1 |
578 |
markom |
/*
|
2 |
|
|
* tkCanvArc.c --
|
3 |
|
|
*
|
4 |
|
|
* This file implements arc items for canvas widgets.
|
5 |
|
|
*
|
6 |
|
|
* Copyright (c) 1992-1994 The Regents of the University of California.
|
7 |
|
|
* Copyright (c) 1994-1995 Sun Microsystems, Inc.
|
8 |
|
|
*
|
9 |
|
|
* See the file "license.terms" for information on usage and redistribution
|
10 |
|
|
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
|
11 |
|
|
*
|
12 |
|
|
* RCS: @(#) $Id: tkCanvArc.c,v 1.1.1.1 2002-01-16 10:25:50 markom Exp $
|
13 |
|
|
*/
|
14 |
|
|
|
15 |
|
|
#include <stdio.h>
|
16 |
|
|
#include "tkPort.h"
|
17 |
|
|
#include "tkInt.h"
|
18 |
|
|
|
19 |
|
|
/*
|
20 |
|
|
* The structure below defines the record for each arc item.
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
typedef struct ArcItem {
|
24 |
|
|
Tk_Item header; /* Generic stuff that's the same for all
|
25 |
|
|
* types. MUST BE FIRST IN STRUCTURE. */
|
26 |
|
|
double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding
|
27 |
|
|
* box for oval of which arc is a piece. */
|
28 |
|
|
double start; /* Angle at which arc begins, in degrees
|
29 |
|
|
* between 0 and 360. */
|
30 |
|
|
double extent; /* Extent of arc (angular distance from
|
31 |
|
|
* start to end of arc) in degrees between
|
32 |
|
|
* -360 and 360. */
|
33 |
|
|
double *outlinePtr; /* Points to (x,y) coordinates for points
|
34 |
|
|
* that define one or two closed polygons
|
35 |
|
|
* representing the portion of the outline
|
36 |
|
|
* that isn't part of the arc (the V-shape
|
37 |
|
|
* for a pie slice or a line-like segment
|
38 |
|
|
* for a chord). Malloc'ed. */
|
39 |
|
|
int numOutlinePoints; /* Number of points at outlinePtr. Zero
|
40 |
|
|
* means no space allocated. */
|
41 |
|
|
int width; /* Width of outline (in pixels). */
|
42 |
|
|
XColor *outlineColor; /* Color for outline. NULL means don't
|
43 |
|
|
* draw outline. */
|
44 |
|
|
XColor *fillColor; /* Color for filling arc (used for drawing
|
45 |
|
|
* outline too when style is "arc"). NULL
|
46 |
|
|
* means don't fill arc. */
|
47 |
|
|
Pixmap fillStipple; /* Stipple bitmap for filling item. */
|
48 |
|
|
Pixmap outlineStipple; /* Stipple bitmap for outline. */
|
49 |
|
|
Tk_Uid style; /* How to draw arc: arc, chord, or pieslice. */
|
50 |
|
|
GC outlineGC; /* Graphics context for outline. */
|
51 |
|
|
GC fillGC; /* Graphics context for filling item. */
|
52 |
|
|
double center1[2]; /* Coordinates of center of arc outline at
|
53 |
|
|
* start (see ComputeArcOutline). */
|
54 |
|
|
double center2[2]; /* Coordinates of center of arc outline at
|
55 |
|
|
* start+extent (see ComputeArcOutline). */
|
56 |
|
|
} ArcItem;
|
57 |
|
|
|
58 |
|
|
/*
|
59 |
|
|
* The definitions below define the sizes of the polygons used to
|
60 |
|
|
* display outline information for various styles of arcs:
|
61 |
|
|
*/
|
62 |
|
|
|
63 |
|
|
#define CHORD_OUTLINE_PTS 7
|
64 |
|
|
#define PIE_OUTLINE1_PTS 6
|
65 |
|
|
#define PIE_OUTLINE2_PTS 7
|
66 |
|
|
|
67 |
|
|
/*
|
68 |
|
|
* Information used for parsing configuration specs:
|
69 |
|
|
*/
|
70 |
|
|
|
71 |
|
|
static Tk_CustomOption tagsOption = {Tk_CanvasTagsParseProc,
|
72 |
|
|
Tk_CanvasTagsPrintProc, (ClientData) NULL
|
73 |
|
|
};
|
74 |
|
|
|
75 |
|
|
static Tk_ConfigSpec configSpecs[] = {
|
76 |
|
|
{TK_CONFIG_DOUBLE, "-extent", (char *) NULL, (char *) NULL,
|
77 |
|
|
"90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT},
|
78 |
|
|
{TK_CONFIG_COLOR, "-fill", (char *) NULL, (char *) NULL,
|
79 |
|
|
(char *) NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK},
|
80 |
|
|
{TK_CONFIG_COLOR, "-outline", (char *) NULL, (char *) NULL,
|
81 |
|
|
"black", Tk_Offset(ArcItem, outlineColor), TK_CONFIG_NULL_OK},
|
82 |
|
|
{TK_CONFIG_BITMAP, "-outlinestipple", (char *) NULL, (char *) NULL,
|
83 |
|
|
(char *) NULL, Tk_Offset(ArcItem, outlineStipple), TK_CONFIG_NULL_OK},
|
84 |
|
|
{TK_CONFIG_DOUBLE, "-start", (char *) NULL, (char *) NULL,
|
85 |
|
|
"0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT},
|
86 |
|
|
{TK_CONFIG_BITMAP, "-stipple", (char *) NULL, (char *) NULL,
|
87 |
|
|
(char *) NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK},
|
88 |
|
|
{TK_CONFIG_UID, "-style", (char *) NULL, (char *) NULL,
|
89 |
|
|
"pieslice", Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT},
|
90 |
|
|
{TK_CONFIG_CUSTOM, "-tags", (char *) NULL, (char *) NULL,
|
91 |
|
|
(char *) NULL, 0, TK_CONFIG_NULL_OK, &tagsOption},
|
92 |
|
|
{TK_CONFIG_PIXELS, "-width", (char *) NULL, (char *) NULL,
|
93 |
|
|
"1", Tk_Offset(ArcItem, width), TK_CONFIG_DONT_SET_DEFAULT},
|
94 |
|
|
{TK_CONFIG_END, (char *) NULL, (char *) NULL, (char *) NULL,
|
95 |
|
|
(char *) NULL, 0, 0}
|
96 |
|
|
};
|
97 |
|
|
|
98 |
|
|
/*
|
99 |
|
|
* Prototypes for procedures defined in this file:
|
100 |
|
|
*/
|
101 |
|
|
|
102 |
|
|
static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas canvas,
|
103 |
|
|
ArcItem *arcPtr));
|
104 |
|
|
static int ConfigureArc _ANSI_ARGS_((Tcl_Interp *interp,
|
105 |
|
|
Tk_Canvas canvas, Tk_Item *itemPtr, int argc,
|
106 |
|
|
char **argv, int flags));
|
107 |
|
|
static int CreateArc _ANSI_ARGS_((Tcl_Interp *interp,
|
108 |
|
|
Tk_Canvas canvas, struct Tk_Item *itemPtr,
|
109 |
|
|
int argc, char **argv));
|
110 |
|
|
static void DeleteArc _ANSI_ARGS_((Tk_Canvas canvas,
|
111 |
|
|
Tk_Item *itemPtr, Display *display));
|
112 |
|
|
static void DisplayArc _ANSI_ARGS_((Tk_Canvas canvas,
|
113 |
|
|
Tk_Item *itemPtr, Display *display, Drawable dst,
|
114 |
|
|
int x, int y, int width, int height));
|
115 |
|
|
static int ArcCoords _ANSI_ARGS_((Tcl_Interp *interp,
|
116 |
|
|
Tk_Canvas canvas, Tk_Item *itemPtr, int argc,
|
117 |
|
|
char **argv));
|
118 |
|
|
static int ArcToArea _ANSI_ARGS_((Tk_Canvas canvas,
|
119 |
|
|
Tk_Item *itemPtr, double *rectPtr));
|
120 |
|
|
static double ArcToPoint _ANSI_ARGS_((Tk_Canvas canvas,
|
121 |
|
|
Tk_Item *itemPtr, double *coordPtr));
|
122 |
|
|
static int ArcToPostscript _ANSI_ARGS_((Tcl_Interp *interp,
|
123 |
|
|
Tk_Canvas canvas, Tk_Item *itemPtr, int prepass));
|
124 |
|
|
static void ScaleArc _ANSI_ARGS_((Tk_Canvas canvas,
|
125 |
|
|
Tk_Item *itemPtr, double originX, double originY,
|
126 |
|
|
double scaleX, double scaleY));
|
127 |
|
|
static void TranslateArc _ANSI_ARGS_((Tk_Canvas canvas,
|
128 |
|
|
Tk_Item *itemPtr, double deltaX, double deltaY));
|
129 |
|
|
static int AngleInRange _ANSI_ARGS_((double x, double y,
|
130 |
|
|
double start, double extent));
|
131 |
|
|
static void ComputeArcOutline _ANSI_ARGS_((ArcItem *arcPtr));
|
132 |
|
|
static int HorizLineToArc _ANSI_ARGS_((double x1, double x2,
|
133 |
|
|
double y, double rx, double ry,
|
134 |
|
|
double start, double extent));
|
135 |
|
|
static int VertLineToArc _ANSI_ARGS_((double x, double y1,
|
136 |
|
|
double y2, double rx, double ry,
|
137 |
|
|
double start, double extent));
|
138 |
|
|
|
139 |
|
|
/*
|
140 |
|
|
* The structures below defines the arc item types by means of procedures
|
141 |
|
|
* that can be invoked by generic item code.
|
142 |
|
|
*/
|
143 |
|
|
|
144 |
|
|
Tk_ItemType tkArcType = {
|
145 |
|
|
"arc", /* name */
|
146 |
|
|
sizeof(ArcItem), /* itemSize */
|
147 |
|
|
CreateArc, /* createProc */
|
148 |
|
|
configSpecs, /* configSpecs */
|
149 |
|
|
ConfigureArc, /* configureProc */
|
150 |
|
|
ArcCoords, /* coordProc */
|
151 |
|
|
DeleteArc, /* deleteProc */
|
152 |
|
|
DisplayArc, /* displayProc */
|
153 |
|
|
0, /* alwaysRedraw */
|
154 |
|
|
ArcToPoint, /* pointProc */
|
155 |
|
|
ArcToArea, /* areaProc */
|
156 |
|
|
ArcToPostscript, /* postscriptProc */
|
157 |
|
|
ScaleArc, /* scaleProc */
|
158 |
|
|
TranslateArc, /* translateProc */
|
159 |
|
|
(Tk_ItemIndexProc *) NULL, /* indexProc */
|
160 |
|
|
(Tk_ItemCursorProc *) NULL, /* icursorProc */
|
161 |
|
|
(Tk_ItemSelectionProc *) NULL, /* selectionProc */
|
162 |
|
|
(Tk_ItemInsertProc *) NULL, /* insertProc */
|
163 |
|
|
(Tk_ItemDCharsProc *) NULL, /* dTextProc */
|
164 |
|
|
(Tk_ItemType *) NULL /* nextPtr */
|
165 |
|
|
};
|
166 |
|
|
|
167 |
|
|
#ifndef PI
|
168 |
|
|
# define PI 3.14159265358979323846
|
169 |
|
|
#endif
|
170 |
|
|
|
171 |
|
|
/*
|
172 |
|
|
* The uid's below comprise the legal values for the "-style"
|
173 |
|
|
* option for arcs.
