1 |
1275 |
phoenix |
/*
|
2 |
|
|
* linux/arch/cris/kernel/time.c
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
5 |
|
|
* Copyright (C) 1999, 2000, 2001, 2002, 2003 Axis Communications AB
|
6 |
|
|
*
|
7 |
|
|
* 1994-07-02 Alan Modra
|
8 |
|
|
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
|
9 |
|
|
* 1995-03-26 Markus Kuhn
|
10 |
|
|
* fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
|
11 |
|
|
* precision CMOS clock update
|
12 |
|
|
* 1996-05-03 Ingo Molnar
|
13 |
|
|
* fixed time warps in do_[slow|fast]_gettimeoffset()
|
14 |
|
|
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
15 |
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
16 |
|
|
*
|
17 |
|
|
* Linux/CRIS specific code:
|
18 |
|
|
*
|
19 |
|
|
* Authors: Bjorn Wesen
|
20 |
|
|
* Johan Adolfsson
|
21 |
|
|
*
|
22 |
|
|
* 2002-03-04 Johan Adolfsson
|
23 |
|
|
* Use prescale timer at 25000 Hz instead of the baudrate timer at
|
24 |
|
|
* 19200 to get rid of the 64ppm to fast timer (and we get better
|
25 |
|
|
* resolution within a jiffie as well.
|
26 |
|
|
* 2002-03-05 Johan Adolfsson
|
27 |
|
|
* Use prescaler in do_slow_gettimeoffset() to get 1 us resolution (40ns)
|
28 |
|
|
* 2002-09-06 Johan Adolfsson
|
29 |
|
|
* Handle lost ticks by checking wall_jiffies, more efficient code
|
30 |
|
|
* by using local vars and not the pointer argument.
|
31 |
|
|
*
|
32 |
|
|
*/
|
33 |
|
|
|
34 |
|
|
#include <linux/errno.h>
|
35 |
|
|
#include <linux/sched.h>
|
36 |
|
|
#include <linux/init.h>
|
37 |
|
|
#include <linux/kernel.h>
|
38 |
|
|
#include <linux/param.h>
|
39 |
|
|
#include <linux/string.h>
|
40 |
|
|
#include <linux/mm.h>
|
41 |
|
|
#include <linux/interrupt.h>
|
42 |
|
|
#include <linux/time.h>
|
43 |
|
|
#include <linux/delay.h>
|
44 |
|
|
|
45 |
|
|
#include <asm/segment.h>
|
46 |
|
|
#include <asm/io.h>
|
47 |
|
|
#include <asm/irq.h>
|
48 |
|
|
#include <asm/delay.h>
|
49 |
|
|
#include <asm/rtc.h>
|
50 |
|
|
|
51 |
|
|
#include <linux/timex.h>
|
52 |
|
|
#include <linux/config.h>
|
53 |
|
|
|
54 |
|
|
#include <asm/svinto.h>
|
55 |
|
|
|
56 |
|
|
#define CRIS_TEST_TIMERS 0
|
57 |
|
|
|
58 |
|
|
static int have_rtc; /* used to remember if we have an RTC or not */
|
59 |
|
|
|
60 |
|
|
/* define this if you need to use print_timestamp */
|
61 |
|
|
/* it will make jiffies at 96 hz instead of 100 hz though */
|
62 |
|
|
#undef USE_CASCADE_TIMERS
|
63 |
|
|
|
64 |
|
|
extern int setup_etrax_irq(int, struct irqaction *);
|
65 |
|
|
|
66 |
|
|
#define TICK_SIZE tick
|
67 |
|
|
|
68 |
|
|
extern unsigned long wall_jiffies;
|
69 |
|
|
|
70 |
|
|
/* The timers count from their initial value down to 1
|
71 |
|
|
* The R_TIMER0_DATA counts down when R_TIM_PRESC_STATUS reaches halv
|
72 |
|
|
* of the divider value.
