OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [Documentation/] [filesystems/] [coda.txt] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
NOTE:
2
This is one of the technical documents describing a component of
3
Coda -- this document describes the client kernel-Venus interface.
4
 
5
For more information:
6
  http://www.coda.cs.cmu.edu
7
For user level software needed to run Coda:
8
  ftp://ftp.coda.cs.cmu.edu
9
 
10
To run Coda you need to get a user level cache manager for the client,
11
named Venus, as well as tools to manipulate ACLs, to log in, etc.  The
12
client needs to have the Coda filesystem selected in the kernel
13
configuration.
14
 
15
The server needs a user level server and at present does not depend on
16
kernel support.
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
  The Venus kernel interface
25
  Peter J. Braam
26
  v1.0, Nov 9, 1997
27
 
28
  This document describes the communication between Venus and kernel
29
  level filesystem code needed for the operation of the Coda file sys-
30
  tem.  This document version is meant to describe the current interface
31
  (version 1.0) as well as improvements we envisage.
32
  ______________________________________________________________________
33
 
34
  Table of Contents
35
 
36
 
37
 
38
 
39
 
40
 
41
 
42
 
43
 
44
 
45
 
46
 
47
 
48
 
49
 
50
 
51
 
52
 
53
 
54
 
55
 
56
 
57
 
58
 
59
 
60
 
61
 
62
 
63
 
64
 
65
 
66
 
67
 
68
 
69
 
70
 
71
 
72
 
73
 
74
 
75
 
76
 
77
 
78
 
79
 
80
 
81
 
82
 
83
 
84
 
85
 
86
 
87
 
88
 
89
 
90
  1. Introduction
91
 
92
  2. Servicing Coda filesystem calls
93
 
94
  3. The message layer
95
 
96
     3.1 Implementation details
97
 
98
  4. The interface at the call level
99
 
100
     4.1 Data structures shared by the kernel and Venus
101
     4.2 The pioctl interface
102
     4.3 root
103
     4.4 lookup
104
     4.5 getattr
105
     4.6 setattr
106
     4.7 access
107
     4.8 create
108
     4.9 mkdir
109
     4.10 link
110
     4.11 symlink
111
     4.12 remove
112
     4.13 rmdir
113
     4.14 readlink
114
     4.15 open
115
     4.16 close
116
     4.17 ioctl
117
     4.18 rename
118
     4.19 readdir
119
     4.20 vget
120
     4.21 fsync
121
     4.22 inactive
122
     4.23 rdwr
123
     4.24 odymount
124
     4.25 ody_lookup
125
     4.26 ody_expand
126
     4.27 prefetch
127
     4.28 signal
128
 
129
  5. The minicache and downcalls
130
 
131
     5.1 INVALIDATE
132
     5.2 FLUSH
133
     5.3 PURGEUSER
134
     5.4 ZAPFILE
135
     5.5 ZAPDIR
136
     5.6 ZAPVNODE
137
     5.7 PURGEFID
138
     5.8 REPLACE
139
 
140
  6. Initialization and cleanup
141
 
142
     6.1 Requirements
143
 
144
 
145
  ______________________________________________________________________
146
  0wpage
147
 
148
  11..  IInnttrroodduuccttiioonn
149
 
150
 
151
 
152
  A key component in the Coda Distributed File System is the cache
153
  manager, _V_e_n_u_s.
154
 
155
 
156
  When processes on a Coda enabled system access files in the Coda
157
  filesystem, requests are directed at the filesystem layer in the
158
  operating system. The operating system will communicate with Venus to
159
  service the request for the process.  Venus manages a persistent
160
  client cache and makes remote procedure calls to Coda file servers and
161
  related servers (such as authentication servers) to service these
162
  requests it receives from the operating system.  When Venus has
163
  serviced a request it replies to the operating system with appropriate
164
  return codes, and other data related to the request.  Optionally the
165
  kernel support for Coda may maintain a minicache of recently processed
166
  requests to limit the number of interactions with Venus.  Venus
167
  possesses the facility to inform the kernel when elements from its
168
  minicache are no longer valid.
169
 
170
  This document describes precisely this communication between the
171
  kernel and Venus.  The definitions of so called upcalls and downcalls
172
  will be given with the format of the data they handle. We shall also
173
  describe the semantic invariants resulting from the calls.
174
 
175
  Historically Coda was implemented in a BSD file system in Mach 2.6.
176
  The interface between the kernel and Venus is very similar to the BSD
177
  VFS interface.  Similar functionality is provided, and the format of
178
  the parameters and returned data is very similar to the BSD VFS.  This
179
  leads to an almost natural environment for implementing a kernel-level
180
  filesystem driver for Coda in a BSD system.  However, other operating
181
  systems such as Linux and Windows 95 and NT have virtual filesystem
182
  with different interfaces.
183
 
184
  To implement Coda on these systems some reverse engineering of the
185
  Venus/Kernel protocol is necessary.  Also it came to light that other
186
  systems could profit significantly from certain small optimizations
187
  and modifications to the protocol. To facilitate this work as well as
188
  to make future ports easier, communication between Venus and the
189
  kernel should be documented in great detail.  This is the aim of this
190
  document.
191
 
192
  0wpage
193
 
194
  22..  SSeerrvviicciinngg CCooddaa ffiilleessyysstteemm ccaallllss
195
 
196
  The service of a request for a Coda file system service originates in
197
  a process PP which accessing a Coda file. It makes a system call which
198
  traps to the OS kernel. Examples of such calls trapping to the kernel
199
  are _r_e_a_d_, _w_r_i_t_e_, _o_p_e_n_, _c_l_o_s_e_, _c_r_e_a_t_e_, _m_k_d_i_r_, _r_m_d_i_r_, _c_h_m_o_d in a Unix
200
  context.  Similar calls exist in the Win32 environment, and are named
201
  _C_r_e_a_t_e_F_i_l_e_, .
202
 
203
  Generally the operating system handles the request in a virtual
204
  filesystem (VFS) layer, which is named I/O Manager in NT and IFS
205
  manager in Windows 95.  The VFS is responsible for partial processing
206
  of the request and for locating the specific filesystem(s) which will
207
  service parts of the request.  Usually the information in the path
208
  assists in locating the correct FS drivers.  Sometimes after extensive
209
  pre-processing, the VFS starts invoking exported routines in the FS
210
  driver.  This is the point where the FS specific processing of the
211
  request starts, and here the Coda specific kernel code comes into
212
  play.
213
 
214
  The FS layer for Coda must expose and implement several interfaces.
215
  First and foremost the VFS must be able to make all necessary calls to
216
  the Coda FS layer, so the Coda FS driver must expose the VFS interface
217
  as applicable in the operating system. These differ very significantly
218
  among operating systems, but share features such as facilities to
219
  read/write and create and remove objects.  The Coda FS layer services
220
  such VFS requests by invoking one or more well defined services
221
  offered by the cache manager Venus.  When the replies from Venus have
222
  come back to the FS driver, servicing of the VFS call continues and
223
  finishes with a reply to the kernel's VFS. Finally the VFS layer
224
  returns to the process.
225
 
