OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [i386/] [math-emu/] [poly_sin.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*---------------------------------------------------------------------------+
2
 |  poly_sin.c                                                               |
3
 |                                                                           |
4
 |  Computation of an approximation of the sin function and the cosine       |
5
 |  function by a polynomial.                                                |
6
 |                                                                           |
7
 | Copyright (C) 1992,1993,1994,1997,1999                                    |
8
 |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
9
 |                  E-mail   billm@melbpc.org.au                             |
10
 |                                                                           |
11
 |                                                                           |
12
 +---------------------------------------------------------------------------*/
13
 
14
 
15
#include "exception.h"
16
#include "reg_constant.h"
17
#include "fpu_emu.h"
18
#include "fpu_system.h"
19
#include "control_w.h"
20
#include "poly.h"
21
 
22
 
23
#define N_COEFF_P       4
24
#define N_COEFF_N       4
25
 
26
static const unsigned long long pos_terms_l[N_COEFF_P] =
27
{
28
  0xaaaaaaaaaaaaaaabLL,
29
  0x00d00d00d00cf906LL,
30
  0x000006b99159a8bbLL,
31
  0x000000000d7392e6LL
32
};
33
 
34
static const unsigned long long neg_terms_l[N_COEFF_N] =
35
{
36
  0x2222222222222167LL,
37
  0x0002e3bc74aab624LL,
38
  0x0000000b09229062LL,
39
  0x00000000000c7973LL
40
};
41
 
42
 
43
 
44
#define N_COEFF_PH      4
45
#define N_COEFF_NH      4
46
static const unsigned long long pos_terms_h[N_COEFF_PH] =
47
{
48
  0x0000000000000000LL,
49
  0x05b05b05b05b0406LL,
50
  0x000049f93edd91a9LL,
51
  0x00000000c9c9ed62LL
52
};
53
 
54
static const unsigned long long neg_terms_h[N_COEFF_NH] =
55
{
56
  0xaaaaaaaaaaaaaa98LL,
57
  0x001a01a01a019064LL,
58
  0x0000008f76c68a77LL,
59
  0x0000000000d58f5eLL
60
};
61
 
62
 
63
/*--- poly_sine() -----------------------------------------------------------+
64
 |                                                                           |
65
 +---------------------------------------------------------------------------*/
66
void    poly_sine(FPU_REG *st0_ptr)
67
{
68
  int                 exponent, echange;
69
  Xsig                accumulator, argSqrd, argTo4;
70
  unsigned long       fix_up, adj;
71
  unsigned long long  fixed_arg;
72
  FPU_REG             result;
73
 
74
  exponent = exponent(st0_ptr);
75
 
76
  accumulator.lsw = accumulator.midw = accumulator.msw = 0;
77
 
78
  /* Split into two ranges, for arguments below and above 1.0 */
79
  /* The boundary between upper and lower is approx 0.88309101259 */
80
  if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa)) )
81
    {
82
      /* The argument is <= 0.88309101259 */
83
 
84
      argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0;
85
      mul64_Xsig(&argSqrd, &significand(st0_ptr));
86
      shr_Xsig(&argSqrd, 2*(-1-exponent));
87
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
88
      argTo4.lsw = argSqrd.lsw;
89
      mul_Xsig_Xsig(&argTo4, &argTo4);
90
 
91
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
92
                      N_COEFF_N-1);
93
      mul_Xsig_Xsig(&accumulator, &argSqrd);
94
      negate_Xsig(&accumulator);
95
 
96
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
97
                      N_COEFF_P-1);
98
 
99
      shr_Xsig(&accumulator, 2);    /* Divide by four */
100
      accumulator.msw |= 0x80000000;  /* Add 1.0 */
101
 
102
      mul64_Xsig(&accumulator, &significand(st0_ptr));
103
      mul64_Xsig(&accumulator, &significand(st0_ptr));
104
      mul64_Xsig(&accumulator, &significand(st0_ptr));
105
 
106
      /* Divide by four, FPU_REG compatible, etc */
107
      exponent = 3*exponent;
108
 
109
      /* The minimum exponent difference is 3 */
110
      shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
111
 
112
      negate_Xsig(&accumulator);
113
      XSIG_LL(accumulator) += significand(st0_ptr);
114
 
115
      echange = round_Xsig(&accumulator);
116
 
117
      setexponentpos(&result, exponent(st0_ptr) + echange);
118
    }
119
  else
120
    {
121
      /* The argument is > 0.88309101259 */
122
      /* We use sin(st(0)) = cos(pi/2-st(0)) */
123
 
124
      fixed_arg = significand(st0_ptr);
125
 
126
      if ( exponent == 0 )
127
        {
128
          /* The argument is >= 1.0 */
129
 