|
73 |
|
|
*/
|
74 |
|
|
unsigned long get_ns_in_jiffie(void)
|
75 |
|
|
{
|
76 |
|
|
unsigned char timer_count, t1;
|
77 |
|
|
unsigned short presc_count;
|
78 |
|
|
unsigned long ns;
|
79 |
|
|
unsigned long flags;
|
80 |
|
|
|
81 |
|
|
save_flags(flags);
|
82 |
|
|
cli();
|
83 |
|
|
timer_count = *R_TIMER0_DATA;
|
84 |
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
85 |
|
|
/* presc_count might be wrapped */
|
86 |
|
|
t1 = *R_TIMER0_DATA;
|
87 |
|
|
|
88 |
|
|
if (timer_count != t1){
|
89 |
|
|
/* it wrapped, read prescaler again... */
|
90 |
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
91 |
|
|
timer_count = t1;
|
92 |
|
|
}
|
93 |
|
|
restore_flags(flags);
|
94 |
|
|
if (presc_count >= PRESCALE_VALUE/2 ){
|
95 |
|
|
presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
|
96 |
|
|
} else {
|
97 |
|
|
presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
|
98 |
|
|
}
|
99 |
|
|
|
100 |
|
|
ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
|
101 |
|
|
( (presc_count) * (1000000000/PRESCALE_FREQ));
|
102 |
|
|
return ns;
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
/* Convert the clkdiv_low and clkdivb_high fiels in timer_data
|
107 |
|
|
* (from *R_TIMER_DATA) to nanoseconds (67 ns resolution)
|
108 |
|
|
*/
|
109 |
|
|
unsigned long timer_data_to_ns(unsigned long timer_data)
|
110 |
|
|
{
|
111 |
|
|
/* low (clkdiv_low lsb toggles with 7.3728MHz so it counts
|
112 |
|
|
* with 14.7456 MHz = 67.816 ns (0-17361ns)
|
113 |
|
|
* high (clkdiv_high lsb toggles with 38.4kHz so it counts
|
114 |
|
|
* with 76.8kHz = 13020.833 ns (0-3333333 ns)
|
115 |
|
|
* By checking bit 9,8,7 we can now how to compensate the low value
|
116 |
|
|
* to get a 67 ns resolution all the way.
|
117 |
|
|
Example of R_TIMER_DATA values:
|
118 |
|
|
bit 98 7 low 9 87 offset
|
119 |
|
|
0289DC00 00 000 0 0 00 0
|
120 |
|
|
0289DC41 00 010 64 0 01 0
|
121 |
|
|
0289DC81 00 100 128 0 10 0
|
122 |
|
|
0289DDC0 01 110 192 1 11 0 13020 = 192
|
123 |
|
|
0289DD01 01 000 0 256 1 00 +256
|
124 |
|
|
0289DD41 01 010 64 320 1 01 +256
|
125 |
|
|
|
126 |
|
|
0288DE80 10 100 128 384 0 10 0: -128 26040= 384
|
127 |
|
|
0288DEC1 10 110 192 448 0 11 64 -128
|
128 |
|
|
0288DE01 10 000 0 512 128 +128
|
129 |
|
|
0288DF40 11 010 64 576 192 +128 39060
|
130 |
|
|
0288DF81 11 100 128 640 256 +128
|
131 |
|
|
0288DFC1 11 110 192 704 320 +128
|
132 |
|
|
..393
|
133 |
|
|
*/
|
134 |
|
|
|
135 |
|
|
static const short timer_data_add[8] = {
|
136 |
|
|
0, /* 00 0 */
|
137 |
|
|
0, /* 00 1 */
|
138 |
|
|
256, /* 01 0 */
|
139 |
|
|
0, /* 01 1 */
|
140 |
|
|
128, /* 10 0 */
|
141 |
|
|
-128,/* 10 1 */
|
142 |
|
|
128, /* 11 0 */
|
143 |
|
|
128 /* 11 1 */
|
144 |
|
|
};
|
145 |
|
|
unsigned long ns;
|
146 |
|
|
unsigned long low;
|
147 |
|
|
unsigned long high;
|