226
  As a result of this design a basic interface exposed by the FS driver
227
  must allow Venus to manage message traffic.  In particular Venus must
228
  be able to retrieve and place messages and to be notified of the
229
  arrival of a new message. The notification must be through a mechanism
230
  which does not block Venus since Venus must attend to other tasks even
231
  when no messages are waiting or being processed.
232
 
233
 
234
 
235
 
236
 
237
 
238
                     Interfaces of the Coda FS Driver
239
 
240
  Furthermore the FS layer provides for a special path of communication
241
  between a user process and Venus, called the pioctl interface. The
242
  pioctl interface is used for Coda specific services, such as
243
  requesting detailed information about the persistent cache managed by
244
  Venus. Here the involvement of the kernel is minimal.  It identifies
245
  the calling process and passes the information on to Venus.  When
246
  Venus replies the response is passed back to the caller in unmodified
247
  form.
248
 
249
  Finally Venus allows the kernel FS driver to cache the results from
250
  certain services.  This is done to avoid excessive context switches
251
  and results in an efficient system.  However, Venus may acquire
252
  information, for example from the network which implies that cached
253
  information must be flushed or replaced. Venus then makes a downcall
254
  to the Coda FS layer to request flushes or updates in the cache.  The
255
  kernel FS driver handles such requests synchronously.
256
 
257
  Among these interfaces the VFS interface and the facility to place,
258
  receive and be notified of messages are platform specific.  We will
259
  not go into the calls exported to the VFS layer but we will state the
260
  requirements of the message exchange mechanism.
261
 
262
  0wpage
263
 
264
  33..  TThhee mmeessssaaggee llaayyeerr
265
 
266
 
267
 
268
  At the lowest level the communication between Venus and the FS driver
269
  proceeds through messages.  The synchronization between processes
270
  requesting Coda file service and Venus relies on blocking and waking
271
  up processes.  The Coda FS driver processes VFS- and pioctl-requests
272
  on behalf of a process P, creates messages for Venus, awaits replies
273
  and finally returns to the caller.  The implementation of the exchange
274
  of messages is platform specific, but the semantics have (so far)
275
  appeared to be generally applicable.  Data buffers are created by the
276
  FS Driver in kernel memory on behalf of P and copied to user memory in
277
  Venus.
278
 
279
  The FS Driver while servicing P makes upcalls to Venus.  Such an
280
  upcall is dispatched to Venus by creating a message structure.  The
281
  structure contains the identification of P, the message sequence
282
  number, the size of the request and a pointer to the data in kernel
283
  memory for the request.  Since the data buffer is re-used to hold the
284
  reply from Venus, there is a field for the size of the reply.  A flags
285
  field is used in the message to precisely record the status of the
286
  message.  Additional platform dependent structures involve pointers to
287
  determine the position of the message on queues and pointers to
288
  synchronization objects.  In the upcall routine the message structure
289
  is filled in, flags are set to 0, and it is placed on the _p_e_n_d_i_n_g
290
  queue.  The routine calling upcall is responsible for allocating the
291
  data buffer; its structure will be described in the next section.
292
 
293
  A facility must exist to notify Venus that the message has been
294
  created, and implemented using available synchronization objects in
295
  the OS. This notification is done in the upcall context of the process
296
  P. When the message is on the pending queue, process P cannot proceed
297
  in upcall.  The (kernel mode) processing of P in the filesystem
298
  request routine must be suspended until Venus has replied.  Therefore
299
  the calling thread in P is blocked in upcall.  A pointer in the
300
  message structure will locate the synchronization object on which P is
301
  sleeping.
302
 
303
  Venus detects the notification that a message has arrived, and the FS
304
  driver allow Venus to retrieve the message with a getmsg_from_kernel
305
  call. This action finishes in the kernel by putting the message on the
306
  queue of processing messages and setting flags to READ.  Venus is
307
  passed the contents of the data buffer. The getmsg_from_kernel call
308
  now returns and Venus processes the request.
309
 
310
  At some later point the FS driver receives a message from Venus,
311
  namely when Venus calls sendmsg_to_kernel.  At this moment the Coda FS
312
  driver looks at the contents of the message and decides if:
313
 
314
 
315
  +o  the message is a reply for a suspended thread P.  If so it removes
316
     the message from the processing queue and marks the message as
317
     WRITTEN.  Finally, the FS driver unblocks P (still in the kernel
318
     mode context of Venus) and the sendmsg_to_kernel call returns to
319
     Venus.  The process P will be scheduled at some point and continues
320
     processing its upcall with the data buffer replaced with the reply
321
     from Venus.
322
 
323
  +o  The message is a _d_o_w_n_c_a_l_l.  A downcall is a request from Venus to
324
     the FS Driver. The FS driver processes the request immediately
325
     (usually a cache eviction or replacement) and when it finishes
326
     sendmsg_to_kernel returns.
327
 
328
  Now P awakes and continues processing upcall.  There are some
329
  subtleties to take account of. First P will determine if it was woken
330
  up in upcall by a signal from some other source (for example an
331
  attempt to terminate P) or as is normally the case by Venus in its
332
  sendmsg_to_kernel call.  In the normal case, the upcall routine will
333
  deallocate the message structure and return.  The FS routine can proceed
334
  with its processing.
335
 
336
 
337
 
338
 
339
 
340
 
341
 
342
                      Sleeping and IPC arrangements
343
 
344
  In case P is woken up by a signal and not by Venus, it will first look
345
  at the flags field.  If the message is not yet READ, the process P can
346
  handle its signal without notifying Venus.  If Venus has READ, and
347
  the request should not be processed, P can send Venus a signal message
348
  to indicate that it should disregard the previous message.  Such
349
  signals are put in the queue at the head, and read first by Venus.  If
350
  the message is already marked as WRITTEN it is too late to stop the
351
  processing.  The VFS routine will now continue.  (-- If a VFS request
352
  involves more than one upcall, this can lead to complicated state, an
353
  extra field "handle_signals" could be added in the message structure
354
  to indicate points of no return have been passed.--)
355
 
356
 
357
 
358
  33..11..  IImmpplleemmeennttaattiioonn ddeettaaiillss
359
 
360
  The Unix implementation of this mechanism has been through the
361
  implementation of a character device associated with Coda.  Venus
362
  retrieves messages by doing a read on the device, replies are sent
363
  with a write and notification is through the select system call on the
364
  file descriptor for the device.  The process P is kept waiting on an
365
  interruptible wait queue object.
366
 
367
  In Windows NT and the DPMI Windows 95 implementation a DeviceIoControl
368
  call is used.  The DeviceIoControl call is designed to copy buffers
369
  from user memory to kernel memory with OPCODES. The sendmsg_to_kernel
370
  is issued as a synchronous call, while the getmsg_from_kernel call is
371
  asynchronous.  Windows EventObjects are used for notification of
372
  message arrival.  The process P is kept waiting on a KernelEvent
373
  object in NT and a semaphore in Windows 95.
374
 
