OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [tk/] [generic/] [tkTrig.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/*
2
 * tkTrig.c --
3
 *
4
 *      This file contains a collection of trigonometry utility
5
 *      routines that are used by Tk and in particular by the
6
 *      canvas code.  It also has miscellaneous geometry functions
7
 *      used by canvases.
8
 *
9
 * Copyright (c) 1992-1994 The Regents of the University of California.
10
 * Copyright (c) 1994 Sun Microsystems, Inc.
11
 *
12
 * See the file "license.terms" for information on usage and redistribution
13
 * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
14
 *
15
 * RCS: @(#) $Id: tkTrig.c,v 1.1.1.1 2002-01-16 10:25:53 markom Exp $
16
 */
17
 
18
#include <stdio.h>
19
#include "tkInt.h"
20
#include "tkPort.h"
21
#include "tkCanvas.h"
22
 
23
#undef MIN
24
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
25
#undef MAX
26
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
27
#ifndef PI
28
#   define PI 3.14159265358979323846
29
#endif /* PI */
30
 
31
/*
32
 *--------------------------------------------------------------
33
 *
34
 * TkLineToPoint --
35
 *
36
 *      Compute the distance from a point to a finite line segment.
37
 *
38
 * Results:
39
 *      The return value is the distance from the line segment
40
 *      whose end-points are *end1Ptr and *end2Ptr to the point
41
 *      given by *pointPtr.
42
 *
43
 * Side effects:
44
 *      None.
45
 *
46
 *--------------------------------------------------------------
47
 */
48
 
49
double
50
TkLineToPoint(end1Ptr, end2Ptr, pointPtr)
51
    double end1Ptr[2];          /* Coordinates of first end-point of line. */
52
    double end2Ptr[2];          /* Coordinates of second end-point of line. */
53
    double pointPtr[2];         /* Points to coords for point. */
54
{
55
    double x, y;
56
 
57
    /*
58
     * Compute the point on the line that is closest to the
59
     * point.  This must be done separately for vertical edges,
60
     * horizontal edges, and other edges.
61
     */
62
 
63
    if (end1Ptr[0] == end2Ptr[0]) {
64
 
65
        /*
66
         * Vertical edge.
67
         */
68
 
69
        x = end1Ptr[0];
70
        if (end1Ptr[1] >= end2Ptr[1]) {
71
            y = MIN(end1Ptr[1], pointPtr[1]);
72
            y = MAX(y, end2Ptr[1]);
73
        } else {
74
            y = MIN(end2Ptr[1], pointPtr[1]);
75
            y = MAX(y, end1Ptr[1]);
76
        }
77
    } else if (end1Ptr[1] == end2Ptr[1]) {
78
 
79
        /*
80
         * Horizontal edge.
81
         */
82
 
83
        y = end1Ptr[1];
84
        if (end1Ptr[0] >= end2Ptr[0]) {
85
            x = MIN(end1Ptr[0], pointPtr[0]);
86
            x = MAX(x, end2Ptr[0]);
87
        } else {
88
            x = MIN(end2Ptr[0], pointPtr[0]);
89
            x = MAX(x, end1Ptr[0]);
90
        }
91
    } else {
92
        double m1, b1, m2, b2;
93
 
94
        /*
95
         * The edge is neither horizontal nor vertical.  Convert the
96
         * edge to a line equation of the form y = m1*x + b1.  Then
97
         * compute a line perpendicular to this edge but passing
98
         * through the point, also in the form y = m2*x + b2.
99
         */
100
 
101
        m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
102
        b1 = end1Ptr[1] - m1*end1Ptr[0];
103
        m2 = -1.0/m1;
104
        b2 = pointPtr[1] - m2*pointPtr[0];
105
        x = (b2 - b1)/(m1 - m2);
106
        y = m1*x + b1;
107
        if (end1Ptr[0] > end2Ptr[0]) {
108
            if (x > end1Ptr[0]) {
109
                x = end1Ptr[0];
110
                y = end1Ptr[1];
111
            } else if (x < end2Ptr[0]) {
112
                x = end2Ptr[0];
113
                y = end2Ptr[1];
114
            }
115
        } else {
116
            if (x > end2Ptr[0]) {
117
                x = end2Ptr[0];
118
                y = end2Ptr[1];
119
            } else if (x < end1Ptr[0]) {
120
                x = end1Ptr[0];
121
                y = end1Ptr[1];
122
            }
123
        }
124
    }
125
 
126
    /*
127
     * Compute the distance to the closest point.
128
     */
129
 
130
    return hypot(pointPtr[0] - x, pointPtr[1] - y);
131
}
132
 
133
/*
134
 *--------------------------------------------------------------
135
 *
136
 * TkLineToArea --
137
 *
138
 *      Determine whether a line lies entirely inside, entirely
139
 *      outside, or overlapping a given rectangular area.
140
 *
141
 * Results:
142
 *      -1 is returned if the line given by end1Ptr and end2Ptr
143
 *      is entirely outside the rectangle given by rectPtr.  0 is
144
 *      returned if the polygon overlaps the rectangle, and 1 is
145
 *      returned if the polygon is entirely inside the rectangle.
146
 *
147
 * Side effects:
148
 *      None.
149
 *
150
 *--------------------------------------------------------------
151
 */
152
 
153
int
154
TkLineToArea(end1Ptr, end2Ptr, rectPtr)
155
    double end1Ptr[2];          /* X and y coordinates for one endpoint
156
                                 * of line. */
157
    double end2Ptr[2];          /* X and y coordinates for other endpoint
158
                                 * of line. */
159
    double rectPtr[4];          /* Points to coords for rectangle, in the
160
                                 * order x1, y1, x2, y2.  X1 must be no
161
                                 * larger than x2, and y1 no larger than y2. */
162
{
163
    int inside1, inside2;
164
 
165
    /*
166
     * First check the two points individually to see whether they
167
     * are inside the rectangle or not.
168
     */
169
 
170
    inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])
171
            && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]);
172
    inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2])
173
            && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]);
174
    if (inside1 != inside2) {
175
        return 0;
176
    }
177
    if (inside1 & inside2) {
178
        return 1;
179
    }
180
 
181
    /*
182
     * Both points are outside the rectangle, but still need to check
183
     * for intersections between the line and the rectangle.  Horizontal
184
     * and vertical lines are particularly easy, so handle them
185
     * separately.
186
     */
187
 
188
    if (end1Ptr[0] == end2Ptr[0]) {
189
        /*
190
         * Vertical line.
191
         */
192
 
