
|
register struct value_history_chunk *new
|
267 |
|
|
= (struct value_history_chunk *)
|
268 |
|
|
xmalloc (sizeof (struct value_history_chunk));
|
269 |
|
|
memset (new->values, 0, sizeof new->values);
|
270 |
|
|
new->next = value_history_chain;
|
271 |
|
|
value_history_chain = new;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
value_history_chain->values[i] = val;
|
275 |
|
|
|
276 |
|
|
/* Now we regard value_history_count as origin-one
|
277 |
|
|
and applying to the value just stored. */
|
278 |
|
|
|
279 |
|
|
return ++value_history_count;
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
/* Return a copy of the value in the history with sequence number NUM. */
|
283 |
|
|
|
284 |
|
|
value_ptr
|
285 |
|
|
access_value_history (int num)
|
286 |
|
|
{
|
287 |
|
|
register struct value_history_chunk *chunk;
|
288 |
|
|
register int i;
|
289 |
|
|
register int absnum = num;
|
290 |
|
|
|
291 |
|
|
if (absnum <= 0)
|
292 |
|
|
absnum += value_history_count;
|
293 |
|
|
|
294 |
|
|
if (absnum <= 0)
|
295 |
|
|
{
|
296 |
|
|
if (num == 0)
|
297 |
|
|
error ("The history is empty.");
|
298 |
|
|
else if (num == 1)
|
299 |
|
|
error ("There is only one value in the history.");
|
300 |
|
|
else
|
301 |
|
|
error ("History does not go back to $$%d.", -num);
|
302 |
|
|
}
|
303 |
|
|
if (absnum > value_history_count)
|
304 |
|
|
error ("History has not yet reached $%d.", absnum);
|
305 |
|
|
|
306 |
|
|
absnum--;
|
307 |
|
|
|
308 |
|
|
/* Now absnum is always absolute and origin zero. */
|
309 |
|
|
|
310 |
|
|
chunk = value_history_chain;
|
311 |
|
|
for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
|
312 |
|
|
i > 0; i--)
|
313 |
|
|
chunk = chunk->next;
|
314 |
|
|
|
315 |
|
|
return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
/* Clear the value history entirely.
|
319 |
|
|
Must be done when new symbol tables are loaded,
|
320 |
|
|
because the type pointers become invalid. */
|
321 |
|
|
|
322 |
|
|
void
|
323 |
|
|
clear_value_history (void)
|
324 |
|
|
{
|
325 |
|
|
register struct value_history_chunk *next;
|
326 |
|
|
register int i;
|
327 |
|
|
register value_ptr val;
|
328 |
|
|
|
329 |
|
|
while (value_history_chain)
|
330 |
|
|
{
|
331 |
|
|
for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
|
332 |
|
|
if ((val = value_history_chain->values[i]) != NULL)
|
333 |
|
|
xfree (val);
|
334 |
|
|
next = value_history_chain->next;
|
335 |
|
|
xfree (value_history_chain);
|
336 |
|
|
value_history_chain = next;
|
337 |
|
|
}
|
338 |
|
|
value_history_count = 0;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
static void
|
342 |
|
|
show_values (char *num_exp, int from_tty)
|
343 |
|
|
{
|
344 |
|
|
register int i;
|
345 |
|
|
register value_ptr val;
|
346 |
|
|
static int num = 1;
|
347 |
|
|
|
348 |
|
|
if (num_exp)
|
349 |
|
|
{
|
350 |
|
|
/* "info history +" should print from the stored position.
|
351 |
|
|
"info history <exp>" should print around value number <exp>. */
|
352 |
|
|
if (num_exp[0] != '+' || num_exp[1] != '\0')
|
353 |
|
|
num = parse_and_eval_long (num_exp) - 5;
|
354 |
|
|
}
|
355 |
|
|
else
|
356 |
|
|
{
|
357 |
|
|
/* "info history" means print the last 10 values. */
|
358 |
|
|
num = value_history_count - 9;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
if (num <= 0)
|
362 |
|
|
num = 1;
|
363 |
|
|
|
364 |
|
|
for (i = num; i < num + 10 && i <= value_history_count; i++)
|
365 |
|
|
{
|
366 |
|
|
val = access_value_history (i);
|
367 |
|
|
printf_filtered ("$%d = ", i);
|
368 |
|
|
value_print (val, gdb_stdout, 0, Val_pretty_default);
|
369 |
|
|
printf_filtered ("\n");
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* The next "info history +" should start after what we just printed. */
|
373 |
|
|
num += 10;
|
374 |
|
|
|
375 |
|
|
/* Hitting just return after this command should do the same thing as
|
376 |
|
|
"info history +". If num_exp is null, this is unnecessary, since
|
377 |
|
|
"info history +" is not useful after "info history". */
|
378 |
|
|
if (from_tty && num_exp)
|
379 |
|
|
{
|
380 |
|
|
num_exp[0] = '+';
|
381 |
|
|
num_exp[1] = '\0';
|
382 |
|
|
}
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/* Internal variables. These are variables within the debugger
|
386 |
|
|
that hold values assigned by debugger commands.
|
387 |
|
|
The user refers to them with a '$' prefix
|
388 |
|
|
that does not appear in the variable names stored internally. */
|
389 |
|
|
|
390 |
|
|
static struct internalvar *internalvars;
|
391 |
|
|
|
392 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
393 |
|
|
normally include a dollar sign.