375
  0wpage
376
 
377
  44..  TThhee iinntteerrffaaccee aatt tthhee ccaallll lleevveell
378
 
379
 
380
  This section describes the upcalls a Coda FS driver can make to Venus.
381
  Each of these upcalls make use of two structures: inputArgs and
382
  outputArgs.   In pseudo BNF form the structures take the following
383
  form:
384
 
385
 
386
  struct inputArgs {
387
      u_long opcode;
388
      u_long unique;     /* Keep multiple outstanding msgs distinct */
389
      u_short pid;                 /* Common to all */
390
      u_short pgid;                /* Common to all */
391
      struct CodaCred cred;        /* Common to all */
392
 
393
      
394
  };
395
 
396
  struct outputArgs {
397
      u_long opcode;
398
      u_long unique;       /* Keep multiple outstanding msgs distinct */
399
      u_long result;
400
 
401
      
402
  };
403
 
404
 
405
 
406
  Before going on let us elucidate the role of the various fields. The
407
  inputArgs start with the opcode which defines the type of service
408
  requested from Venus. There are approximately 30 upcalls at present
409
  which we will discuss.   The unique field labels the inputArg with a
410
  unique number which will identify the message uniquely.  A process and
411
  process group id are passed.  Finally the credentials of the caller
412
  are included.
413
 
414
  Before delving into the specific calls we need to discuss a variety of
415
  data structures shared by the kernel and Venus.
416
 
417
 
418
 
419
 
420
  44..11..  DDaattaa ssttrruuccttuurreess sshhaarreedd bbyy tthhee kkeerrnneell aanndd VVeennuuss
421
 
422
 
423
  The CodaCred structure defines a variety of user and group ids as
424
  they are set for the calling process. The vuid_t and guid_t are 32 bit
425
  unsigned integers.  It also defines group membership in an array.  On
426
  Unix the CodaCred has proven sufficient to implement good security
427
  semantics for Coda but the structure may have to undergo modification
428
  for the Windows environment when these mature.
429
 
430
  struct CodaCred {
431
      vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid*/
432
      vgid_t cr_gid, cr_egid, cr_sgid, cr_fsgid; /* same for groups */
433
      vgid_t cr_groups[NGROUPS];        /* Group membership for caller */
434
  };
435
 
436
 
437
 
438
  NNOOTTEE It is questionable if we need CodaCreds in Venus. Finally Venus
439
  doesn't know about groups, although it does create files with the
440
  default uid/gid.  Perhaps the list of group membership is superfluous.
441
 
442
 
443
  The next item is the fundamental identifier used to identify Coda
444
  files, the ViceFid.  A fid of a file uniquely defines a file or
445
  directory in the Coda filesystem within a _c_e_l_l.   (-- A _c_e_l_l is a
446
  group of Coda servers acting under the aegis of a single system
447
  control machine or SCM. See the Coda Administration manual for a
448
  detailed description of the role of the SCM.--)
449
 
450
 
451
  typedef struct ViceFid {
452
      VolumeId Volume;
453
      VnodeId Vnode;
454
      Unique_t Unique;
455
  } ViceFid;
456
 
457
 
458
 
459
  Each of the constituent fields: VolumeId, VnodeId and Unique_t are
460
  unsigned 32 bit integers.  We envisage that a further field will need
461
  to be prefixed to identify the Coda cell; this will probably take the
462
  form of a Ipv6 size IP address naming the Coda cell through DNS.
463
 
464
  The next important structure shared between Venus and the kernel is
465
  the attributes of the file.  The following structure is used to
466
  exchange information.  It has room for future extensions such as
467
  support for device files (currently not present in Coda).
468
 
469
 
470
 
471
 
472
 
473
 
474
 
475
 
476
 
477
 
478
 
479
 
480
 
481
 
482
 
483
 
484
 
485
 
486
  struct coda_vattr {
487
          enum coda_vtype va_type;        /* vnode type (for create) */
488
          u_short         va_mode;        /* files access mode and type */
489
          short           va_nlink;       /* number of references to file */
490
          vuid_t          va_uid;         /* owner user id */
491
          vgid_t          va_gid;         /* owner group id */
492
          long            va_fsid;        /* file system id (dev for now) */
493
          long            va_fileid;      /* file id */
494
          u_quad_t        va_size;        /* file size in bytes */
495
          long            va_blocksize;   /* blocksize preferred for i/o */
496
          struct timespec va_atime;       /* time of last access */
497
          struct timespec va_mtime;       /* time of last modification */
498
          struct timespec va_ctime;       /* time file changed */
499
          u_long          va_gen;         /* generation number of file */
500
          u_long          va_flags;       /* flags defined for file */
501
          dev_t           va_rdev;        /* device special file represents */
502
          u_quad_t        va_bytes;       /* bytes of disk space held by file */
503
          u_quad_t        va_filerev;     /* file modification number */
504
          u_int           va_vaflags;     /* operations flags, see below */
505
          long            va_spare;       /* remain quad aligned */
506
  };
507
 
508
 
509
 
510
 
511
  44..22..  TThhee ppiiooccttll iinntteerrffaaccee
512
 
513
 
514
  Coda specific requests can be made by application through the pioctl
515
  interface. The pioctl is implemented as an ordinary ioctl on a
516
  fictitious file /coda/.CONTROL.  The pioctl call opens this file, gets
517
  a file handle and makes the ioctl call. Finally it closes the file.
518
 
519
  The kernel involvement in this is limited to providing the facility to
520
  open and close and pass the ioctl message _a_n_d to verify that a path in
521
  the pioctl data buffers is a file in a Coda filesystem.
522
 
523
  The kernel is handed a data packet of the form:
524
 
525
      struct {
526
          const char *path;
527
          struct ViceIoctl vidata;
528
          int follow;
529
      } data;
530
 
531
 
532
 
533
  where
534
 
535
 
536
  struct ViceIoctl {
537
          caddr_t in, out;        /* Data to be transferred in, or out */
538
          short in_size;          /* Size of input buffer <= 2K */
539
          short out_size;         /* Maximum size of output buffer, <= 2K */
540
  };
541
 
542
 
543
 
544
  The path must be a Coda file, otherwise the ioctl upcall will not be
545
  made.
546
 
547
  NNOOTTEE  The data structures and code are a mess.  We need to clean this
548
  up.
549
 
550
  We now proceed to document the individual calls:
551
 
552
  0wpage
553
 
554
  44..33..  rroooott
555
 
556
 
557
  AArrgguummeennttss
558
 
559
     iinn empty
560
 
561
     oouutt
562
 
563
                struct cfs_root_out {
564
                    ViceFid VFid;
565
                } cfs_root;
566
 
567
 
568
 
569
  DDeessccrriippttiioonn This call is made to Venus during the initialization of
570
  the Coda filesystem. If the result is zero, the cfs_root structure
571
  contains the ViceFid of the root of the Coda filesystem. If a non-zero
572
  result is generated, its value is a platform dependent error code
573
  indicating the difficulty Venus encountered in locating the root of
574
  the Coda filesystem.
575
 