148 |
|
|
|
149 |
|
|
high = (((timer_data & 0x0000FE00)>>8) * 13020833)/1000;
|
150 |
|
|
ns = high;
|
151 |
|
|
|
152 |
|
|
low = timer_data & 0xFF;
|
153 |
|
|
low += timer_data_add[(timer_data >>7) & 0x7];
|
154 |
|
|
ns += (low * 67816)/1000;
|
155 |
|
|
return ns;
|
156 |
|
|
} /* timer_data_to_ns */
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
#if CRIS_TEST_TIMERS
|
162 |
|
|
#define NS_TEST_SIZE 4000
|
163 |
|
|
static unsigned long ns_test[NS_TEST_SIZE];
|
164 |
|
|
void cris_test_timers(void)
|
165 |
|
|
{
|
166 |
|
|
int i;
|
167 |
|
|
#if 0
|
168 |
|
|
for (i = 0; i < NS_TEST_SIZE; i++)
|
169 |
|
|
{
|
170 |
|
|
ns_test[i] = *R_TIMER0_DATA | (*R_TIM_PRESC_STATUS<<16);
|
171 |
|
|
}
|
172 |
|
|
for (i = 1; i < NS_TEST_SIZE; i++)
|
173 |
|
|
{
|
174 |
|
|
printk("%4i. %lu %lu %09lu ns \n",
|
175 |
|
|
i, ns_test[i]&0x0FFFF, (ns_test[i]>>16),
|
176 |
|
|
get_ns_in_jiffie_from_data(ns_test[i]&0x0FFFF, ns_test[i]>>16));
|
177 |
|
|
}
|
178 |
|
|
#else
|
179 |
|
|
for (i = 0; i < NS_TEST_SIZE; i++)
|
180 |
|
|
{
|
181 |
|
|
ns_test[i] = get_ns_in_jiffie();
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
for (i = 1; i < NS_TEST_SIZE; i++)
|
185 |
|
|
{
|
186 |
|
|
printk("%4i. %09lu ns diff %li ns\n",
|
187 |
|
|
i, ns_test[i], ns_test[i]- ns_test[i-1]);
|
188 |
|
|
}
|
189 |
|
|
#endif
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
#endif
|
193 |
|
|
|
194 |
|
|
static unsigned long do_slow_gettimeoffset(void)
|
195 |
|
|
{
|
196 |
|
|
unsigned long count, t1;
|
197 |
|
|
unsigned long usec_count = 0;
|
198 |
|
|
unsigned short presc_count;
|
199 |
|
|
|
200 |
|
|
static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
|
201 |
|
|
static unsigned long jiffies_p = 0;
|
202 |
|
|
|
203 |
|
|
/*
|
204 |
|
|
* cache volatile jiffies temporarily; we have IRQs turned off.
|
205 |
|
|
*/
|
206 |
|
|
unsigned long jiffies_t;
|
207 |
|
|
|
208 |
|
|
/* The timer interrupt comes from Etrax timer 0. In order to get
|
209 |
|
|
* better precision, we check the current value. It might have
|
210 |
|
|
* underflowed already though.
|
211 |
|
|
*/
|
212 |
|
|
|
213 |
|
|
#ifndef CONFIG_SVINTO_SIM
|
214 |
|
|
/* Not available in the xsim simulator. */
|
215 |
|
|
count = *R_TIMER0_DATA;
|
216 |
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
217 |
|
|
/* presc_count might be wrapped */
|
218 |
|
|
t1 = *R_TIMER0_DATA;
|
219 |
|
|
if (count != t1){
|
220 |
|
|
/* it wrapped, read prescaler again... */
|
221 |
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
222 |
|
|
count = t1;
|
223 |
|
|
}
|
224 |
|
|
#else
|
225 |
|
|
count = 0;
|
226 |
|
|
presc_count = 0;
|
227 |
|
|
#endif
|
228 |
|
|
|
229 |
|
|
jiffies_t = jiffies;
|
230 |
|
|
|
231 |
|
|
/*
|
232 |
|
|
* avoiding timer inconsistencies (they are rare, but they happen)...
