1 |
1275 |
phoenix |
/*
|
2 |
|
|
* This file implements the perfmon subsystem which is used
|
3 |
|
|
* to program the IA-64 Performance Monitoring Unit (PMU).
|
4 |
|
|
*
|
5 |
|
|
* Originaly Written by Ganesh Venkitachalam, IBM Corp.
|
6 |
|
|
* Copyright (C) 1999 Ganesh Venkitachalam <venkitac@us.ibm.com>
|
7 |
|
|
*
|
8 |
|
|
* Modifications by Stephane Eranian, Hewlett-Packard Co.
|
9 |
|
|
* Modifications by David Mosberger-Tang, Hewlett-Packard Co.
|
10 |
|
|
*
|
11 |
|
|
* Copyright (C) 1999-2003 Hewlett Packard Co
|
12 |
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
13 |
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
14 |
|
|
*/
|
15 |
|
|
|
16 |
|
|
#include <linux/config.h>
|
17 |
|
|
#include <linux/kernel.h>
|
18 |
|
|
#include <linux/sched.h>
|
19 |
|
|
#include <linux/interrupt.h>
|
20 |
|
|
#include <linux/smp_lock.h>
|
21 |
|
|
#include <linux/proc_fs.h>
|
22 |
|
|
#include <linux/init.h>
|
23 |
|
|
#include <linux/vmalloc.h>
|
24 |
|
|
#include <linux/wrapper.h>
|
25 |
|
|
#include <linux/mm.h>
|
26 |
|
|
#include <linux/sysctl.h>
|
27 |
|
|
#include <linux/smp.h>
|
28 |
|
|
|
29 |
|
|
#include <asm/bitops.h>
|
30 |
|
|
#include <asm/errno.h>
|
31 |
|
|
#include <asm/page.h>
|
32 |
|
|
#include <asm/perfmon.h>
|
33 |
|
|
#include <asm/processor.h>
|
34 |
|
|
#include <asm/signal.h>
|
35 |
|
|
#include <asm/system.h>
|
36 |
|
|
#include <asm/uaccess.h>
|
37 |
|
|
#include <asm/delay.h> /* for ia64_get_itc() */
|
38 |
|
|
|
39 |
|
|
#ifdef CONFIG_PERFMON
|
40 |
|
|
|
41 |
|
|
/*
|
42 |
|
|
* For PMUs which rely on the debug registers for some features, you must
|
43 |
|
|
* you must enable the following flag to activate the support for
|
44 |
|
|
* accessing the registers via the perfmonctl() interface.
|
45 |
|
|
*/
|
46 |
|
|
#if defined(CONFIG_ITANIUM) || defined(CONFIG_MCKINLEY)
|
47 |
|
|
#define PFM_PMU_USES_DBR 1
|
48 |
|
|
#endif
|
49 |
|
|
|
50 |
|
|
/*
|
51 |
|
|
* perfmon context states
|
52 |
|
|
*/
|
53 |
|
|
#define PFM_CTX_DISABLED 0
|
54 |
|
|
#define PFM_CTX_ENABLED 1
|
55 |
|
|
|
56 |
|
|
/*
|
57 |
|
|
* Reset register flags
|
58 |
|
|
*/
|
59 |
|
|
#define PFM_PMD_LONG_RESET 1
|
60 |
|
|
#define PFM_PMD_SHORT_RESET 2
|
61 |
|
|
|
62 |
|
|
/*
|
63 |
|
|
* Misc macros and definitions
|
64 |
|
|
*/
|
65 |
|
|
#define PMU_FIRST_COUNTER 4
|
66 |
|
|
#define PMU_MAX_PMCS 256
|
67 |
|
|
#define PMU_MAX_PMDS 256
|
68 |
|
|
|
69 |
|
|
/*
|
70 |
|
|
* type of a PMU register (bitmask).
|
71 |
|
|
* bitmask structure:
|
72 |
|
|
* bit0 : register implemented
|
73 |
|
|
* bit1 : end marker
|
74 |
|
|
* bit2-3 : reserved
|
75 |
|
|
* bit4-7 : register type
|
76 |
|
|
* bit8-31: reserved
|
77 |
|
|
*/
|
78 |
|
|
#define PFM_REG_IMPL 0x1 /* register implemented */
|
79 |
|
|
#define PFM_REG_END 0x2 /* end marker */
|
80 |
|
|
#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
|
81 |
|
|
#define PFM_REG_COUNTING (0x2<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm AND pmc.oi, a PMD used as a counter */
|
82 |
|
|
#define PFM_REG_CONTROL (0x3<<4|PFM_REG_IMPL) /* PMU control register */
|
83 |
|
|
#define PFM_REG_CONFIG (0x4<<4|PFM_REG_IMPL) /* refine configuration */
|
84 |
|
|
#define PFM_REG_BUFFER (0x5<<4|PFM_REG_IMPL) /* PMD used as buffer */
|
85 |
|
|
|
86 |
|
|
#define PMC_IS_LAST(i) (pmu_conf.pmc_desc[i].type & PFM_REG_END)
|
87 |
|
|
#define PMD_IS_LAST(i) (pmu_conf.pmd_desc[i].type & PFM_REG_END)
|
88 |
|
|
|
89 |
|
|
#define PFM_IS_DISABLED() pmu_conf.disabled
|
90 |
|
|
|
91 |
|
|
#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_soft_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
|
92 |
|
|
#define PFM_FL_INHERIT_MASK (PFM_FL_INHERIT_NONE|PFM_FL_INHERIT_ONCE|PFM_FL_INHERIT_ALL)
|
93 |
|
|
|
94 |
|
|
/* i assume unsigned */
|
95 |
|
|
#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf.pmc_desc[i].type & PFM_REG_IMPL))
|
96 |
|
|
#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf.pmd_desc[i].type & PFM_REG_IMPL))
|
97 |
|
|
|
98 |
|
|
/* XXX: these three assume that register i is implemented */
|
99 |
|
|
#define PMD_IS_COUNTING(i) (pmu_conf.pmd_desc[i].type == PFM_REG_COUNTING)
|
100 |
|
|
#define PMC_IS_COUNTING(i) (pmu_conf.pmc_desc[i].type == PFM_REG_COUNTING)
|
101 |
|
|
#define PMC_IS_MONITOR(i) (pmu_conf.pmc_desc[i].type == PFM_REG_MONITOR)