576
  0wpage
577
 
578
  44..44..  llooookkuupp
579
 
580
 
581
  SSuummmmaarryy Find the ViceFid and type of an object in a directory if it
582
  exists.
583
 
584
  AArrgguummeennttss
585
 
586
     iinn
587
 
588
                struct  cfs_lookup_in {
589
                    ViceFid     VFid;
590
                    char        *name;          /* Place holder for data. */
591
                } cfs_lookup;
592
 
593
 
594
 
595
     oouutt
596
 
597
                struct cfs_lookup_out {
598
                    ViceFid VFid;
599
                    int vtype;
600
                } cfs_lookup;
601
 
602
 
603
 
604
  DDeessccrriippttiioonn This call is made to determine the ViceFid and filetype of
605
  a directory entry.  The directory entry requested carries name name
606
  and Venus will search the directory identified by cfs_lookup_in.VFid.
607
  The result may indicate that the name does not exist, or that
608
  difficulty was encountered in finding it (e.g. due to disconnection).
609
  If the result is zero, the field cfs_lookup_out.VFid contains the
610
  targets ViceFid and cfs_lookup_out.vtype the coda_vtype giving the
611
  type of object the name designates.
612
 
613
  The name of the object is an 8 bit character string of maximum length
614
  CFS_MAXNAMLEN, currently set to 256 (including a 0 terminator.)
615
 
616
  It is extremely important to realize that Venus bitwise ors the field
617
  cfs_lookup.vtype with CFS_NOCACHE to indicate that the object should
618
  not be put in the kernel name cache.
619
 
620
  NNOOTTEE The type of the vtype is currently wrong.  It should be
621
  coda_vtype. Linux does not take note of CFS_NOCACHE.  It should.
622
 
623
  0wpage
624
 
625
  44..55..  ggeettaattttrr
626
 
627
 
628
  SSuummmmaarryy Get the attributes of a file.
629
 
630
  AArrgguummeennttss
631
 
632
     iinn
633
 
634
                struct cfs_getattr_in {
635
                    ViceFid VFid;
636
                    struct coda_vattr attr; /* XXXXX */
637
                } cfs_getattr;
638
 
639
 
640
 
641
     oouutt
642
 
643
                struct cfs_getattr_out {
644
                    struct coda_vattr attr;
645
                } cfs_getattr;
646
 
647
 
648
 
649
  DDeessccrriippttiioonn This call returns the attributes of the file identified by
650
  fid.
651
 
652
  EErrrroorrss Errors can occur if the object with fid does not exist, is
653
  unaccessible or if the caller does not have permission to fetch
654
  attributes.
655
 
656
  NNoottee Many kernel FS drivers (Linux, NT and Windows 95) need to acquire
657
  the attributes as well as the Fid for the instantiation of an internal
658
  "inode" or "FileHandle".  A significant improvement in performance on
659
  such systems could be made by combining the _l_o_o_k_u_p and _g_e_t_a_t_t_r calls
660
  both at the Venus/kernel interaction level and at the RPC level.
661
 
662
  The vattr structure included in the input arguments is superfluous and
663
  should be removed.
664
 
665
  0wpage
666
 
667
  44..66..  sseettaattttrr
668
 
669
 
670
  SSuummmmaarryy Set the attributes of a file.
671
 
672
  AArrgguummeennttss
673
 
674
     iinn
675
 
676
                struct cfs_setattr_in {
677
                    ViceFid VFid;
678
                    struct coda_vattr attr;
679
                } cfs_setattr;
680
 
681
 
682
 
683
 
684
     oouutt
685
        empty
686
 
687
  DDeessccrriippttiioonn The structure attr is filled with attributes to be changed
688
  in BSD style.  Attributes not to be changed are set to -1, apart from
689
  vtype which is set to VNON. Other are set to the value to be assigned.
690
  The only attributes which the FS driver may request to change are the
691
  mode, owner, groupid, atime, mtime and ctime.  The return value
692
  indicates success or failure.
693
 
694
  EErrrroorrss A variety of errors can occur.  The object may not exist, may
695
  be inaccessible, or permission may not be granted by Venus.
696
 
697
  0wpage
698
 
699
  44..77..  aacccceessss
700
 
701
 
702
  SSuummmmaarryy
703
 
704
  AArrgguummeennttss
705
 
706
     iinn
707
 
708
                struct cfs_access_in {
709
                    ViceFid     VFid;
710
                    int flags;
711
                } cfs_access;
712
 
713
 
714
 
715
     oouutt
716
        empty
717
 
718
  DDeessccrriippttiioonn Verify if access to the object identified by VFid for
719
  operations described by flags is permitted.  The result indicates if
720
  access will be granted.  It is important to remember that Coda uses
721
  ACLs to enforce protection and that ultimately the servers, not the
722
  clients enforce the security of the system.  The result of this call
723
  will depend on whether a _t_o_k_e_n is held by the user.
724
 
725
  EErrrroorrss The object may not exist, or the ACL describing the protection
726
  may not be accessible.
727
 
728
  0wpage
729
 
730
  44..88..  ccrreeaattee
731
 
732
 
733
  SSuummmmaarryy Invoked to create a file
734
 
735
  AArrgguummeennttss
736
 
737
     iinn
738
 
739
                struct cfs_create_in {
740
                    ViceFid VFid;
741
                    struct coda_vattr attr;
742
                    int excl;
743
                    int mode;
744
                    char        *name;          /* Place holder for data. */
745
                } cfs_create;
746
 
747
 
748
 
749
 
750
     oouutt
751
 
752
                struct cfs_create_out {
753
                    ViceFid VFid;
754
                    struct coda_vattr attr;
755
                } cfs_create;
756
 
757
 
758
 
759
  DDeessccrriippttiioonn  This upcall is invoked to request creation of a file.
760
  The file will be created in the directory identified by VFid, its name
761
  will be name, and the mode will be mode.  If excl is set an error will
762
  be returned if the file already exists.  If the size field in attr is
763
  set to zero the file will be truncated.  The uid and gid of the file
764
  are set by converting the CodaCred to a uid using a macro CRTOUID
765
  (this macro is platform dependent).  Upon success the VFid and
766
  attributes of the file are returned.  The Coda FS Driver will normally
767
  instantiate a vnode, inode or file handle at kernel level for the new
768
  object.
769
 
770
 
771
  EErrrroorrss A variety of errors can occur. Permissions may be insufficient.
772
  If the object exists and is not a file the error EISDIR is returned
773
  under Unix.
774
 
775
  NNOOTTEE The packing of parameters is very inefficient and appears to
776
  indicate confusion between the system call creat and the VFS operation
777
  create. The VFS operation create is only called to create new objects.
778
  This create call differs from the Unix one in that it is not invoked
779
  to return a file descriptor. The truncate and exclusive options,
780
  together with the mode, could simply be part of the mode as it is
781
  under Unix.  There should be no flags argument; this is used in open
782
  (2) to return a file descriptor for READ or WRITE mode.
783
 