|
174 |
|
|
*/
|
175 |
|
|
|
176 |
|
|
static Tk_Uid arcUid = NULL;
|
177 |
|
|
static Tk_Uid chordUid = NULL;
|
178 |
|
|
static Tk_Uid pieSliceUid = NULL;
|
179 |
|
|
|
180 |
|
|
/*
|
181 |
|
|
*--------------------------------------------------------------
|
182 |
|
|
*
|
183 |
|
|
* CreateArc --
|
184 |
|
|
*
|
185 |
|
|
* This procedure is invoked to create a new arc item in
|
186 |
|
|
* a canvas.
|
187 |
|
|
*
|
188 |
|
|
* Results:
|
189 |
|
|
* A standard Tcl return value. If an error occurred in
|
190 |
|
|
* creating the item, then an error message is left in
|
191 |
|
|
* interp->result; in this case itemPtr is
|
192 |
|
|
* left uninitialized, so it can be safely freed by the
|
193 |
|
|
* caller.
|
194 |
|
|
*
|
195 |
|
|
* Side effects:
|
196 |
|
|
* A new arc item is created.
|
197 |
|
|
*
|
198 |
|
|
*--------------------------------------------------------------
|
199 |
|
|
*/
|
200 |
|
|
|
201 |
|
|
static int
|
202 |
|
|
CreateArc(interp, canvas, itemPtr, argc, argv)
|
203 |
|
|
Tcl_Interp *interp; /* Interpreter for error reporting. */
|
204 |
|
|
Tk_Canvas canvas; /* Canvas to hold new item. */
|
205 |
|
|
Tk_Item *itemPtr; /* Record to hold new item; header
|
206 |
|
|
* has been initialized by caller. */
|
207 |
|
|
int argc; /* Number of arguments in argv. */
|
208 |
|
|
char **argv; /* Arguments describing arc. */
|
209 |
|
|
{
|
210 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
211 |
|
|
|
212 |
|
|
if (argc < 4) {
|
213 |
|
|
Tcl_AppendResult(interp, "wrong # args: should be \"",
|
214 |
|
|
Tk_PathName(Tk_CanvasTkwin(canvas)), " create ",
|
215 |
|
|
itemPtr->typePtr->name, " x1 y1 x2 y2 ?options?\"",
|
216 |
|
|
(char *) NULL);
|
217 |
|
|
return TCL_ERROR;
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
/*
|
221 |
|
|
* Carry out once-only initialization.
|
222 |
|
|
*/
|
223 |
|
|
|
224 |
|
|
if (arcUid == NULL) {
|
225 |
|
|
arcUid = Tk_GetUid("arc");
|
226 |
|
|
chordUid = Tk_GetUid("chord");
|
227 |
|
|
pieSliceUid = Tk_GetUid("pieslice");
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/*
|
231 |
|
|
* Carry out initialization that is needed in order to clean
|
232 |
|
|
* up after errors during the the remainder of this procedure.
|
233 |
|
|
*/
|
234 |
|
|
|
235 |
|
|
arcPtr->start = 0;
|
236 |
|
|
arcPtr->extent = 90;
|
237 |
|
|
arcPtr->outlinePtr = NULL;
|
238 |
|
|
arcPtr->numOutlinePoints = 0;
|
239 |
|
|
arcPtr->width = 1;
|
240 |
|
|
arcPtr->outlineColor = NULL;
|
241 |
|
|
arcPtr->fillColor = NULL;
|
242 |
|
|
arcPtr->fillStipple = None;
|
243 |
|
|
arcPtr->outlineStipple = None;
|
244 |
|
|
arcPtr->style = pieSliceUid;
|
245 |
|
|
arcPtr->outlineGC = None;
|
246 |
|
|
arcPtr->fillGC = None;
|
247 |
|
|
|
248 |
|
|
/*
|
249 |
|
|
* Process the arguments to fill in the item record.
|
250 |
|
|
*/
|
251 |
|
|
|
252 |
|
|
if ((Tk_CanvasGetCoord(interp, canvas, argv[0], &arcPtr->bbox[0]) != TCL_OK)
|
253 |
|
|
|| (Tk_CanvasGetCoord(interp, canvas, argv[1],
|
254 |
|
|
&arcPtr->bbox[1]) != TCL_OK)
|
255 |
|
|
|| (Tk_CanvasGetCoord(interp, canvas, argv[2],
|
256 |
|
|
&arcPtr->bbox[2]) != TCL_OK)
|
257 |
|
|
|| (Tk_CanvasGetCoord(interp, canvas, argv[3],
|
258 |
|
|
&arcPtr->bbox[3]) != TCL_OK)) {
|
259 |
|
|
return TCL_ERROR;
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
if (ConfigureArc(interp, canvas, itemPtr, argc-4, argv+4, 0) != TCL_OK) {
|
263 |
|
|
DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas)));
|
264 |
|
|
return TCL_ERROR;
|
265 |
|
|
}
|
266 |
|
|
return TCL_OK;
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
/*
|
270 |
|
|
*--------------------------------------------------------------
|
271 |
|
|
*
|
272 |
|
|
* ArcCoords --
|
273 |
|
|
*
|
274 |
|
|
* This procedure is invoked to process the "coords" widget
|
275 |
|
|
* command on arcs. See the user documentation for details
|
276 |
|
|
* on what it does.
|
277 |
|
|
*
|
278 |
|
|
* Results:
|
279 |
|
|
* Returns TCL_OK or TCL_ERROR, and sets interp->result.
|
280 |
|
|
*
|
281 |
|
|
* Side effects:
|
282 |
|
|
* The coordinates for the given item may be changed.
|
283 |
|
|
*
|
284 |
|
|
*--------------------------------------------------------------
|
285 |
|
|
*/
|
286 |
|
|
|
287 |
|
|
static int
|
288 |
|
|
ArcCoords(interp, canvas, itemPtr, argc, argv)
|
289 |
|
|
Tcl_Interp *interp; /* Used for error reporting. */
|
290 |
|
|
Tk_Canvas canvas; /* Canvas containing item. */
|
291 |
|
|
Tk_Item *itemPtr; /* Item whose coordinates are to be
|
292 |
|
|
* read or modified. */
|
293 |
|
|
int argc; /* Number of coordinates supplied in
|
294 |
|
|
* argv. */
|
295 |
|
|
char **argv; /* Array of coordinates: x1, y1,
|
296 |
|
|
* x2, y2, ... */
|
297 |
|
|
{
|
298 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
299 |
|
|
char c0[TCL_DOUBLE_SPACE], c1[TCL_DOUBLE_SPACE];
|
300 |
|
|
char c2[TCL_DOUBLE_SPACE], c3[TCL_DOUBLE_SPACE];
|
301 |
|
|
|
302 |
|
|
if (argc == 0) {
|
303 |
|
|
Tcl_PrintDouble(interp, arcPtr->bbox[0], c0);
|
304 |
|
|
Tcl_PrintDouble(interp, arcPtr->bbox[1], c1);
|
305 |
|
|
Tcl_PrintDouble(interp, arcPtr->bbox[2], c2);
|
306 |
|
|
Tcl_PrintDouble(interp, arcPtr->bbox[3], c3);
|
307 |
|
|
Tcl_AppendResult(interp, c0, " ", c1, " ", c2, " ", c3,
|
308 |
|
|
(char *) NULL);
|
309 |
|
|
} else if (argc == 4) {
|
310 |
|
|
if ((Tk_CanvasGetCoord(interp, canvas, argv[0],
|
311 |
|
|
&arcPtr->bbox[0]) != TCL_OK)
|
312 |
|
|
|| (Tk_CanvasGetCoord(interp, canvas, argv[1],
|
313 |
|
|
&arcPtr->bbox[1]) != TCL_OK)
|
314 |
|
|
|| (Tk_CanvasGetCoord(interp, canvas, argv[2],
|
315 |
|
|
&arcPtr->bbox[2]) != TCL_OK)
|
316 |
|
|
|| (Tk_CanvasGetCoord(interp, canvas, argv[3],
|
317 |
|
|
&arcPtr->bbox[3]) != TCL_OK)) {
|
318 |
|
|
return TCL_ERROR;
|
319 |
|
|
}
|
320 |
|
|
ComputeArcBbox(canvas, arcPtr);
|
321 |
|
|
} else {
|
322 |
|
|
sprintf(interp->result,
|
323 |
|
|
"wrong # coordinates: expected 0 or 4, got %d",
|
324 |
|
|
argc);
|
325 |
|
|
return TCL_ERROR;
|
326 |
|
|
}
|
327 |
|
|
return TCL_OK;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/*
|
331 |
|
|
*--------------------------------------------------------------
|
332 |
|
|
*
|
333 |
|
|
* ConfigureArc --
|
334 |
|
|
*
|
335 |
|
|
* This procedure is invoked to configure various aspects
|
336 |
|
|
* of a arc item, such as its outline and fill colors.
|
337 |
|
|
*
|
338 |
|
|
* Results:
|
339 |
|
|
* A standard Tcl result code. If an error occurs, then
|
340 |
|
|
* an error message is left in interp->result.
|
341 |
|
|
*
|
342 |
|
|
* Side effects:
|
343 |
|
|
* Configuration information, such as colors and stipple
|
344 |
|
|
* patterns, may be set for itemPtr.
|
345 |
|
|
*
|
346 |
|
|
*--------------------------------------------------------------
|
347 |
|
|
*/
|
348 |
|
|
|
349 |
|
|
static int
|
350 |
|
|
ConfigureArc(interp, canvas, itemPtr, argc, argv, flags)
|
351 |
|
|
Tcl_Interp *interp; /* Used for error reporting. */
|
352 |
|
|
Tk_Canvas canvas; /* Canvas containing itemPtr. */
|
353 |
|
|
Tk_Item *itemPtr; /* Arc item to reconfigure. */
|
354 |
|
|
int argc; /* Number of elements in argv. */
|
355 |
|
|
char **argv; /* Arguments describing things to configure. */
|
356 |
|
|
int flags; /* Flags to pass to Tk_ConfigureWidget. */
|
357 |
|
|
{
|
358 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
359 |
|
|
XGCValues gcValues;
|
360 |
|
|
GC newGC;
|
361 |
|
|
unsigned long mask;
|
362 |
|
|
int i;
|
363 |
|
|
Tk_Window tkwin;
|
364 |
|
|
|
365 |
|
|
tkwin = Tk_CanvasTkwin(canvas);
|
366 |
|
|
if (Tk_ConfigureWidget(interp, tkwin, configSpecs, argc, argv,
|
367 |
|
|
(char *) arcPtr, flags) != TCL_OK) {
|
368 |
|
|
return TCL_ERROR;
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
/*
|
372 |
|
|
* A few of the options require additional processing, such as
|
373 |
|
|
* style and graphics contexts.