|
102 |
|
|
#define PMC_DFL_VAL(i) pmu_conf.pmc_desc[i].default_value
|
103 |
|
|
#define PMC_RSVD_MASK(i) pmu_conf.pmc_desc[i].reserved_mask
|
104 |
|
|
#define PMD_PMD_DEP(i) pmu_conf.pmd_desc[i].dep_pmd[0]
|
105 |
|
|
#define PMC_PMD_DEP(i) pmu_conf.pmc_desc[i].dep_pmd[0]
|
106 |
|
|
|
107 |
|
|
/* k assume unsigned */
|
108 |
|
|
#define IBR_IS_IMPL(k) (k<pmu_conf.num_ibrs)
|
109 |
|
|
#define DBR_IS_IMPL(k) (k<pmu_conf.num_dbrs)
|
110 |
|
|
|
111 |
|
|
#define CTX_IS_ENABLED(c) ((c)->ctx_flags.state == PFM_CTX_ENABLED)
|
112 |
|
|
#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
|
113 |
|
|
#define CTX_INHERIT_MODE(c) ((c)->ctx_fl_inherit)
|
114 |
|
|
#define CTX_HAS_SMPL(c) ((c)->ctx_psb != NULL)
|
115 |
|
|
/* XXX: does not support more than 64 PMDs */
|
116 |
|
|
#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
|
117 |
|
|
#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
|
121 |
|
|
#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
|
122 |
|
|
#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
|
123 |
|
|
|
124 |
|
|
#ifdef CONFIG_SMP
|
125 |
|
|
#define GET_ACTIVATION() pmu_owners[smp_processor_id()].activation_number
|
126 |
|
|
#define INC_ACTIVATION() pmu_owners[smp_processor_id()].activation_number++
|
127 |
|
|
#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
|
128 |
|
|
#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
|
129 |
|
|
#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
|
130 |
|
|
#else /* !CONFIG_SMP */
|
131 |
|
|
#define SET_ACTIVATION(t) do {} while(0)
|
132 |
|
|
#define GET_ACTIVATION(t) do {} while(0)
|
133 |
|
|
#define INC_ACTIVATION(t) do {} while(0)
|
134 |
|
|
#define SET_LAST_CPU(ctx, v) do {} while(0)
|
135 |
|
|
#define GET_LAST_CPU(ctx) do {} while(0)
|
136 |
|
|
#endif /* CONFIG_SMP */
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
#define PFM_INVALID_ACTIVATION (~0UL)
|
140 |
|
|
|
141 |
|
|
#define SET_PMU_OWNER(t) do { pmu_owners[smp_processor_id()].owner = (t); } while(0)
|
142 |
|
|
#define PMU_OWNER() pmu_owners[smp_processor_id()].owner
|
143 |
|
|
|
144 |
|
|
#define LOCK_PFS() spin_lock(&pfm_sessions.pfs_lock)
|
145 |
|
|
#define UNLOCK_PFS() spin_unlock(&pfm_sessions.pfs_lock)
|
146 |
|
|
|
147 |
|
|
#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
|
148 |
|
|
|
149 |
|
|
#define TASK_PTREGS(t) (((struct pt_regs *)((unsigned long) (t) + IA64_STK_OFFSET))-1)
|
150 |
|
|
|
151 |
|
|
/*
|
152 |
|
|
* cmp0 must be the value of pmc0
|
153 |
|
|
*/
|
154 |
|
|
#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
|
155 |
|
|
|
156 |
|
|
|
157 |
|
|
/*
|
158 |
|
|
* debugging
|
159 |
|
|
*/
|
160 |
|
|
#define DBprintk(a) \
|
161 |
|
|
do { \
|
162 |
|
|
if (pfm_sysctl.debug >0) { printk("%s.%d: CPU%d ", __FUNCTION__, __LINE__, smp_processor_id()); printk a; } \
|
163 |
|
|
} while (0)
|
164 |
|
|
|
165 |
|
|
#define DBprintk_ovfl(a) \
|
166 |
|
|
do { \
|
167 |
|
|
if (pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0) { printk("%s.%d: CPU%d ", __FUNCTION__, __LINE__, smp_processor_id()); printk a; } \
|
168 |
|
|
} while (0)
|
169 |
|
|
|
170 |
|
|
|
171 |
|
|
|
172 |
|
|
/*
|
173 |
|
|
* Architected PMC structure
|
174 |
|
|
*/
|
175 |
|
|
typedef struct {
|
176 |
|
|
unsigned long pmc_plm:4; /* privilege level mask */
|
177 |
|
|
unsigned long pmc_ev:1; /* external visibility */
|
178 |
|
|
unsigned long pmc_oi:1; /* overflow interrupt */
|
179 |
|
|
unsigned long pmc_pm:1; /* privileged monitor */
|
180 |
|
|
unsigned long pmc_ig1:1; /* reserved */
|
181 |
|
|
unsigned long pmc_es:8; /* event select */
|
182 |
|
|
unsigned long pmc_ig2:48; /* reserved */
|
183 |
|
|
} pfm_monitor_t;
|
184 |
|
|
|
185 |
|
|
/*
|
186 |
|
|
* There is one such data structure per perfmon context. It is used to describe the
|
187 |
|
|
* sampling buffer. It is to be shared among siblings whereas the pfm_context
|
188 |
|
|
* is not.
|
189 |
|
|
* Therefore we maintain a refcnt which is incremented on fork().
|
190 |
|
|
* This buffer is private to the kernel only the actual sampling buffer
|
191 |
|
|
* including its header are exposed to the user. This construct allows us to
|
192 |
|
|
* export the buffer read-write, if needed, without worrying about security
|
193 |
|
|
* problems.