|
394 |
|
|
|
395 |
|
|
If the specified internal variable does not exist,
|
396 |
|
|
one is created, with a void value. */
|
397 |
|
|
|
398 |
|
|
struct internalvar *
|
399 |
|
|
lookup_internalvar (char *name)
|
400 |
|
|
{
|
401 |
|
|
register struct internalvar *var;
|
402 |
|
|
|
403 |
|
|
for (var = internalvars; var; var = var->next)
|
404 |
|
|
if (STREQ (var->name, name))
|
405 |
|
|
return var;
|
406 |
|
|
|
407 |
|
|
var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
|
408 |
|
|
var->name = concat (name, NULL);
|
409 |
|
|
var->value = allocate_value (builtin_type_void);
|
410 |
|
|
release_value (var->value);
|
411 |
|
|
var->next = internalvars;
|
412 |
|
|
internalvars = var;
|
413 |
|
|
return var;
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
value_ptr
|
417 |
|
|
value_of_internalvar (struct internalvar *var)
|
418 |
|
|
{
|
419 |
|
|
register value_ptr val;
|
420 |
|
|
|
421 |
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
422 |
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
423 |
|
|
return VALUE_OF_TRAPPED_INTERNALVAR (var);
|
424 |
|
|
#endif
|
425 |
|
|
|
426 |
|
|
val = value_copy (var->value);
|
427 |
|
|
if (VALUE_LAZY (val))
|
428 |
|
|
value_fetch_lazy (val);
|
429 |
|
|
VALUE_LVAL (val) = lval_internalvar;
|
430 |
|
|
VALUE_INTERNALVAR (val) = var;
|
431 |
|
|
return val;
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
void
|
435 |
|
|
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
|
436 |
|
|
int bitsize, value_ptr newval)
|
437 |
|
|
{
|
438 |
|
|
register char *addr = VALUE_CONTENTS (var->value) + offset;
|
439 |
|
|
|
440 |
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
441 |
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
442 |
|
|
SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
|
443 |
|
|
#endif
|
444 |
|
|
|
445 |
|
|
if (bitsize)
|
446 |
|
|
modify_field (addr, value_as_long (newval),
|
447 |
|
|
bitpos, bitsize);
|
448 |
|
|
else
|
449 |
|
|
memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
void
|
453 |
|
|
set_internalvar (struct internalvar *var, value_ptr val)
|
454 |
|
|
{
|
455 |
|
|
value_ptr newval;
|
456 |
|
|
|
457 |
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
458 |
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
459 |
|
|
SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
|
460 |
|
|
#endif
|
461 |
|
|
|
462 |
|
|
newval = value_copy (val);
|
463 |
|
|
newval->modifiable = 1;
|
464 |
|
|
|
465 |
|
|
/* Force the value to be fetched from the target now, to avoid problems
|
466 |
|
|
later when this internalvar is referenced and the target is gone or
|
467 |
|
|
has changed. */
|
468 |
|
|
if (VALUE_LAZY (newval))
|
469 |
|
|
value_fetch_lazy (newval);
|
470 |
|
|
|
471 |
|
|
/* Begin code which must not call error(). If var->value points to
|
472 |
|
|
something free'd, an error() obviously leaves a dangling pointer.
|
473 |
|
|
But we also get a danling pointer if var->value points to
|
474 |
|
|
something in the value chain (i.e., before release_value is
|
475 |
|
|
called), because after the error free_all_values will get called before
|
476 |
|
|
long. */
|
477 |
|
|
xfree (var->value);
|
478 |
|
|
var->value = newval;
|
479 |
|
|
release_value (newval);
|
480 |
|
|
/* End code which must not call error(). */
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
char *
|
484 |
|
|
internalvar_name (struct internalvar *var)
|
485 |
|
|
{
|
486 |
|
|
return var->name;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/* Free all internalvars. Done when new symtabs are loaded,
|
490 |
|
|
because that makes the values invalid. */
|
491 |
|
|
|
492 |
|
|
void
|
493 |
|
|
clear_internalvars (void)
|
494 |
|
|
{
|
495 |
|
|
register struct internalvar *var;
|
496 |
|
|
|
497 |
|
|
while (internalvars)
|
498 |
|
|
{
|
499 |
|
|
var = internalvars;
|
500 |
|
|
internalvars = var->next;
|
501 |
|
|
xfree (var->name);
|
502 |
|
|
xfree (var->value);
|
503 |
|
|
xfree (var);
|
504 |
|
|
}
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
static void
|
508 |
|
|
show_convenience (char *ignore, int from_tty)
|
509 |
|
|
{
|
510 |
|
|
register struct internalvar *var;
|
511 |
|
|
int varseen = 0;
|
512 |
|
|
|
513 |
|
|
for (var = internalvars; var; var = var->next)
|
514 |
|
|
{
|
515 |
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
516 |
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
517 |
|
|
continue;
|
518 |
|
|
#endif
|
519 |
|
|
if (!varseen)
|
520 |
|
|
{
|
521 |
|
|
varseen = 1;
|
522 |
|
|
}
|
523 |
|
|
printf_filtered ("$%s = ", var->name);
|
524 |
|
|
value_print (var->value, gdb_stdout, 0, Val_pretty_default);
|
525 |
|
|
printf_filtered ("\n");
|
526 |
|
|
}
|
527 |
|
|
if (!varseen)
|
528 |
|
|
printf_unfiltered ("No debugger convenience variables now defined.\n\
|
529 |
|
|
Convenience variables have names starting with \"$\";\n\
|
530 |
|
|
use \"set\" as in \"set $foo = 5\" to define them.\n");
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* Extract a value as a C number (either long or double).
|
534 |
|
|
Knows how to convert fixed values to double, or
|
535 |
|
|
floating values to long.
|
536 |
|
|
Does not deallocate the value. */
|
537 |
|
|
|
538 |
|
|
LONGEST
|
539 |
|
|
value_as_long (register value_ptr val)
|
540 |
|
|
{
|
541 |
|
|
/* This coerces arrays and functions, which is necessary (e.g.
|
542 |
|
|
in disassemble_command). It also dereferences references, which
|
543 |
|
|
I suspect is the most logical thing to do. */
|
544 |
|
|
COERCE_ARRAY (val);
|
545 |
|
|
return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
DOUBLEST
|
549 |
|
|
value_as_double (register value_ptr val)
|
550 |
|
|
{
|
551 |
|
|
DOUBLEST foo;
|
552 |
|
|
int inv;
|
553 |
|
|
|
554 |
|
|
foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
|
555 |
|
|
if (inv)
|
556 |
|
|
error ("Invalid floating value found in program.");
|
557 |
|
|
return foo;
|
558 |
|
|
}
|
559 |
|
|
/* Extract a value as a C pointer. Does not deallocate the value.
|
560 |
|
|
Note that val's type may not actually be a pointer; value_as_long
|
561 |
|
|
handles all the cases. */
|
562 |
|
|
CORE_ADDR
|
563 |
|
|
value_as_pointer (value_ptr val)
|
564 |
|
|
{
|
565 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
566 |
|
|
whether we want this to be true eventually. */
|
567 |
|
|
#if 0
|
568 |
|
|
/* ADDR_BITS_REMOVE is wrong if we are being called for a
|
569 |
|
|
non-address (e.g. argument to "signal", "info break", etc.), or
|
570 |
|
|
for pointers to char, in which the low bits *are* significant. */
|
571 |
|
|
return ADDR_BITS_REMOVE (value_as_long (val));
|
572 |
|
|
#else
|
573 |
|
|
COERCE_ARRAY (val);
|
574 |
|
|
/* In converting VAL to an address (CORE_ADDR), any small integers
|
575 |
|
|
are first cast to a generic pointer. The function unpack_long
|
576 |
|
|
will then correctly convert that pointer into a canonical address
|
577 |
|
|
(using POINTER_TO_ADDRESS).
|
578 |
|
|
|
579 |
|
|
Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
|
580 |
|
|
0xa0000000 -> (LONGEST) 0x00000000a0000000
|
581 |
|
|
|
582 |
|
|
With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
|
583 |
|
|
0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
|
584 |
|
|
|
585 |
|
|
If the user specifies an integer that is larger than the target
|
586 |
|
|
pointer type, it is assumed that it was intentional and the value
|
587 |
|
|
is converted directly into an ADDRESS. This ensures that no
|
588 |
|
|
information is discarded.