|
374 |
|
|
*/
|
375 |
|
|
|
376 |
|
|
i = (int) (arcPtr->start/360.0);
|
377 |
|
|
arcPtr->start -= i*360.0;
|
378 |
|
|
if (arcPtr->start < 0) {
|
379 |
|
|
arcPtr->start += 360.0;
|
380 |
|
|
}
|
381 |
|
|
i = (int) (arcPtr->extent/360.0);
|
382 |
|
|
arcPtr->extent -= i*360.0;
|
383 |
|
|
|
384 |
|
|
if ((arcPtr->style != arcUid) && (arcPtr->style != chordUid)
|
385 |
|
|
&& (arcPtr->style != pieSliceUid)) {
|
386 |
|
|
Tcl_AppendResult(interp, "bad -style option \"",
|
387 |
|
|
arcPtr->style, "\": must be arc, chord, or pieslice",
|
388 |
|
|
(char *) NULL);
|
389 |
|
|
arcPtr->style = pieSliceUid;
|
390 |
|
|
return TCL_ERROR;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
if (arcPtr->width < 0) {
|
394 |
|
|
arcPtr->width = 1;
|
395 |
|
|
}
|
396 |
|
|
if (arcPtr->outlineColor == NULL) {
|
397 |
|
|
newGC = None;
|
398 |
|
|
} else {
|
399 |
|
|
gcValues.foreground = arcPtr->outlineColor->pixel;
|
400 |
|
|
gcValues.cap_style = CapButt;
|
401 |
|
|
gcValues.line_width = arcPtr->width;
|
402 |
|
|
mask = GCForeground|GCCapStyle|GCLineWidth;
|
403 |
|
|
if (arcPtr->outlineStipple != None) {
|
404 |
|
|
gcValues.stipple = arcPtr->outlineStipple;
|
405 |
|
|
gcValues.fill_style = FillStippled;
|
406 |
|
|
mask |= GCStipple|GCFillStyle;
|
407 |
|
|
}
|
408 |
|
|
newGC = Tk_GetGCColor(tkwin, mask, &gcValues, arcPtr->outlineColor,
|
409 |
|
|
NULL);
|
410 |
|
|
}
|
411 |
|
|
if (arcPtr->outlineGC != None) {
|
412 |
|
|
Tk_FreeGC(Tk_Display(tkwin), arcPtr->outlineGC);
|
413 |
|
|
}
|
414 |
|
|
arcPtr->outlineGC = newGC;
|
415 |
|
|
|
416 |
|
|
if ((arcPtr->fillColor == NULL) || (arcPtr->style == arcUid)) {
|
417 |
|
|
newGC = None;
|
418 |
|
|
} else {
|
419 |
|
|
gcValues.foreground = arcPtr->fillColor->pixel;
|
420 |
|
|
if (arcPtr->style == chordUid) {
|
421 |
|
|
gcValues.arc_mode = ArcChord;
|
422 |
|
|
} else {
|
423 |
|
|
gcValues.arc_mode = ArcPieSlice;
|
424 |
|
|
}
|
425 |
|
|
mask = GCForeground|GCArcMode;
|
426 |
|
|
if (arcPtr->fillStipple != None) {
|
427 |
|
|
gcValues.stipple = arcPtr->fillStipple;
|
428 |
|
|
gcValues.fill_style = FillStippled;
|
429 |
|
|
mask |= GCStipple|GCFillStyle;
|
430 |
|
|
}
|
431 |
|
|
newGC = Tk_GetGCColor(tkwin, mask, &gcValues, arcPtr->fillColor, NULL);
|
432 |
|
|
}
|
433 |
|
|
if (arcPtr->fillGC != None) {
|
434 |
|
|
Tk_FreeGC(Tk_Display(tkwin), arcPtr->fillGC);
|
435 |
|
|
}
|
436 |
|
|
arcPtr->fillGC = newGC;
|
437 |
|
|
|
438 |
|
|
ComputeArcBbox(canvas, arcPtr);
|
439 |
|
|
return TCL_OK;
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
/*
|
443 |
|
|
*--------------------------------------------------------------
|
444 |
|
|
*
|
445 |
|
|
* DeleteArc --
|
446 |
|
|
*
|
447 |
|
|
* This procedure is called to clean up the data structure
|
448 |
|
|
* associated with a arc item.
|
449 |
|
|
*
|
450 |
|
|
* Results:
|
451 |
|
|
* None.
|
452 |
|
|
*
|
453 |
|
|
* Side effects:
|
454 |
|
|
* Resources associated with itemPtr are released.
|
455 |
|
|
*
|
456 |
|
|
*--------------------------------------------------------------
|
457 |
|
|
*/
|
458 |
|
|
|
459 |
|
|
static void
|
460 |
|
|
DeleteArc(canvas, itemPtr, display)
|
461 |
|
|
Tk_Canvas canvas; /* Info about overall canvas. */
|
462 |
|
|
Tk_Item *itemPtr; /* Item that is being deleted. */
|
463 |
|
|
Display *display; /* Display containing window for
|
464 |
|
|
* canvas. */
|
465 |
|
|
{
|
466 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
467 |
|
|
|
468 |
|
|
if (arcPtr->numOutlinePoints != 0) {
|
469 |
|
|
ckfree((char *) arcPtr->outlinePtr);
|
470 |
|
|
}
|
471 |
|
|
if (arcPtr->outlineColor != NULL) {
|
472 |
|
|
Tk_FreeColor(arcPtr->outlineColor);
|
473 |
|
|
}
|
474 |
|
|
if (arcPtr->fillColor != NULL) {
|
475 |
|
|
Tk_FreeColor(arcPtr->fillColor);
|
476 |
|
|
}
|
477 |
|
|
if (arcPtr->fillStipple != None) {
|
478 |
|
|
Tk_FreeBitmap(display, arcPtr->fillStipple);
|
479 |
|
|
}
|
480 |
|
|
if (arcPtr->outlineStipple != None) {
|
481 |
|
|
Tk_FreeBitmap(display, arcPtr->outlineStipple);
|
482 |
|
|
}
|
483 |
|
|
if (arcPtr->outlineGC != None) {
|
484 |
|
|
Tk_FreeGC(display, arcPtr->outlineGC);
|
485 |
|
|
}
|
486 |
|
|
if (arcPtr->fillGC != None) {
|
487 |
|
|
Tk_FreeGC(display, arcPtr->fillGC);
|
488 |
|
|
}
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/*
|
492 |
|
|
*--------------------------------------------------------------
|
493 |
|
|
*
|
494 |
|
|
* ComputeArcBbox --
|
495 |
|
|
*
|
496 |
|
|
* This procedure is invoked to compute the bounding box of
|
497 |
|
|
* all the pixels that may be drawn as part of an arc.
|
498 |
|
|
*
|
499 |
|
|
* Results:
|
500 |
|
|
* None.
|
501 |
|
|
*
|
502 |
|
|
* Side effects:
|
503 |
|
|
* The fields x1, y1, x2, and y2 are updated in the header
|
504 |
|
|
* for itemPtr.
|
505 |
|
|
*
|
506 |
|
|
*--------------------------------------------------------------
|
507 |
|
|
*/
|
508 |
|
|
|
509 |
|
|
/* ARGSUSED */
|
510 |
|
|
static void
|
511 |
|
|
ComputeArcBbox(canvas, arcPtr)
|
512 |
|
|
Tk_Canvas canvas; /* Canvas that contains item. */
|
513 |
|
|
ArcItem *arcPtr; /* Item whose bbox is to be
|
514 |
|
|
* recomputed. */
|
515 |
|
|
{
|
516 |
|
|
double tmp, center[2], point[2];
|
517 |
|
|
|
518 |
|
|
/*
|
519 |
|
|
* Make sure that the first coordinates are the lowest ones.
|
520 |
|
|
*/
|
521 |
|
|
|
522 |
|
|
if (arcPtr->bbox[1] > arcPtr->bbox[3]) {
|
523 |
|
|
double tmp;
|
524 |
|
|
tmp = arcPtr->bbox[3];
|
525 |
|
|
arcPtr->bbox[3] = arcPtr->bbox[1];
|
526 |
|
|
arcPtr->bbox[1] = tmp;
|
527 |
|
|
}
|
528 |
|
|
if (arcPtr->bbox[0] > arcPtr->bbox[2]) {
|
529 |
|
|
double tmp;
|
530 |
|
|
tmp = arcPtr->bbox[2];
|
531 |
|
|
arcPtr->bbox[2] = arcPtr->bbox[0];
|
532 |
|
|
arcPtr->bbox[0] = tmp;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
ComputeArcOutline(arcPtr);
|
536 |
|
|
|
537 |
|
|
/*
|
538 |
|
|
* To compute the bounding box, start with the the bbox formed
|
539 |
|
|
* by the two endpoints of the arc. Then add in the center of
|
540 |
|
|
* the arc's oval (if relevant) and the 3-o'clock, 6-o'clock,
|
541 |
|
|
* 9-o'clock, and 12-o'clock positions, if they are relevant.
|
542 |
|
|
*/
|
543 |
|
|
|
544 |
|
|
arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0];
|
545 |
|
|
arcPtr->header.y1 = arcPtr->header.y2 = (int) arcPtr->center1[1];
|
546 |
|
|
TkIncludePoint((Tk_Item *) arcPtr, arcPtr->center2);
|
547 |
|
|
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2;
|
548 |
|
|
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2;
|
549 |
|
|
if (arcPtr->style == pieSliceUid) {
|
550 |
|
|
TkIncludePoint((Tk_Item *) arcPtr, center);
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
tmp = -arcPtr->start;
|
554 |
|
|
if (tmp < 0) {
|
555 |
|
|
tmp += 360.0;
|
556 |
|
|
}
|
557 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
558 |
|
|
point[0] = arcPtr->bbox[2];
|
559 |
|
|
point[1] = center[1];
|
560 |
|
|
TkIncludePoint((Tk_Item *) arcPtr, point);
|
561 |
|
|
}
|
562 |
|
|
tmp = 90.0 - arcPtr->start;
|
563 |
|
|
if (tmp < 0) {
|
564 |
|
|
tmp += 360.0;
|
565 |
|
|
}
|
566 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
567 |
|
|
point[0] = center[0];
|
568 |
|
|
point[1] = arcPtr->bbox[1];
|
569 |
|
|
TkIncludePoint((Tk_Item *) arcPtr, point);
|
570 |
|
|
}
|
571 |
|
|
tmp = 180.0 - arcPtr->start;
|
572 |
|
|
if (tmp < 0) {
|
573 |
|
|
tmp += 360.0;
|
574 |
|
|
}
|
575 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
576 |
|
|
point[0] = arcPtr->bbox[0];
|
577 |
|
|
point[1] = center[1];
|
578 |
|
|
TkIncludePoint((Tk_Item *) arcPtr, point);
|
579 |
|
|
}
|
580 |
|
|
tmp = 270.0 - arcPtr->start;
|
581 |
|
|
if (tmp < 0) {
|
582 |
|
|
tmp += 360.0;
|
583 |
|
|
}
|
584 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
585 |
|
|
point[0] = center[0];
|
586 |
|
|
point[1] = arcPtr->bbox[3];
|
587 |
|
|
TkIncludePoint((Tk_Item *) arcPtr, point);
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/*
|
591 |
|
|
* Lastly, expand by the width of the arc (if the arc's outline is
|
592 |
|
|
* being drawn) and add one extra pixel just for safety.