|
233 |
|
|
* there are one problem that must be avoided here:
|
234 |
|
|
* 1. the timer counter underflows
|
235 |
|
|
*/
|
236 |
|
|
if( jiffies_t == jiffies_p ) {
|
237 |
|
|
if( count > count_p ) {
|
238 |
|
|
/* Timer wrapped, use new count and prescale
|
239 |
|
|
* increase the time corresponding to one jiffie
|
240 |
|
|
*/
|
241 |
|
|
usec_count = 1000000/HZ;
|
242 |
|
|
}
|
243 |
|
|
} else
|
244 |
|
|
jiffies_p = jiffies_t;
|
245 |
|
|
count_p = count;
|
246 |
|
|
if (presc_count >= PRESCALE_VALUE/2 ){
|
247 |
|
|
presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
|
248 |
|
|
} else {
|
249 |
|
|
presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
|
250 |
|
|
}
|
251 |
|
|
/* Convert timer value to usec */
|
252 |
|
|
usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) +
|
253 |
|
|
(( (presc_count) * (1000000000/PRESCALE_FREQ))/1000);
|
254 |
|
|
|
255 |
|
|
return usec_count;
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
|
259 |
|
|
#define do_gettimeoffset() do_slow_gettimeoffset()
|
260 |
|
|
|
261 |
|
|
/*
|
262 |
|
|
* This version of gettimeofday has near microsecond resolution.
|
263 |
|
|
*/
|
264 |
|
|
void do_gettimeofday(struct timeval *tv)
|
265 |
|
|
{
|
266 |
|
|
unsigned long flags;
|
267 |
|
|
unsigned long usec, sec;
|
268 |
|
|
save_flags(flags);
|
269 |
|
|
cli();
|
270 |
|
|
usec = do_gettimeoffset();
|
271 |
|
|
{
|
272 |
|
|
unsigned long lost = jiffies - wall_jiffies;
|
273 |
|
|
if (lost)
|
274 |
|
|
usec += lost * (1000000 / HZ);
|
275 |
|
|
}
|
276 |
|
|
sec = xtime.tv_sec;
|
277 |
|
|
usec += xtime.tv_usec;
|
278 |
|
|
restore_flags(flags);
|
279 |
|
|
|
280 |
|
|
while (usec >= 1000000) {
|
281 |
|
|
usec -= 1000000;
|
282 |
|
|
sec++;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
tv->tv_sec = sec;
|
286 |
|
|
tv->tv_usec = usec;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
void do_settimeofday(struct timeval *tv)
|
290 |
|
|
{
|
291 |
|
|
unsigned long flags;
|
292 |
|
|
signed long new_usec, new_sec;
|
293 |
|
|
save_flags(flags);
|
294 |
|
|
cli();
|
295 |
|
|
/* This is revolting. We need to set the xtime.tv_usec
|
296 |
|
|
* correctly. However, the value in this location is
|
297 |
|
|
* is value at the last tick.
|
298 |
|
|
* Discover what correction gettimeofday
|
299 |
|
|
* would have done, and then undo it!
|
300 |
|
|
*/
|
301 |
|
|
new_usec = tv->tv_usec;
|
302 |
|
|
new_usec -= do_gettimeoffset();
|
303 |
|
|
new_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);
|
304 |
|
|
new_sec = tv->tv_sec;
|
305 |
|
|
while (new_usec < 0) {
|
306 |
|
|
new_usec += 1000000;
|
307 |
|
|
new_sec--;
|
308 |
|
|
}
|
309 |
|
|
xtime.tv_sec = new_sec;
|
310 |
|
|
xtime.tv_usec = new_usec;
|
311 |
|
|
|
312 |
|
|
time_adjust = 0; /* stop active adjtime() */
|
313 |
|
|
time_status |= STA_UNSYNC;
|
314 |
|
|
time_state = TIME_ERROR; /* p. 24, (a) */
|
315 |
|
|
time_maxerror = NTP_PHASE_LIMIT;
|
316 |
|
|
time_esterror = NTP_PHASE_LIMIT;
|
317 |
|
|
restore_flags(flags);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
/*
|
322 |
|
|
* BUG: This routine does not handle hour overflow properly; it just
|
323 |
|
|
* sets the minutes. Usually you'll only notice that after reboot!