193
        if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1]))
194
                && (end1Ptr[0] >= rectPtr[0])
195
                && (end1Ptr[0] <= rectPtr[2])) {
196
            return 0;
197
        }
198
    } else if (end1Ptr[1] == end2Ptr[1]) {
199
        /*
200
         * Horizontal line.
201
         */
202
 
203
        if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0]))
204
                && (end1Ptr[1] >= rectPtr[1])
205
                && (end1Ptr[1] <= rectPtr[3])) {
206
            return 0;
207
        }
208
    } else {
209
        double m, x, y, low, high;
210
 
211
        /*
212
         * Diagonal line.  Compute slope of line and use
213
         * for intersection checks against each of the
214
         * sides of the rectangle: left, right, bottom, top.
215
         */
216
 
217
        m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
218
        if (end1Ptr[0] < end2Ptr[0]) {
219
            low = end1Ptr[0];  high = end2Ptr[0];
220
        } else {
221
            low = end2Ptr[0]; high = end1Ptr[0];
222
        }
223
 
224
        /*
225
         * Left edge.
226
         */
227
 
228
        y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m;
229
        if ((rectPtr[0] >= low) && (rectPtr[0] <= high)
230
                && (y >= rectPtr[1]) && (y <= rectPtr[3])) {
231
            return 0;
232
        }
233
 
234
        /*
235
         * Right edge.
236
         */
237
 
238
        y += (rectPtr[2] - rectPtr[0])*m;
239
        if ((y >= rectPtr[1]) && (y <= rectPtr[3])
240
                && (rectPtr[2] >= low) && (rectPtr[2] <= high)) {
241
            return 0;
242
        }
243
 
244
        /*
245
         * Bottom edge.
246
         */
247
 
248
        if (end1Ptr[1] < end2Ptr[1]) {
249
            low = end1Ptr[1];  high = end2Ptr[1];
250
        } else {
251
            low = end2Ptr[1]; high = end1Ptr[1];
252
        }
253
        x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m;
254
        if ((x >= rectPtr[0]) && (x <= rectPtr[2])
255
                && (rectPtr[1] >= low) && (rectPtr[1] <= high)) {
256
            return 0;
257
        }
258
 
259
        /*
260
         * Top edge.
261
         */
262
 
263
        x += (rectPtr[3] - rectPtr[1])/m;
264
        if ((x >= rectPtr[0]) && (x <= rectPtr[2])
265
                && (rectPtr[3] >= low) && (rectPtr[3] <= high)) {
266
            return 0;
267
        }
268
    }
269
    return -1;
270
}
271
 
272
/*
273
 *--------------------------------------------------------------
274
 *
275
 * TkThickPolyLineToArea --
276
 *
277
 *      This procedure is called to determine whether a connected
278
 *      series of line segments lies entirely inside, entirely
279
 *      outside, or overlapping a given rectangular area.
280
 *
281
 * Results:
282
 *      -1 is returned if the lines are entirely outside the area,
283
 *      0 if they overlap, and 1 if they are entirely inside the
284
 *      given area.
285
 *
286
 * Side effects:
287
 *      None.
288
 *
289
 *--------------------------------------------------------------
290
 */
291
 
292
        /* ARGSUSED */
293
int
294
TkThickPolyLineToArea(coordPtr, numPoints, width, capStyle, joinStyle, rectPtr)
295
    double *coordPtr;           /* Points to an array of coordinates for
296
                                 * the polyline:  x0, y0, x1, y1, ... */
297
    int numPoints;              /* Total number of points at *coordPtr. */
298
    double width;               /* Width of each line segment. */
299
    int capStyle;               /* How are end-points of polyline drawn?
300
                                 * CapRound, CapButt, or CapProjecting. */
301
    int joinStyle;              /* How are joints in polyline drawn?
302
                                 * JoinMiter, JoinRound, or JoinBevel. */
303
    double *rectPtr;            /* Rectangular area to check against. */
304
{
305
    double radius, poly[10];
306
    int count;
307
    int changedMiterToBevel;    /* Non-zero means that a mitered corner
308
                                 * had to be treated as beveled after all
309
                                 * because the angle was < 11 degrees. */
310
    int inside;                 /* Tentative guess about what to return,
311
                                 * based on all points seen so far:  one
312
                                 * means everything seen so far was
313
                                 * inside the area;  -1 means everything
314
                                 * was outside the area.  0 means overlap
315
                                 * has been found. */
316
 
317
    radius = width/2.0;
318
    inside = -1;
319
 
320
    if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2])
321
            && (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) {
322
        inside = 1;
323
    }
324
 
325
    /*
326
     * Iterate through all of the edges of the line, computing a polygon
327
     * for each edge and testing the area against that polygon.  In
328
     * addition, there are additional tests to deal with rounded joints
329
     * and caps.
330
     */
331
 
332
    changedMiterToBevel = 0;
333
    for (count = numPoints; count >= 2; count--, coordPtr += 2) {
334
 
335
        /*
336
         * If rounding is done around the first point of the edge
337
         * then test a circular region around the point with the
338
         * area.
339
         */
340
 
341
        if (((capStyle == CapRound) && (count == numPoints))
342
                || ((joinStyle == JoinRound) && (count != numPoints))) {
343
            poly[0] = coordPtr[0] - radius;
344
            poly[1] = coordPtr[1] - radius;
345
            poly[2] = coordPtr[0] + radius;
346
            poly[3] = coordPtr[1] + radius;
347
            if (TkOvalToArea(poly, rectPtr) != inside) {
348
                return 0;
349
            }
350
        }
351
 
352
        /*
353
         * Compute the polygonal shape corresponding to this edge,
354
         * consisting of two points for the first point of the edge
355
         * and two points for the last point of the edge.
356
         */
357
 
358
        if (count == numPoints) {
359
            TkGetButtPoints(coordPtr+2, coordPtr, width,
360
                    capStyle == CapProjecting, poly, poly+2);
361
        } else if ((joinStyle == JoinMiter) && !changedMiterToBevel) {
362
            poly[0] = poly[6];
363
            poly[1] = poly[7];
364
            poly[2] = poly[4];
365
            poly[3] = poly[5];
366
        } else {
367
            TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2);
368
 
369
            /*
370
             * If the last joint was beveled, then also check a
371
             * polygon comprising the last two points of the previous
372
             * polygon and the first two from this polygon;  this checks
373
             * the wedges that fill the beveled joint.
374
             */
375
 