|
194 |
|
|
*/
|
195 |
|
|
typedef struct _pfm_smpl_buffer_desc {
|
196 |
|
|
spinlock_t psb_lock; /* protection lock */
|
197 |
|
|
unsigned long psb_refcnt; /* how many users for the buffer */
|
198 |
|
|
int psb_flags; /* bitvector of flags (not yet used) */
|
199 |
|
|
|
200 |
|
|
void *psb_addr; /* points to location of first entry */
|
201 |
|
|
unsigned long psb_entries; /* maximum number of entries */
|
202 |
|
|
unsigned long psb_size; /* aligned size of buffer */
|
203 |
|
|
unsigned long psb_index; /* next free entry slot XXX: must use the one in buffer */
|
204 |
|
|
unsigned long psb_entry_size; /* size of each entry including entry header */
|
205 |
|
|
|
206 |
|
|
perfmon_smpl_hdr_t *psb_hdr; /* points to sampling buffer header */
|
207 |
|
|
|
208 |
|
|
struct _pfm_smpl_buffer_desc *psb_next; /* next psb, used for rvfreeing of psb_hdr */
|
209 |
|
|
|
210 |
|
|
} pfm_smpl_buffer_desc_t;
|
211 |
|
|
|
212 |
|
|
/*
|
213 |
|
|
* psb_flags
|
214 |
|
|
*/
|
215 |
|
|
#define PSB_HAS_VMA 0x1 /* a virtual mapping for the buffer exists */
|
216 |
|
|
|
217 |
|
|
#define LOCK_PSB(p) spin_lock(&(p)->psb_lock)
|
218 |
|
|
#define UNLOCK_PSB(p) spin_unlock(&(p)->psb_lock)
|
219 |
|
|
|
220 |
|
|
/*
|
221 |
|
|
* 64-bit software counter structure
|
222 |
|
|
*/
|
223 |
|
|
typedef struct {
|
224 |
|
|
u64 val; /* virtual 64bit counter value */
|
225 |
|
|
u64 lval; /* last value */
|
226 |
|
|
u64 long_reset; /* reset value on sampling overflow */
|
227 |
|
|
u64 short_reset;/* reset value on overflow */
|
228 |
|
|
u64 reset_pmds[4]; /* which other pmds to reset when this counter overflows */
|
229 |
|
|
u64 seed; /* seed for random-number generator */
|
230 |
|
|
u64 mask; /* mask for random-number generator */
|
231 |
|
|
unsigned int flags; /* notify/do not notify */
|
232 |
|
|
} pfm_counter_t;
|
233 |
|
|
|
234 |
|
|
/*
|
235 |
|
|
* perfmon context. One per process, is cloned on fork() depending on
|
236 |
|
|
* inheritance flags
|
237 |
|
|
*/
|
238 |
|
|
typedef struct {
|
239 |
|
|
unsigned int state:1; /* 0=disabled, 1=enabled */
|
240 |
|
|
unsigned int inherit:2; /* inherit mode */
|
241 |
|
|
unsigned int block:1; /* when 1, task will blocked on user notifications */
|
242 |
|
|
unsigned int system:1; /* do system wide monitoring */
|
243 |
|
|
unsigned int frozen:1; /* pmu must be kept frozen on ctxsw in */
|
244 |
|
|
unsigned int protected:1; /* allow access to creator of context only */
|
245 |
|
|
unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
|
246 |
|
|
unsigned int excl_idle:1; /* exclude idle task in system wide session */
|
247 |
|
|
unsigned int unsecure:1; /* sp = 0 for non self-monitored task */
|
248 |
|
|
unsigned int reserved:22;
|
249 |
|
|
} pfm_context_flags_t;
|
250 |
|
|
|
251 |
|
|
/*
|
252 |
|
|
* perfmon context: encapsulates all the state of a monitoring session
|
253 |
|
|
* XXX: probably need to change layout
|
254 |
|
|
*/
|
255 |
|
|
typedef struct pfm_context {
|
256 |
|
|
pfm_smpl_buffer_desc_t *ctx_psb; /* sampling buffer, if any */
|
257 |
|
|
unsigned long ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
|
258 |
|
|
|
259 |
|
|
spinlock_t ctx_lock;
|
260 |
|
|
pfm_context_flags_t ctx_flags; /* block/noblock */
|
261 |
|
|
|
262 |
|
|
struct task_struct *ctx_notify_task; /* who to notify on overflow */
|
263 |
|
|
struct task_struct *ctx_owner; /* pid of creator (debug) */
|
264 |
|
|
|
265 |
|
|
unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
|
266 |
|
|
unsigned long ctx_smpl_regs[4]; /* which registers to record on overflow */
|
267 |
|
|
|
268 |
|
|
struct semaphore ctx_restart_sem; /* use for blocking notification mode */
|
269 |
|
|
|
270 |
|
|
unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
|
271 |
|
|
unsigned long ctx_reload_pmds[4]; /* bitmask of PMD to reload on ctxsw */
|
272 |
|
|
|
273 |
|
|
unsigned long ctx_used_pmcs[4]; /* bitmask PMC used by context */
|
274 |
|
|
unsigned long ctx_reload_pmcs[4]; /* bitmask of PMC to reload on ctxsw */
|
275 |
|
|
|
276 |
|
|
unsigned long ctx_used_ibrs[4]; /* bitmask of used IBR (speedup ctxsw) */
|
277 |
|
|
unsigned long ctx_used_dbrs[4]; /* bitmask of used DBR (speedup ctxsw) */
|
278 |
|
|
|
279 |
|
|
pfm_counter_t ctx_soft_pmds[IA64_NUM_PMD_REGS]; /* XXX: size should be dynamic */
|
280 |
|
|
|
281 |
|
|
u64 ctx_saved_psr; /* copy of psr used for lazy ctxsw */
|
282 |
|
|
unsigned long ctx_saved_cpus_allowed; /* copy of the task cpus_allowed (system wide) */
|
283 |
|
|
unsigned long ctx_last_activation; /* context last activation number for last_cpu */
|
284 |
|
|
unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
|
285 |
|
|
unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
|
286 |
|
|
|
287 |
|
|
struct tasklet_struct ctx_tasklet; /* used for sending signal-based notifications */
|
288 |
|
|
} pfm_context_t;
|
289 |
|
|
|
290 |
|
|
#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
|
291 |
|
|
#define LOCK_CTX(ctx) spin_lock(&(ctx)->ctx_lock)
|
292 |
|
|
#define UNLOCK_CTX(ctx) spin_unlock(&(ctx)->ctx_lock)
|
293 |
|
|
|
294 |
|
|
#define ctx_fl_inherit ctx_flags.inherit
|
295 |
|
|
#define ctx_fl_block ctx_flags.block
|
296 |
|
|
#define ctx_fl_system ctx_flags.system
|
297 |
|
|
#define ctx_fl_frozen ctx_flags.frozen
|
298 |
|
|
#define ctx_fl_protected ctx_flags.protected
|
299 |
|
|
#define ctx_fl_using_dbreg ctx_flags.using_dbreg
|
300 |
|
|
#define ctx_fl_excl_idle ctx_flags.excl_idle
|
301 |
|
|
#define ctx_fl_unsecure ctx_flags.unsecure
|
302 |
|
|
|
303 |
|
|
/*
|
304 |
|
|
* global information about all sessions
|
305 |
|
|
* mostly used to synchronize between system wide and per-process
|
306 |
|
|
*/
|
307 |
|
|
typedef struct {
|
308 |
|
|
spinlock_t pfs_lock; /* lock the structure */
|
309 |
|
|
|
310 |
|
|
unsigned int pfs_task_sessions; /* number of per task sessions */
|
311 |
|
|
unsigned int pfs_sys_sessions; /* number of per system wide sessions */
|
312 |
|
|
unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
|
313 |
|
|
unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
|
314 |
|
|
struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
|
315 |
|
|
} pfm_session_t;
|
316 |
|
|
|
317 |
|
|
/*
|
318 |
|
|
* information about a PMC or PMD.