130
          /* Put the binary point at the left. */
131
          fixed_arg <<= 1;
132
        }
133
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
134
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;
135
      /* There is a special case which arises due to rounding, to fix here. */
136
      if ( fixed_arg == 0xffffffffffffffffLL )
137
        fixed_arg = 0;
138
 
139
      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
140
      mul64_Xsig(&argSqrd, &fixed_arg);
141
 
142
      XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw;
143
      mul_Xsig_Xsig(&argTo4, &argTo4);
144
 
145
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
146
                      N_COEFF_NH-1);
147
      mul_Xsig_Xsig(&accumulator, &argSqrd);
148
      negate_Xsig(&accumulator);
149
 
150
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
151
                      N_COEFF_PH-1);
152
      negate_Xsig(&accumulator);
153
 
154
      mul64_Xsig(&accumulator, &fixed_arg);
155
      mul64_Xsig(&accumulator, &fixed_arg);
156
 
157
      shr_Xsig(&accumulator, 3);
158
      negate_Xsig(&accumulator);
159
 
160
      add_Xsig_Xsig(&accumulator, &argSqrd);
161
 
162
      shr_Xsig(&accumulator, 1);
163
 
164
      accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */
165
      negate_Xsig(&accumulator);
166
 
167
      /* The basic computation is complete. Now fix the answer to
168
         compensate for the error due to the approximation used for
169
         pi/2
170
         */
171
 
172
      /* This has an exponent of -65 */
173
      fix_up = 0x898cc517;
174
      /* The fix-up needs to be improved for larger args */
175
      if ( argSqrd.msw & 0xffc00000 )
176
        {
177
          /* Get about 32 bit precision in these: */
178
          fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
179
        }
180
      fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
181
 
182
      adj = accumulator.lsw;    /* temp save */
183
      accumulator.lsw -= fix_up;
184
      if ( accumulator.lsw > adj )
185
        XSIG_LL(accumulator) --;
186
 
187
      echange = round_Xsig(&accumulator);
188
 
189
      setexponentpos(&result, echange - 1);
190
    }
191
 
192
  significand(&result) = XSIG_LL(accumulator);
193
  setsign(&result, getsign(st0_ptr));
194
  FPU_copy_to_reg0(&result, TAG_Valid);
195
 
196
#ifdef PARANOID
197
  if ( (exponent(&result) >= 0)
198
      && (significand(&result) > 0x8000000000000000LL) )
199
    {
200
      EXCEPTION(EX_INTERNAL|0x150);
201
    }
202
#endif /* PARANOID */
203
 
204
}
205
 
206
 
207
 
208
/*--- poly_cos() ------------------------------------------------------------+
209
 |                                                                           |
210
 +---------------------------------------------------------------------------*/
211
void    poly_cos(FPU_REG *st0_ptr)
212
{
213
  FPU_REG             result;
214
  long int            exponent, exp2, echange;
215
  Xsig                accumulator, argSqrd, fix_up, argTo4;
216
  unsigned long long  fixed_arg;
217
 
218
#ifdef PARANOID
219
  if ( (exponent(st0_ptr) > 0)
220
      || ((exponent(st0_ptr) == 0)
221
          && (significand(st0_ptr) > 0xc90fdaa22168c234LL)) )
222
    {
223
      EXCEPTION(EX_Invalid);
224
      FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
225
      return;
226
    }
227
#endif /* PARANOID */
228
 
229
  exponent = exponent(st0_ptr);
230
 
231
  accumulator.lsw = accumulator.midw = accumulator.msw = 0;
232
 
233
  if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54)) )
234
    {
235
      /* arg is < 0.687705 */
236
 
237
      argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl;
238
      argSqrd.lsw = 0;
239
      mul64_Xsig(&argSqrd, &significand(st0_ptr));
240
 
241
      if ( exponent < -1 )
242
        {
243
          /* shift the argument right by the required places */
244
          shr_Xsig(&argSqrd, 2*(-1-exponent));
245
        }
246
 
247
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
248
      argTo4.lsw = argSqrd.lsw;
249
      mul_Xsig_Xsig(&argTo4, &argTo4);
250
 
251
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
252
                      N_COEFF_NH-1);
253
      mul_Xsig_Xsig(&accumulator, &argSqrd);
254
      negate_Xsig(&accumulator);
255
 
256
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
257
                      N_COEFF_PH-1);
258
      negate_Xsig(&accumulator);
259
 
260
      mul64_Xsig(&accumulator, &significand(st0_ptr));
261
      mul64_Xsig(&accumulator, &significand(st0_ptr));
262
      shr_Xsig(&accumulator, -2*(1+exponent));
263
 