|
589 |
|
|
|
590 |
|
|
NOTE: The cast operation may eventualy be converted into a TARGET
|
591 |
|
|
method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
|
592 |
|
|
that the TARGET ISA/ABI can apply an arbitrary conversion.
|
593 |
|
|
|
594 |
|
|
NOTE: In pure harvard architectures function and data pointers
|
595 |
|
|
can be different and may require different integer to pointer
|
596 |
|
|
conversions. */
|
597 |
|
|
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
|
598 |
|
|
&& TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
|
599 |
|
|
{
|
600 |
|
|
val = value_cast (builtin_type_ptr, val);
|
601 |
|
|
}
|
602 |
|
|
return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
|
603 |
|
|
#endif
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
607 |
|
|
as a long, or as a double, assuming the raw data is described
|
608 |
|
|
by type TYPE. Knows how to convert different sizes of values
|
609 |
|
|
and can convert between fixed and floating point. We don't assume
|
610 |
|
|
any alignment for the raw data. Return value is in host byte order.
|
611 |
|
|
|
612 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
613 |
|
|
references to be dereferenced, call value_as_long() instead.
|
614 |
|
|
|
615 |
|
|
C++: It is assumed that the front-end has taken care of
|
616 |
|
|
all matters concerning pointers to members. A pointer
|
617 |
|
|
to member which reaches here is considered to be equivalent
|
618 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
619 |
|
|
|
620 |
|
|
LONGEST
|
621 |
|
|
unpack_long (struct type *type, char *valaddr)
|
622 |
|
|
{
|
623 |
|
|
register enum type_code code = TYPE_CODE (type);
|
624 |
|
|
register int len = TYPE_LENGTH (type);
|
625 |
|
|
register int nosign = TYPE_UNSIGNED (type);
|
626 |
|
|
|
627 |
|
|
if (current_language->la_language == language_scm
|
628 |
|
|
&& is_scmvalue_type (type))
|
629 |
|
|
return scm_unpack (type, valaddr, TYPE_CODE_INT);
|
630 |
|
|
|
631 |
|
|
switch (code)
|
632 |
|
|
{
|
633 |
|
|
case TYPE_CODE_TYPEDEF:
|
634 |
|
|
return unpack_long (check_typedef (type), valaddr);
|
635 |
|
|
case TYPE_CODE_ENUM:
|
636 |
|
|
case TYPE_CODE_BOOL:
|
637 |
|
|
case TYPE_CODE_INT:
|
638 |
|
|
case TYPE_CODE_CHAR:
|
639 |
|
|
case TYPE_CODE_RANGE:
|
640 |
|
|
if (nosign)
|
641 |
|
|
return extract_unsigned_integer (valaddr, len);
|
642 |
|
|
else
|
643 |
|
|
return extract_signed_integer (valaddr, len);
|
644 |
|
|
|
645 |
|
|
case TYPE_CODE_FLT:
|
646 |
|
|
return extract_floating (valaddr, len);
|
647 |
|
|
|
648 |
|
|
case TYPE_CODE_PTR:
|
649 |
|
|
case TYPE_CODE_REF:
|
650 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
651 |
|
|
whether we want this to be true eventually. */
|
652 |
|
|
if (GDB_TARGET_IS_D10V
|
653 |
|
|
&& len == 2)
|
654 |
|
|
return D10V_MAKE_DADDR (extract_address (valaddr, len));
|
655 |
|
|
return extract_typed_address (valaddr, type);
|
656 |
|
|
|
657 |
|
|
case TYPE_CODE_MEMBER:
|
658 |
|
|
error ("not implemented: member types in unpack_long");
|
659 |
|
|
|
660 |
|
|
default:
|
661 |
|
|
error ("Value can't be converted to integer.");
|
662 |
|
|
}
|
663 |
|
|
return 0; /* Placate lint. */
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
/* Return a double value from the specified type and address.
|
667 |
|
|
INVP points to an int which is set to 0 for valid value,
|
668 |
|
|
1 for invalid value (bad float format). In either case,
|
669 |
|
|
the returned double is OK to use. Argument is in target
|
670 |
|
|
format, result is in host format. */
|
671 |
|
|
|
672 |
|
|
DOUBLEST
|
673 |
|
|
unpack_double (struct type *type, char *valaddr, int *invp)
|
674 |
|
|
{
|
675 |
|
|
enum type_code code;
|
676 |
|
|
int len;
|
677 |
|
|
int nosign;
|
678 |
|
|
|
679 |
|
|
*invp = 0; /* Assume valid. */
|
680 |
|
|
CHECK_TYPEDEF (type);
|
681 |
|
|
code = TYPE_CODE (type);
|
682 |
|
|
len = TYPE_LENGTH (type);
|
683 |
|
|
nosign = TYPE_UNSIGNED (type);
|
684 |
|
|
if (code == TYPE_CODE_FLT)
|
685 |
|
|
{
|
686 |
|
|
#ifdef INVALID_FLOAT
|
687 |
|
|
if (INVALID_FLOAT (valaddr, len))
|
688 |
|
|
{
|
689 |
|
|
*invp = 1;
|
690 |
|
|
return 1.234567891011121314;
|
691 |
|
|
}
|
692 |
|
|
#endif
|
693 |
|
|
return extract_floating (valaddr, len);
|
694 |
|
|
}
|
695 |
|
|
else if (nosign)
|
696 |
|
|
{
|
697 |
|
|
/* Unsigned -- be sure we compensate for signed LONGEST. */
|
698 |
|
|
return (ULONGEST) unpack_long (type, valaddr);
|
699 |
|
|
}
|
700 |
|
|
else
|
701 |
|
|
{
|
702 |
|
|
/* Signed -- we are OK with unpack_long. */
|
703 |
|
|
return unpack_long (type, valaddr);
|
704 |
|
|
}
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
708 |
|
|
as a CORE_ADDR, assuming the raw data is described by type TYPE.
|
709 |
|
|
We don't assume any alignment for the raw data. Return value is in
|
710 |
|
|
host byte order.
|
711 |
|
|
|
712 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
713 |
|
|
references to be dereferenced, call value_as_pointer() instead.