|
319 |
|
|
* dep_pmd[]: a bitmask of dependent PMD registers
|
320 |
|
|
* dep_pmc[]: a bitmask of dependent PMC registers
|
321 |
|
|
*/
|
322 |
|
|
typedef struct {
|
323 |
|
|
unsigned int type;
|
324 |
|
|
int pm_pos;
|
325 |
|
|
unsigned long default_value; /* power-on default value */
|
326 |
|
|
unsigned long reserved_mask; /* bitmask of reserved bits */
|
327 |
|
|
int (*read_check)(struct task_struct *task, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
|
328 |
|
|
int (*write_check)(struct task_struct *task, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
|
329 |
|
|
unsigned long dep_pmd[4];
|
330 |
|
|
unsigned long dep_pmc[4];
|
331 |
|
|
} pfm_reg_desc_t;
|
332 |
|
|
|
333 |
|
|
/* assume cnum is a valid monitor */
|
334 |
|
|
#define PMC_PM(cnum, val) (((val) >> (pmu_conf.pmc_desc[cnum].pm_pos)) & 0x1)
|
335 |
|
|
#define PMC_WR_FUNC(cnum) (pmu_conf.pmc_desc[cnum].write_check)
|
336 |
|
|
#define PMD_WR_FUNC(cnum) (pmu_conf.pmd_desc[cnum].write_check)
|
337 |
|
|
#define PMD_RD_FUNC(cnum) (pmu_conf.pmd_desc[cnum].read_check)
|
338 |
|
|
|
339 |
|
|
/*
|
340 |
|
|
* This structure is initialized at boot time and contains
|
341 |
|
|
* a description of the PMU main characteristics.
|
342 |
|
|
*/
|
343 |
|
|
typedef struct {
|
344 |
|
|
unsigned int disabled; /* indicates if perfmon is working properly */
|
345 |
|
|
unsigned long ovfl_val; /* overflow value for generic counters */
|
346 |
|
|
unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
|
347 |
|
|
unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
|
348 |
|
|
unsigned int num_pmcs; /* number of implemented PMCS */
|
349 |
|
|
unsigned int num_pmds; /* number of implemented PMDS */
|
350 |
|
|
unsigned int num_ibrs; /* number of implemented IBRS */
|
351 |
|
|
unsigned int num_dbrs; /* number of implemented DBRS */
|
352 |
|
|
unsigned int num_counters; /* number of PMD/PMC counters */
|
353 |
|
|
pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
|
354 |
|
|
pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
|
355 |
|
|
} pmu_config_t;
|
356 |
|
|
|
357 |
|
|
/*
|
358 |
|
|
* perfmon command descriptions
|
359 |
|
|
*/
|
360 |
|
|
typedef struct {
|
361 |
|
|
int (*cmd_func)(struct task_struct *task, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
|
362 |
|
|
int cmd_flags;
|
363 |
|
|
unsigned int cmd_narg;
|
364 |
|
|
size_t cmd_argsize;
|
365 |
|
|
} pfm_cmd_desc_t;
|
366 |
|
|
|
367 |
|
|
#define PFM_CMD_PID 0x1 /* command requires pid argument */
|
368 |
|
|
#define PFM_CMD_ARG_READ 0x2 /* command must read argument(s) */
|
369 |
|
|
#define PFM_CMD_ARG_RW 0x4 /* command must read/write argument(s) */
|
370 |
|
|
#define PFM_CMD_CTX 0x8 /* command needs a perfmon context */
|
371 |
|
|
#define PFM_CMD_NOCHK 0x10 /* command does not need to check task's state */
|
372 |
|
|
|
373 |
|
|
#define PFM_CMD_IDX(cmd) (cmd)
|
374 |
|
|
|
375 |
|
|
#define PFM_CMD_IS_VALID(cmd) ((PFM_CMD_IDX(cmd) >= 0) && (PFM_CMD_IDX(cmd) < PFM_CMD_COUNT) \
|
376 |
|
|
&& pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_func != NULL)
|
377 |
|
|
|
378 |
|
|
#define PFM_CMD_USE_PID(cmd) ((pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_flags & PFM_CMD_PID) != 0)
|
379 |
|
|
#define PFM_CMD_READ_ARG(cmd) ((pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_flags & PFM_CMD_ARG_READ) != 0)
|
380 |
|
|
#define PFM_CMD_RW_ARG(cmd) ((pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_flags & PFM_CMD_ARG_RW) != 0)
|
381 |
|
|
#define PFM_CMD_USE_CTX(cmd) ((pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_flags & PFM_CMD_CTX) != 0)
|
382 |
|
|
#define PFM_CMD_CHK(cmd) ((pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_flags & PFM_CMD_NOCHK) == 0)
|
383 |
|
|
|
384 |
|
|
#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
|
385 |
|
|
#define PFM_CMD_NARG(cmd) (pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_narg)
|
386 |
|
|
#define PFM_CMD_ARG_SIZE(cmd) (pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_argsize)
|
387 |
|
|
|
388 |
|
|
typedef struct {
|
389 |
|
|
int debug; /* turn on/off debugging via syslog */
|
390 |
|
|
int debug_ovfl; /* turn on/off debug printk in overflow handler */
|
391 |
|
|
int fastctxsw; /* turn on/off fast (unsecure) ctxsw */
|
392 |
|
|
} pfm_sysctl_t;
|
393 |
|
|
|
394 |
|
|
typedef struct {
|
395 |
|
|
unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
|
396 |
|
|
unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
|
397 |
|
|
unsigned long pfm_recorded_samples_count;
|
398 |
|
|