376
            if ((joinStyle == JoinBevel) || changedMiterToBevel) {
377
                poly[8] = poly[0];
378
                poly[9] = poly[1];
379
                if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
380
                    return 0;
381
                }
382
                changedMiterToBevel = 0;
383
            }
384
        }
385
        if (count == 2) {
386
            TkGetButtPoints(coordPtr, coordPtr+2, width,
387
                    capStyle == CapProjecting, poly+4, poly+6);
388
        } else if (joinStyle == JoinMiter) {
389
            if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4,
390
                    (double) width, poly+4, poly+6) == 0) {
391
                changedMiterToBevel = 1;
392
                TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4,
393
                        poly+6);
394
            }
395
        } else {
396
            TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6);
397
        }
398
        poly[8] = poly[0];
399
        poly[9] = poly[1];
400
        if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
401
            return 0;
402
        }
403
    }
404
 
405
    /*
406
     * If caps are rounded, check the cap around the final point
407
     * of the line.
408
     */
409
 
410
    if (capStyle == CapRound) {
411
        poly[0] = coordPtr[0] - radius;
412
        poly[1] = coordPtr[1] - radius;
413
        poly[2] = coordPtr[0] + radius;
414
        poly[3] = coordPtr[1] + radius;
415
        if (TkOvalToArea(poly, rectPtr) != inside) {
416
            return 0;
417
        }
418
    }
419
 
420
    return inside;
421
}
422
 
423
/*
424
 *--------------------------------------------------------------
425
 *
426
 * TkPolygonToPoint --
427
 *
428
 *      Compute the distance from a point to a polygon.
429
 *
430
 * Results:
431
 *      The return value is 0.0 if the point referred to by
432
 *      pointPtr is within the polygon referred to by polyPtr
433
 *      and numPoints.  Otherwise the return value is the
434
 *      distance of the point from the polygon.
435
 *
436
 * Side effects:
437
 *      None.
438
 *
439
 *--------------------------------------------------------------
440
 */
441
 
442
double
443
TkPolygonToPoint(polyPtr, numPoints, pointPtr)
444
    double *polyPtr;            /* Points to an array coordinates for
445
                                 * closed polygon:  x0, y0, x1, y1, ...
446
                                 * The polygon may be self-intersecting. */
447
    int numPoints;              /* Total number of points at *polyPtr. */
448
    double *pointPtr;           /* Points to coords for point. */
449
{
450
    double bestDist;            /* Closest distance between point and
451
                                 * any edge in polygon. */
452
    int intersections;          /* Number of edges in the polygon that
453
                                 * intersect a ray extending vertically
454
                                 * upwards from the point to infinity. */
455
    int count;
456
    register double *pPtr;
457
 
458
    /*
459
     * Iterate through all of the edges in the polygon, updating
460
     * bestDist and intersections.
461
     *
462
     * TRICKY POINT:  when computing intersections, include left
463
     * x-coordinate of line within its range, but not y-coordinate.
464
     * Otherwise if the point lies exactly below a vertex we'll
465
     * count it as two intersections.
466
     */
467
 
468
    bestDist = 1.0e36;
469
    intersections = 0;
470
 
471
    for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) {
472
        double x, y, dist;
473
 
474
        /*
475
         * Compute the point on the current edge closest to the point
476
         * and update the intersection count.  This must be done
477
         * separately for vertical edges, horizontal edges, and
478
         * other edges.
479
         */
480
 
481
        if (pPtr[2] == pPtr[0]) {
482
 
483
            /*
484
             * Vertical edge.
485
             */
486
 
487
            x = pPtr[0];
488
            if (pPtr[1] >= pPtr[3]) {
489
                y = MIN(pPtr[1], pointPtr[1]);
490
                y = MAX(y, pPtr[3]);
491
            } else {
492
                y = MIN(pPtr[3], pointPtr[1]);
493
                y = MAX(y, pPtr[1]);
494
            }
495
        } else if (pPtr[3] == pPtr[1]) {
496
 
497
            /*
498
             * Horizontal edge.
499
             */
500
 
501
            y = pPtr[1];
502
            if (pPtr[0] >= pPtr[2]) {
503
                x = MIN(pPtr[0], pointPtr[0]);
504
                x = MAX(x, pPtr[2]);
505
                if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])
506
                        && (pointPtr[0] >= pPtr[2])) {
507
                    intersections++;
508
                }
509
            } else {
510
                x = MIN(pPtr[2], pointPtr[0]);
511
                x = MAX(x, pPtr[0]);
512
                if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])
513
                        && (pointPtr[0] >= pPtr[0])) {
514
                    intersections++;
515
                }
516
            }
517
        } else {
518
            double m1, b1, m2, b2;
519
            int lower;                  /* Non-zero means point below line. */
520
 
521
            /*
522
             * The edge is neither horizontal nor vertical.  Convert the
523
             * edge to a line equation of the form y = m1*x + b1.  Then
524
             * compute a line perpendicular to this edge but passing
525
             * through the point, also in the form y = m2*x + b2.
526
             */
527
 
528
            m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);
529
            b1 = pPtr[1] - m1*pPtr[0];
530
            m2 = -1.0/m1;
531
            b2 = pointPtr[1] - m2*pointPtr[0];
532
            x = (b2 - b1)/(m1 - m2);
533
            y = m1*x + b1;
534
            if (pPtr[0] > pPtr[2]) {
535
                if (x > pPtr[0]) {
536
                    x = pPtr[0];
537
                    y = pPtr[1];
538
                } else if (x < pPtr[2]) {
539
                    x = pPtr[2];
540
                    y = pPtr[3];
541
                }
542
            } else {
543
                if (x > pPtr[2]) {
544
                    x = pPtr[2];
545
                    y = pPtr[3];
546
                } else if (x < pPtr[0]) {
547
                    x = pPtr[0];
548
                    y = pPtr[1];
549
                }
550
            }
551
            lower = (m1*pointPtr[0] + b1) > pointPtr[1];
552
            if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))
553
                    && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {
554
                intersections++;
555
            }
556
        }
557
 
558
        /*
559
         * Compute the distance to the closest point, and see if that
560
         * is the best distance seen so far.
561
         */
562
 
563
        dist = hypot(pointPtr[0] - x, pointPtr[1] - y);
564
        if (dist < bestDist) {
565
            bestDist = dist;
566
        }
567
    }
568
 
569
    /*
570
     * We've processed all of the points.  If the number of intersections
571
     * is odd, the point is inside the polygon.
572
     */
573
 