|
714 |
|
|
|
715 |
|
|
C++: It is assumed that the front-end has taken care of
|
716 |
|
|
all matters concerning pointers to members. A pointer
|
717 |
|
|
to member which reaches here is considered to be equivalent
|
718 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
719 |
|
|
|
720 |
|
|
CORE_ADDR
|
721 |
|
|
unpack_pointer (struct type *type, char *valaddr)
|
722 |
|
|
{
|
723 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
724 |
|
|
whether we want this to be true eventually. */
|
725 |
|
|
return unpack_long (type, valaddr);
|
726 |
|
|
}
|
727 |
|
|
|
728 |
|
|
|
729 |
|
|
/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
|
730 |
|
|
|
731 |
|
|
value_ptr
|
732 |
|
|
value_static_field (struct type *type, int fieldno)
|
733 |
|
|
{
|
734 |
|
|
CORE_ADDR addr;
|
735 |
|
|
asection *sect;
|
736 |
|
|
if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
|
737 |
|
|
{
|
738 |
|
|
addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
|
739 |
|
|
sect = NULL;
|
740 |
|
|
}
|
741 |
|
|
else
|
742 |
|
|
{
|
743 |
|
|
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
|
744 |
|
|
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
|
745 |
|
|
if (sym == NULL)
|
746 |
|
|
{
|
747 |
|
|
/* With some compilers, e.g. HP aCC, static data members are reported
|
748 |
|
|
as non-debuggable symbols */
|
749 |
|
|
struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
|
750 |
|
|
if (!msym)
|
751 |
|
|
return NULL;
|
752 |
|
|
else
|
753 |
|
|
{
|
754 |
|
|
addr = SYMBOL_VALUE_ADDRESS (msym);
|
755 |
|
|
sect = SYMBOL_BFD_SECTION (msym);
|
756 |
|
|
}
|
757 |
|
|
}
|
758 |
|
|
else
|
759 |
|
|
{
|
760 |
|
|
/* Anything static that isn't a constant, has an address */
|
761 |
|
|
if (SYMBOL_CLASS (sym) != LOC_CONST)
|
762 |
|
|
{
|
763 |
|
|
addr = SYMBOL_VALUE_ADDRESS (sym);
|
764 |
|
|
sect = SYMBOL_BFD_SECTION (sym);
|
765 |
|
|
}
|
766 |
|
|
/* However, static const's do not, the value is already known. */
|
767 |
|
|
else
|
768 |
|
|
{
|
769 |
|
|
return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
|
770 |
|
|
}
|
771 |
|
|
}
|
772 |
|
|
SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
|
773 |
|
|
}
|
774 |
|
|
return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
|
778 |
|
|
You have to be careful here, since the size of the data area for the value
|
779 |
|
|
is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
|
780 |
|
|
than the old enclosing type, you have to allocate more space for the data.
|
781 |
|
|
The return value is a pointer to the new version of this value structure. */
|
782 |
|
|
|
783 |
|
|
value_ptr
|
784 |
|
|
value_change_enclosing_type (value_ptr val, struct type *new_encl_type)
|
785 |
|
|
{
|
786 |
|
|
if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
|
787 |
|
|
{
|
788 |
|
|
VALUE_ENCLOSING_TYPE (val) = new_encl_type;
|
789 |
|
|
return val;
|
790 |
|
|
}
|
791 |
|
|
else
|
792 |
|
|
{
|
793 |
|
|
value_ptr new_val;
|
794 |
|
|
register value_ptr prev;
|
795 |
|
|
|
796 |
|
|
new_val = (value_ptr) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
|
797 |
|
|
|
798 |
|
|
/* We have to make sure this ends up in the same place in the value
|
799 |
|
|
chain as the original copy, so it's clean-up behavior is the same.
|
800 |
|
|
If the value has been released, this is a waste of time, but there
|
801 |
|
|
is no way to tell that in advance, so... */
|
802 |
|
|
|
803 |
|
|
if (val != all_values)
|
804 |
|
|
{
|
805 |
|
|
for (prev = all_values; prev != NULL; prev = prev->next)
|
806 |
|
|
{
|
807 |
|
|
if (prev->next == val)
|
808 |
|
|
{
|
809 |
|
|
prev->next = new_val;
|
810 |
|
|
break;
|
811 |
|
|
}
|
812 |
|
|
}
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
return new_val;
|
816 |
|
|
}
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
/* Given a value ARG1 (offset by OFFSET bytes)
|
820 |
|
|
of a struct or union type ARG_TYPE,
|
821 |
|
|
extract and return the value of one of its (non-static) fields.
|
822 |
|
|
FIELDNO says which field. */
|
823 |
|
|
|
824 |
|
|
value_ptr
|
825 |
|
|
value_primitive_field (register value_ptr arg1, int offset,
|
826 |
|
|
register int fieldno, register struct type *arg_type)
|
827 |
|
|
{
|
828 |
|
|
register value_ptr v;
|
829 |
|
|
register struct type *type;
|
830 |
|
|
|
831 |
|
|
CHECK_TYPEDEF (arg_type);
|
832 |
|
|
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
833 |
|
|
|
834 |
|
|
/* Handle packed fields */
|
835 |
|
|
|
836 |
|
|
if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
|
837 |
|
|
{
|
838 |
|
|
v = value_from_longest (type,
|
839 |
|
|
unpack_field_as_long (arg_type,
|
840 |
|
|
VALUE_CONTENTS (arg1)
|
841 |
|
|
+ offset,
|
842 |
|
|
fieldno));
|
843 |
|
|
VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
|
844 |
|
|
VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
845 |
|
|
VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
|
846 |
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
847 |
|
|
}
|
848 |
|
|
else if (fieldno < TYPE_N_BASECLASSES (arg_type))
|
849 |
|
|
{
|
850 |
|
|
/* This field is actually a base subobject, so preserve the
|
851 |
|
|
entire object's contents for later references to virtual
|
852 |
|
|
bases, etc. */
|
853 |
|
|
v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
|
854 |
|
|
VALUE_TYPE (v) = type;
|
855 |
|
|
if (VALUE_LAZY (arg1))
|
856 |
|
|
VALUE_LAZY (v) = 1;
|
857 |
|
|
else
|
858 |
|
|
memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
|
859 |
|
|
TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
|
860 |
|
|
VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
|
861 |
|
|
VALUE_EMBEDDED_OFFSET (v)
|
862 |
|
|
= offset +
|
863 |
|
|
VALUE_EMBEDDED_OFFSET (arg1) +
|
864 |
|
|
TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
865 |
|
|
}
|
866 |
|
|
else
|
867 |
|
|
{
|
868 |
|
|
/* Plain old data member */
|
869 |
|
|
offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
870 |
|
|
v = allocate_value (type);
|
871 |
|
|
if (VALUE_LAZY (arg1))
|
872 |
|
|
VALUE_LAZY (v) = 1;
|
873 |
|
|
else
|
874 |
|
|
memcpy (VALUE_CONTENTS_RAW (v),
|
875 |
|
|
VALUE_CONTENTS_RAW (arg1) + offset,
|
876 |
|
|
TYPE_LENGTH (type));
|
877 |
|
|
VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
|
878 |
|
|
}
|
879 |
|
|
VALUE_LVAL (v) = VALUE_LVAL (arg1);
|
880 |
|
|
if (VALUE_LVAL (arg1) == lval_internalvar)
|
881 |
|
|
VALUE_LVAL (v) = lval_internalvar_component;
|
882 |
|
|
VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
|
883 |
|
|
VALUE_REGNO (v) = VALUE_REGNO (arg1);
|
884 |
|
|
/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
|
885 |
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
|
886 |
|
|
return v;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
/* Given a value ARG1 of a struct or union type,
|
890 |
|
|
extract and return the value of one of its (non-static) fields.