|
324 |
|
|
*/
|
325 |
|
|
|
326 |
|
|
static int set_rtc_mmss(unsigned long nowtime)
|
327 |
|
|
{
|
328 |
|
|
int retval = 0;
|
329 |
|
|
int real_seconds, real_minutes, cmos_minutes;
|
330 |
|
|
|
331 |
|
|
printk(KERN_DEBUG "set_rtc_mmss(%lu)\n", nowtime);
|
332 |
|
|
|
333 |
|
|
if(!have_rtc)
|
334 |
|
|
return 0;
|
335 |
|
|
|
336 |
|
|
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
337 |
|
|
BCD_TO_BIN(cmos_minutes);
|
338 |
|
|
|
339 |
|
|
/*
|
340 |
|
|
* since we're only adjusting minutes and seconds,
|
341 |
|
|
* don't interfere with hour overflow. This avoids
|
342 |
|
|
* messing with unknown time zones but requires your
|
343 |
|
|
* RTC not to be off by more than 15 minutes
|
344 |
|
|
*/
|
345 |
|
|
real_seconds = nowtime % 60;
|
346 |
|
|
real_minutes = nowtime / 60;
|
347 |
|
|
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
|
348 |
|
|
real_minutes += 30; /* correct for half hour time zone */
|
349 |
|
|
real_minutes %= 60;
|
350 |
|
|
|
351 |
|
|
if (abs(real_minutes - cmos_minutes) < 30) {
|
352 |
|
|
BIN_TO_BCD(real_seconds);
|
353 |
|
|
BIN_TO_BCD(real_minutes);
|
354 |
|
|
CMOS_WRITE(real_seconds,RTC_SECONDS);
|
355 |
|
|
CMOS_WRITE(real_minutes,RTC_MINUTES);
|
356 |
|
|
} else {
|
357 |
|
|
printk(KERN_WARNING
|
358 |
|
|
"set_rtc_mmss: can't update from %d to %d\n",
|
359 |
|
|
cmos_minutes, real_minutes);
|
360 |
|
|
retval = -1;
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
return retval;
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
/* Excerpt from the Etrax100 HSDD about the built-in watchdog:
|
367 |
|
|
*
|
368 |
|
|
* 3.10.4 Watchdog timer
|
369 |
|
|
|
370 |
|
|
* When the watchdog timer is started, it generates an NMI if the watchdog
|
371 |
|
|
* isn't restarted or stopped within 0.1 s. If it still isn't restarted or
|
372 |
|
|
* stopped after an additional 3.3 ms, the watchdog resets the chip.
|
373 |
|
|
* The watchdog timer is stopped after reset. The watchdog timer is controlled
|
374 |
|
|
* by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
|
375 |
|
|
* and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
|
376 |
|
|
* described in the table below:
|
377 |
|
|
*
|
378 |
|
|
* Watchdog Value written:
|
379 |
|
|
* state: To enable: To key: Operation:
|
380 |
|
|
* -------- ---------- ------- ----------
|
381 |
|
|
* stopped 0 X No effect.
|
382 |
|
|
* stopped 1 key_val Start watchdog with key = key_val.
|
383 |
|
|
* started 0 ~key Stop watchdog
|
384 |
|
|
* started 1 ~key Restart watchdog with key = ~key.
|
385 |
|
|
* started X new_key_val Change key to new_key_val.
|
386 |
|
|
*
|
387 |
|
|
* Note: '~' is the bitwise NOT operator.
|
388 |
|
|
*
|
389 |
|
|
*/
|
390 |
|
|
|
391 |
|
|
/* right now, starting the watchdog is the same as resetting it */
|
392 |
|
|
#define start_watchdog reset_watchdog
|
393 |
|
|
|
394 |
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
395 |
|
|
static int watchdog_key = 0; /* arbitrary number */
|
396 |
|
|
#endif
|
397 |
|
|
|
398 |
|
|
/* number of pages to consider "out of memory". it is normal that the memory
|
399 |
|
|
* is used though, so put this really low.