|
593 |
|
|
*/
|
594 |
|
|
|
595 |
|
|
if (arcPtr->outlineColor == NULL) {
|
596 |
|
|
tmp = 1;
|
597 |
|
|
} else {
|
598 |
|
|
tmp = (arcPtr->width + 1)/2 + 1;
|
599 |
|
|
}
|
600 |
|
|
arcPtr->header.x1 -= (int) tmp;
|
601 |
|
|
arcPtr->header.y1 -= (int) tmp;
|
602 |
|
|
arcPtr->header.x2 += (int) tmp;
|
603 |
|
|
arcPtr->header.y2 += (int) tmp;
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/*
|
607 |
|
|
*--------------------------------------------------------------
|
608 |
|
|
*
|
609 |
|
|
* DisplayArc --
|
610 |
|
|
*
|
611 |
|
|
* This procedure is invoked to draw an arc item in a given
|
612 |
|
|
* drawable.
|
613 |
|
|
*
|
614 |
|
|
* Results:
|
615 |
|
|
* None.
|
616 |
|
|
*
|
617 |
|
|
* Side effects:
|
618 |
|
|
* ItemPtr is drawn in drawable using the transformation
|
619 |
|
|
* information in canvas.
|
620 |
|
|
*
|
621 |
|
|
*--------------------------------------------------------------
|
622 |
|
|
*/
|
623 |
|
|
|
624 |
|
|
static void
|
625 |
|
|
DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
|
626 |
|
|
Tk_Canvas canvas; /* Canvas that contains item. */
|
627 |
|
|
Tk_Item *itemPtr; /* Item to be displayed. */
|
628 |
|
|
Display *display; /* Display on which to draw item. */
|
629 |
|
|
Drawable drawable; /* Pixmap or window in which to draw
|
630 |
|
|
* item. */
|
631 |
|
|
int x, y, width, height; /* Describes region of canvas that
|
632 |
|
|
* must be redisplayed (not used). */
|
633 |
|
|
{
|
634 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
635 |
|
|
short x1, y1, x2, y2;
|
636 |
|
|
int start, extent;
|
637 |
|
|
|
638 |
|
|
/*
|
639 |
|
|
* Compute the screen coordinates of the bounding box for the item,
|
640 |
|
|
* plus integer values for the angles.
|
641 |
|
|
*/
|
642 |
|
|
|
643 |
|
|
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1],
|
644 |
|
|
&x1, &y1);
|
645 |
|
|
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[2], arcPtr->bbox[3],
|
646 |
|
|
&x2, &y2);
|
647 |
|
|
if (x2 <= x1) {
|
648 |
|
|
x2 = x1+1;
|
649 |
|
|
}
|
650 |
|
|
if (y2 <= y1) {
|
651 |
|
|
y2 = y1+1;
|
652 |
|
|
}
|
653 |
|
|
start = (int) ((64*arcPtr->start) + 0.5);
|
654 |
|
|
extent = (int) ((64*arcPtr->extent) + 0.5);
|
655 |
|
|
|
656 |
|
|
/*
|
657 |
|
|
* Display filled arc first (if wanted), then outline. If the extent
|
658 |
|
|
* is zero then don't invoke XFillArc or XDrawArc, since this causes
|
659 |
|
|
* some window servers to crash and should be a no-op anyway.
|
660 |
|
|
*/
|
661 |
|
|
|
662 |
|
|
if ((arcPtr->fillGC != None) && (extent != 0)) {
|
663 |
|
|
if (arcPtr->fillStipple != None) {
|
664 |
|
|
Tk_CanvasSetStippleOrigin(canvas, arcPtr->fillGC);
|
665 |
|
|
}
|
666 |
|
|
XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (unsigned) (x2-x1),
|
667 |
|
|
(unsigned) (y2-y1), start, extent);
|
668 |
|
|
if (arcPtr->fillStipple != None) {
|
669 |
|
|
XSetTSOrigin(display, arcPtr->fillGC, 0, 0);
|
670 |
|
|
}
|
671 |
|
|
}
|
672 |
|
|
if (arcPtr->outlineGC != None) {
|
673 |
|
|
if (arcPtr->outlineStipple != None) {
|
674 |
|
|
Tk_CanvasSetStippleOrigin(canvas, arcPtr->outlineGC);
|
675 |
|
|
}
|
676 |
|
|
if (extent != 0) {
|
677 |
|
|
XDrawArc(display, drawable, arcPtr->outlineGC, x1, y1,
|
678 |
|
|
(unsigned) (x2-x1), (unsigned) (y2-y1), start, extent);
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/*
|
682 |
|
|
* If the outline width is very thin, don't use polygons to draw
|
683 |
|
|
* the linear parts of the outline (this often results in nothing
|
684 |
|
|
* being displayed); just draw lines instead.
|
685 |
|
|
*/
|
686 |
|
|
|
687 |
|
|
if (arcPtr->width <= 2) {
|
688 |
|
|
Tk_CanvasDrawableCoords(canvas, arcPtr->center1[0],
|
689 |
|
|
arcPtr->center1[1], &x1, &y1);
|
690 |
|
|
Tk_CanvasDrawableCoords(canvas, arcPtr->center2[0],
|
691 |
|
|
arcPtr->center2[1], &x2, &y2);
|
692 |
|
|
|
693 |
|
|
if (arcPtr->style == chordUid) {
|
694 |
|
|
XDrawLine(display, drawable, arcPtr->outlineGC,
|
695 |
|
|
x1, y1, x2, y2);
|
696 |
|
|
} else if (arcPtr->style == pieSliceUid) {
|
697 |
|
|
short cx, cy;
|
698 |
|
|
|
699 |
|
|
Tk_CanvasDrawableCoords(canvas,
|
700 |
|
|
(arcPtr->bbox[0] + arcPtr->bbox[2])/2.0,
|
701 |
|
|
(arcPtr->bbox[1] + arcPtr->bbox[3])/2.0, &cx, &cy);
|
702 |
|
|
XDrawLine(display, drawable, arcPtr->outlineGC,
|
703 |
|
|
cx, cy, x1, y1);
|
704 |
|
|
XDrawLine(display, drawable, arcPtr->outlineGC,
|
705 |
|
|
cx, cy, x2, y2);
|
706 |
|
|
}
|
707 |
|
|
} else {
|
708 |
|
|
if (arcPtr->style == chordUid) {
|
709 |
|
|
TkFillPolygon(canvas, arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
710 |
|
|
display, drawable, arcPtr->outlineGC, None);
|
711 |
|
|
} else if (arcPtr->style == pieSliceUid) {
|
712 |
|
|
TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
713 |
|
|
display, drawable, arcPtr->outlineGC, None);
|
714 |
|
|
TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
715 |
|
|
PIE_OUTLINE2_PTS, display, drawable, arcPtr->outlineGC,
|
716 |
|
|
None);
|
717 |
|
|
}
|
718 |
|
|
}
|
719 |
|
|
if (arcPtr->outlineStipple != None) {
|
720 |
|
|
XSetTSOrigin(display, arcPtr->outlineGC, 0, 0);
|
721 |
|
|
}
|
722 |
|
|
}
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
/*
|
726 |
|
|
*--------------------------------------------------------------
|
727 |
|
|
*
|
728 |
|
|
* ArcToPoint --
|
729 |
|
|
*
|
730 |
|
|
* Computes the distance from a given point to a given
|
731 |
|
|
* arc, in canvas units.
|
732 |
|
|
*
|
733 |
|
|
* Results:
|
734 |
|
|
* The return value is 0 if the point whose x and y coordinates
|
735 |
|
|
* are coordPtr[0] and coordPtr[1] is inside the arc. If the
|
736 |
|
|
* point isn't inside the arc then the return value is the
|
737 |
|
|
* distance from the point to the arc. If itemPtr is filled,
|
738 |
|
|
* then anywhere in the interior is considered "inside"; if
|
739 |
|
|
* itemPtr isn't filled, then "inside" means only the area
|
740 |
|
|
* occupied by the outline.
|
741 |
|
|
*
|
742 |
|
|
* Side effects:
|
743 |
|
|
* None.
|
744 |
|
|
*
|
745 |
|
|
*--------------------------------------------------------------
|
746 |
|
|
*/
|
747 |
|
|
|
748 |
|
|
/* ARGSUSED */
|
749 |
|
|
static double
|
750 |
|
|
ArcToPoint(canvas, itemPtr, pointPtr)
|
751 |
|
|
Tk_Canvas canvas; /* Canvas containing item. */
|
752 |
|
|
Tk_Item *itemPtr; /* Item to check against point. */
|
753 |
|
|
double *pointPtr; /* Pointer to x and y coordinates. */
|
754 |
|
|
{
|
755 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
756 |
|
|
double vertex[2], pointAngle, diff, dist, newDist;
|
757 |
|
|
double poly[8], polyDist, width, t1, t2;
|
758 |
|
|
int filled, angleInRange;
|
759 |
|
|
|
760 |
|
|
/*
|
761 |
|
|
* See if the point is within the angular range of the arc.
|
762 |
|
|
* Remember, X angles are backwards from the way we'd normally
|
763 |
|
|
* think of them. Also, compensate for any eccentricity of
|
764 |
|
|
* the oval.
|
765 |
|
|
*/
|
766 |
|
|
|
767 |
|
|
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
768 |
|
|
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
769 |
|
|
t1 = (pointPtr[1] - vertex[1])/(arcPtr->bbox[3] - arcPtr->bbox[1]);
|
770 |
|
|
t2 = (pointPtr[0] - vertex[0])/(arcPtr->bbox[2] - arcPtr->bbox[0]);
|
771 |
|
|
if ((t1 == 0.0) && (t2 == 0.0)) {
|
772 |
|
|
pointAngle = 0;
|
773 |
|
|
} else {
|
774 |
|
|
pointAngle = -atan2(t1, t2)*180/PI;
|
775 |
|
|
}
|
776 |
|
|
diff = pointAngle - arcPtr->start;
|
777 |
|
|
diff -= ((int) (diff/360.0) * 360.0);
|
778 |
|
|
if (diff < 0) {
|
779 |
|
|
diff += 360.0;
|
780 |
|
|
}
|
781 |
|
|
angleInRange = (diff <= arcPtr->extent) ||
|
782 |
|
|
((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent));
|
783 |
|
|
|
784 |
|
|
/*
|
785 |
|
|
* Now perform different tests depending on what kind of arc
|
786 |
|
|
* we're dealing with.
|
787 |
|
|
*/
|
788 |
|
|
|
789 |
|
|
if (arcPtr->style == arcUid) {
|
790 |
|
|
if (angleInRange) {
|
791 |
|
|
return TkOvalToPoint(arcPtr->bbox, (double) arcPtr->width,
|
792 |
|
|
0, pointPtr);
|
793 |
|
|
}
|
794 |
|
|
dist = hypot(pointPtr[0] - arcPtr->center1[0],
|
795 |
|
|
pointPtr[1] - arcPtr->center1[1]);
|
796 |
|
|
newDist = hypot(pointPtr[0] - arcPtr->center2[0],
|
797 |
|
|
pointPtr[1] - arcPtr->center2[1]);
|
798 |
|
|
if (newDist < dist) {
|
799 |
|
|
return newDist;
|
800 |
|
|
}
|
801 |
|
|
return dist;
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) {
|
805 |
|
|
filled = 1;
|
806 |
|
|
} else {
|
807 |
|
|
filled = 0;
|
808 |
|
|
}
|
809 |
|
|
if (arcPtr->outlineGC == None) {
|
810 |
|
|
width = 0.0;
|
811 |
|
|
} else {
|
812 |
|
|
width = arcPtr->width;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
if (arcPtr->style == pieSliceUid) {
|
816 |
|
|
if (width > 1.0) {
|
817 |
|
|
dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
818 |
|
|
pointPtr);
|
819 |
|
|
newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
820 |
|
|
PIE_OUTLINE2_PTS, pointPtr);
|
821 |
|
|
} else {
|
822 |
|
|
dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr);
|
823 |
|
|
newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr);
|
824 |
|
|
}
|
825 |
|
|
if (newDist < dist) {
|
826 |
|
|
dist = newDist;
|
827 |
|
|
}
|
828 |
|
|
if (angleInRange) {
|
829 |
|
|
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
|
830 |
|
|
if (newDist < dist) {
|
831 |
|
|
dist = newDist;
|
832 |
|
|
}
|
833 |
|
|
}
|
834 |
|
|
return dist;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/*
|
838 |
|
|
* This is a chord-style arc. We have to deal specially with the
|
839 |
|
|
* triangular piece that represents the difference between a
|
840 |
|
|
* chord-style arc and a pie-slice arc (for small angles this piece
|
841 |
|
|
* is excluded here where it would be included for pie slices;
|
842 |
|
|
* for large angles the piece is included here but would be
|
843 |
|
|
* excluded for pie slices).