unsigned long pfm_full_smpl_buffer_count; /* how many times the sampling buffer was full */
|
399 |
|
|
char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
|
400 |
|
|
} pfm_stats_t;
|
401 |
|
|
|
402 |
|
|
/*
|
403 |
|
|
* perfmon internal variables
|
404 |
|
|
*/
|
405 |
|
|
static pfm_session_t pfm_sessions; /* global sessions information */
|
406 |
|
|
static struct proc_dir_entry *perfmon_dir; /* for debug only */
|
407 |
|
|
static pfm_stats_t pfm_stats[NR_CPUS];
|
408 |
|
|
static pfm_intr_handler_desc_t *pfm_alternate_intr_handler;
|
409 |
|
|
|
410 |
|
|
/* sysctl() controls */
|
411 |
|
|
static pfm_sysctl_t pfm_sysctl;
|
412 |
|
|
|
413 |
|
|
static ctl_table pfm_ctl_table[]={
|
414 |
|
|
{1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
|
415 |
|
|
{2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
|
416 |
|
|
{3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
|
417 |
|
|
{ 0, },
|
418 |
|
|
};
|
419 |
|
|
static ctl_table pfm_sysctl_dir[] = {
|
420 |
|
|
{1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
|
421 |
|
|
{0,},
|
422 |
|
|
};
|
423 |
|
|
static ctl_table pfm_sysctl_root[] = {
|
424 |
|
|
{1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
|
425 |
|
|
{0,},
|
426 |
|
|
};
|
427 |
|
|
static struct ctl_table_header *pfm_sysctl_header;
|
428 |
|
|
|
429 |
|
|
static void pfm_vm_close(struct vm_area_struct * area);
|
430 |
|
|
|
431 |
|
|
static struct vm_operations_struct pfm_vm_ops={
|
432 |
|
|
.close = pfm_vm_close
|
433 |
|
|
};
|
434 |
|
|
|
435 |
|
|
/*
|
436 |
|
|
* keep track of task owning the PMU per CPU.
|
437 |
|
|
*/
|
438 |
|
|
static struct {
|
439 |
|
|
struct task_struct *owner;
|
440 |
|
|
unsigned long activation_number;
|
441 |
|
|
char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
|
442 |
|
|
} pmu_owners[NR_CPUS];
|
443 |
|
|
|
444 |
|
|
|
445 |
|
|
|
446 |
|
|
/*
|
447 |
|
|
* forward declarations
|
448 |
|
|
*/
|
449 |
|
|
static void pfm_reset_pmu(struct task_struct *);
|
450 |
|
|
#ifndef CONFIG_SMP
|
451 |
|
|
static unsigned long pfm_lazy_save_regs (struct task_struct *ta);
|
452 |
|
|
#endif
|
453 |
|
|
|
454 |
|
|
#if defined(CONFIG_ITANIUM)
|
455 |
|
|
#include "perfmon_itanium.h"
|
456 |
|
|
#elif defined(CONFIG_MCKINLEY)
|
457 |
|
|
#include "perfmon_mckinley.h"
|
458 |
|
|
#else
|
459 |
|
|
#include "perfmon_generic.h"
|
460 |
|
|
#endif
|
461 |
|
|
|
462 |
|
|
static inline void
|
463 |
|
|
pfm_clear_psr_pp(void)
|
464 |
|
|
{
|
465 |
|
|
__asm__ __volatile__ ("rsm psr.pp;; srlz.i;;"::: "memory");
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
static inline void
|
469 |
|
|
pfm_set_psr_pp(void)
|
470 |
|
|
{
|
471 |
|
|
__asm__ __volatile__ ("ssm psr.pp;; srlz.i;;"::: "memory");
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
static inline void
|
475 |
|
|
pfm_clear_psr_up(void)
|
476 |
|
|
{
|
477 |
|
|
__asm__ __volatile__ ("rsm psr.up;; srlz.i;;"::: "memory");
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
static inline void
|
481 |
|
|
pfm_set_psr_up(void)
|
482 |
|
|
{
|
483 |
|
|
__asm__ __volatile__ ("ssm psr.up;; srlz.i;;"::: "memory");
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
static inline unsigned long
|
487 |
|
|
pfm_get_psr(void)
|
488 |
|
|
{
|
489 |
|
|
unsigned long tmp;
|
490 |
|
|
__asm__ __volatile__ ("mov %0=psr;;": "=r"(tmp) :: "memory");
|
491 |
|
|
return tmp;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
static inline void
|
495 |
|
|
pfm_set_psr_l(unsigned long val)
|
496 |
|
|
{
|
497 |
|
|
__asm__ __volatile__ ("mov psr.l=%0;; srlz.i;;"::"r"(val): "memory");
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
|
501 |
|
|
|
502 |
|
|
static inline void
|
503 |
|
|
pfm_freeze_pmu(void)
|
504 |
|
|
{
|
505 |
|
|
ia64_set_pmc(0,1UL);
|
506 |
|
|
ia64_srlz_d();
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
static inline void
|
510 |
|
|
pfm_unfreeze_pmu(void)
|
511 |
|
|
{
|
512 |
|
|
ia64_set_pmc(0,0UL);
|
513 |
|
|
ia64_srlz_d();
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
static inline void
|
517 |
|
|
pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
|
518 |
|
|
{
|
519 |
|
|
int i;
|
520 |
|
|
|
521 |
|
|
for (i=0; i < nibrs; i++) {
|
522 |
|
|
ia64_set_ibr(i, ibrs[i]);
|
523 |
|
|
}
|
524 |
|
|
ia64_srlz_i();
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
static inline void
|
528 |
|
|
pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
|
529 |
|
|
{
|
530 |
|
|
int i;
|
531 |
|
|
|
532 |
|
|
for (i=0; i < ndbrs; i++) {
|
533 |
|
|
ia64_set_dbr(i, dbrs[i]);
|
534 |
|
|
}
|
535 |
|
|