|
400 |
|
|
*/
|
401 |
|
|
|
402 |
|
|
#define WATCHDOG_MIN_FREE_PAGES 8
|
403 |
|
|
|
404 |
|
|
void
|
405 |
|
|
reset_watchdog(void)
|
406 |
|
|
{
|
407 |
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
408 |
|
|
/* only keep watchdog happy as long as we have memory left! */
|
409 |
|
|
if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
|
410 |
|
|
/* reset the watchdog with the inverse of the old key */
|
411 |
|
|
watchdog_key ^= 0x7; /* invert key, which is 3 bits */
|
412 |
|
|
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
|
413 |
|
|
IO_STATE(R_WATCHDOG, enable, start);
|
414 |
|
|
}
|
415 |
|
|
#endif
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
/* stop the watchdog - we still need the correct key */
|
419 |
|
|
|
420 |
|
|
void
|
421 |
|
|
stop_watchdog(void)
|
422 |
|
|
{
|
423 |
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
424 |
|
|
watchdog_key ^= 0x7; /* invert key, which is 3 bits */
|
425 |
|
|
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
|
426 |
|
|
IO_STATE(R_WATCHDOG, enable, stop);
|
427 |
|
|
#endif
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
/* last time the cmos clock got updated */
|
431 |
|
|
static long last_rtc_update = 0;
|
432 |
|
|
|
433 |
|
|
/*
|
434 |
|
|
* timer_interrupt() needs to keep up the real-time clock,
|
435 |
|
|
* as well as call the "do_timer()" routine every clocktick
|
436 |
|
|
*/
|
437 |
|
|
|
438 |
|
|
//static unsigned short myjiff; /* used by our debug routine print_timestamp */
|
439 |
|
|
|
440 |
|
|
static inline void
|
441 |
|
|
timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
442 |
|
|
{
|
443 |
|
|
/* acknowledge the timer irq */
|
444 |
|
|
|
445 |
|
|
#ifdef USE_CASCADE_TIMERS
|
446 |
|
|
*R_TIMER_CTRL =
|
447 |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
|
448 |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
|
449 |
|
|
IO_STATE( R_TIMER_CTRL, i1, clr) |
|
450 |
|
|
IO_STATE( R_TIMER_CTRL, tm1, run) |
|
451 |
|
|
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
|
452 |
|
|
IO_STATE( R_TIMER_CTRL, i0, clr) |
|
453 |
|
|
IO_STATE( R_TIMER_CTRL, tm0, run) |
|
454 |
|
|
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
|
455 |
|
|
#else
|
456 |
|
|
*R_TIMER_CTRL = r_timer_ctrl_shadow |
|
457 |
|
|
IO_STATE(R_TIMER_CTRL, i0, clr);
|
458 |
|
|
#endif
|
459 |
|
|
|
460 |
|
|
/* reset watchdog otherwise it resets us! */
|
461 |
|
|
|
462 |
|
|
reset_watchdog();
|
463 |
|
|
|
464 |
|
|
/* call the real timer interrupt handler */
|
465 |
|
|
|
466 |
|
|
do_timer(regs);
|
467 |
|
|
|
468 |
|
|
/*
|
469 |
|
|
* If we have an externally synchronized Linux clock, then update
|
470 |
|
|
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
471 |
|
|
* called as close as possible to 500 ms before the new second starts.
|
472 |
|
|
*/
|
473 |
|
|
|
474 |
|
|
if ((time_status & STA_UNSYNC) == 0 &&
|
475 |
|
|
xtime.tv_sec > last_rtc_update + 660 &&
|
476 |
|
|
xtime.tv_usec > 500000 - (tick >> 1) &&
|
477 |
|
|
xtime.tv_usec < 500000 + (tick >> 1)) {
|
478 |
|
|
if (set_rtc_mmss(xtime.tv_sec) == 0)
|
479 |
|
|
last_rtc_update = xtime.tv_sec;
|
480 |
|
|
else
|
481 |
|
|
last_rtc_update = xtime.tv_sec - 600;
|
482 |
|
|
}
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
#if 0
|
486 |
|
|
/* some old debug code for testing the microsecond timing of packets */