|
891 |
|
|
FIELDNO says which field. */
|
892 |
|
|
|
893 |
|
|
value_ptr
|
894 |
|
|
value_field (register value_ptr arg1, register int fieldno)
|
895 |
|
|
{
|
896 |
|
|
return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
/* Return a non-virtual function as a value.
|
900 |
|
|
F is the list of member functions which contains the desired method.
|
901 |
|
|
J is an index into F which provides the desired method. */
|
902 |
|
|
|
903 |
|
|
value_ptr
|
904 |
|
|
value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
|
905 |
|
|
int offset)
|
906 |
|
|
{
|
907 |
|
|
register value_ptr v;
|
908 |
|
|
register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
|
909 |
|
|
struct symbol *sym;
|
910 |
|
|
|
911 |
|
|
sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
912 |
|
|
0, VAR_NAMESPACE, 0, NULL);
|
913 |
|
|
if (!sym)
|
914 |
|
|
return NULL;
|
915 |
|
|
/*
|
916 |
|
|
error ("Internal error: could not find physical method named %s",
|
917 |
|
|
TYPE_FN_FIELD_PHYSNAME (f, j));
|
918 |
|
|
*/
|
919 |
|
|
|
920 |
|
|
v = allocate_value (ftype);
|
921 |
|
|
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
|
922 |
|
|
VALUE_TYPE (v) = ftype;
|
923 |
|
|
|
924 |
|
|
if (arg1p)
|
925 |
|
|
{
|
926 |
|
|
if (type != VALUE_TYPE (*arg1p))
|
927 |
|
|
*arg1p = value_ind (value_cast (lookup_pointer_type (type),
|
928 |
|
|
value_addr (*arg1p)));
|
929 |
|
|
|
930 |
|
|
/* Move the `this' pointer according to the offset.
|
931 |
|
|
VALUE_OFFSET (*arg1p) += offset;
|
932 |
|
|
*/
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
return v;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/* ARG is a pointer to an object we know to be at least
|
939 |
|
|
a DTYPE. BTYPE is the most derived basetype that has
|
940 |
|
|
already been searched (and need not be searched again).
|
941 |
|
|
After looking at the vtables between BTYPE and DTYPE,
|
942 |
|
|
return the most derived type we find. The caller must
|
943 |
|
|
be satisfied when the return value == DTYPE.
|
944 |
|
|
|
945 |
|
|
FIXME-tiemann: should work with dossier entries as well.
|
946 |
|
|
NOTICE - djb: I see no good reason at all to keep this function now that
|
947 |
|
|
we have RTTI support. It's used in literally one place, and it's
|
948 |
|
|
hard to keep this function up to date when it's purpose is served
|
949 |
|
|
by value_rtti_type efficiently.
|
950 |
|
|
Consider it gone for 5.1. */
|
951 |
|
|
|
952 |
|
|
static value_ptr
|
953 |
|
|
value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
|
954 |
|
|
{
|
955 |
|
|
/* First collect the vtables we must look at for this object. */
|
956 |
|
|
value_ptr arg, vtbl;
|
957 |
|
|
struct symbol *sym;
|
958 |
|
|
char *demangled_name;
|
959 |
|
|
struct minimal_symbol *msymbol;
|
960 |
|
|
|
961 |
|
|
btype = TYPE_VPTR_BASETYPE (dtype);
|
962 |
|
|
CHECK_TYPEDEF (btype);
|
963 |
|
|
arg = in_arg;
|
964 |
|
|
if (btype != dtype)
|
965 |
|
|
arg = value_cast (lookup_pointer_type (btype), arg);
|
966 |
|
|
if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
|
967 |
|
|
{
|
968 |
|
|
/*
|
969 |
|
|
* Copy the value, but change the type from (T&) to (T*).
|
970 |
|
|
* We keep the same location information, which is efficient,
|
971 |
|
|
* and allows &(&X) to get the location containing the reference.
|
972 |
|
|
*/
|
973 |
|
|
arg = value_copy (arg);
|
974 |
|
|
VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
|
975 |
|
|
}
|
976 |
|
|
if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
|
977 |
|
|
return arg;
|
978 |
|
|
|
979 |
|
|
vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
|
980 |
|
|
/* Turn vtable into typeinfo function */
|
981 |
|
|
VALUE_OFFSET(vtbl)+=4;
|
982 |
|
|
|
983 |
|
|
msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
|
984 |
|
|
if (msymbol == NULL
|
985 |
|
|
|| (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
|
986 |
|
|
{
|
987 |
|
|
/* If we expected to find a vtable, but did not, let the user
|
988 |
|
|
know that we aren't happy, but don't throw an error.
|
989 |
|
|
FIXME: there has to be a better way to do this. */
|
990 |
|
|
struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
|
991 |
|
|
memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
|
992 |
|
|
TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
|
993 |
|
|
VALUE_TYPE (in_arg) = error_type;
|
994 |
|
|
return in_arg;
|
995 |
|
|
}
|
996 |
|
|
demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
|
997 |
|
|
*(strchr (demangled_name, ' ')) = '\0';
|
998 |
|
|
|
999 |
|
|
sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
|
1000 |
|
|
if (sym == NULL)
|
1001 |
|
|
error ("could not find type declaration for `%s'", demangled_name);
|
1002 |
|
|
|
1003 |
|
|
arg = in_arg;
|
1004 |
|
|
VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
|
1005 |
|
|
return arg;
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* ARG is a pointer object of type TYPE. If TYPE has virtual
|
1009 |
|
|
function tables, probe ARG's tables (including the vtables
|
1010 |
|
|
of its baseclasses) to figure out the most derived type that ARG
|
1011 |
|
|
could actually be a pointer to. */
|
1012 |
|
|
|
1013 |
|
|
value_ptr
|
1014 |
|
|
value_from_vtable_info (value_ptr arg, struct type *type)
|
1015 |
|
|
{
|
1016 |
|
|
/* Take care of preliminaries. */
|
1017 |
|
|
if (TYPE_VPTR_FIELDNO (type) < 0)
|
1018 |
|
|
fill_in_vptr_fieldno (type);
|
1019 |
|
|
if (TYPE_VPTR_FIELDNO (type) < 0)
|
1020 |
|
|
return 0;
|
1021 |
|
|
|
1022 |
|
|
return value_headof (arg, 0, type);
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
/* Return true if the INDEXth field of TYPE is a virtual baseclass
|
1026 |
|
|
pointer which is for the base class whose type is BASECLASS. */
|
1027 |
|
|
|
1028 |
|
|
static int
|
1029 |
|
|
vb_match (struct type *type, int index, struct type *basetype)
|
1030 |
|
|
{
|
1031 |
|
|
struct type *fieldtype;
|
1032 |
|
|
char *name = TYPE_FIELD_NAME (type, index);
|
1033 |
|
|
char *field_class_name = NULL;
|
1034 |
|
|
|
1035 |
|
|
if (*name != '_')
|
1036 |
|
|
return 0;
|
1037 |
|
|
/* gcc 2.4 uses _vb$. */
|
1038 |
|
|
if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
|
1039 |
|
|
field_class_name = name + 4;
|
1040 |
|
|
/* gcc 2.5 will use __vb_. */
|
1041 |
|
|
if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
|
1042 |
|
|
field_class_name = name + 5;
|
1043 |
|
|
|
1044 |
|
|
if (field_class_name == NULL)
|
1045 |
|
|
/* This field is not a virtual base class pointer. */
|
1046 |
|
|
return 0;
|
1047 |
|
|
|
1048 |
|
|
/* It's a virtual baseclass pointer, now we just need to find out whether
|
1049 |
|
|
it is for this baseclass. */
|
1050 |
|
|
fieldtype = TYPE_FIELD_TYPE (type, index);
|
1051 |
|
|
if (fieldtype == NULL
|
1052 |
|
|
|| TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
|
1053 |
|
|
/* "Can't happen". */
|
1054 |
|
|
return 0;
|
1055 |
|
|
|
1056 |
|
|
/* What we check for is that either the types are equal (needed for
|
1057 |
|
|
nameless types) or have the same name. This is ugly, and a more
|
1058 |
|
|
elegant solution should be devised (which would probably just push
|
1059 |
|
|
the ugliness into symbol reading unless we change the stabs format). */
|
1060 |
|
|
if (TYPE_TARGET_TYPE (fieldtype) == basetype)
|
1061 |
|
|
return 1;
|
1062 |
|
|
|
1063 |
|
|
if (TYPE_NAME (basetype) != NULL
|
1064 |
|
|
&& TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
|
1065 |
|
|
&& STREQ (TYPE_NAME (basetype),
|
1066 |
|
|
TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
|
1067 |
|
|
return 1;
|
1068 |
|
|
return 0;
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
/* Compute the offset of the baseclass which is
|
1072 |
|
|
the INDEXth baseclass of class TYPE,
|
1073 |
|
|
for value at VALADDR (in host) at ADDRESS (in target).