574
    if (intersections & 0x1) {
575
        return 0.0;
576
    }
577
    return bestDist;
578
}
579
 
580
/*
581
 *--------------------------------------------------------------
582
 *
583
 * TkPolygonToArea --
584
 *
585
 *      Determine whether a polygon lies entirely inside, entirely
586
 *      outside, or overlapping a given rectangular area.
587
 *
588
 * Results:
589
 *      -1 is returned if the polygon given by polyPtr and numPoints
590
 *      is entirely outside the rectangle given by rectPtr.  0 is
591
 *      returned if the polygon overlaps the rectangle, and 1 is
592
 *      returned if the polygon is entirely inside the rectangle.
593
 *
594
 * Side effects:
595
 *      None.
596
 *
597
 *--------------------------------------------------------------
598
 */
599
 
600
int
601
TkPolygonToArea(polyPtr, numPoints, rectPtr)
602
    double *polyPtr;            /* Points to an array coordinates for
603
                                 * closed polygon:  x0, y0, x1, y1, ...
604
                                 * The polygon may be self-intersecting. */
605
    int numPoints;              /* Total number of points at *polyPtr. */
606
    register double *rectPtr;   /* Points to coords for rectangle, in the
607
                                 * order x1, y1, x2, y2.  X1 and y1 must
608
                                 * be lower-left corner. */
609
{
610
    int state;                  /* State of all edges seen so far (-1 means
611
                                 * outside, 1 means inside, won't ever be
612
                                 * 0). */
613
    int count;
614
    register double *pPtr;
615
 
616
    /*
617
     * Iterate over all of the edges of the polygon and test them
618
     * against the rectangle.  Can quit as soon as the state becomes
619
     * "intersecting".
620
     */
621
 
622
    state = TkLineToArea(polyPtr, polyPtr+2, rectPtr);
623
    if (state == 0) {
624
        return 0;
625
    }
626
    for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;
627
            pPtr += 2, count--) {
628
        if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) {
629
            return 0;
630
        }
631
    }
632
 
633
    /*
634
     * If all of the edges were inside the rectangle we're done.
635
     * If all of the edges were outside, then the rectangle could
636
     * still intersect the polygon (if it's entirely enclosed).
637
     * Call TkPolygonToPoint to figure this out.
638
     */
639
 
640
    if (state == 1) {
641
        return 1;
642
    }
643
    if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {
644
        return 0;
645
    }
646
    return -1;
647
}
648
 
649
/*
650
 *--------------------------------------------------------------
651
 *
652
 * TkOvalToPoint --
653
 *
654
 *      Computes the distance from a given point to a given
655
 *      oval, in canvas units.
656
 *
657
 * Results:
658
 *      The return value is 0 if the point given by *pointPtr is
659
 *      inside the oval.  If the point isn't inside the
660
 *      oval then the return value is approximately the distance
661
 *      from the point to the oval.  If the oval is filled, then
662
 *      anywhere in the interior is considered "inside";  if
663
 *      the oval isn't filled, then "inside" means only the area
664
 *      occupied by the outline.
665
 *
666
 * Side effects:
667
 *      None.
668
 *
669
 *--------------------------------------------------------------
670
 */
671
 
672
        /* ARGSUSED */
673
double
674
TkOvalToPoint(ovalPtr, width, filled, pointPtr)
675
    double ovalPtr[4];          /* Pointer to array of four coordinates
676
                                 * (x1, y1, x2, y2) defining oval's bounding
677
                                 * box. */
678
    double width;               /* Width of outline for oval. */
679
    int filled;                 /* Non-zero means oval should be treated as
680
                                 * filled;  zero means only consider outline. */
681
    double pointPtr[2];         /* Coordinates of point. */
682
{
683
    double xDelta, yDelta, scaledDistance, distToOutline, distToCenter;
684
    double xDiam, yDiam;
685
 
686
    /*
687
     * Compute the distance between the center of the oval and the
688
     * point in question, using a coordinate system where the oval
689
     * has been transformed to a circle with unit radius.
690
     */
691
 
692
    xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0);
693
    yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0);
694
    distToCenter = hypot(xDelta, yDelta);
695
    scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0),
696
            yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0));
697
 
698
 
699
    /*
700
     * If the scaled distance is greater than 1 then it means no
701
     * hit.  Compute the distance from the point to the edge of
702
     * the circle, then scale this distance back to the original
703
     * coordinate system.
704
     *
705
     * Note: this distance isn't completely accurate.  It's only
706
     * an approximation, and it can overestimate the correct
707
     * distance when the oval is eccentric.
708
     */
709
 
710
    if (scaledDistance > 1.0) {
711
        return (distToCenter/scaledDistance) * (scaledDistance - 1.0);
712
    }
713
 
714
    /*
715
     * Scaled distance less than 1 means the point is inside the
716
     * outer edge of the oval.  If this is a filled oval, then we
717
     * have a hit.  Otherwise, do the same computation as above
718
     * (scale back to original coordinate system), but also check
719
     * to see if the point is within the width of the outline.
720
     */
721
 
722
    if (filled) {
723
        return 0.0;
724
    }
725
    if (scaledDistance > 1E-10) {
726
        distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance)
727
                - width;
728
    } else {
729
        /*
730
         * Avoid dividing by a very small number (it could cause an
731
         * arithmetic overflow).  This problem occurs if the point is
732
         * very close to the center of the oval.
733
         */
734
 
735
        xDiam = ovalPtr[2] - ovalPtr[0];
736
        yDiam = ovalPtr[3] - ovalPtr[1];
737
        if (xDiam < yDiam) {
738
            distToOutline = (xDiam - width)/2;
739
        } else {
740
            distToOutline = (yDiam - width)/2;
741
        }
742
    }
743
 
744
    if (distToOutline < 0.0) {
745
        return 0.0;
746
    }
747
    return distToOutline;
748
}
749
 
750
/*
751
 *--------------------------------------------------------------
752
 *
753
 * TkOvalToArea --
754
 *
755
 *      Determine whether an oval lies entirely inside, entirely
756
 *      outside, or overlapping a given rectangular area.
757
 *
758
 * Results:
759
 *      -1 is returned if the oval described by ovalPtr is entirely
760
 *      outside the rectangle given by rectPtr.  0 is returned if the
761
 *      oval overlaps the rectangle, and 1 is returned if the oval
762
 *      is entirely inside the rectangle.
763
 *
764
 * Side effects:
765
 *      None.
766
 *
767
 *--------------------------------------------------------------
768
 */
769
 