784
  The attributes of the directory should be returned too, since the size
785
  and mtime changed.
786
 
787
  0wpage
788
 
789
  44..99..  mmkkddiirr
790
 
791
 
792
  SSuummmmaarryy Create a new directory.
793
 
794
  AArrgguummeennttss
795
 
796
     iinn
797
 
798
                struct cfs_mkdir_in {
799
                    ViceFid     VFid;
800
                    struct coda_vattr attr;
801
                    char        *name;          /* Place holder for data. */
802
                } cfs_mkdir;
803
 
804
 
805
 
806
     oouutt
807
 
808
                struct cfs_mkdir_out {
809
                    ViceFid VFid;
810
                    struct coda_vattr attr;
811
                } cfs_mkdir;
812
 
813
 
814
 
815
 
816
  DDeessccrriippttiioonn This call is similar to create but creates a directory.
817
  Only the mode field in the input parameters is used for creation.
818
  Upon successful creation, the attr returned contains the attributes of
819
  the new directory.
820
 
821
  EErrrroorrss As for create.
822
 
823
  NNOOTTEE The input parameter should be changed to mode instead of
824
  attributes.
825
 
826
  The attributes of the parent should be returned since the size and
827
  mtime changes.
828
 
829
  0wpage
830
 
831
  44..1100..  lliinnkk
832
 
833
 
834
  SSuummmmaarryy Create a link to an existing file.
835
 
836
  AArrgguummeennttss
837
 
838
     iinn
839
 
840
                struct cfs_link_in {
841
                    ViceFid sourceFid;          /* cnode to link *to* */
842
                    ViceFid destFid;            /* Directory in which to place link */
843
                    char        *tname;         /* Place holder for data. */
844
                } cfs_link;
845
 
846
 
847
 
848
     oouutt
849
        empty
850
 
851
  DDeessccrriippttiioonn This call creates a link to the sourceFid in the directory
852
  identified by destFid with name tname.  The source must reside in the
853
  target's parent, i.e. the source must be have parent destFid, i.e. Coda
854
  does not support cross directory hard links.  Only the return value is
855
  relevant.  It indicates success or the type of failure.
856
 
857
  EErrrroorrss The usual errors can occur.0wpage
858
 
859
  44..1111..  ssyymmlliinnkk
860
 
861
 
862
  SSuummmmaarryy create a symbolic link
863
 
864
  AArrgguummeennttss
865
 
866
     iinn
867
 
868
                struct cfs_symlink_in {
869
                    ViceFid     VFid;          /* Directory to put symlink in */
870
                    char        *srcname;
871
                    struct coda_vattr attr;
872
                    char        *tname;
873
                } cfs_symlink;
874
 
875
 
876
 
877
     oouutt
878
        none
879
 
880
  DDeessccrriippttiioonn Create a symbolic link. The link is to be placed in the
881
  directory identified by VFid and named tname.  It should point to the
882
  pathname srcname.  The attributes of the newly created object are to
883
  be set to attr.
884
 
885
  EErrrroorrss
886
 
887
  NNOOTTEE The attributes of the target directory should be returned since
888
  its size changed.
889
 
890
  0wpage
891
 
892
  44..1122..  rreemmoovvee
893
 
894
 
895
  SSuummmmaarryy Remove a file
896
 
897
  AArrgguummeennttss
898
 
899
     iinn
900
 
901
                struct cfs_remove_in {
902
                    ViceFid     VFid;
903
                    char        *name;          /* Place holder for data. */
904
                } cfs_remove;
905
 
906
 
907
 
908
     oouutt
909
        none
910
 
911
  DDeessccrriippttiioonn  Remove file named cfs_remove_in.name in directory
912
  identified by   VFid.
913
 
914
  EErrrroorrss
915
 
916
  NNOOTTEE The attributes of the directory should be returned since its
917
  mtime and size may change.
918
 
919
  0wpage
920
 
921
  44..1133..  rrmmddiirr
922
 
923
 
924
  SSuummmmaarryy Remove a directory
925
 
926
  AArrgguummeennttss
927
 
928
     iinn
929
 
930
                struct cfs_rmdir_in {
931
                    ViceFid     VFid;
932
                    char        *name;          /* Place holder for data. */
933
                } cfs_rmdir;
934
 
935
 
936
 
937
     oouutt
938
        none
939
 
940
  DDeessccrriippttiioonn Remove the directory with name name from the directory
941
  identified by VFid.
942
 
943
  EErrrroorrss
944
 
945
  NNOOTTEE The attributes of the parent directory should be returned since
946
  its mtime and size may change.
947
 
948
  0wpage
949
 
950
  44..1144..  rreeaaddlliinnkk
951
 
952
 
953
  SSuummmmaarryy Read the value of a symbolic link.
954
 
955
  AArrgguummeennttss
956
 
957
     iinn
958
 
959
                struct cfs_readlink_in {
960
                    ViceFid VFid;
961
                } cfs_readlink;
962
 
963
 
964
 
965
     oouutt
966
 
967
                struct cfs_readlink_out {
968
                    int count;
969
                    caddr_t     data;           /* Place holder for data. */
970
                } cfs_readlink;
971
 
972
 
973
 
974
  DDeessccrriippttiioonn This routine reads the contents of symbolic link
975
  identified by VFid into the buffer data.  The buffer data must be able
976
  to hold any name up to CFS_MAXNAMLEN (PATH or NAM??).
977
 
978
  EErrrroorrss No unusual errors.
979
 
980
  0wpage
981
 
982
  44..1155..  ooppeenn
983
 
984
 
985
  SSuummmmaarryy Open a file.
986
 
987
  AArrgguummeennttss
988
 
989
     iinn
990
 
991
                struct cfs_open_in {
992
                    ViceFid     VFid;
993
                    int flags;
994
                } cfs_open;
995
 
996
 
997
 
998
     oouutt
999
 
1000
                struct cfs_open_out {
1001
                    dev_t       dev;
1002
                    ino_t       inode;
1003
                } cfs_open;
1004
 
1005
 
1006
 
1007
  DDeessccrriippttiioonn  This request asks Venus to place the file identified by
1008
  VFid in its cache and to note that the calling process wishes to open
1009
  it with flags as in open(2).  The return value to the kernel differs
1010
  for Unix and Windows systems.  For Unix systems the Coda FS Driver is
1011
  informed of the device and inode number of the container file in the
1012
  fields dev and inode.  For Windows the path of the container file is
1013
  returned to the kernel.
1014
  EErrrroorrss
1015
 
1016
  NNOOTTEE Currently the cfs_open_out structure is not properly adapted to
1017
  deal with the Windows case.  It might be best to implement two
1018
  upcalls, one to open aiming at a container file name, the other at a
1019
  container file inode.
1020
 
1021
  0wpage
1022
 
1023
  44..1166..  cclloossee
1024
 
1025
 
1026
  SSuummmmaarryy Close a file, update it on the servers.
1027
 
1028
  AArrgguummeennttss
1029
 
1030
     iinn
1031
 
1032
                struct cfs_close_in {
1033
                    ViceFid     VFid;
1034
                    int flags;
1035
                } cfs_close;
1036
 