ia64_srlz_d();
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
static inline void
|
539 |
|
|
pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
|
540 |
|
|
{
|
541 |
|
|
int i;
|
542 |
|
|
|
543 |
|
|
DBprintk(("mask=0x%lx\n", mask));
|
544 |
|
|
for (i=0; mask; i++, mask>>=1) {
|
545 |
|
|
if ((mask & 0x1) == 0) continue;
|
546 |
|
|
ia64_set_pmc(i, pmcs[i]);
|
547 |
|
|
DBprintk(("pmc[%d]=0x%lx\n", i, pmcs[i]));
|
548 |
|
|
}
|
549 |
|
|
ia64_srlz_d();
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
static inline void
|
553 |
|
|
pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
|
554 |
|
|
{
|
555 |
|
|
int i;
|
556 |
|
|
unsigned long val, ovfl_val = pmu_conf.ovfl_val;
|
557 |
|
|
|
558 |
|
|
DBprintk(("mask=0x%lx\n", mask));
|
559 |
|
|
for (i=0; mask; i++, mask>>=1) {
|
560 |
|
|
if ((mask & 0x1) == 0) continue;
|
561 |
|
|
val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
|
562 |
|
|
ia64_set_pmd(i, val);
|
563 |
|
|
DBprintk(("pmd[%d]=0x%lx\n", i, val));
|
564 |
|
|
}
|
565 |
|
|
ia64_srlz_d();
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
static inline void
|
569 |
|
|
pfm_save_pmds(unsigned long *pmds, unsigned long mask)
|
570 |
|
|
{
|
571 |
|
|
int i;
|
572 |
|
|
|
573 |
|
|
ia64_srlz_d();
|
574 |
|
|
|
575 |
|
|
for (i=0; mask; i++, mask>>=1) {
|
576 |
|
|
if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
|
577 |
|
|
}
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
static inline unsigned long
|
581 |
|
|
pfm_read_soft_counter(pfm_context_t *ctx, int i)
|
582 |
|
|
{
|
583 |
|
|
return ctx->ctx_soft_pmds[i].val + (ia64_get_pmd(i) & pmu_conf.ovfl_val);
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
static inline void
|
587 |
|
|
pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
|
588 |
|
|
{
|
589 |
|
|
ctx->ctx_soft_pmds[i].val = val & ~pmu_conf.ovfl_val;
|
590 |
|
|
/*
|
591 |
|
|
* writing to unimplemented part is ignore, so we do not need to
|
592 |
|
|
* mask off top part
|
593 |
|
|
*/
|
594 |
|
|
ia64_set_pmd(i, val & pmu_conf.ovfl_val);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
/*
|
598 |
|
|
* Generates a unique (per CPU) timestamp
|
599 |
|
|
*/
|
600 |
|
|
static inline unsigned long
|
601 |
|
|
pfm_get_stamp(void)
|
602 |
|
|
{
|
603 |
|
|
/*
|
604 |
|
|
* XXX: must find something more efficient
|
605 |
|
|
*/
|
606 |
|
|
return ia64_get_itc();
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
/* Here we want the physical address of the memory.
|
610 |
|
|
* This is used when initializing the contents of the
|
611 |
|
|
* area and marking the pages as reserved.
|
612 |
|
|
*/
|
613 |
|
|
static inline unsigned long
|
614 |
|
|
pfm_kvirt_to_pa(unsigned long adr)
|
615 |
|
|
{
|
616 |
|
|
__u64 pa = ia64_tpa(adr);
|
617 |
|
|
//DBprintk(("kv2pa(%lx-->%lx)\n", adr, pa));
|
618 |
|
|
return pa;
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
static void *
|
622 |
|
|
pfm_rvmalloc(unsigned long size)
|
623 |
|
|
{
|
624 |
|
|
void *mem;
|
625 |
|
|
unsigned long adr, page;
|
626 |
|
|
|
627 |
|
|
mem=vmalloc(size);
|
628 |
|
|
if (mem) {
|
629 |
|
|
//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
|
630 |
|
|
memset(mem, 0, size); /* Clear the ram out, no junk to the user */
|
631 |
|
|
adr=(unsigned long) mem;
|
632 |
|
|
while (size > 0) {
|
633 |
|
|
page = pfm_kvirt_to_pa(adr);
|
634 |
|
|
mem_map_reserve(virt_to_page(__va(page)));
|
635 |
|
|
adr += PAGE_SIZE;
|
636 |
|
|
size -= PAGE_SIZE;
|
637 |
|
|
}
|
638 |
|
|
}
|
639 |
|
|
return mem;
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
static void
|
643 |
|
|
pfm_rvfree(void *mem, unsigned long size)
|
644 |
|
|
{
|
645 |
|
|
unsigned long adr, page = 0;
|
646 |
|
|
|
647 |
|
|
if (mem) {
|
648 |
|
|
adr=(unsigned long) mem;
|
649 |
|
|
while (size > 0) {
|
650 |
|
|
page = pfm_kvirt_to_pa(adr);
|
651 |
|
|
mem_map_unreserve(virt_to_page(__va(page)));
|
652 |
|
|
adr+=PAGE_SIZE;
|
653 |
|
|
size-=PAGE_SIZE;
|
654 |
|
|
}
|
655 |
|
|
vfree(mem);
|
656 |
|
|
}
|
657 |
|
|
return;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
/*
|
661 |
|
|
* This function gets called from mm/mmap.c:exit_mmap() only when there is a sampling buffer
|
662 |
|
|
* attached to the context AND the current task has a mapping for it, i.e., it is the original
|
663 |
|
|
* creator of the context.
|
664 |
|
|
*
|
665 |
|
|
* This function is used to remember the fact that the vma describing the sampling buffer
|
666 |
|
|
* has now been removed. It can only be called when no other tasks share the same mm context.