|
1074 |
|
|
The result is the offset of the baseclass value relative
|
1075 |
|
|
to (the address of)(ARG) + OFFSET.
|
1076 |
|
|
|
1077 |
|
|
-1 is returned on error. */
|
1078 |
|
|
|
1079 |
|
|
int
|
1080 |
|
|
baseclass_offset (struct type *type, int index, char *valaddr,
|
1081 |
|
|
CORE_ADDR address)
|
1082 |
|
|
{
|
1083 |
|
|
struct type *basetype = TYPE_BASECLASS (type, index);
|
1084 |
|
|
|
1085 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, index))
|
1086 |
|
|
{
|
1087 |
|
|
/* Must hunt for the pointer to this virtual baseclass. */
|
1088 |
|
|
register int i, len = TYPE_NFIELDS (type);
|
1089 |
|
|
register int n_baseclasses = TYPE_N_BASECLASSES (type);
|
1090 |
|
|
|
1091 |
|
|
/* First look for the virtual baseclass pointer
|
1092 |
|
|
in the fields. */
|
1093 |
|
|
for (i = n_baseclasses; i < len; i++)
|
1094 |
|
|
{
|
1095 |
|
|
if (vb_match (type, i, basetype))
|
1096 |
|
|
{
|
1097 |
|
|
CORE_ADDR addr
|
1098 |
|
|
= unpack_pointer (TYPE_FIELD_TYPE (type, i),
|
1099 |
|
|
valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
|
1100 |
|
|
|
1101 |
|
|
return addr - (LONGEST) address;
|
1102 |
|
|
}
|
1103 |
|
|
}
|
1104 |
|
|
/* Not in the fields, so try looking through the baseclasses. */
|
1105 |
|
|
for (i = index + 1; i < n_baseclasses; i++)
|
1106 |
|
|
{
|
1107 |
|
|
int boffset =
|
1108 |
|
|
baseclass_offset (type, i, valaddr, address);
|
1109 |
|
|
if (boffset)
|
1110 |
|
|
return boffset;
|
1111 |
|
|
}
|
1112 |
|
|
/* Not found. */
|
1113 |
|
|
return -1;
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/* Baseclass is easily computed. */
|
1117 |
|
|
return TYPE_BASECLASS_BITPOS (type, index) / 8;
|
1118 |
|
|
}
|
1119 |
|
|
|
1120 |
|
|
/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
|
1121 |
|
|
VALADDR.
|
1122 |
|
|
|
1123 |
|
|
Extracting bits depends on endianness of the machine. Compute the
|
1124 |
|
|
number of least significant bits to discard. For big endian machines,
|
1125 |
|
|
we compute the total number of bits in the anonymous object, subtract
|
1126 |
|
|
off the bit count from the MSB of the object to the MSB of the
|
1127 |
|
|
bitfield, then the size of the bitfield, which leaves the LSB discard
|
1128 |
|
|
count. For little endian machines, the discard count is simply the
|
1129 |
|
|
number of bits from the LSB of the anonymous object to the LSB of the
|
1130 |
|
|
bitfield.