1037
 
1038
 
1039
     oouutt
1040
        none
1041
 
1042
  DDeessccrriippttiioonn Close the file identified by VFid.
1043
 
1044
  EErrrroorrss
1045
 
1046
  NNOOTTEE The flags argument is bogus and not used.  However, Venus' code
1047
  has room to deal with an execp input field, probably this field should
1048
  be used to inform Venus that the file was closed but is still memory
1049
  mapped for execution.  There are comments about fetching versus not
1050
  fetching the data in Venus vproc_vfscalls.  This seems silly.  If a
1051
  file is being closed, the data in the container file is to be the new
1052
  data.  Here again the execp flag might be in play to create confusion:
1053
  currently Venus might think a file can be flushed from the cache when
1054
  it is still memory mapped.  This needs to be understood.
1055
 
1056
  0wpage
1057
 
1058
  44..1177..  iiooccttll
1059
 
1060
 
1061
  SSuummmmaarryy Do an ioctl on a file. This includes the pioctl interface.
1062
 
1063
  AArrgguummeennttss
1064
 
1065
     iinn
1066
 
1067
                struct cfs_ioctl_in {
1068
                    ViceFid VFid;
1069
                    int cmd;
1070
                    int len;
1071
                    int rwflag;
1072
                    char *data;                 /* Place holder for data. */
1073
                } cfs_ioctl;
1074
 
1075
 
1076
 
1077
     oouutt
1078
 
1079
 
1080
                struct cfs_ioctl_out {
1081
                    int len;
1082
                    caddr_t     data;           /* Place holder for data. */
1083
                } cfs_ioctl;
1084
 
1085
 
1086
 
1087
  DDeessccrriippttiioonn Do an ioctl operation on a file.  The command, len and
1088
  data arguments are filled as usual.  flags is not used by Venus.
1089
 
1090
  EErrrroorrss
1091
 
1092
  NNOOTTEE Another bogus parameter.  flags is not used.  What is the
1093
  business about PREFETCHING in the Venus code?
1094
 
1095
 
1096
  0wpage
1097
 
1098
  44..1188..  rreennaammee
1099
 
1100
 
1101
  SSuummmmaarryy Rename a fid.
1102
 
1103
  AArrgguummeennttss
1104
 
1105
     iinn
1106
 
1107
                struct cfs_rename_in {
1108
                    ViceFid     sourceFid;
1109
                    char        *srcname;
1110
                    ViceFid destFid;
1111
                    char        *destname;
1112
                } cfs_rename;
1113
 
1114
 
1115
 
1116
     oouutt
1117
        none
1118
 
1119
  DDeessccrriippttiioonn  Rename the object with name srcname in directory
1120
  sourceFid to destname in destFid.   It is important that the names
1121
  srcname and destname are 0 terminated strings.  Strings in Unix
1122
  kernels are not always null terminated.
1123
 
1124
  EErrrroorrss
1125
 
1126
  0wpage
1127
 
1128
  44..1199..  rreeaaddddiirr
1129
 
1130
 
1131
  SSuummmmaarryy Read directory entries.
1132
 
1133
  AArrgguummeennttss
1134
 
1135
     iinn
1136
 
1137
                struct cfs_readdir_in {
1138
                    ViceFid     VFid;
1139
                    int count;
1140
                    int offset;
1141
                } cfs_readdir;
1142
 
1143
 
1144
 
1145
 
1146
     oouutt
1147
 
1148
                struct cfs_readdir_out {
1149
                    int size;
1150
                    caddr_t     data;           /* Place holder for data. */
1151
                } cfs_readdir;
1152
 
1153
 
1154
 
1155
  DDeessccrriippttiioonn Read directory entries from VFid starting at offset and
1156
  read at most count bytes.  Returns the data in data and returns
1157
  the size in size.
1158
 
1159
  EErrrroorrss
1160
 
1161
  NNOOTTEE This call is not used.  Readdir operations exploit container
1162
  files.  We will re-evaluate this during the directory revamp which is
1163
  about to take place.
1164
 
1165
  0wpage
1166
 
1167
  44..2200..  vvggeett
1168
 
1169
 
1170
  SSuummmmaarryy instructs Venus to do an FSDB->Get.
1171
 
1172
  AArrgguummeennttss
1173
 
1174
     iinn
1175
 
1176
                struct cfs_vget_in {
1177
                    ViceFid VFid;
1178
                } cfs_vget;
1179
 
1180
 
1181
 
1182
     oouutt
1183
 
1184
                struct cfs_vget_out {
1185
                    ViceFid VFid;
1186
                    int vtype;
1187
                } cfs_vget;
1188
 
1189
 
1190
 
1191
  DDeessccrriippttiioonn This upcall asks Venus to do a get operation on an fsobj
1192
  labelled by VFid.
1193
 
1194
  EErrrroorrss
1195
 
1196
  NNOOTTEE This operation is not used.  However, it is extremely useful
1197
  since it can be used to deal with read/write memory mapped files.
1198
  These can be "pinned" in the Venus cache using vget and released with
1199
  inactive.
1200
 
1201
  0wpage
1202
 
1203
  44..2211..  ffssyynncc
1204
 
1205
 
1206
  SSuummmmaarryy Tell Venus to update the RVM attributes of a file.
1207
 
1208
  AArrgguummeennttss
1209
 
1210
     iinn
1211
 
1212
                struct cfs_fsync_in {
1213
                    ViceFid VFid;
1214
                } cfs_fsync;
1215
 
1216
 
1217
 
1218
     oouutt
1219
        none
1220
 
1221
  DDeessccrriippttiioonn Ask Venus to update RVM attributes of object VFid. This
1222
  should be called as part of kernel level fsync type calls.  The
1223
  result indicates if the syncing was successful.
1224
 
1225
  EErrrroorrss
1226
 
1227
  NNOOTTEE Linux does not implement this call. It should.
1228
 
1229
  0wpage
1230
 
1231
  44..2222..  iinnaaccttiivvee
1232
 
1233
 
1234
  SSuummmmaarryy Tell Venus a vnode is no longer in use.
1235
 
1236
  AArrgguummeennttss
1237
 
1238
     iinn
1239
 
1240
                struct cfs_inactive_in {
1241
                    ViceFid VFid;
1242
                } cfs_inactive;
1243
 
1244
 
1245
 
1246
     oouutt
1247
        none
1248
 
1249
  DDeessccrriippttiioonn This operation returns EOPNOTSUPP.
1250
 
1251
  EErrrroorrss
1252
 
1253
  NNOOTTEE This should perhaps be removed.
1254
 
1255
  0wpage
1256
 
1257
  44..2233..  rrddwwrr
1258
 
1259
 
1260
  SSuummmmaarryy Read or write from a file
1261
 
1262
  AArrgguummeennttss
1263
 
1264
     iinn
1265
 
1266
                struct cfs_rdwr_in {
1267
                    ViceFid     VFid;
1268
                    int rwflag;
1269
                    int count;
1270
                    int offset;
1271
                    int ioflag;
1272
                    caddr_t     data;           /* Place holder for data. */
1273
                } cfs_rdwr;
1274
 