770
int
771
TkOvalToArea(ovalPtr, rectPtr)
772
    register double *ovalPtr;   /* Points to coordinates definining the
773
                                 * bounding rectangle for the oval: x1, y1,
774
                                 * x2, y2.  X1 must be less than x2 and y1
775
                                 * less than y2. */
776
    register double *rectPtr;   /* Points to coords for rectangle, in the
777
                                 * order x1, y1, x2, y2.  X1 and y1 must
778
                                 * be lower-left corner. */
779
{
780
    double centerX, centerY, radX, radY, deltaX, deltaY;
781
 
782
    /*
783
     * First, see if oval is entirely inside rectangle or entirely
784
     * outside rectangle.
785
     */
786
 
787
    if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2])
788
            && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) {
789
        return 1;
790
    }
791
    if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2])
792
            || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) {
793
        return -1;
794
    }
795
 
796
    /*
797
     * Next, go through the rectangle side by side.  For each side
798
     * of the rectangle, find the point on the side that is closest
799
     * to the oval's center, and see if that point is inside the
800
     * oval.  If at least one such point is inside the oval, then
801
     * the rectangle intersects the oval.
802
     */
803
 
804
    centerX = (ovalPtr[0] + ovalPtr[2])/2;
805
    centerY = (ovalPtr[1] + ovalPtr[3])/2;
806
    radX = (ovalPtr[2] - ovalPtr[0])/2;
807
    radY = (ovalPtr[3] - ovalPtr[1])/2;
808
 
809
    deltaY = rectPtr[1] - centerY;
810
    if (deltaY < 0.0) {
811
        deltaY = centerY - rectPtr[3];
812
        if (deltaY < 0.0) {
813
            deltaY = 0;
814
        }
815
    }
816
    deltaY /= radY;
817
    deltaY *= deltaY;
818
 
819
    /*
820
     * Left side:
821
     */
822
 
823
    deltaX = (rectPtr[0] - centerX)/radX;
824
    deltaX *= deltaX;
825
    if ((deltaX + deltaY) <= 1.0) {
826
        return 0;
827
    }
828
 
829
    /*
830
     * Right side:
831
     */
832
 
833
    deltaX = (rectPtr[2] - centerX)/radX;
834
    deltaX *= deltaX;
835
    if ((deltaX + deltaY) <= 1.0) {
836
        return 0;
837
    }
838
 
839
    deltaX = rectPtr[0] - centerX;
840
    if (deltaX < 0.0) {
841
        deltaX = centerX - rectPtr[2];
842
        if (deltaX < 0.0) {
843
            deltaX = 0;
844
        }
845
    }
846
    deltaX /= radX;
847
    deltaX *= deltaX;
848
 
849
    /*
850
     * Bottom side:
851
     */
852
 
853
    deltaY = (rectPtr[1] - centerY)/radY;
854
    deltaY *= deltaY;
855
    if ((deltaX + deltaY) < 1.0) {
856
        return 0;
857
    }
858
 
859
    /*
860
     * Top side:
861
     */
862
 
863
    deltaY = (rectPtr[3] - centerY)/radY;
864
    deltaY *= deltaY;
865
    if ((deltaX + deltaY) < 1.0) {
866
        return 0;
867
    }
868
 
869
    return -1;
870
}
871
 
872
/*
873
 *--------------------------------------------------------------
874
 *
875
 * TkIncludePoint --
876
 *
877
 *      Given a point and a generic canvas item header, expand
878
 *      the item's bounding box if needed to include the point.
879
 *
880
 * Results:
881
 *      None.
882
 *
883
 * Side effects:
884
 *      The boudn.
885
 *
886
 *--------------------------------------------------------------
887
 */
888
 
889
        /* ARGSUSED */
890
void
891
TkIncludePoint(itemPtr, pointPtr)
892
    register Tk_Item *itemPtr;          /* Item whose bounding box is
893
                                         * being calculated. */
894
    double *pointPtr;                   /* Address of two doubles giving
895
                                         * x and y coordinates of point. */
896
{
897
    int tmp;
898
 
899
    tmp = (int) (pointPtr[0] + 0.5);
900
    if (tmp < itemPtr->x1) {
901
        itemPtr->x1 = tmp;
902
    }
903
    if (tmp > itemPtr->x2) {
904
        itemPtr->x2 = tmp;
905
    }
906
    tmp = (int) (pointPtr[1] + 0.5);
907
    if (tmp < itemPtr->y1) {
908
        itemPtr->y1 = tmp;
909
    }
910
    if (tmp > itemPtr->y2) {
911
        itemPtr->y2 = tmp;
912
    }
913
}
914
 
915
/*
916
 *--------------------------------------------------------------
917
 *
918
 * TkBezierScreenPoints --
919
 *
920
 *      Given four control points, create a larger set of XPoints
921
 *      for a Bezier spline based on the points.
922
 *
923
 * Results:
924
 *      The array at *xPointPtr gets filled in with numSteps XPoints
925
 *      corresponding to the Bezier spline defined by the four
926
 *      control points.  Note:  no output point is generated for the
927
 *      first input point, but an output point *is* generated for
928
 *      the last input point.
929
 *
930
 * Side effects:
931
 *      None.
932
 *
933
 *--------------------------------------------------------------
934
 */
935
 
936
void
937
TkBezierScreenPoints(canvas, control, numSteps, xPointPtr)
938
    Tk_Canvas canvas;                   /* Canvas in which curve is to be
939
                                         * drawn. */
940
    double control[];                   /* Array of coordinates for four
941
                                         * control points:  x0, y0, x1, y1,
942
                                         * ... x3 y3. */
943
    int numSteps;                       /* Number of curve points to
944
                                         * generate.  */
945
    register XPoint *xPointPtr;         /* Where to put new points. */
946
{
947
    int i;
948
    double u, u2, u3, t, t2, t3;
949
 
950
    for (i = 1; i <= numSteps; i++, xPointPtr++) {
951
        t = ((double) i)/((double) numSteps);
952
        t2 = t*t;
953
        t3 = t2*t;
954
        u = 1.0 - t;
955
        u2 = u*u;
956
        u3 = u2*u;
957
        Tk_CanvasDrawableCoords(canvas,
958
                (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)
959
                    + control[6]*t3),
960
                (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)
961
                    + control[7]*t3),
962
                &xPointPtr->x, &xPointPtr->y);
963
    }
964
}
965
 