|
1131 |
|
|
|
1132 |
|
|
If the field is signed, we also do sign extension. */
|
1133 |
|
|
|
1134 |
|
|
LONGEST
|
1135 |
|
|
unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
|
1136 |
|
|
{
|
1137 |
|
|
ULONGEST val;
|
1138 |
|
|
ULONGEST valmask;
|
1139 |
|
|
int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
|
1140 |
|
|
int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
|
1141 |
|
|
int lsbcount;
|
1142 |
|
|
struct type *field_type;
|
1143 |
|
|
|
1144 |
|
|
val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
|
1145 |
|
|
field_type = TYPE_FIELD_TYPE (type, fieldno);
|
1146 |
|
|
CHECK_TYPEDEF (field_type);
|
1147 |
|
|
|
1148 |
|
|
/* Extract bits. See comment above. */
|
1149 |
|
|
|
1150 |
|
|
if (BITS_BIG_ENDIAN)
|
1151 |
|
|
lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
|
1152 |
|
|
else
|
1153 |
|
|
lsbcount = (bitpos % 8);
|
1154 |
|
|
val >>= lsbcount;
|
1155 |
|
|
|
1156 |
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
1157 |
|
|
If the field is signed, and is negative, then sign extend. */
|
1158 |
|
|
|
1159 |
|
|
if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
|
1160 |
|
|
{
|
1161 |
|
|
valmask = (((ULONGEST) 1) << bitsize) - 1;
|
1162 |
|
|
val &= valmask;
|
1163 |
|
|
if (!TYPE_UNSIGNED (field_type))
|
1164 |
|
|
{
|
1165 |
|
|
if (val & (valmask ^ (valmask >> 1)))
|
1166 |
|
|
{
|
1167 |
|
|
val |= ~valmask;
|
1168 |
|
|
}
|
1169 |
|
|
}
|
1170 |
|
|
}
|
1171 |
|
|
return (val);
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
/* Modify the value of a bitfield. ADDR points to a block of memory in
|
1175 |
|
|
target byte order; the bitfield starts in the byte pointed to. FIELDVAL
|
1176 |
|
|
is the desired value of the field, in host byte order. BITPOS and BITSIZE
|
1177 |
|
|
indicate which bits (in target bit order) comprise the bitfield. */
|
1178 |
|
|
|
1179 |
|
|
void
|
1180 |
|
|
modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
|
1181 |
|
|
{
|
1182 |
|
|
LONGEST oword;
|
1183 |
|
|
|
1184 |
|
|
/* If a negative fieldval fits in the field in question, chop
|
1185 |
|
|
off the sign extension bits. */
|
1186 |
|
|
if (bitsize < (8 * (int) sizeof (fieldval))
|
1187 |
|
|
&& (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
|
1188 |
|
|
fieldval = fieldval & ((1 << bitsize) - 1);
|
1189 |
|
|
|
1190 |
|
|
/* Warn if value is too big to fit in the field in question. */
|
1191 |
|
|
if (bitsize < (8 * (int) sizeof (fieldval))
|
1192 |
|
|
&& 0 != (fieldval & ~((1 << bitsize) - 1)))
|
1193 |
|
|
{
|
1194 |
|
|
/* FIXME: would like to include fieldval in the message, but
|
1195 |
|
|
we don't have a sprintf_longest. */
|
1196 |
|
|
warning ("Value does not fit in %d bits.", bitsize);
|
1197 |
|
|
|
1198 |
|
|
/* Truncate it, otherwise adjoining fields may be corrupted. */
|
1199 |
|
|
fieldval = fieldval & ((1 << bitsize) - 1);
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
oword = extract_signed_integer (addr, sizeof oword);
|
1203 |
|
|
|
1204 |
|
|
/* Shifting for bit field depends on endianness of the target machine. */
|
1205 |
|
|
if (BITS_BIG_ENDIAN)
|
1206 |
|
|
bitpos = sizeof (oword) * 8 - bitpos - bitsize;
|
1207 |
|
|
|
1208 |
|
|
/* Mask out old value, while avoiding shifts >= size of oword */
|
1209 |
|
|
if (bitsize < 8 * (int) sizeof (oword))
|
1210 |
|
|
oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
|
1211 |
|
|
else
|
1212 |
|
|
oword &= ~((~(ULONGEST) 0) << bitpos);
|
1213 |
|
|
oword |= fieldval << bitpos;
|
1214 |
|
|
|
1215 |
|
|
store_signed_integer (addr, sizeof oword, oword);
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
/* Convert C numbers into newly allocated values */
|
1219 |
|
|
|
1220 |
|
|
value_ptr
|
1221 |
|
|
value_from_longest (struct type *type, register LONGEST num)
|
1222 |
|
|
{
|
1223 |
|
|
register value_ptr val = allocate_value (type);
|
1224 |
|
|
register enum type_code code;
|
1225 |
|
|
register int len;
|
1226 |
|
|
retry:
|
1227 |
|
|
code = TYPE_CODE (type);
|
1228 |
|
|
len = TYPE_LENGTH (type);
|
1229 |
|
|
|
1230 |
|
|
switch (code)
|
1231 |
|
|
{
|
1232 |
|
|
case TYPE_CODE_TYPEDEF:
|
1233 |
|
|
type = check_typedef (type);
|
1234 |
|
|
goto retry;
|
1235 |
|
|
case TYPE_CODE_INT:
|
1236 |
|
|
case TYPE_CODE_CHAR:
|
1237 |
|
|
case TYPE_CODE_ENUM:
|
1238 |
|
|
case TYPE_CODE_BOOL:
|
1239 |
|
|
case TYPE_CODE_RANGE:
|
1240 |
|
|
store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
|
1241 |
|
|
break;
|
1242 |
|
|
|
1243 |
|
|
case TYPE_CODE_REF:
|
1244 |
|
|
case TYPE_CODE_PTR:
|
1245 |
|
|
store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
|
1246 |
|
|
break;
|
1247 |
|
|
|
1248 |
|
|
default:
|
1249 |
|
|
error ("Unexpected type (%d) encountered for integer constant.", code);
|
1250 |
|
|
}
|
1251 |
|
|
return val;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
|
1255 |
|
|
/* Create a value representing a pointer of type TYPE to the address
|
1256 |
|
|
ADDR. */
|
1257 |
|
|
value_ptr
|
1258 |
|
|
value_from_pointer (struct type *type, CORE_ADDR addr)
|
1259 |
|
|
{
|
1260 |
|
|
value_ptr val = allocate_value (type);
|
1261 |
|
|
store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
|
1262 |
|
|
return val;
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
|
1266 |
|
|
/* Create a value for a string constant to be stored locally
|
1267 |
|
|
(not in the inferior's memory space, but in GDB memory).
|
1268 |
|
|
This is analogous to value_from_longest, which also does not
|
1269 |
|
|
use inferior memory. String shall NOT contain embedded nulls. */
|
1270 |
|
|
|
1271 |
|
|
value_ptr
|
1272 |
|
|
value_from_string (char *ptr)
|
1273 |
|
|
{
|
1274 |
|
|
value_ptr val;
|
1275 |
|
|
int len = strlen (ptr);
|
1276 |
|
|
int lowbound = current_language->string_lower_bound;
|
1277 |
|
|
struct type *rangetype =
|
1278 |
|
|
create_range_type ((struct type *) NULL,
|
1279 |
|
|
builtin_type_int,
|
1280 |
|
|
lowbound, len + lowbound - 1);
|
1281 |
|
|
struct type *stringtype =
|
1282 |
|
|
create_array_type ((struct type *) NULL,
|
1283 |
|
|
*current_language->string_char_type,
|
1284 |
|
|
rangetype);
|
1285 |
|
|
|
1286 |
|
|
val = allocate_value (stringtype);
|
1287 |
|
|
memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
|
1288 |
|
|
return val;
|
1289 |
|
|
}
|
1290 |
|
|
|
1291 |
|
|
value_ptr
|
1292 |
|
|
value_from_double (struct type *type, DOUBLEST num)
|
1293 |
|
|
{
|
1294 |
|
|
register value_ptr val = allocate_value (type);
|
1295 |
|
|
struct type *base_type = check_typedef (type);
|
1296 |
|
|
register enum type_code code = TYPE_CODE (base_type);
|
1297 |
|
|
register int len = TYPE_LENGTH (base_type);
|
1298 |
|
|
|
1299 |
|
|
if (code == TYPE_CODE_FLT)
|
1300 |
|
|
{
|
1301 |
|
|
store_floating (VALUE_CONTENTS_RAW (val), len, num);
|
1302 |
|
|
}
|
1303 |
|
|
else
|
1304 |
|
|
error ("Unexpected type encountered for floating constant.");
|
1305 |
|
|
|
1306 |
|
|
return val;
|
1307 |
|
|
}
|
1308 |
|
|
|
1309 |
|
|
/* Deal with the value that is "about to be returned". */
|
1310 |
|
|
|
1311 |
|
|
/* Return the value that a function returning now
|
1312 |
|
|
would be returning to its caller, assuming its type is VALTYPE.