|
844 |
|
|
*/
|
845 |
|
|
|
846 |
|
|
if (width > 1.0) {
|
847 |
|
|
dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
848 |
|
|
pointPtr);
|
849 |
|
|
} else {
|
850 |
|
|
dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr);
|
851 |
|
|
}
|
852 |
|
|
poly[0] = poly[6] = vertex[0];
|
853 |
|
|
poly[1] = poly[7] = vertex[1];
|
854 |
|
|
poly[2] = arcPtr->center1[0];
|
855 |
|
|
poly[3] = arcPtr->center1[1];
|
856 |
|
|
poly[4] = arcPtr->center2[0];
|
857 |
|
|
poly[5] = arcPtr->center2[1];
|
858 |
|
|
polyDist = TkPolygonToPoint(poly, 4, pointPtr);
|
859 |
|
|
if (angleInRange) {
|
860 |
|
|
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)
|
861 |
|
|
|| (polyDist > 0.0)) {
|
862 |
|
|
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
|
863 |
|
|
if (newDist < dist) {
|
864 |
|
|
dist = newDist;
|
865 |
|
|
}
|
866 |
|
|
}
|
867 |
|
|
} else {
|
868 |
|
|
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) {
|
869 |
|
|
if (filled && (polyDist < dist)) {
|
870 |
|
|
dist = polyDist;
|
871 |
|
|
}
|
872 |
|
|
}
|
873 |
|
|
}
|
874 |
|
|
return dist;
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
/*
|
878 |
|
|
*--------------------------------------------------------------
|
879 |
|
|
*
|
880 |
|
|
* ArcToArea --
|
881 |
|
|
*
|
882 |
|
|
* This procedure is called to determine whether an item
|
883 |
|
|
* lies entirely inside, entirely outside, or overlapping
|
884 |
|
|
* a given area.
|
885 |
|
|
*
|
886 |
|
|
* Results:
|
887 |
|
|
* -1 is returned if the item is entirely outside the area
|
888 |
|
|
* given by rectPtr, 0 if it overlaps, and 1 if it is entirely
|
889 |
|
|
* inside the given area.
|
890 |
|
|
*
|
891 |
|
|
* Side effects:
|
892 |
|
|
* None.
|
893 |
|
|
*
|
894 |
|
|
*--------------------------------------------------------------
|
895 |
|
|
*/
|
896 |
|
|
|
897 |
|
|
/* ARGSUSED */
|
898 |
|
|
static int
|
899 |
|
|
ArcToArea(canvas, itemPtr, rectPtr)
|
900 |
|
|
Tk_Canvas canvas; /* Canvas containing item. */
|
901 |
|
|
Tk_Item *itemPtr; /* Item to check against arc. */
|
902 |
|
|
double *rectPtr; /* Pointer to array of four coordinates
|
903 |
|
|
* (x1, y1, x2, y2) describing rectangular
|
904 |
|
|
* area. */
|
905 |
|
|
{
|
906 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
907 |
|
|
double rx, ry; /* Radii for transformed oval: these define
|
908 |
|
|
* an oval centered at the origin. */
|
909 |
|
|
double tRect[4]; /* Transformed version of x1, y1, x2, y2,
|
910 |
|
|
* for coord. system where arc is centered
|
911 |
|
|
* on the origin. */
|
912 |
|
|
double center[2], width, angle, tmp;
|
913 |
|
|
double points[20], *pointPtr;
|
914 |
|
|
int numPoints, filled;
|
915 |
|
|
int inside; /* Non-zero means every test so far suggests
|
916 |
|
|
* that arc is inside rectangle. 0 means
|
917 |
|
|
* every test so far shows arc to be outside
|
918 |
|
|
* of rectangle. */
|
919 |
|
|
int newInside;
|
920 |
|
|
|
921 |
|
|
if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) {
|
922 |
|
|
filled = 1;
|
923 |
|
|
} else {
|
924 |
|
|
filled = 0;
|
925 |
|
|
}
|
926 |
|
|
if (arcPtr->outlineGC == None) {
|
927 |
|
|
width = 0.0;
|
928 |
|
|
} else {
|
929 |
|
|
width = arcPtr->width;
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
/*
|
933 |
|
|
* Transform both the arc and the rectangle so that the arc's oval
|
934 |
|
|
* is centered on the origin.
|
935 |
|
|
*/
|
936 |
|
|
|
937 |
|
|
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
938 |
|
|
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
939 |
|
|
tRect[0] = rectPtr[0] - center[0];
|
940 |
|
|
tRect[1] = rectPtr[1] - center[1];
|
941 |
|
|
tRect[2] = rectPtr[2] - center[0];
|
942 |
|
|
tRect[3] = rectPtr[3] - center[1];
|
943 |
|
|
rx = arcPtr->bbox[2] - center[0] + width/2.0;
|
944 |
|
|
ry = arcPtr->bbox[3] - center[1] + width/2.0;
|
945 |
|
|
|
946 |
|
|
/*
|
947 |
|
|
* Find the extreme points of the arc and see whether these are all
|
948 |
|
|
* inside the rectangle (in which case we're done), partly in and
|
949 |
|
|
* partly out (in which case we're done), or all outside (in which
|
950 |
|
|
* case we have more work to do). The extreme points include the
|
951 |
|
|
* following, which are checked in order:
|
952 |
|
|
*
|
953 |
|
|
* 1. The outside points of the arc, corresponding to start and
|
954 |
|
|
* extent.
|
955 |
|
|
* 2. The center of the arc (but only in pie-slice mode).
|
956 |
|
|
* 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc
|
957 |
|
|
* includes those angles).
|
958 |
|
|
*/
|
959 |
|
|
|
960 |
|
|
pointPtr = points;
|
961 |
|
|
angle = -arcPtr->start*(PI/180.0);
|
962 |
|
|
pointPtr[0] = rx*cos(angle);
|
963 |
|
|
pointPtr[1] = ry*sin(angle);
|
964 |
|
|
angle += -arcPtr->extent*(PI/180.0);
|
965 |
|
|
pointPtr[2] = rx*cos(angle);
|
966 |
|
|
pointPtr[3] = ry*sin(angle);
|
967 |
|
|
numPoints = 2;
|
968 |
|
|
pointPtr += 4;
|
969 |
|
|
|
970 |
|
|
if ((arcPtr->style == pieSliceUid) && (arcPtr->extent < 180.0)) {
|
971 |
|
|
pointPtr[0] = 0.0;
|
972 |
|
|
pointPtr[1] = 0.0;
|
973 |
|
|
numPoints++;
|
974 |
|
|
pointPtr += 2;
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
tmp = -arcPtr->start;
|
978 |
|
|
if (tmp < 0) {
|
979 |
|
|
tmp += 360.0;
|
980 |
|
|
}
|
981 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
982 |
|
|
pointPtr[0] = rx;
|
983 |
|
|
pointPtr[1] = 0.0;
|
984 |
|
|
numPoints++;
|
985 |
|
|
pointPtr += 2;
|
986 |
|
|
}
|
987 |
|
|
tmp = 90.0 - arcPtr->start;
|
988 |
|
|
if (tmp < 0) {
|
989 |
|
|
tmp += 360.0;
|
990 |
|
|
}
|
991 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
992 |
|
|
pointPtr[0] = 0.0;
|
993 |
|
|
pointPtr[1] = -ry;
|
994 |
|
|
numPoints++;
|
995 |
|
|
pointPtr += 2;
|
996 |
|
|
}
|
997 |
|
|
tmp = 180.0 - arcPtr->start;
|
998 |
|
|
if (tmp < 0) {
|
999 |
|
|
tmp += 360.0;
|
1000 |
|
|
}
|
1001 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
1002 |
|
|
pointPtr[0] = -rx;
|
1003 |
|
|
pointPtr[1] = 0.0;
|
1004 |
|
|
numPoints++;
|
1005 |
|
|
pointPtr += 2;
|
1006 |
|
|
}
|
1007 |
|
|
tmp = 270.0 - arcPtr->start;
|
1008 |
|
|
if (tmp < 0) {
|
1009 |
|
|
tmp += 360.0;
|
1010 |
|
|
}
|
1011 |
|
|
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
1012 |
|
|
pointPtr[0] = 0.0;
|
1013 |
|
|
pointPtr[1] = ry;
|
1014 |
|
|
numPoints++;
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
/*
|
1018 |
|
|
* Now that we've located the extreme points, loop through them all
|
1019 |
|
|
* to see which are inside the rectangle.
|
1020 |
|
|
*/
|
1021 |
|
|
|
1022 |
|
|
inside = (points[0] > tRect[0]) && (points[0] < tRect[2])
|
1023 |
|
|
&& (points[1] > tRect[1]) && (points[1] < tRect[3]);
|
1024 |
|
|
for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) {
|
1025 |
|
|
newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2])
|
1026 |
|
|
&& (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]);
|
1027 |
|
|
if (newInside != inside) {
|
1028 |
|
|
return 0;
|
1029 |
|
|
}
|
1030 |
|
|
}
|
1031 |
|
|
|
1032 |
|
|
if (inside) {
|
1033 |
|
|
return 1;
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
/*
|
1037 |
|
|
* So far, oval appears to be outside rectangle, but can't yet tell
|
1038 |
|
|
* for sure. Next, test each of the four sides of the rectangle
|
1039 |
|
|
* against the bounding region for the arc. If any intersections
|
1040 |
|
|
* are found, then return "overlapping". First, test against the
|
1041 |
|
|
* polygon(s) forming the sides of a chord or pie-slice.