|
667 |
|
|
*
|
668 |
|
|
*/
|
669 |
|
|
static void
|
670 |
|
|
pfm_vm_close(struct vm_area_struct *vma)
|
671 |
|
|
{
|
672 |
|
|
pfm_smpl_buffer_desc_t *psb = (pfm_smpl_buffer_desc_t *)vma->vm_private_data;
|
673 |
|
|
|
674 |
|
|
if (psb == NULL) {
|
675 |
|
|
printk(KERN_DEBUG "perfmon: psb is null in [%d]\n", current->pid);
|
676 |
|
|
return;
|
677 |
|
|
}
|
678 |
|
|
/*
|
679 |
|
|
* Add PSB to list of buffers to free on release_thread() when no more users
|
680 |
|
|
*
|
681 |
|
|
* This call is safe because, once the count is zero is cannot be modified anymore.
|
682 |
|
|
* This is not because there is no more user of the mm context, that the sampling
|
683 |
|
|
* buffer is not being used anymore outside of this task. In fact, it can still
|
684 |
|
|
* be accessed from within the kernel by another task (such as the monitored task).
|
685 |
|
|
*
|
686 |
|
|
* Therefore, we only move the psb into the list of buffers to free when we know
|
687 |
|
|
* nobody else is using it.
|
688 |
|
|
* The linked list if independent of the perfmon context, because in the case of
|
689 |
|
|
* multi-threaded processes, the last thread may not have been involved with
|
690 |
|
|
* monitoring however it will be the one removing the vma and it should therefore
|
691 |
|
|
* also remove the sampling buffer. This buffer cannot be removed until the vma
|
692 |
|
|
* is removed.
|
693 |
|
|
*
|
694 |
|
|
* This function cannot remove the buffer from here, because exit_mmap() must first
|
695 |
|
|
* complete. Given that there is no other vma related callback in the generic code,
|
696 |
|
|
* we have created our own with the linked list of sampling buffers to free. The list
|
697 |
|
|
* is part of the thread structure. In release_thread() we check if the list is
|
698 |
|
|
* empty. If not we call into perfmon to free the buffer and psb. That is the only
|
699 |
|
|
* way to ensure a safe deallocation of the sampling buffer which works when
|
700 |
|
|
* the buffer is shared between distinct processes or with multi-threaded programs.
|
701 |
|
|
*
|
702 |
|
|
* We need to lock the psb because the refcnt test and flag manipulation must
|
703 |
|
|
* looked like an atomic operation vis a vis pfm_context_exit()
|
704 |
|
|
*/
|
705 |
|
|
LOCK_PSB(psb);
|
706 |
|
|
|
707 |
|
|
if (psb->psb_refcnt == 0) {
|
708 |
|
|
|
709 |
|
|
psb->psb_next = current->thread.pfm_smpl_buf_list;
|
710 |
|
|
current->thread.pfm_smpl_buf_list = psb;
|
711 |
|
|
|
712 |
|
|
DBprintk(("[%d] add smpl @%p size %lu to smpl_buf_list psb_flags=0x%x\n",
|
713 |
|
|
current->pid, psb->psb_hdr, psb->psb_size, psb->psb_flags));
|
714 |
|
|
}
|
715 |
|
|
DBprintk(("[%d] clearing psb_flags=0x%x smpl @%p size %lu\n",
|
716 |
|
|
current->pid, psb->psb_flags, psb->psb_hdr, psb->psb_size));
|
717 |
|
|
/*
|
718 |
|
|
* decrement the number vma for the buffer
|
719 |
|
|
*/
|
720 |
|
|
psb->psb_flags &= ~PSB_HAS_VMA;
|
721 |
|
|
|
722 |
|
|
UNLOCK_PSB(psb);
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
/*
|
726 |
|
|
* This function is called from pfm_destroy_context() and also from pfm_inherit()
|
727 |
|
|
* to explicitely remove the sampling buffer mapping from the user level address space.
|
728 |
|
|
*/
|
729 |
|
|
static int
|
730 |
|
|
pfm_remove_smpl_mapping(struct task_struct *task)
|
731 |
|
|
{
|
732 |
|
|
pfm_context_t *ctx = task->thread.pfm_context;
|
733 |
|
|
pfm_smpl_buffer_desc_t *psb;
|
734 |
|
|
int r;
|
735 |
|
|
|
736 |
|
|
/*
|
737 |
|
|
* some sanity checks first
|
738 |
|
|
*/
|
739 |
|
|
if (ctx == NULL || task->mm == NULL || ctx->ctx_smpl_vaddr == 0 || ctx->ctx_psb == NULL) {
|
740 |
|
|
printk(KERN_DEBUG "perfmon: invalid context mm=%p\n", task->mm);
|
741 |
|
|
return -1;
|
742 |
|
|
}
|
743 |
|
|
psb = ctx->ctx_psb;
|
744 |
|
|
|
745 |
|
|
down_write(&task->mm->mmap_sem);
|
746 |
|
|
|
747 |
|
|
r = do_munmap(task->mm, ctx->ctx_smpl_vaddr, psb->psb_size);
|
748 |
|
|
|
749 |
|
|
up_write(&task->mm->mmap_sem);
|
750 |
|
|
if (r !=0) {
|
751 |
|
|
printk(KERN_DEBUG "perfmon: pid %d unable to unmap sampling buffer "
|
752 |
|
|
"@0x%lx size=%ld\n", task->pid, ctx->ctx_smpl_vaddr, psb->psb_size);
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
DBprintk(("[%d] do_unmap(0x%lx, %ld)=%d refcnt=%lu psb_flags=0x%x\n",
|
756 |
|
|
task->pid, ctx->ctx_smpl_vaddr, psb->psb_size, r, psb->psb_refcnt, psb->psb_flags));
|
757 |
|
|
|
758 |
|
|
return 0;
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
static pfm_context_t *
|
762 |
|
|
pfm_context_alloc(void)
|
763 |
|
|
{
|
764 |
|
|
pfm_context_t *ctx;
|
765 |
|
|
|
766 |
|
|
/* allocate context descriptor */
|
767 |
|
|
ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
|
768 |
|
|
if (ctx) memset(ctx, 0, sizeof(pfm_context_t));
|
769 |
|
|
|
770 |
|
|
return ctx;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
static void
|
774 |
|
|
pfm_context_free(pfm_context_t *ctx)
|
775 |
|
|
{
|
776 |
|
|
if (ctx) {
|
777 |
|
|
DBprintk(("kill tasklet for ctx %p\n", ctx));
|
778 |
|
|
|
779 |
|
|
tasklet_kill(&ctx->ctx_tasklet);
|
780 |
|
|
|
781 |
|
|
DBprintk(("free ctx @%p\n", ctx));
|
782 |
|
|
kfree(ctx);
|
783 |
|
|
}
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
static int
|
787 |
|
|
pfm_remap_buffer(unsigned long buf, unsigned long addr, unsigned long size)
|
788 |
|
|
{
|
789 |
|
|
unsigned long page;
|
790 |
|
|
|
791 |
|
|
DBprintk(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
|
792 |
|
|
|
793 |
|
|
while (size > 0) {
|
794 |
|
|
page = pfm_kvirt_to_pa(buf);
|
795 |
|
|
|
796 |
|
|
if (remap_page_range(addr, page, PAGE_SIZE, PAGE_READONLY)) return -ENOMEM;
|
797 |
|
|
|
798 |
|
|
addr += PAGE_SIZE;
|
799 |
|
|
buf += PAGE_SIZE;
|
800 |
|
|
size -= PAGE_SIZE;
|
801 |
|
|
}
|
802 |
|
|
return 0;
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
/*
|
806 |
|
|
* counts the number of PMDS to save per entry.