|
1313 |
|
|
RETBUF is where we look for what ought to be the contents
|
1314 |
|
|
of the registers (in raw form). This is because it is often
|
1315 |
|
|
desirable to restore old values to those registers
|
1316 |
|
|
after saving the contents of interest, and then call
|
1317 |
|
|
this function using the saved values.
|
1318 |
|
|
struct_return is non-zero when the function in question is
|
1319 |
|
|
using the structure return conventions on the machine in question;
|
1320 |
|
|
|
1321 |
|
|
means returning pointer to where structure is vs. returning value). */
|
1322 |
|
|
|
1323 |
|
|
/* ARGSUSED */
|
1324 |
|
|
value_ptr
|
1325 |
|
|
value_being_returned (struct type *valtype, char *retbuf, int struct_return)
|
1326 |
|
|
{
|
1327 |
|
|
register value_ptr val;
|
1328 |
|
|
CORE_ADDR addr;
|
1329 |
|
|
|
1330 |
|
|
/* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
|
1331 |
|
|
if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
|
1332 |
|
|
if (struct_return)
|
1333 |
|
|
{
|
1334 |
|
|
addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
|
1335 |
|
|
if (!addr)
|
1336 |
|
|
error ("Function return value unknown");
|
1337 |
|
|
return value_at (valtype, addr, NULL);
|
1338 |
|
|
}
|
1339 |
|
|
|
1340 |
|
|
val = allocate_value (valtype);
|
1341 |
|
|
CHECK_TYPEDEF (valtype);
|
1342 |
|
|
EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
|
1343 |
|
|
|
1344 |
|
|
return val;
|
1345 |
|
|
}
|
1346 |
|
|
|
1347 |
|
|
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
1348 |
|
|
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
1349 |
|
|
and TYPE is the type (which is known to be struct, union or array).
|
1350 |
|
|
|
1351 |
|
|
On most machines, the struct convention is used unless we are
|
1352 |
|
|
using gcc and the type is of a special size. */
|
1353 |
|
|
/* As of about 31 Mar 93, GCC was changed to be compatible with the
|
1354 |
|
|
native compiler. GCC 2.3.3 was the last release that did it the
|
1355 |
|
|
old way. Since gcc2_compiled was not changed, we have no
|
1356 |
|
|
way to correctly win in all cases, so we just do the right thing
|
1357 |
|
|
for gcc1 and for gcc2 after this change. Thus it loses for gcc
|
1358 |
|
|
2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
|
1359 |
|
|
would cause more chaos than dealing with some struct returns being
|
1360 |
|
|
handled wrong. */
|
1361 |
|
|
|
1362 |
|
|
int
|
1363 |
|
|
generic_use_struct_convention (int gcc_p, struct type *value_type)
|
1364 |
|
|
{
|
1365 |
|
|
return !((gcc_p == 1)
|
1366 |
|
|
&& (TYPE_LENGTH (value_type) == 1
|
1367 |
|
|
|| TYPE_LENGTH (value_type) == 2
|
1368 |
|
|
|| TYPE_LENGTH (value_type) == 4
|
1369 |
|
|
|| TYPE_LENGTH (value_type) == 8));
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
#ifndef USE_STRUCT_CONVENTION
|
1373 |
|
|
#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
|
1374 |
|
|
#endif
|
1375 |
|
|
|
1376 |
|
|
|
1377 |
|
|
/* Return true if the function specified is using the structure returning
|
1378 |
|
|
convention on this machine to return arguments, or 0 if it is using
|
1379 |
|
|
the value returning convention. FUNCTION is the value representing
|
1380 |
|
|
the function, FUNCADDR is the address of the function, and VALUE_TYPE
|
1381 |
|
|
is the type returned by the function. GCC_P is nonzero if compiled
|
1382 |
|
|
with GCC. */
|
1383 |
|
|
|
1384 |
|
|
/* ARGSUSED */
|
1385 |
|
|
int
|
1386 |
|
|
using_struct_return (value_ptr function, CORE_ADDR funcaddr,
|
1387 |
|
|
struct type *value_type, int gcc_p)
|
1388 |
|
|
{
|
1389 |
|
|
register enum type_code code = TYPE_CODE (value_type);
|
1390 |
|
|
|
1391 |
|
|
if (code == TYPE_CODE_ERROR)
|
1392 |
|
|
error ("Function return type unknown.");
|
1393 |
|
|
|
1394 |
|
|
if (code == TYPE_CODE_STRUCT
|
1395 |
|
|
|| code == TYPE_CODE_UNION
|
1396 |
|
|
|| code == TYPE_CODE_ARRAY
|
1397 |
|
|
|| RETURN_VALUE_ON_STACK (value_type))
|
1398 |
|
|
return USE_STRUCT_CONVENTION (gcc_p, value_type);
|
1399 |
|
|
|
1400 |
|
|
return 0;
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
/* Store VAL so it will be returned if a function returns now.
|
1404 |
|
|
Does not verify that VAL's type matches what the current
|
1405 |
|
|
function wants to return. */
|
1406 |
|
|
|
1407 |
|
|
void
|
1408 |
|
|
set_return_value (value_ptr val)
|
1409 |
|
|
{
|
1410 |
|
|
struct type *type = check_typedef (VALUE_TYPE (val));
|
1411 |
|
|
register enum type_code code = TYPE_CODE (type);
|
1412 |
|
|
|
1413 |
|
|
if (code == TYPE_CODE_ERROR)
|
1414 |
|
|
error ("Function return type unknown.");
|
1415 |
|
|
|
1416 |
|
|
if (code == TYPE_CODE_STRUCT
|
1417 |
|
|
|| code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
|
1418 |
|
|
error ("GDB does not support specifying a struct or union return value.");
|
1419 |
|
|
|
1420 |
|
|
STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
void
|
1424 |
|
|
_initialize_values (void)
|
1425 |
|
|
{
|
1426 |
|
|
add_cmd ("convenience", no_class, show_convenience,
|
1427 |
|
|
"Debugger convenience (\"$foo\") variables.\n\
|
1428 |
|
|
These variables are created when you assign them values;\n\
|
1429 |
|
|
thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
|
1430 |
|
|
A few convenience variables are given values automatically:\n\
|
1431 |
|
|
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
|
1432 |
|
|
\"$__\" holds the contents of the last address examined with \"x\".",
|
1433 |
|
|
&showlist);
|
1434 |
|
|
|
1435 |
|
|
add_cmd ("values", no_class, show_values,
|
1436 |
|
|
"Elements of value history around item number IDX (or last ten).",
|
1437 |
|
|
&showlist);
|
1438 |
|
|
}
|