|
1042 |
|
|
*/
|
1043 |
|
|
|
1044 |
|
|
if (arcPtr->style == pieSliceUid) {
|
1045 |
|
|
if (width >= 1.0) {
|
1046 |
|
|
if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
1047 |
|
|
rectPtr) != -1) {
|
1048 |
|
|
return 0;
|
1049 |
|
|
}
|
1050 |
|
|
if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
1051 |
|
|
PIE_OUTLINE2_PTS, rectPtr) != -1) {
|
1052 |
|
|
return 0;
|
1053 |
|
|
}
|
1054 |
|
|
} else {
|
1055 |
|
|
if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) ||
|
1056 |
|
|
(TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) {
|
1057 |
|
|
return 0;
|
1058 |
|
|
}
|
1059 |
|
|
}
|
1060 |
|
|
} else if (arcPtr->style == chordUid) {
|
1061 |
|
|
if (width >= 1.0) {
|
1062 |
|
|
if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
1063 |
|
|
rectPtr) != -1) {
|
1064 |
|
|
return 0;
|
1065 |
|
|
}
|
1066 |
|
|
} else {
|
1067 |
|
|
if (TkLineToArea(arcPtr->center1, arcPtr->center2,
|
1068 |
|
|
rectPtr) != -1) {
|
1069 |
|
|
return 0;
|
1070 |
|
|
}
|
1071 |
|
|
}
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/*
|
1075 |
|
|
* Next check for overlap between each of the four sides and the
|
1076 |
|
|
* outer perimiter of the arc. If the arc isn't filled, then also
|
1077 |
|
|
* check the inner perimeter of the arc.
|
1078 |
|
|
*/
|
1079 |
|
|
|
1080 |
|
|
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
|
1081 |
|
|
arcPtr->extent)
|
1082 |
|
|
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
|
1083 |
|
|
arcPtr->start, arcPtr->extent)
|
1084 |
|
|
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
|
1085 |
|
|
arcPtr->start, arcPtr->extent)
|
1086 |
|
|
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
|
1087 |
|
|
arcPtr->start, arcPtr->extent)) {
|
1088 |
|
|
return 0;
|
1089 |
|
|
}
|
1090 |
|
|
if ((width > 1.0) && !filled) {
|
1091 |
|
|
rx -= width;
|
1092 |
|
|
ry -= width;
|
1093 |
|
|
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
|
1094 |
|
|
arcPtr->extent)
|
1095 |
|
|
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
|
1096 |
|
|
arcPtr->start, arcPtr->extent)
|
1097 |
|
|
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
|
1098 |
|
|
arcPtr->start, arcPtr->extent)
|
1099 |
|
|
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
|
1100 |
|
|
arcPtr->start, arcPtr->extent)) {
|
1101 |
|
|
return 0;
|
1102 |
|
|
}
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
/*
|
1106 |
|
|
* The arc still appears to be totally disjoint from the rectangle,
|
1107 |
|
|
* but it's also possible that the rectangle is totally inside the arc.
|
1108 |
|
|
* Do one last check, which is to check one point of the rectangle
|
1109 |
|
|
* to see if it's inside the arc. If it is, we've got overlap. If
|
1110 |
|
|
* it isn't, the arc's really outside the rectangle.
|
1111 |
|
|
*/
|
1112 |
|
|
|
1113 |
|
|
if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) {
|
1114 |
|
|
return 0;
|
1115 |
|
|
}
|
1116 |
|
|
return -1;
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
/*
|
1120 |
|
|
*--------------------------------------------------------------
|
1121 |
|
|
*
|
1122 |
|
|
* ScaleArc --
|
1123 |
|
|
*
|
1124 |
|
|
* This procedure is invoked to rescale an arc item.
|
1125 |
|
|
*
|
1126 |
|
|
* Results:
|
1127 |
|
|
* None.
|
1128 |
|
|
*
|
1129 |
|
|
* Side effects:
|
1130 |
|
|
* The arc referred to by itemPtr is rescaled so that the
|
1131 |
|
|
* following transformation is applied to all point
|
1132 |
|
|
* coordinates:
|
1133 |
|
|
* x' = originX + scaleX*(x-originX)
|
1134 |
|
|
* y' = originY + scaleY*(y-originY)
|
1135 |
|
|
*
|
1136 |
|
|
*--------------------------------------------------------------
|
1137 |
|
|
*/
|
1138 |
|
|
|
1139 |
|
|
static void
|
1140 |
|
|
ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY)
|
1141 |
|
|
Tk_Canvas canvas; /* Canvas containing arc. */
|
1142 |
|
|
Tk_Item *itemPtr; /* Arc to be scaled. */
|
1143 |
|
|
double originX, originY; /* Origin about which to scale rect. */
|
1144 |
|
|
double scaleX; /* Amount to scale in X direction. */
|
1145 |
|
|
double scaleY; /* Amount to scale in Y direction. */
|
1146 |
|
|
{
|
1147 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1148 |
|
|
|
1149 |
|
|
arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX);
|
1150 |
|
|
arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY);
|
1151 |
|
|
arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX);
|
1152 |
|
|
arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY);
|
1153 |
|
|
ComputeArcBbox(canvas, arcPtr);
|
1154 |
|
|
}
|
1155 |
|
|
|
1156 |
|
|
/*
|
1157 |
|
|
*--------------------------------------------------------------
|
1158 |
|
|
*
|
1159 |
|
|
* TranslateArc --
|
1160 |
|
|
*
|
1161 |
|
|
* This procedure is called to move an arc by a given amount.
|
1162 |
|
|
*
|
1163 |
|
|
* Results:
|
1164 |
|
|
* None.
|
1165 |
|
|
*
|
1166 |
|
|
* Side effects:
|
1167 |
|
|
* The position of the arc is offset by (xDelta, yDelta), and
|
1168 |
|
|
* the bounding box is updated in the generic part of the item
|
1169 |
|
|
* structure.
|
1170 |
|
|
*
|
1171 |
|
|
*--------------------------------------------------------------
|
1172 |
|
|
*/
|
1173 |
|
|
|
1174 |
|
|
static void
|
1175 |
|
|
TranslateArc(canvas, itemPtr, deltaX, deltaY)
|
1176 |
|
|
Tk_Canvas canvas; /* Canvas containing item. */
|
1177 |
|
|
Tk_Item *itemPtr; /* Item that is being moved. */
|
1178 |
|
|
double deltaX, deltaY; /* Amount by which item is to be
|
1179 |
|
|
* moved. */
|
1180 |
|
|
{
|
1181 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1182 |
|
|
|
1183 |
|
|
arcPtr->bbox[0] += deltaX;
|
1184 |
|
|
arcPtr->bbox[1] += deltaY;
|
1185 |
|
|
arcPtr->bbox[2] += deltaX;
|
1186 |
|
|
arcPtr->bbox[3] += deltaY;
|
1187 |
|
|
ComputeArcBbox(canvas, arcPtr);
|
1188 |
|
|
}
|
1189 |
|
|
|
1190 |
|
|
/*
|
1191 |
|
|
*--------------------------------------------------------------
|
1192 |
|
|
*
|
1193 |
|
|
* ComputeArcOutline --
|
1194 |
|
|
*
|
1195 |
|
|
* This procedure creates a polygon describing everything in
|
1196 |
|
|
* the outline for an arc except what's in the curved part.
|
1197 |
|
|
* For a "pie slice" arc this is a V-shaped chunk, and for
|
1198 |
|
|
* a "chord" arc this is a linear chunk (with cutaway corners).
|
1199 |
|
|
* For "arc" arcs, this stuff isn't relevant.
|
1200 |
|
|
*
|
1201 |
|
|
* Results:
|
1202 |
|
|
* None.
|
1203 |
|
|
*
|
1204 |
|
|
* Side effects:
|
1205 |
|
|
* The information at arcPtr->outlinePtr gets modified, and
|
1206 |
|
|
* storage for arcPtr->outlinePtr may be allocated or freed.
|
1207 |
|
|
*
|
1208 |
|
|
*--------------------------------------------------------------
|
1209 |
|
|
*/
|
1210 |
|
|
|
1211 |
|
|
static void
|
1212 |
|
|
ComputeArcOutline(arcPtr)
|
1213 |
|
|
ArcItem *arcPtr; /* Information about arc. */
|
1214 |
|
|
{
|
1215 |
|
|
double sin1, cos1, sin2, cos2, angle, halfWidth;
|
1216 |
|
|
double boxWidth, boxHeight;
|
1217 |
|
|
double vertex[2], corner1[2], corner2[2];
|
1218 |
|
|
double *outlinePtr;
|
1219 |
|
|
|
1220 |
|
|
/*
|
1221 |
|
|
* Make sure that the outlinePtr array is large enough to hold
|
1222 |
|
|
* either a chord or pie-slice outline.
|
1223 |
|
|
*/
|
1224 |
|
|
|
1225 |
|
|
if (arcPtr->numOutlinePoints == 0) {
|
1226 |
|
|
arcPtr->outlinePtr = (double *) ckalloc((unsigned)
|
1227 |
|
|
(26 * sizeof(double)));
|
1228 |
|
|
arcPtr->numOutlinePoints = 22;
|
1229 |
|
|
}
|
1230 |
|
|
outlinePtr = arcPtr->outlinePtr;
|
1231 |
|
|
|
1232 |
|
|
/*
|
1233 |
|
|
* First compute the two points that lie at the centers of
|
1234 |
|
|
* the ends of the curved arc segment, which are marked with
|
1235 |
|
|
* X's in the figure below:
|
1236 |
|
|
*
|
1237 |
|
|
*
|
1238 |
|
|
* * * *
|
1239 |
|
|
* * *
|
1240 |
|
|
* * * * *
|
1241 |
|
|
* * * * *
|
1242 |
|
|
* * * * *
|
1243 |
|
|
* X * * X
|
1244 |
|
|
*
|
1245 |
|
|
* The code is tricky because the arc can be ovular in shape.
|
1246 |
|
|
* It computes the position for a unit circle, and then
|
1247 |
|
|
* scales to fit the shape of the arc's bounding box.
|
1248 |
|
|
*
|
1249 |
|
|
* Also, watch out because angles go counter-clockwise like you
|
1250 |
|
|
* might expect, but the y-coordinate system is inverted. To
|
1251 |
|
|
* handle this, just negate the angles in all the computations.
|
1252 |
|
|
*/
|
1253 |
|
|
|
1254 |
|
|
boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0];
|
1255 |
|
|
boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1];
|
1256 |
|
|
angle = -arcPtr->start*PI/180.0;
|
1257 |
|
|
sin1 = sin(angle);
|
1258 |
|
|
cos1 = cos(angle);
|
1259 |
|
|
angle -= arcPtr->extent*PI/180.0;
|
1260 |
|
|
sin2 = sin(angle);
|
1261 |
|
|
cos2 = cos(angle);
|
1262 |
|
|
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
1263 |
|
|
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
1264 |
|
|
arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0;
|
1265 |
|
|
arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0;
|
1266 |
|
|
arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0;
|
1267 |
|
|
arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0;
|
1268 |
|
|
|
1269 |
|
|
/*
|
1270 |
|
|
* Next compute the "outermost corners" of the arc, which are
|
1271 |
|
|
* marked with X's in the figure below:
|
1272 |
|
|
*
|
1273 |
|
|
* * * *
|
1274 |
|
|
* * *
|
1275 |
|
|
* * * * *
|
1276 |
|
|
* * * * *
|
1277 |
|
|
* X * * X
|
1278 |
|
|
* * *
|
1279 |
|
|
*
|
1280 |
|
|
* The code below is tricky because it has to handle eccentricity
|
1281 |
|
|
* in the shape of the oval. The key in the code below is to
|
1282 |
|
|
* realize that the slope of the line from arcPtr->center1 to corner1
|
1283 |
|
|
* is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2
|
1284 |
|
|
* and corner2. These formulas can be computed from the formula for
|
1285 |
|
|
* the oval.