264
      shr_Xsig(&accumulator, 3);
265
      negate_Xsig(&accumulator);
266
 
267
      add_Xsig_Xsig(&accumulator, &argSqrd);
268
 
269
      shr_Xsig(&accumulator, 1);
270
 
271
      /* It doesn't matter if accumulator is all zero here, the
272
         following code will work ok */
273
      negate_Xsig(&accumulator);
274
 
275
      if ( accumulator.lsw & 0x80000000 )
276
        XSIG_LL(accumulator) ++;
277
      if ( accumulator.msw == 0 )
278
        {
279
          /* The result is 1.0 */
280
          FPU_copy_to_reg0(&CONST_1, TAG_Valid);
281
          return;
282
        }
283
      else
284
        {
285
          significand(&result) = XSIG_LL(accumulator);
286
 
287
          /* will be a valid positive nr with expon = -1 */
288
          setexponentpos(&result, -1);
289
        }
290
    }
291
  else
292
    {
293
      fixed_arg = significand(st0_ptr);
294
 
295
      if ( exponent == 0 )
296
        {
297
          /* The argument is >= 1.0 */
298
 
299
          /* Put the binary point at the left. */
300
          fixed_arg <<= 1;
301
        }
302
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
303
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;
304
      /* There is a special case which arises due to rounding, to fix here. */
305
      if ( fixed_arg == 0xffffffffffffffffLL )
306
        fixed_arg = 0;
307
 
308
      exponent = -1;
309
      exp2 = -1;
310
 
311
      /* A shift is needed here only for a narrow range of arguments,
312
         i.e. for fixed_arg approx 2^-32, but we pick up more... */
313
      if ( !(LL_MSW(fixed_arg) & 0xffff0000) )
314
        {
315
          fixed_arg <<= 16;
316
          exponent -= 16;
317
          exp2 -= 16;
318
        }
319
 
320
      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
321
      mul64_Xsig(&argSqrd, &fixed_arg);
322
 
323
      if ( exponent < -1 )
324
        {
325
          /* shift the argument right by the required places */
326
          shr_Xsig(&argSqrd, 2*(-1-exponent));
327
        }
328
 
329
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
330
      argTo4.lsw = argSqrd.lsw;
331
      mul_Xsig_Xsig(&argTo4, &argTo4);
332
 
333
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
334
                      N_COEFF_N-1);
335
      mul_Xsig_Xsig(&accumulator, &argSqrd);
336
      negate_Xsig(&accumulator);
337
 
338
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
339
                      N_COEFF_P-1);
340
 
341
      shr_Xsig(&accumulator, 2);    /* Divide by four */
342
      accumulator.msw |= 0x80000000;  /* Add 1.0 */
343
 
344
      mul64_Xsig(&accumulator, &fixed_arg);
345
      mul64_Xsig(&accumulator, &fixed_arg);
346
      mul64_Xsig(&accumulator, &fixed_arg);
347
 
348
      /* Divide by four, FPU_REG compatible, etc */
349
      exponent = 3*exponent;
350
 
351
      /* The minimum exponent difference is 3 */
352
      shr_Xsig(&accumulator, exp2 - exponent);
353
 
354
      negate_Xsig(&accumulator);
355
      XSIG_LL(accumulator) += fixed_arg;
356
 
357
      /* The basic computation is complete. Now fix the answer to
358
         compensate for the error due to the approximation used for
359
         pi/2
360
         */
361
 
362
      /* This has an exponent of -65 */
363
      XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
364
      fix_up.lsw = 0;
365
 
366
      /* The fix-up needs to be improved for larger args */
367
      if ( argSqrd.msw & 0xffc00000 )
368
        {
369
          /* Get about 32 bit precision in these: */
370
          fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
371
          fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
372
        }
373
 
374
      exp2 += norm_Xsig(&accumulator);
375
      shr_Xsig(&accumulator, 1); /* Prevent overflow */
376
      exp2++;
377
      shr_Xsig(&fix_up, 65 + exp2);
378
 
379
      add_Xsig_Xsig(&accumulator, &fix_up);
380
 
381
      echange = round_Xsig(&accumulator);
382
 
383
      setexponentpos(&result, exp2 + echange);
384
      significand(&result) = XSIG_LL(accumulator);
385
    }
386
 
387
  FPU_copy_to_reg0(&result, TAG_Valid);
388
 
389
#ifdef PARANOID
390
  if ( (exponent(&result) >= 0)
391
      && (significand(&result) > 0x8000000000000000LL) )
392
    {
393
      EXCEPTION(EX_INTERNAL|0x151);
394
    }
395
#endif /* PARANOID */
396
 
397
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.