1275
 
1276
 
1277
 
1278
     oouutt
1279
 
1280
                struct cfs_rdwr_out {
1281
                    int rwflag;
1282
                    int count;
1283
                    caddr_t     data;   /* Place holder for data. */
1284
                } cfs_rdwr;
1285
 
1286
 
1287
 
1288
  DDeessccrriippttiioonn This upcall asks Venus to read or write from a file.
1289
 
1290
  EErrrroorrss
1291
 
1292
  NNOOTTEE It should be removed since it is against the Coda philosophy that
1293
  read/write operations never reach Venus.  I have been told the
1294
  operation does not work.  It is not currently used.
1295
 
1296
 
1297
  0wpage
1298
 
1299
  44..2244..  ooddyymmoouunntt
1300
 
1301
 
1302
  SSuummmmaarryy Allows mounting multiple Coda "filesystems" on one Unix mount
1303
  point.
1304
 
1305
  AArrgguummeennttss
1306
 
1307
     iinn
1308
 
1309
                struct ody_mount_in {
1310
                    char        *name;          /* Place holder for data. */
1311
                } ody_mount;
1312
 
1313
 
1314
 
1315
     oouutt
1316
 
1317
                struct ody_mount_out {
1318
                    ViceFid VFid;
1319
                } ody_mount;
1320
 
1321
 
1322
 
1323
  DDeessccrriippttiioonn  Asks Venus to return the rootfid of a Coda system named
1324
  name.  The fid is returned in VFid.
1325
 
1326
  EErrrroorrss
1327
 
1328
  NNOOTTEE This call was used by David for dynamic sets.  It should be
1329
  removed since it causes a jungle of pointers in the VFS mounting area.
1330
  It is not used by Coda proper.  Call is not implemented by Venus.
1331
 
1332
  0wpage
1333
 
1334
  44..2255..  ooddyy__llooookkuupp
1335
 
1336
 
1337
  SSuummmmaarryy Looks up something.
1338
 
1339
  AArrgguummeennttss
1340
 
1341
     iinn irrelevant
1342
 
1343
 
1344
     oouutt
1345
        irrelevant
1346
 
1347
  DDeessccrriippttiioonn
1348
 
1349
  EErrrroorrss
1350
 
1351
  NNOOTTEE Gut it. Call is not implemented by Venus.
1352
 
1353
  0wpage
1354
 
1355
  44..2266..  ooddyy__eexxppaanndd
1356
 
1357
 
1358
  SSuummmmaarryy expands something in a dynamic set.
1359
 
1360
  AArrgguummeennttss
1361
 
1362
     iinn irrelevant
1363
 
1364
     oouutt
1365
        irrelevant
1366
 
1367
  DDeessccrriippttiioonn
1368
 
1369
  EErrrroorrss
1370
 
1371
  NNOOTTEE Gut it.  Call is not implemented by Venus.
1372
 
1373
  0wpage
1374
 
1375
  44..2277..  pprreeffeettcchh
1376
 
1377
 
1378
  SSuummmmaarryy Prefetch a dynamic set.
1379
 
1380
  AArrgguummeennttss
1381
 
1382
     iinn Not documented.
1383
 
1384
     oouutt
1385
        Not documented.
1386
 
1387
  DDeessccrriippttiioonn  Venus worker.cc has support for this call, although it is
1388
  noted that it doesn't work.  Not surprising, since the kernel does not
1389
  have support for it. (ODY_PREFETCH is not a defined operation).
1390
 
1391
  EErrrroorrss
1392
 
1393
  NNOOTTEE Gut it. It isn't working and isn't used by Coda.
1394
 
1395
 
1396
  0wpage
1397
 
1398
  44..2288..  ssiiggnnaall
1399
 
1400
 
1401
  SSuummmmaarryy Send Venus a signal about an upcall.
1402
 
1403
  AArrgguummeennttss
1404
 
1405
     iinn none
1406
 
1407
     oouutt
1408
        not applicable.
1409
 
1410
  DDeessccrriippttiioonn  This is an out-of-band upcall to Venus to inform Venus
1411
  that the calling process received a signal after Venus read the
1412
  message from the input queue.  Venus is supposed to clean up the
1413
  operation.
1414
 
1415
  EErrrroorrss No reply is given.
1416
 
1417
  NNOOTTEE We need to better understand what Venus needs to clean up and if
1418
  it is doing this correctly.  Also we need to handle multiple upcall
1419
  per system call situations correctly.  It would be important to know
1420
  what state changes in Venus take place after an upcall for which the
1421
  kernel is responsible for notifying Venus to clean up (e.g. open
1422
  definitely is such a state change, but many others are maybe not).
1423
 
1424
  0wpage
1425
 
1426
  55..  TThhee mmiinniiccaacchhee aanndd ddoowwnnccaallllss
1427
 
1428
 
1429
  The Coda FS Driver can cache results of lookup and access upcalls, to
1430
  limit the frequency of upcalls.  Upcalls carry a price since a process
1431
  context switch needs to take place.  The counterpart of caching the
1432
  information is that Venus will notify the FS Driver that cached
1433
  entries must be flushed or renamed.
1434
 
1435
  The kernel code generally has to maintain a structure which links the
1436
  internal file handles (called vnodes in BSD, inodes in Linux and
1437
  FileHandles in Windows) with the ViceFid's which Venus maintains.  The
1438
  reason is that frequent translations back and forth are needed in
1439
  order to make upcalls and use the results of upcalls.  Such linking
1440
  objects are called ccnnooddeess.
1441
 
1442
  The current minicache implementations have cache entries which record
1443
  the following:
1444
 
1445
  1. the name of the file
1446
 
1447
  2. the cnode of the directory containing the object
1448
 
1449
  3. a list of CodaCred's for which the lookup is permitted.
1450
 
1451
  4. the cnode of the object
1452
 
1453
  The lookup call in the Coda FS Driver may request the cnode of the
1454
  desired object from the cache, by passing its name, directory and the
1455
  CodaCred's of the caller.  The cache will return the cnode or indicate
1456
  that it cannot be found.  The Coda FS Driver must be careful to
1457
  invalidate cache entries when it modifies or removes objects.
1458
 
1459
  When Venus obtains information that indicates that cache entries are
1460
  no longer valid, it will make a downcall to the kernel.  Downcalls are
1461
  intercepted by the Coda FS Driver and lead to cache invalidations of
1462
  the kind described below.  The Coda FS Driver does not return an error
1463
  unless the downcall data could not be read into kernel memory.
1464
 
1465
 
1466
  55..11..  IINNVVAALLIIDDAATTEE
1467
 
1468
 
1469
  No information is available on this call.
1470
 
1471
 
1472
  55..22..  FFLLUUSSHH
1473
 
1474
 
1475
 
1476
  AArrgguummeennttss None
1477
 
1478
  SSuummmmaarryy Flush the name cache entirely.
1479
 
1480
  DDeessccrriippttiioonn Venus issues this call upon startup and when it dies. This
1481
  is to prevent stale cache information being held.  Some operating
1482
  systems allow the kernel name cache to be switched off dynamically.
1483
  When this is done, this downcall is made.
1484
 