|
487 |
|
|
static unsigned int lastjiff;
|
488 |
|
|
|
489 |
|
|
void print_timestamp(const char *s)
|
490 |
|
|
{
|
491 |
|
|
unsigned long flags;
|
492 |
|
|
unsigned int newjiff;
|
493 |
|
|
|
494 |
|
|
save_flags(flags);
|
495 |
|
|
cli();
|
496 |
|
|
newjiff = (myjiff << 16) | (unsigned short)(-*R_TIMER01_DATA);
|
497 |
|
|
printk("%s: %x (%x)\n", s, newjiff, newjiff - lastjiff);
|
498 |
|
|
lastjiff = newjiff;
|
499 |
|
|
restore_flags(flags);
|
500 |
|
|
}
|
501 |
|
|
#endif
|
502 |
|
|
|
503 |
|
|
/* grab the time from the RTC chip */
|
504 |
|
|
|
505 |
|
|
unsigned long
|
506 |
|
|
get_cmos_time(void)
|
507 |
|
|
{
|
508 |
|
|
unsigned int year, mon, day, hour, min, sec;
|
509 |
|
|
|
510 |
|
|
sec = CMOS_READ(RTC_SECONDS);
|
511 |
|
|
min = CMOS_READ(RTC_MINUTES);
|
512 |
|
|
hour = CMOS_READ(RTC_HOURS);
|
513 |
|
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
514 |
|
|
mon = CMOS_READ(RTC_MONTH);
|
515 |
|
|
year = CMOS_READ(RTC_YEAR);
|
516 |
|
|
|
517 |
|
|
printk(KERN_DEBUG
|
518 |
|
|
"rtc: sec 0x%x min 0x%x hour 0x%x day 0x%x mon 0x%x year 0x%x\n",
|
519 |
|
|
sec, min, hour, day, mon, year);
|
520 |
|
|
|
521 |
|
|
BCD_TO_BIN(sec);
|
522 |
|
|
BCD_TO_BIN(min);
|
523 |
|
|
BCD_TO_BIN(hour);
|
524 |
|
|
BCD_TO_BIN(day);
|
525 |
|
|
BCD_TO_BIN(mon);
|
526 |
|
|
BCD_TO_BIN(year);
|
527 |
|
|
|
528 |
|
|
if ((year += 1900) < 1970)
|
529 |
|
|
year += 100;
|
530 |
|
|
|
531 |
|
|
return mktime(year, mon, day, hour, min, sec);
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
/* update xtime from the CMOS settings. used when /dev/rtc gets a SET_TIME.
|
535 |
|
|
* TODO: this doesn't reset the fancy NTP phase stuff as do_settimeofday does.
|
536 |
|
|
*/
|
537 |
|
|
|
538 |
|
|
void
|
539 |
|
|
update_xtime_from_cmos(void)
|
540 |
|
|
{
|
541 |
|
|
if(have_rtc) {
|
542 |
|
|
xtime.tv_sec = get_cmos_time();
|
543 |
|
|
xtime.tv_usec = 0;
|
544 |
|
|
}
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
/* timer is SA_SHIRQ so drivers can add stuff to the timer irq chain
|
548 |
|
|
* it needs to be SA_INTERRUPT to make the jiffies update work properly
|
549 |
|
|
*/
|
550 |
|
|
|
551 |
|
|
static struct irqaction irq2 = { timer_interrupt, SA_SHIRQ | SA_INTERRUPT,
|
552 |
|
|
0, "timer", NULL, NULL};
|
553 |
|
|
|
554 |
|
|
void __init
|
555 |
|
|
time_init(void)
|
556 |
|
|
{
|
557 |
|
|
/* Probe for the RTC and read it if it exists
|
558 |
|
|
* Before the RTC can be probed the loops_per_usec variable needs
|
559 |
|
|
* to be initialized to make usleep work. A better value for
|
560 |
|
|
* loops_per_usec is calculated by the kernel later once the
|
561 |
|
|
* clock has started.
|
562 |
|
|
*/
|
563 |
|
|
loops_per_usec = 50;
|
564 |
|
|
|
565 |
|
|
if(RTC_INIT() < 0) {
|
566 |
|
|
/* no RTC, start at the Epoch (00:00:00 UTC, January 1, 1970) */
|
567 |
|
|
xtime.tv_sec = 0;
|
568 |
|
|
xtime.tv_usec = 0;
|
569 |
|
|
have_rtc = 0;
|
570 |
|
|
} else {
|
571 |
|
|
/* get the current time */
|
572 |
|
|
have_rtc = 1;
|
573 |
|
|
update_xtime_from_cmos();
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Setup the etrax timers
|
577 |
|
|
* Base frequency is 19200 hz, divider 192 -> 100 hz as Linux wants
|
578 |
|
|
* In normal mode, we use timer0, so timer1 is free. In cascade
|
579 |
|
|
* mode (which we sometimes use for debugging) both timers are used.