966
/*
967
 *--------------------------------------------------------------
968
 *
969
 * TkBezierPoints --
970
 *
971
 *      Given four control points, create a larger set of points
972
 *      for a Bezier spline based on the points.
973
 *
974
 * Results:
975
 *      The array at *coordPtr gets filled in with 2*numSteps
976
 *      coordinates, which correspond to the Bezier spline defined
977
 *      by the four control points.  Note:  no output point is
978
 *      generated for the first input point, but an output point
979
 *      *is* generated for the last input point.
980
 *
981
 * Side effects:
982
 *      None.
983
 *
984
 *--------------------------------------------------------------
985
 */
986
 
987
void
988
TkBezierPoints(control, numSteps, coordPtr)
989
    double control[];                   /* Array of coordinates for four
990
                                         * control points:  x0, y0, x1, y1,
991
                                         * ... x3 y3. */
992
    int numSteps;                       /* Number of curve points to
993
                                         * generate.  */
994
    register double *coordPtr;          /* Where to put new points. */
995
{
996
    int i;
997
    double u, u2, u3, t, t2, t3;
998
 
999
    for (i = 1; i <= numSteps; i++, coordPtr += 2) {
1000
        t = ((double) i)/((double) numSteps);
1001
        t2 = t*t;
1002
        t3 = t2*t;
1003
        u = 1.0 - t;
1004
        u2 = u*u;
1005
        u3 = u2*u;
1006
        coordPtr[0] = control[0]*u3
1007
                + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3;
1008
        coordPtr[1] = control[1]*u3
1009
                + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3;
1010
    }
1011
}
1012
 
1013
/*
1014
 *--------------------------------------------------------------
1015
 *
1016
 * TkMakeBezierCurve --
1017
 *
1018
 *      Given a set of points, create a new set of points that fit
1019
 *      parabolic splines to the line segments connecting the original
1020
 *      points.  Produces output points in either of two forms.
1021
 *
1022
 *      Note: in spite of this procedure's name, it does *not* generate
1023
 *      Bezier curves.  Since only three control points are used for
1024
 *      each curve segment, not four, the curves are actually just
1025
 *      parabolic.
1026
 *
1027
 * Results:
1028
 *      Either or both of the xPoints or dblPoints arrays are filled
1029
 *      in.  The return value is the number of points placed in the
1030
 *      arrays.  Note:  if the first and last points are the same, then
1031
 *      a closed curve is generated.
1032
 *
1033
 * Side effects:
1034
 *      None.
1035
 *
1036
 *--------------------------------------------------------------
1037
 */
1038
 
1039
int
1040
TkMakeBezierCurve(canvas, pointPtr, numPoints, numSteps, xPoints, dblPoints)
1041
    Tk_Canvas canvas;                   /* Canvas in which curve is to be
1042
                                         * drawn. */
1043
    double *pointPtr;                   /* Array of input coordinates:  x0,
1044
                                         * y0, x1, y1, etc.. */
1045
    int numPoints;                      /* Number of points at pointPtr. */
1046
    int numSteps;                       /* Number of steps to use for each
1047
                                         * spline segments (determines
1048
                                         * smoothness of curve). */
1049
    XPoint xPoints[];                   /* Array of XPoints to fill in (e.g.
1050
                                         * for display.  NULL means don't
1051
                                         * fill in any XPoints. */
1052
    double dblPoints[];                 /* Array of points to fill in as
1053
                                         * doubles, in the form x0, y0,
1054
                                         * x1, y1, ....  NULL means don't
1055
                                         * fill in anything in this form.
1056
                                         * Caller must make sure that this
1057
                                         * array has enough space. */
1058
{
1059
    int closed, outputPoints, i;
1060
    int numCoords = numPoints*2;
1061
    double control[8];
1062
 
1063
    /*
1064
     * If the curve is a closed one then generate a special spline
1065
     * that spans the last points and the first ones.  Otherwise
1066
     * just put the first point into the output.
1067
     */
1068
 
1069
    outputPoints = 0;
1070
    if ((pointPtr[0] == pointPtr[numCoords-2])
1071
            && (pointPtr[1] == pointPtr[numCoords-1])) {
1072
        closed = 1;
1073
        control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
1074
        control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
1075
        control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
1076
        control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
1077
        control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
1078
        control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
1079
        control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
1080
        control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
1081
        if (xPoints != NULL) {
1082
            Tk_CanvasDrawableCoords(canvas, control[0], control[1],
1083
                    &xPoints->x, &xPoints->y);
1084
            TkBezierScreenPoints(canvas, control, numSteps, xPoints+1);
1085
            xPoints += numSteps+1;
1086
        }
1087
        if (dblPoints != NULL) {
1088
            dblPoints[0] = control[0];
1089
            dblPoints[1] = control[1];
1090
            TkBezierPoints(control, numSteps, dblPoints+2);
1091
            dblPoints += 2*(numSteps+1);
1092
        }
1093
        outputPoints += numSteps+1;
1094
    } else {
1095
        closed = 0;
1096
        if (xPoints != NULL) {
1097
            Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
1098
                    &xPoints->x, &xPoints->y);
1099
            xPoints += 1;
1100
        }
1101
        if (dblPoints != NULL) {
1102
            dblPoints[0] = pointPtr[0];
1103
            dblPoints[1] = pointPtr[1];
1104
            dblPoints += 2;
1105
        }
1106
        outputPoints += 1;
1107
    }
1108
 
1109
    for (i = 2; i < numPoints; i++, pointPtr += 2) {
1110
        /*
1111
         * Set up the first two control points.  This is done
1112
         * differently for the first spline of an open curve
1113
         * than for other cases.
1114
         */
1115
 
1116
        if ((i == 2) && !closed) {
1117
            control[0] = pointPtr[0];
1118
            control[1] = pointPtr[1];
1119
            control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2];
1120
            control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3];
1121
        } else {
1122
            control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
1123
            control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
1124
            control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2];
1125
            control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3];
1126
        }
1127
 
1128
        /*
1129
         * Set up the last two control points.  This is done
1130
         * differently for the last spline of an open curve
1131
         * than for other cases.
1132
         */
1133
 
1134
        if ((i == (numPoints-1)) && !closed) {
1135
            control[4] = .667*pointPtr[2] + .333*pointPtr[4];
1136
            control[5] = .667*pointPtr[3] + .333*pointPtr[5];
1137
            control[6] = pointPtr[4];
1138
            control[7] = pointPtr[5];
1139
        } else {
1140
            control[4] = .833*pointPtr[2] + .167*pointPtr[4];
1141
            control[5] = .833*pointPtr[3] + .167*pointPtr[5];
1142
            control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4];
1143
            control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5];
1144
        }
1145
 