1485
 
1486
  55..33..  PPUURRGGEEUUSSEERR
1487
 
1488
 
1489
  AArrgguummeennttss
1490
 
1491
          struct cfs_purgeuser_out {/* CFS_PURGEUSER is a venus->kernel call */
1492
              struct CodaCred cred;
1493
          } cfs_purgeuser;
1494
 
1495
 
1496
 
1497
  DDeessccrriippttiioonn Remove all entries in the cache carrying the Cred.  This
1498
  call is issued when tokens for a user expire or are flushed.
1499
 
1500
 
1501
  55..44..  ZZAAPPFFIILLEE
1502
 
1503
 
1504
  AArrgguummeennttss
1505
 
1506
          struct cfs_zapfile_out {  /* CFS_ZAPFILE is a venus->kernel call */
1507
              ViceFid CodaFid;
1508
          } cfs_zapfile;
1509
 
1510
 
1511
 
1512
  DDeessccrriippttiioonn Remove all entries which have the (dir vnode, name) pair.
1513
  This is issued as a result of an invalidation of cached attributes of
1514
  a vnode.
1515
 
1516
  NNOOTTEE Call is not named correctly in NetBSD and Mach.  The minicache
1517
  zapfile routine takes different arguments. Linux does not implement
1518
  the invalidation of attributes correctly.
1519
 
1520
 
1521
 
1522
  55..55..  ZZAAPPDDIIRR
1523
 
1524
 
1525
  AArrgguummeennttss
1526
 
1527
          struct cfs_zapdir_out {   /* CFS_ZAPDIR is a venus->kernel call */
1528
              ViceFid CodaFid;
1529
          } cfs_zapdir;
1530
 
1531
 
1532
 
1533
  DDeessccrriippttiioonn Remove all entries in the cache lying in a directory
1534
  CodaFid, and all children of this directory. This call is issued when
1535
  Venus receives a callback on the directory.
1536
 
1537
 
1538
  55..66..  ZZAAPPVVNNOODDEE
1539
 
1540
 
1541
 
1542
  AArrgguummeennttss
1543
 
1544
          struct cfs_zapvnode_out { /* CFS_ZAPVNODE is a venus->kernel call */
1545
              struct CodaCred cred;
1546
              ViceFid VFid;
1547
          } cfs_zapvnode;
1548
 
1549
 
1550
 
1551
  DDeessccrriippttiioonn Remove all entries in the cache carrying the cred and VFid
1552
  as in the arguments. This downcall is probably never issued.
1553
 
1554
 
1555
  55..77..  PPUURRGGEEFFIIDD
1556
 
1557
 
1558
  SSuummmmaarryy
1559
 
1560
  AArrgguummeennttss
1561
 
1562
          struct cfs_purgefid_out { /* CFS_PURGEFID is a venus->kernel call */
1563
              ViceFid CodaFid;
1564
          } cfs_purgefid;
1565
 
1566
 
1567
 
1568
  DDeessccrriippttiioonn Flush the attribute for the file. If it is a dir (odd
1569
  vnode), purge its children from the namecache and remove the file from the
1570
  namecache.
1571
 
1572
 
1573
 
1574
  55..88..  RREEPPLLAACCEE
1575
 
1576
 
1577
  SSuummmmaarryy Replace the Fid's for a collection of names.
1578
 
1579
  AArrgguummeennttss
1580
 
1581
          struct cfs_replace_out { /* cfs_replace is a venus->kernel call */
1582
              ViceFid NewFid;
1583
              ViceFid OldFid;
1584
          } cfs_replace;
1585
 
1586
 
1587
 
1588
  DDeessccrriippttiioonn This routine replaces a ViceFid in the name cache with
1589
  another.  It is added to allow Venus during reintegration to replace
1590
  locally allocated temp fids while disconnected with global fids even
1591
  when the reference counts on those fids are not zero.
1592
 
1593
  0wpage
1594
 
1595
  66..  IInniittiiaalliizzaattiioonn aanndd cclleeaannuupp
1596
 
1597
 
1598
  This section gives brief hints as to desirable features for the Coda
1599
  FS Driver at startup and upon shutdown or Venus failures.  Before
1600
  entering the discussion it is useful to repeat that the Coda FS Driver
1601
  maintains the following data:
1602
 
1603
 
1604
  1. message queues
1605
 
1606
  2. cnodes
1607
 
1608
  3. name cache entries
1609
 
1610
     The name cache entries are entirely private to the driver, so they
1611
     can easily be manipulated.   The message queues will generally have
1612
     clear points of initialization and destruction.  The cnodes are
1613
     much more delicate.  User processes hold reference counts in Coda
1614
     filesystems and it can be difficult to clean up the cnodes.
1615
 
1616
  It can expect requests through:
1617
 
1618
  1. the message subsystem
1619
 
1620
  2. the VFS layer
1621
 
1622
  3. pioctl interface
1623
 
1624
     Currently the _p_i_o_c_t_l passes through the VFS for Coda so we can
1625
     treat these similarly.
1626
 
1627
 
1628
  66..11..  RReeqquuiirreemmeennttss
1629
 
1630
 
1631
  The following requirements should be accommodated:
1632
 
1633
  1. The message queues should have open and close routines.  On Unix
1634
     the opening of the character devices are such routines.
1635
 
1636
  +o  Before opening, no messages can be placed.
1637
 
1638
  +o  Opening will remove any old messages still pending.
1639
 
1640
  +o  Close will notify any sleeping processes that their upcall cannot
1641
     be completed.
1642
 
1643
  +o  Close will free all memory allocated by the message queues.
1644
 
1645
 
1646
  2. At open the namecache shall be initialized to empty state.
1647
 
1648
  3. Before the message queues are open, all VFS operations will fail.
1649
     Fortunately this can be achieved by making sure than mounting the
1650
     Coda filesystem cannot succeed before opening.
1651
 
1652
  4. After closing of the queues, no VFS operations can succeed.  Here
1653
     one needs to be careful, since a few operations (lookup,
1654
     read/write, readdir) can proceed without upcalls.  These must be
1655
     explicitly blocked.
1656
 
1657
  5. Upon closing the namecache shall be flushed and disabled.
1658
 
1659
  6. All memory held by cnodes can be freed without relying on upcalls.
1660
 
1661
  7. Unmounting the file system can be done without relying on upcalls.
1662
 
1663
  8. Mounting the Coda filesystem should fail gracefully if Venus cannot
1664
     get the rootfid or the attributes of the rootfid.  The latter is
1665
     best implemented by Venus fetching these objects before attempting
1666
     to mount.
1667
 
1668
  NNOOTTEE  NetBSD in particular but also Linux have not implemented the
1669
  above requirements fully.  For smooth operation this needs to be
1670
  corrected.
1671
 
1672
 
1673
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.