OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [i386/] [math-emu/] [poly_tan.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*---------------------------------------------------------------------------+
2
 |  poly_tan.c                                                               |
3
 |                                                                           |
4
 | Compute the tan of a FPU_REG, using a polynomial approximation.           |
5
 |                                                                           |
6
 | Copyright (C) 1992,1993,1994,1997,1999                                    |
7
 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
8
 |                       Australia.  E-mail   billm@melbpc.org.au            |
9
 |                                                                           |
10
 |                                                                           |
11
 +---------------------------------------------------------------------------*/
12
 
13
#include "exception.h"
14
#include "reg_constant.h"
15
#include "fpu_emu.h"
16
#include "fpu_system.h"
17
#include "control_w.h"
18
#include "poly.h"
19
 
20
 
21
#define HiPOWERop       3       /* odd poly, positive terms */
22
static const unsigned long long oddplterm[HiPOWERop] =
23
{
24
  0x0000000000000000LL,
25
  0x0051a1cf08fca228LL,
26
  0x0000000071284ff7LL
27
};
28
 
29
#define HiPOWERon       2       /* odd poly, negative terms */
30
static const unsigned long long oddnegterm[HiPOWERon] =
31
{
32
   0x1291a9a184244e80LL,
33
   0x0000583245819c21LL
34
};
35
 
36
#define HiPOWERep       2       /* even poly, positive terms */
37
static const unsigned long long evenplterm[HiPOWERep] =
38
{
39
  0x0e848884b539e888LL,
40
  0x00003c7f18b887daLL
41
};
42
 
43
#define HiPOWERen       2       /* even poly, negative terms */
44
static const unsigned long long evennegterm[HiPOWERen] =
45
{
46
  0xf1f0200fd51569ccLL,
47
  0x003afb46105c4432LL
48
};
49
 
50
static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
51
 
52
 
53
/*--- poly_tan() ------------------------------------------------------------+
54
 |                                                                           |
55
 +---------------------------------------------------------------------------*/
56
void    poly_tan(FPU_REG *st0_ptr)
57
{
58
  long int              exponent;
59
  int                   invert;
60
  Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum,
61
                        argSignif, fix_up;
62
  unsigned long         adj;
63
 
64
  exponent = exponent(st0_ptr);
65
 
66
#ifdef PARANOID
67
  if ( signnegative(st0_ptr) )  /* Can't hack a number < 0.0 */
68
    { arith_invalid(0); return; }  /* Need a positive number */
69
#endif /* PARANOID */
70
 
71
  /* Split the problem into two domains, smaller and larger than pi/4 */
72
  if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )
73
    {
74
      /* The argument is greater than (approx) pi/4 */
75
      invert = 1;
76
      accum.lsw = 0;
77
      XSIG_LL(accum) = significand(st0_ptr);
78
 
79
      if ( exponent == 0 )
80
        {
81
          /* The argument is >= 1.0 */
82
          /* Put the binary point at the left. */
83
          XSIG_LL(accum) <<= 1;
84
        }
85
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
86
      XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
87
      /* This is a special case which arises due to rounding. */
88
      if ( XSIG_LL(accum) == 0xffffffffffffffffLL )
89
        {
90
          FPU_settag0(TAG_Valid);
91
          significand(st0_ptr) = 0x8a51e04daabda360LL;
92
          setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative);
93
          return;
94
        }
95
 
96
      argSignif.lsw = accum.lsw;
97
      XSIG_LL(argSignif) = XSIG_LL(accum);
98
      exponent = -1 + norm_Xsig(&argSignif);
99
    }
100
  else
101
    {
102
      invert = 0;
103
      argSignif.lsw = 0;
104
      XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
105
 
106
      if ( exponent < -1 )
107
        {
108
          /* shift the argument right by the required places */
109
          if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
110
            XSIG_LL(accum) ++;  /* round up */
111
        }
112
    }
113
 