|
1286 |
|
|
*/
|
1287 |
|
|
|
1288 |
|
|
halfWidth = arcPtr->width/2.0;
|
1289 |
|
|
if (((boxWidth*sin1) == 0.0) && ((boxHeight*cos1) == 0.0)) {
|
1290 |
|
|
angle = 0.0;
|
1291 |
|
|
} else {
|
1292 |
|
|
angle = atan2(boxWidth*sin1, boxHeight*cos1);
|
1293 |
|
|
}
|
1294 |
|
|
corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth;
|
1295 |
|
|
corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth;
|
1296 |
|
|
if (((boxWidth*sin2) == 0.0) && ((boxHeight*cos2) == 0.0)) {
|
1297 |
|
|
angle = 0.0;
|
1298 |
|
|
} else {
|
1299 |
|
|
angle = atan2(boxWidth*sin2, boxHeight*cos2);
|
1300 |
|
|
}
|
1301 |
|
|
corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth;
|
1302 |
|
|
corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth;
|
1303 |
|
|
|
1304 |
|
|
/*
|
1305 |
|
|
* For a chord outline, generate a six-sided polygon with three
|
1306 |
|
|
* points for each end of the chord. The first and third points
|
1307 |
|
|
* for each end are butt points generated on either side of the
|
1308 |
|
|
* center point. The second point is the corner point.
|
1309 |
|
|
*/
|
1310 |
|
|
|
1311 |
|
|
if (arcPtr->style == chordUid) {
|
1312 |
|
|
outlinePtr[0] = outlinePtr[12] = corner1[0];
|
1313 |
|
|
outlinePtr[1] = outlinePtr[13] = corner1[1];
|
1314 |
|
|
TkGetButtPoints(arcPtr->center2, arcPtr->center1,
|
1315 |
|
|
(double) arcPtr->width, 0, outlinePtr+10, outlinePtr+2);
|
1316 |
|
|
outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2]
|
1317 |
|
|
- arcPtr->center1[0];
|
1318 |
|
|
outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3]
|
1319 |
|
|
- arcPtr->center1[1];
|
1320 |
|
|
outlinePtr[6] = corner2[0];
|
1321 |
|
|
outlinePtr[7] = corner2[1];
|
1322 |
|
|
outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10]
|
1323 |
|
|
- arcPtr->center1[0];
|
1324 |
|
|
outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11]
|
1325 |
|
|
- arcPtr->center1[1];
|
1326 |
|
|
} else if (arcPtr->style == pieSliceUid) {
|
1327 |
|
|
/*
|
1328 |
|
|
* For pie slices, generate two polygons, one for each side
|
1329 |
|
|
* of the pie slice. The first arm has a shape like this,
|
1330 |
|
|
* where the center of the oval is X, arcPtr->center1 is at Y, and
|
1331 |
|
|
* corner1 is at Z:
|
1332 |
|
|
*
|
1333 |
|
|
* _____________________
|
1334 |
|
|
* | \
|
1335 |
|
|
* | \
|
1336 |
|
|
* X Y Z
|
1337 |
|
|
* | /
|
1338 |
|
|
* |_____________________/
|
1339 |
|
|
*
|
1340 |
|
|
*/
|
1341 |
|
|
|
1342 |
|
|
TkGetButtPoints(arcPtr->center1, vertex, (double) arcPtr->width, 0,
|
1343 |
|
|
outlinePtr, outlinePtr+2);
|
1344 |
|
|
outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0];
|
1345 |
|
|
outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1];
|
1346 |
|
|
outlinePtr[6] = corner1[0];
|
1347 |
|
|
outlinePtr[7] = corner1[1];
|
1348 |
|
|
outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0];
|
1349 |
|
|
outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1];
|
1350 |
|
|
outlinePtr[10] = outlinePtr[0];
|
1351 |
|
|
outlinePtr[11] = outlinePtr[1];
|
1352 |
|
|
|
1353 |
|
|
/*
|
1354 |
|
|
* The second arm has a shape like this:
|
1355 |
|
|
*
|
1356 |
|
|
*
|
1357 |
|
|
* ______________________
|
1358 |
|
|
* / \
|
1359 |
|
|
* / \
|
1360 |
|
|
* Z Y X /
|
1361 |
|
|
* \ /
|
1362 |
|
|
* \______________________/
|
1363 |
|
|
*
|
1364 |
|
|
* Similar to above X is the center of the oval/circle, Y is
|
1365 |
|
|
* arcPtr->center2, and Z is corner2. The extra jog out to the left
|
1366 |
|
|
* of X is needed in or to produce a butted joint with the
|
1367 |
|
|
* first arm; the corner to the right of X is one of the
|
1368 |
|
|
* first two points of the first arm, depending on extent.
|
1369 |
|
|
*/
|
1370 |
|
|
|
1371 |
|
|
TkGetButtPoints(arcPtr->center2, vertex, (double) arcPtr->width, 0,
|
1372 |
|
|
outlinePtr+12, outlinePtr+16);
|
1373 |
|
|
if ((arcPtr->extent > 180) ||
|
1374 |
|
|
((arcPtr->extent < 0) && (arcPtr->extent > -180))) {
|
1375 |
|
|
outlinePtr[14] = outlinePtr[0];
|
1376 |
|
|
outlinePtr[15] = outlinePtr[1];
|
1377 |
|
|
} else {
|
1378 |
|
|
outlinePtr[14] = outlinePtr[2];
|
1379 |
|
|
outlinePtr[15] = outlinePtr[3];
|
1380 |
|
|
}
|
1381 |
|
|
outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0];
|
1382 |
|
|
outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1];
|
1383 |
|
|
outlinePtr[20] = corner2[0];
|
1384 |
|
|
outlinePtr[21] = corner2[1];
|
1385 |
|
|
outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0];
|
1386 |
|
|
outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1];
|
1387 |
|
|
outlinePtr[24] = outlinePtr[12];
|
1388 |
|
|
outlinePtr[25] = outlinePtr[13];
|
1389 |
|
|
}
|
1390 |
|
|
}
|
1391 |
|
|
|
1392 |
|
|
/*
|
1393 |
|
|
*--------------------------------------------------------------
|
1394 |
|
|
*
|
1395 |
|
|
* HorizLineToArc --
|
1396 |
|
|
*
|
1397 |
|
|
* Determines whether a horizontal line segment intersects
|
1398 |
|
|
* a given arc.
|
1399 |
|
|
*
|
1400 |
|
|
* Results:
|
1401 |
|
|
* The return value is 1 if the given line intersects the
|
1402 |
|
|
* infinitely-thin arc section defined by rx, ry, start,
|
1403 |
|
|
* and extent, and 0 otherwise. Only the perimeter of the
|
1404 |
|
|
* arc is checked: interior areas (e.g. pie-slice or chord)
|
1405 |
|
|
* are not checked.
|
1406 |
|
|
*
|
1407 |
|
|
* Side effects:
|
1408 |
|
|
* None.
|
1409 |
|
|
*
|
1410 |
|
|
*--------------------------------------------------------------
|
1411 |
|
|
*/
|
1412 |
|
|
|
1413 |
|
|
static int
|
1414 |
|
|
HorizLineToArc(x1, x2, y, rx, ry, start, extent)
|
1415 |
|
|
double x1, x2; /* X-coords of endpoints of line segment.
|
1416 |
|
|
* X1 must be <= x2. */
|
1417 |
|
|
double y; /* Y-coordinate of line segment. */
|
1418 |
|
|
double rx, ry; /* These x- and y-radii define an oval
|
1419 |
|
|
* centered at the origin. */
|
1420 |
|
|
double start, extent; /* Angles that define extent of arc, in
|
1421 |
|
|
* the standard fashion for this module. */
|
1422 |
|
|
{
|
1423 |
|
|
double tmp;
|
1424 |
|
|
double tx, ty; /* Coordinates of intersection point in
|
1425 |
|
|
* transformed coordinate system. */
|
1426 |
|
|
double x;
|
1427 |
|
|
|
1428 |
|
|
/*
|
1429 |
|
|
* Compute the x-coordinate of one possible intersection point
|
1430 |
|
|
* between the arc and the line. Use a transformed coordinate
|
1431 |
|
|
* system where the oval is a unit circle centered at the origin.
|
1432 |
|
|
* Then scale back to get actual x-coordinate.
|
1433 |
|
|
*/
|
1434 |
|
|
|
1435 |
|
|
ty = y/ry;
|
1436 |
|
|
tmp = 1 - ty*ty;
|
1437 |
|
|
if (tmp < 0) {
|
1438 |
|
|
return 0;
|
1439 |
|
|
}
|
1440 |
|
|
tx = sqrt(tmp);
|
1441 |
|
|
x = tx*rx;
|
1442 |
|
|
|
1443 |
|
|
/*
|
1444 |
|
|
* Test both intersection points.
|
1445 |
|
|
*/
|
1446 |
|
|
|
1447 |
|
|
if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) {
|
1448 |
|
|
return 1;
|
1449 |
|
|
}
|
1450 |
|
|
if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) {
|
1451 |
|
|
return 1;
|
1452 |
|
|
}
|
1453 |
|
|
return 0;
|
1454 |
|
|
}
|
1455 |
|
|
|
1456 |
|
|
/*
|
1457 |
|
|
*--------------------------------------------------------------
|
1458 |
|
|
*
|
1459 |
|
|
* VertLineToArc --
|
1460 |
|
|
*
|
1461 |
|
|
* Determines whether a vertical line segment intersects
|
1462 |
|
|
* a given arc.
|
1463 |
|
|
*
|
1464 |
|
|
* Results:
|
1465 |
|
|
* The return value is 1 if the given line intersects the
|
1466 |
|
|
* infinitely-thin arc section defined by rx, ry, start,
|
1467 |
|
|
* and extent, and 0 otherwise. Only the perimeter of the
|
1468 |
|
|
* arc is checked: interior areas (e.g. pie-slice or chord)
|
1469 |
|
|
* are not checked.
|
1470 |
|
|
*
|
1471 |
|
|
* Side effects:
|
1472 |
|
|
* None.
|
1473 |
|
|
*
|
1474 |
|
|
*--------------------------------------------------------------
|
1475 |
|
|
*/
|
1476 |
|
|
|
1477 |
|
|
static int
|
1478 |
|
|
VertLineToArc(x, y1, y2, rx, ry, start, extent)
|
1479 |
|
|
double x; /* X-coordinate of line segment. */
|
1480 |
|
|
double y1, y2; /* Y-coords of endpoints of line segment.
|
1481 |
|
|
* Y1 must be <= y2. */
|
1482 |
|
|
double rx, ry; /* These x- and y-radii define an oval
|
1483 |
|
|
* centered at the origin. */
|
1484 |
|
|
double start, extent; /* Angles that define extent of arc, in
|
1485 |
|
|
* the standard fashion for this module. */
|
1486 |
|
|
{
|
1487 |
|
|
double tmp;
|
1488 |
|
|
double tx, ty; /* Coordinates of intersection point in
|
1489 |
|
|
* transformed coordinate system. */
|
1490 |
|
|
double y;
|
1491 |
|
|
|
1492 |
|
|
/*
|
1493 |
|
|
* Compute the y-coordinate of one possible intersection point
|
1494 |
|
|
* between the arc and the line. Use a transformed coordinate
|
1495 |
|
|
* system where the oval is a unit circle centered at the origin.
|
1496 |
|
|
* Then scale back to get actual y-coordinate.