1146
        /*
1147
         * If the first two points coincide, or if the last
1148
         * two points coincide, then generate a single
1149
         * straight-line segment by outputting the last control
1150
         * point.
1151
         */
1152
 
1153
        if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3]))
1154
                || ((pointPtr[2] == pointPtr[4])
1155
                && (pointPtr[3] == pointPtr[5]))) {
1156
            if (xPoints != NULL) {
1157
                Tk_CanvasDrawableCoords(canvas, control[6], control[7],
1158
                        &xPoints[0].x, &xPoints[0].y);
1159
                xPoints++;
1160
            }
1161
            if (dblPoints != NULL) {
1162
                dblPoints[0] = control[6];
1163
                dblPoints[1] = control[7];
1164
                dblPoints += 2;
1165
            }
1166
            outputPoints += 1;
1167
            continue;
1168
        }
1169
 
1170
        /*
1171
         * Generate a Bezier spline using the control points.
1172
         */
1173
 
1174
 
1175
        if (xPoints != NULL) {
1176
            TkBezierScreenPoints(canvas, control, numSteps, xPoints);
1177
            xPoints += numSteps;
1178
        }
1179
        if (dblPoints != NULL) {
1180
            TkBezierPoints(control, numSteps, dblPoints);
1181
            dblPoints += 2*numSteps;
1182
        }
1183
        outputPoints += numSteps;
1184
    }
1185
    return outputPoints;
1186
}
1187
 
1188
/*
1189
 *--------------------------------------------------------------
1190
 *
1191
 * TkMakeBezierPostscript --
1192
 *
1193
 *      This procedure generates Postscript commands that create
1194
 *      a path corresponding to a given Bezier curve.
1195
 *
1196
 * Results:
1197
 *      None.  Postscript commands to generate the path are appended
1198
 *      to interp->result.
1199
 *
1200
 * Side effects:
1201
 *      None.
1202
 *
1203
 *--------------------------------------------------------------
1204
 */
1205
 
1206
void
1207
TkMakeBezierPostscript(interp, canvas, pointPtr, numPoints)
1208
    Tcl_Interp *interp;                 /* Interpreter in whose result the
1209
                                         * Postscript is to be stored. */
1210
    Tk_Canvas canvas;                   /* Canvas widget for which the
1211
                                         * Postscript is being generated. */
1212
    double *pointPtr;                   /* Array of input coordinates:  x0,
1213
                                         * y0, x1, y1, etc.. */
1214
    int numPoints;                      /* Number of points at pointPtr. */
1215
{
1216
    int closed, i;
1217
    int numCoords = numPoints*2;
1218
    double control[8];
1219
    char buffer[200];
1220
 
1221
    /*
1222
     * If the curve is a closed one then generate a special spline
1223
     * that spans the last points and the first ones.  Otherwise
1224
     * just put the first point into the path.
1225
     */
1226
 
1227
    if ((pointPtr[0] == pointPtr[numCoords-2])
1228
            && (pointPtr[1] == pointPtr[numCoords-1])) {
1229
        closed = 1;
1230
        control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
1231
        control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
1232
        control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
1233
        control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
1234
        control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
1235
        control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
1236
        control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
1237
        control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
1238
        sprintf(buffer, "%.15g %.15g moveto\n%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
1239
                control[0], Tk_CanvasPsY(canvas, control[1]),
1240
                control[2], Tk_CanvasPsY(canvas, control[3]),
1241
                control[4], Tk_CanvasPsY(canvas, control[5]),
1242
                control[6], Tk_CanvasPsY(canvas, control[7]));
1243
    } else {
1244
        closed = 0;
1245
        control[6] = pointPtr[0];
1246
        control[7] = pointPtr[1];
1247
        sprintf(buffer, "%.15g %.15g moveto\n",
1248
                control[6], Tk_CanvasPsY(canvas, control[7]));
1249
    }
1250
    Tcl_AppendResult(interp, buffer, (char *) NULL);
1251
 
1252
    /*
1253
     * Cycle through all the remaining points in the curve, generating
1254
     * a curve section for each vertex in the linear path.
1255
     */
1256
 
1257
    for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) {
1258
        control[2] = 0.333*control[6] + 0.667*pointPtr[0];
1259
        control[3] = 0.333*control[7] + 0.667*pointPtr[1];
1260
 
1261
        /*
1262
         * Set up the last two control points.  This is done
1263
         * differently for the last spline of an open curve
1264
         * than for other cases.
1265
         */
1266
 
1267
        if ((i == 1) && !closed) {
1268
            control[6] = pointPtr[2];
1269
            control[7] = pointPtr[3];
1270
        } else {
1271
            control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
1272
            control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
1273
        }
1274
        control[4] = 0.333*control[6] + 0.667*pointPtr[0];
1275
        control[5] = 0.333*control[7] + 0.667*pointPtr[1];
1276
 
1277
        sprintf(buffer, "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
1278
                control[2], Tk_CanvasPsY(canvas, control[3]),
1279
                control[4], Tk_CanvasPsY(canvas, control[5]),
1280
                control[6], Tk_CanvasPsY(canvas, control[7]));
1281
        Tcl_AppendResult(interp, buffer, (char *) NULL);
1282
    }
1283
}
1284
 
1285
/*
1286
 *--------------------------------------------------------------
1287
 *
1288
 * TkGetMiterPoints --
1289
 *
1290
 *      Given three points forming an angle, compute the
1291
 *      coordinates of the inside and outside points of
1292
 *      the mitered corner formed by a line of a given
1293
 *      width at that angle.
1294
 *
1295
 * Results:
1296
 *      If the angle formed by the three points is less than
1297
 *      11 degrees then 0 is returned and m1 and m2 aren't
1298
 *      modified.  Otherwise 1 is returned and the points at
1299
 *      m1 and m2 are filled in with the positions of the points
1300
 *      of the mitered corner.
1301
 *
1302
 * Side effects:
1303
 *      None.
1304
 *
1305
 *--------------------------------------------------------------
1306
 */
1307
 