|
580 |
|
|
* Remember that linux/timex.h contains #defines that rely on the
|
581 |
|
|
* timer settings below (hz and divide factor) !!!
|
582 |
|
|
*/
|
583 |
|
|
|
584 |
|
|
#ifdef USE_CASCADE_TIMERS
|
585 |
|
|
*R_TIMER_CTRL =
|
586 |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
|
587 |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
|
588 |
|
|
IO_STATE( R_TIMER_CTRL, i1, nop) |
|
589 |
|
|
IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
|
590 |
|
|
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
|
591 |
|
|
IO_STATE( R_TIMER_CTRL, i0, nop) |
|
592 |
|
|
IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
|
593 |
|
|
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
|
594 |
|
|
|
595 |
|
|
*R_TIMER_CTRL = r_timer_ctrl_shadow =
|
596 |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
|
597 |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
|
598 |
|
|
IO_STATE( R_TIMER_CTRL, i1, nop) |
|
599 |
|
|
IO_STATE( R_TIMER_CTRL, tm1, run) |
|
600 |
|
|
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
|
601 |
|
|
IO_STATE( R_TIMER_CTRL, i0, nop) |
|
602 |
|
|
IO_STATE( R_TIMER_CTRL, tm0, run) |
|
603 |
|
|
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
|
604 |
|
|
#else
|
605 |
|
|
|
606 |
|
|
*R_TIMER_CTRL =
|
607 |
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
|
608 |
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
|
609 |
|
|
IO_STATE(R_TIMER_CTRL, i1, nop) |
|
610 |
|
|
IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
|
611 |
|
|
IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
|
612 |
|
|
IO_STATE(R_TIMER_CTRL, i0, nop) |
|
613 |
|
|
IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
|
614 |
|
|
IO_STATE(R_TIMER_CTRL, clksel0, flexible);
|
615 |
|
|
|
616 |
|
|
*R_TIMER_CTRL = r_timer_ctrl_shadow =
|
617 |
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
|
618 |
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
|
619 |
|
|
IO_STATE(R_TIMER_CTRL, i1, nop) |
|
620 |
|
|
IO_STATE(R_TIMER_CTRL, tm1, run) |
|
621 |
|
|
IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
|
622 |
|
|
IO_STATE(R_TIMER_CTRL, i0, nop) |
|
623 |
|
|
IO_STATE(R_TIMER_CTRL, tm0, run) |
|
624 |
|
|
IO_STATE(R_TIMER_CTRL, clksel0, flexible);
|
625 |
|
|
|
626 |
|
|
*R_TIMER_PRESCALE = PRESCALE_VALUE;
|
627 |
|
|
#endif
|
628 |
|
|
|
629 |
|
|
#if CRIS_TEST_TIMERS
|
630 |
|
|
cris_test_timers();
|
631 |
|
|
#endif
|
632 |
|
|
|
633 |
|
|
*R_IRQ_MASK0_SET =
|
634 |
|
|
IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
|
635 |
|
|
|
636 |
|
|
/* now actually register the timer irq handler that calls timer_interrupt() */
|
637 |
|
|
|
638 |
|
|
setup_etrax_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
|
639 |
|
|
|
640 |
|
|
/* enable watchdog if we should use one */
|
641 |
|
|
|
642 |
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
643 |
|
|
printk(KERN_INFO "Enabling watchdog...\n");
|
644 |
|
|
start_watchdog();
|
645 |
|
|
|
646 |
|
|
/* If we use the hardware watchdog, we want to trap it as an NMI
|
647 |
|
|
and dump registers before it resets us. For this to happen, we
|
648 |
|
|
must set the "m" NMI enable flag (which once set, is unset only
|
649 |
|
|
when an NMI is taken).
|
650 |
|
|
|
651 |
|
|
The same goes for the external NMI, but that doesn't have any
|
652 |
|
|
driver or infrastructure support yet. */
|
653 |
|
|
asm ("setf m");
|
654 |
|
|
|
655 |
|
|
*R_IRQ_MASK0_SET =
|
656 |
|
|
IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
|
657 |
|
|
*R_VECT_MASK_SET =
|
658 |
|
|
IO_STATE(R_VECT_MASK_SET, nmi, set);
|
659 |
|
|
#endif
|
660 |
|
|
}
|