|
1497 |
|
|
*/
|
1498 |
|
|
|
1499 |
|
|
tx = x/rx;
|
1500 |
|
|
tmp = 1 - tx*tx;
|
1501 |
|
|
if (tmp < 0) {
|
1502 |
|
|
return 0;
|
1503 |
|
|
}
|
1504 |
|
|
ty = sqrt(tmp);
|
1505 |
|
|
y = ty*ry;
|
1506 |
|
|
|
1507 |
|
|
/*
|
1508 |
|
|
* Test both intersection points.
|
1509 |
|
|
*/
|
1510 |
|
|
|
1511 |
|
|
if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) {
|
1512 |
|
|
return 1;
|
1513 |
|
|
}
|
1514 |
|
|
if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) {
|
1515 |
|
|
return 1;
|
1516 |
|
|
}
|
1517 |
|
|
return 0;
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
/*
|
1521 |
|
|
*--------------------------------------------------------------
|
1522 |
|
|
*
|
1523 |
|
|
* AngleInRange --
|
1524 |
|
|
*
|
1525 |
|
|
* Determine whether the angle from the origin to a given
|
1526 |
|
|
* point is within a given range.
|
1527 |
|
|
*
|
1528 |
|
|
* Results:
|
1529 |
|
|
* The return value is 1 if the angle from (0,0) to (x,y)
|
1530 |
|
|
* is in the range given by start and extent, where angles
|
1531 |
|
|
* are interpreted in the standard way for ovals (meaning
|
1532 |
|
|
* backwards from normal interpretation). Otherwise the
|
1533 |
|
|
* return value is 0.
|
1534 |
|
|
*
|
1535 |
|
|
* Side effects:
|
1536 |
|
|
* None.
|
1537 |
|
|
*
|
1538 |
|
|
*--------------------------------------------------------------
|
1539 |
|
|
*/
|
1540 |
|
|
|
1541 |
|
|
static int
|
1542 |
|
|
AngleInRange(x, y, start, extent)
|
1543 |
|
|
double x, y; /* Coordinate of point; angle measured
|
1544 |
|
|
* from origin to here, relative to x-axis. */
|
1545 |
|
|
double start; /* First angle, degrees, >=0, <=360. */
|
1546 |
|
|
double extent; /* Size of arc in degrees >=-360, <=360. */
|
1547 |
|
|
{
|
1548 |
|
|
double diff;
|
1549 |
|
|
|
1550 |
|
|
if ((x == 0.0) && (y == 0.0)) {
|
1551 |
|
|
return 1;
|
1552 |
|
|
}
|
1553 |
|
|
diff = -atan2(y, x);
|
1554 |
|
|
diff = diff*(180.0/PI) - start;
|
1555 |
|
|
while (diff > 360.0) {
|
1556 |
|
|
diff -= 360.0;
|
1557 |
|
|
}
|
1558 |
|
|
while (diff < 0.0) {
|
1559 |
|
|
diff += 360.0;
|
1560 |
|
|
}
|
1561 |
|
|
if (extent >= 0) {
|
1562 |
|
|
return diff <= extent;
|
1563 |
|
|
}
|
1564 |
|
|
return (diff-360.0) >= extent;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
/*
|
1568 |
|
|
*--------------------------------------------------------------
|
1569 |
|
|
*
|
1570 |
|
|
* ArcToPostscript --
|
1571 |
|
|
*
|
1572 |
|
|
* This procedure is called to generate Postscript for
|
1573 |
|
|
* arc items.
|
1574 |
|
|
*
|
1575 |
|
|
* Results:
|
1576 |
|
|
* The return value is a standard Tcl result. If an error
|
1577 |
|
|
* occurs in generating Postscript then an error message is
|
1578 |
|
|
* left in interp->result, replacing whatever used
|
1579 |
|
|
* to be there. If no error occurs, then Postscript for the
|
1580 |
|
|
* item is appended to the result.
|
1581 |
|
|
*
|
1582 |
|
|
* Side effects:
|
1583 |
|
|
* None.
|
1584 |
|
|
*
|
1585 |
|
|
*--------------------------------------------------------------
|
1586 |
|
|
*/
|
1587 |
|
|
|
1588 |
|
|
static int
|
1589 |
|
|
ArcToPostscript(interp, canvas, itemPtr, prepass)
|
1590 |
|
|
Tcl_Interp *interp; /* Leave Postscript or error message
|
1591 |
|
|
* here. */
|
1592 |
|
|
Tk_Canvas canvas; /* Information about overall canvas. */
|
1593 |
|
|
Tk_Item *itemPtr; /* Item for which Postscript is
|
1594 |
|
|
* wanted. */
|
1595 |
|
|
int prepass; /* 1 means this is a prepass to
|
1596 |
|
|
* collect font information; 0 means
|
1597 |
|
|
* final Postscript is being created. */
|
1598 |
|
|
{
|
1599 |
|
|
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1600 |
|
|
char buffer[400];
|
1601 |
|
|
double y1, y2, ang1, ang2;
|
1602 |
|
|
|
1603 |
|
|
y1 = Tk_CanvasPsY(canvas, arcPtr->bbox[1]);
|
1604 |
|
|
y2 = Tk_CanvasPsY(canvas, arcPtr->bbox[3]);
|
1605 |
|
|
ang1 = arcPtr->start;
|
1606 |
|
|
ang2 = ang1 + arcPtr->extent;
|
1607 |
|
|
if (ang2 < ang1) {
|
1608 |
|
|
ang1 = ang2;
|
1609 |
|
|
ang2 = arcPtr->start;
|
1610 |
|
|
}
|
1611 |
|
|
|
1612 |
|
|
/*
|
1613 |
|
|
* If the arc is filled, output Postscript for the interior region
|
1614 |
|
|
* of the arc.
|
1615 |
|
|
*/
|
1616 |
|
|
|
1617 |
|
|
if (arcPtr->fillGC != None) {
|
1618 |
|
|
sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n",
|
1619 |
|
|
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
|
1620 |
|
|
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
|
1621 |
|
|
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1622 |
|
|
if (arcPtr->style == chordUid) {
|
1623 |
|
|
sprintf(buffer, "0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
|
1624 |
|
|
ang1, ang2);
|
1625 |
|
|
} else {
|
1626 |
|
|
sprintf(buffer,
|
1627 |
|
|
"0 0 moveto 0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
|
1628 |
|
|
ang1, ang2);
|
1629 |
|
|
}
|
1630 |
|
|
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1631 |
|
|
if (Tk_CanvasPsColor(interp, canvas, arcPtr->fillColor) != TCL_OK) {
|
1632 |
|
|
return TCL_ERROR;
|
1633 |
|
|
};
|
1634 |
|
|
if (arcPtr->fillStipple != None) {
|
1635 |
|
|
Tcl_AppendResult(interp, "clip ", (char *) NULL);
|
1636 |
|
|
if (Tk_CanvasPsStipple(interp, canvas, arcPtr->fillStipple)
|
1637 |
|
|
!= TCL_OK) {
|
1638 |
|
|
return TCL_ERROR;
|
1639 |
|
|
}
|
1640 |
|
|
if (arcPtr->outlineGC != None) {
|
1641 |
|
|
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL);
|
1642 |
|
|
}
|
1643 |
|
|
} else {
|
1644 |
|
|
Tcl_AppendResult(interp, "fill\n", (char *) NULL);
|
1645 |
|
|
}
|
1646 |
|
|
}
|
1647 |
|
|
|
1648 |
|
|
/*
|
1649 |
|
|
* If there's an outline for the arc, draw it.
|
1650 |
|
|
*/
|
1651 |
|
|
|
1652 |
|
|
if (arcPtr->outlineGC != None) {
|
1653 |
|
|
sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n",
|
1654 |
|
|
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
|
1655 |
|
|
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
|
1656 |
|
|
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1657 |
|
|
sprintf(buffer, "0 0 1 %.15g %.15g arc\nsetmatrix\n", ang1, ang2);
|
1658 |
|
|
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1659 |
|
|
sprintf(buffer, "%d setlinewidth\n0 setlinecap\n", arcPtr->width);
|
1660 |
|
|
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1661 |
|
|
if (Tk_CanvasPsColor(interp, canvas, arcPtr->outlineColor)
|
1662 |
|
|
!= TCL_OK) {
|
1663 |
|
|
return TCL_ERROR;
|
1664 |
|
|
}
|
1665 |
|
|
if (arcPtr->outlineStipple != None) {
|
1666 |
|
|
Tcl_AppendResult(interp, "StrokeClip ", (char *) NULL);
|
1667 |
|
|
if (Tk_CanvasPsStipple(interp, canvas,
|
1668 |
|
|
arcPtr->outlineStipple) != TCL_OK) {
|
1669 |
|
|
return TCL_ERROR;
|
1670 |
|
|
}
|
1671 |
|
|
} else {
|
1672 |
|
|
Tcl_AppendResult(interp, "stroke\n", (char *) NULL);
|
1673 |
|
|
}
|
1674 |
|
|
if (arcPtr->style != arcUid) {
|
1675 |
|
|
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL);
|
1676 |
|
|
if (arcPtr->style == chordUid) {
|
1677 |
|
|
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
|
1678 |
|
|
CHORD_OUTLINE_PTS);
|
1679 |
|
|
} else {
|
1680 |
|
|
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
|
1681 |
|
|
PIE_OUTLINE1_PTS);
|
1682 |
|
|
if (Tk_CanvasPsColor(interp, canvas, arcPtr->outlineColor)
|
1683 |
|
|
!= TCL_OK) {
|
1684 |
|
|
return TCL_ERROR;
|
1685 |
|
|
}
|
1686 |
|
|
if (arcPtr->outlineStipple != None) {
|
1687 |
|
|
Tcl_AppendResult(interp, "clip ", (char *) NULL);
|
1688 |
|
|
if (Tk_CanvasPsStipple(interp, canvas,
|
1689 |
|
|
arcPtr->outlineStipple) != TCL_OK) {
|
1690 |
|
|
return TCL_ERROR;
|
1691 |
|
|
}
|
1692 |
|
|
} else {
|
1693 |
|
|
Tcl_AppendResult(interp, "fill\n", (char *) NULL);
|
1694 |
|
|
}
|
1695 |
|
|
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL);
|
1696 |
|
|
Tk_CanvasPsPath(interp, canvas,
|
1697 |
|
|
arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
1698 |
|
|
PIE_OUTLINE2_PTS);
|
1699 |
|
|
}
|
1700 |
|
|
if (Tk_CanvasPsColor(interp, canvas, arcPtr->outlineColor)
|
1701 |
|
|
!= TCL_OK) {
|
1702 |
|
|
return TCL_ERROR;
|
1703 |
|
|
}
|
1704 |
|
|
if (arcPtr->outlineStipple != None) {
|
1705 |
|
|
Tcl_AppendResult(interp, "clip ", (char *) NULL);
|
1706 |
|
|
if (Tk_CanvasPsStipple(interp, canvas,
|
1707 |
|
|
arcPtr->outlineStipple) != TCL_OK) {
|
1708 |
|
|
return TCL_ERROR;
|
1709 |
|
|
}
|
1710 |
|
|
} else {
|
1711 |
|
|
Tcl_AppendResult(interp, "fill\n", (char *) NULL);
|
1712 |
|
|
}
|
1713 |
|
|
}
|
1714 |
|
|
}
|
1715 |
|
|
|
1716 |
|
|
return TCL_OK;
|
1717 |
|
|
}
|