1308
int
1309
TkGetMiterPoints(p1, p2, p3, width, m1, m2)
1310
    double p1[];                /* Points to x- and y-coordinates of point
1311
                                 * before vertex. */
1312
    double p2[];                /* Points to x- and y-coordinates of vertex
1313
                                 * for mitered joint. */
1314
    double p3[];                /* Points to x- and y-coordinates of point
1315
                                 * after vertex. */
1316
    double width;               /* Width of line.  */
1317
    double m1[];                /* Points to place to put "left" vertex
1318
                                 * point (see as you face from p1 to p2). */
1319
    double m2[];                /* Points to place to put "right" vertex
1320
                                 * point. */
1321
{
1322
    double theta1;              /* Angle of segment p2-p1. */
1323
    double theta2;              /* Angle of segment p2-p3. */
1324
    double theta;               /* Angle between line segments (angle
1325
                                 * of joint). */
1326
    double theta3;              /* Angle that bisects theta1 and
1327
                                 * theta2 and points to m1. */
1328
    double dist;                /* Distance of miter points from p2. */
1329
    double deltaX, deltaY;      /* X and y offsets cooresponding to
1330
                                 * dist (fudge factors for bounding
1331
                                 * box). */
1332
    double p1x, p1y, p2x, p2y, p3x, p3y;
1333
    static double elevenDegrees = (11.0*2.0*PI)/360.0;
1334
 
1335
    /*
1336
     * Round the coordinates to integers to mimic what happens when the
1337
     * line segments are displayed; without this code, the bounding box
1338
     * of a mitered line can be miscomputed greatly.
1339
     */
1340
 
1341
    p1x = floor(p1[0]+0.5);
1342
    p1y = floor(p1[1]+0.5);
1343
    p2x = floor(p2[0]+0.5);
1344
    p2y = floor(p2[1]+0.5);
1345
    p3x = floor(p3[0]+0.5);
1346
    p3y = floor(p3[1]+0.5);
1347
 
1348
    if (p2y == p1y) {
1349
        theta1 = (p2x < p1x) ? 0 : PI;
1350
    } else if (p2x == p1x) {
1351
        theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0;
1352
    } else {
1353
        theta1 = atan2(p1y - p2y, p1x - p2x);
1354
    }
1355
    if (p3y == p2y) {
1356
        theta2 = (p3x > p2x) ? 0 : PI;
1357
    } else if (p3x == p2x) {
1358
        theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0;
1359
    } else {
1360
        theta2 = atan2(p3y - p2y, p3x - p2x);
1361
    }
1362
    theta = theta1 - theta2;
1363
    if (theta > PI) {
1364
        theta -= 2*PI;
1365
    } else if (theta < -PI) {
1366
        theta += 2*PI;
1367
    }
1368
    if ((theta < elevenDegrees) && (theta > -elevenDegrees)) {
1369
        return 0;
1370
    }
1371
    dist = 0.5*width/sin(0.5*theta);
1372
    if (dist < 0.0) {
1373
        dist = -dist;
1374
    }
1375
 
1376
    /*
1377
     * Compute theta3 (make sure that it points to the left when
1378
     * looking from p1 to p2).
1379
     */
1380
 
1381
    theta3 = (theta1 + theta2)/2.0;
1382
    if (sin(theta3 - (theta1 + PI)) < 0.0) {
1383
        theta3 += PI;
1384
    }
1385
    deltaX = dist*cos(theta3);
1386
    m1[0] = p2x + deltaX;
1387
    m2[0] = p2x - deltaX;
1388
    deltaY = dist*sin(theta3);
1389
    m1[1] = p2y + deltaY;
1390
    m2[1] = p2y - deltaY;
1391
    return 1;
1392
}
1393
 
1394
/*
1395
 *--------------------------------------------------------------
1396
 *
1397
 * TkGetButtPoints --
1398
 *
1399
 *      Given two points forming a line segment, compute the
1400
 *      coordinates of two endpoints of a rectangle formed by
1401
 *      bloating the line segment until it is width units wide.
1402
 *
1403
 * Results:
1404
 *      There is no return value.  M1 and m2 are filled in to
1405
 *      correspond to m1 and m2 in the diagram below:
1406
 *
1407
 *                 ----------------* m1
1408
 *                                 |
1409
 *              p1 *---------------* p2
1410
 *                                 |
1411
 *                 ----------------* m2
1412
 *
1413
 *      M1 and m2 will be W units apart, with p2 centered between
1414
 *      them and m1-m2 perpendicular to p1-p2.  However, if
1415
 *      "project" is true then m1 and m2 will be as follows:
1416
 *
1417
 *                 -------------------* m1
1418
 *                                p2  |
1419
 *              p1 *---------------*  |
1420
 *                                    |
1421
 *                 -------------------* m2
1422
 *
1423
 *      In this case p2 will be width/2 units from the segment m1-m2.
1424
 *
1425
 * Side effects:
1426
 *      None.
1427
 *
1428
 *--------------------------------------------------------------
1429
 */
1430
 
1431
void
1432
TkGetButtPoints(p1, p2, width, project, m1, m2)
1433
    double p1[];                /* Points to x- and y-coordinates of point
1434
                                 * before vertex. */
1435
    double p2[];                /* Points to x- and y-coordinates of vertex
1436
                                 * for mitered joint. */
1437
    double width;               /* Width of line.  */
1438
    int project;                /* Non-zero means project p2 by an additional
1439
                                 * width/2 before computing m1 and m2. */
1440
    double m1[];                /* Points to place to put "left" result
1441
                                 * point, as you face from p1 to p2. */
1442
    double m2[];                /* Points to place to put "right" result
1443
                                 * point. */
1444
{
1445
    double length;              /* Length of p1-p2 segment. */
1446
    double deltaX, deltaY;      /* Increments in coords. */
1447
 
1448
    width *= 0.5;
1449
    length = hypot(p2[0] - p1[0], p2[1] - p1[1]);
1450
    if (length == 0.0) {
1451
        m1[0] = m2[0] = p2[0];
1452
        m1[1] = m2[1] = p2[1];
1453
    } else {
1454
        deltaX = -width * (p2[1] - p1[1]) / length;
1455
        deltaY = width * (p2[0] - p1[0]) / length;
1456
        m1[0] = p2[0] + deltaX;
1457
        m2[0] = p2[0] - deltaX;
1458
        m1[1] = p2[1] + deltaY;
1459
        m2[1] = p2[1] - deltaY;
1460
        if (project) {
1461
            m1[0] += deltaY;
1462
            m2[0] += deltaY;
1463
            m1[1] -= deltaX;
1464
            m2[1] -= deltaX;
1465
        }
1466
    }
1467
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.