114
  XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
115
  mul_Xsig_Xsig(&argSq, &argSq);
116
  XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
117
  mul_Xsig_Xsig(&argSqSq, &argSqSq);
118
 
119
  /* Compute the negative terms for the numerator polynomial */
120
  accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
121
  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
122
  mul_Xsig_Xsig(&accumulatoro, &argSq);
123
  negate_Xsig(&accumulatoro);
124
  /* Add the positive terms */
125
  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);
126
 
127
 
128
  /* Compute the positive terms for the denominator polynomial */
129
  accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
130
  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
131
  mul_Xsig_Xsig(&accumulatore, &argSq);
132
  negate_Xsig(&accumulatore);
133
  /* Add the negative terms */
134
  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
135
  /* Multiply by arg^2 */
136
  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
137
  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
138
  /* de-normalize and divide by 2 */
139
  shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
140
  negate_Xsig(&accumulatore);      /* This does 1 - accumulator */
141
 
142
  /* Now find the ratio. */
143
  if ( accumulatore.msw == 0 )
144
    {
145
      /* accumulatoro must contain 1.0 here, (actually, 0) but it
146
         really doesn't matter what value we use because it will
147
         have negligible effect in later calculations
148
         */
149
      XSIG_LL(accum) = 0x8000000000000000LL;
150
      accum.lsw = 0;
151
    }
152
  else
153
    {
154
      div_Xsig(&accumulatoro, &accumulatore, &accum);
155
    }
156
 
157
  /* Multiply by 1/3 * arg^3 */
158
  mul64_Xsig(&accum, &XSIG_LL(argSignif));
159
  mul64_Xsig(&accum, &XSIG_LL(argSignif));
160
  mul64_Xsig(&accum, &XSIG_LL(argSignif));
161
  mul64_Xsig(&accum, &twothirds);
162
  shr_Xsig(&accum, -2*(exponent+1));
163
 
164
  /* tan(arg) = arg + accum */
165
  add_two_Xsig(&accum, &argSignif, &exponent);
166
 
167
  if ( invert )
168
    {
169
      /* We now have the value of tan(pi_2 - arg) where pi_2 is an
170
         approximation for pi/2
171
         */
172
      /* The next step is to fix the answer to compensate for the
173
         error due to the approximation used for pi/2
174
         */
175
 
176
      /* This is (approx) delta, the error in our approx for pi/2
177
         (see above). It has an exponent of -65
178
         */
179
      XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
180
      fix_up.lsw = 0;
181
 
182
      if ( exponent == 0 )
183
        adj = 0xffffffff;   /* We want approx 1.0 here, but
184
                               this is close enough. */
185
      else if ( exponent > -30 )
186
        {
187
          adj = accum.msw >> -(exponent+1);      /* tan */
188
          adj = mul_32_32(adj, adj);             /* tan^2 */
189
        }
190
      else
191
        adj = 0;
192
      adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */
193
 
194
      fix_up.msw += adj;
195
      if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */
196
        {
197
          /* Yes, we need to add an msb */
198
          shr_Xsig(&fix_up, 1);
199
          fix_up.msw |= 0x80000000;
200
          shr_Xsig(&fix_up, 64 + exponent);
201
        }
202
      else
203
        shr_Xsig(&fix_up, 65 + exponent);
204
 
205
      add_two_Xsig(&accum, &fix_up, &exponent);
206
 
207
      /* accum now contains tan(pi/2 - arg).
208
         Use tan(arg) = 1.0 / tan(pi/2 - arg)
209
         */
210
      accumulatoro.lsw = accumulatoro.midw = 0;
211
      accumulatoro.msw = 0x80000000;
212
      div_Xsig(&accumulatoro, &accum, &accum);
213
      exponent = - exponent - 1;
214
    }
215
 
216
  /* Transfer the result */
217
  round_Xsig(&accum);
218
  FPU_settag0(TAG_Valid);
219
  significand(st0_ptr) = XSIG_LL(accum);
220
  setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */
221
 
222
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.