|
807 |
|
|
* This code is generic enough to accomodate more than 64 PMDS when they become available
|
808 |
|
|
*/
|
809 |
|
|
static unsigned long
|
810 |
|
|
pfm_smpl_entry_size(unsigned long *which, unsigned long size)
|
811 |
|
|
{
|
812 |
|
|
unsigned long res = 0;
|
813 |
|
|
int i;
|
814 |
|
|
|
815 |
|
|
for (i=0; i < size; i++, which++) res += hweight64(*which);
|
816 |
|
|
|
817 |
|
|
DBprintk(("weight=%ld\n", res));
|
818 |
|
|
|
819 |
|
|
return res;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
/*
|
823 |
|
|
* Allocates the sampling buffer and remaps it into caller's address space
|
824 |
|
|
*/
|
825 |
|
|
static int
|
826 |
|
|
pfm_smpl_buffer_alloc(pfm_context_t *ctx, unsigned long *which_pmds, unsigned long entries,
|
827 |
|
|
void **user_vaddr)
|
828 |
|
|
{
|
829 |
|
|
struct mm_struct *mm = current->mm;
|
830 |
|
|
struct vm_area_struct *vma = NULL;
|
831 |
|
|
unsigned long size, regcount;
|
832 |
|
|
void *smpl_buf;
|
833 |
|
|
pfm_smpl_buffer_desc_t *psb;
|
834 |
|
|
|
835 |
|
|
|
836 |
|
|
/* note that regcount might be 0, in this case only the header for each
|
837 |
|
|
* entry will be recorded.
|
838 |
|
|
*/
|
839 |
|
|
regcount = pfm_smpl_entry_size(which_pmds, 1);
|
840 |
|
|
|
841 |
|
|
if ((sizeof(perfmon_smpl_hdr_t)+ entries*sizeof(perfmon_smpl_entry_t)) <= entries) {
|
842 |
|
|
DBprintk(("requested entries %lu is too big\n", entries));
|
843 |
|
|
return -EINVAL;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/*
|
847 |
|
|
* 1 buffer hdr and for each entry a header + regcount PMDs to save
|
848 |
|
|
*/
|
849 |
|
|
size = PAGE_ALIGN( sizeof(perfmon_smpl_hdr_t)
|
850 |
|
|
+ entries * (sizeof(perfmon_smpl_entry_t) + regcount*sizeof(u64)));
|
851 |
|
|
|
852 |
|
|
DBprintk(("sampling buffer size=%lu bytes\n", size));
|
853 |
|
|
|
854 |
|
|
/*
|
855 |
|
|
* check requested size to avoid Denial-of-service attacks
|
856 |
|
|
* XXX: may have to refine this test
|
857 |
|
|
* Check against address space limit.
|
858 |
|
|
*
|
859 |
|
|
* if ((mm->total_vm << PAGE_SHIFT) + len> current->rlim[RLIMIT_AS].rlim_cur)
|
860 |
|
|
* return -ENOMEM;
|
861 |
|
|
*/
|
862 |
|
|
if (size > current->rlim[RLIMIT_MEMLOCK].rlim_cur) return -EAGAIN;
|
863 |
|
|
|
864 |
|
|
/*
|
865 |
|
|
* We do the easy to undo allocations first.
|
866 |
|
|
*
|
867 |
|
|
* pfm_rvmalloc(), clears the buffer, so there is no leak
|
868 |
|
|
*/
|
869 |
|
|
smpl_buf = pfm_rvmalloc(size);
|
870 |
|
|
if (smpl_buf == NULL) {
|
871 |
|
|
DBprintk(("Can't allocate sampling buffer\n"));
|
872 |
|
|
return -ENOMEM;
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
DBprintk(("smpl_buf @%p\n", smpl_buf));
|
876 |
|
|
|
877 |
|
|
/* allocate sampling buffer descriptor now */
|
878 |
|
|
psb = kmalloc(sizeof(*psb), GFP_KERNEL);
|
879 |
|
|
if (psb == NULL) {
|
880 |
|
|
DBprintk(("Can't allocate sampling buffer descriptor\n"));
|
881 |
|
|
goto error_kmalloc;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
/* allocate vma */
|
885 |
|
|
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
|
886 |
|
|
if (!vma) {
|
887 |
|
|
DBprintk(("Cannot allocate vma\n"));
|
888 |
|
|
goto error_kmem;
|
889 |
|
|
}
|
890 |
|
|
/*
|
891 |
|
|
* partially initialize the vma for the sampling buffer
|
892 |
|
|
*
|
893 |
|
|
* The VM_DONTCOPY flag is very important as it ensures that the mapping
|
894 |
|
|
* will never be inherited for any child process (via fork()) which is always
|
895 |
|
|
* what we want.
|
896 |
|
|
*/
|
897 |
|
|
vma->vm_mm = mm;
|
898 |
|
|
vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED|VM_DONTCOPY;
|
899 |
|
|
vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
|
900 |
|
|
vma->vm_ops = &pfm_vm_ops; /* necesarry to get the close() callback */
|
901 |
|
|
vma->vm_pgoff = 0;
|
902 |
|
|
vma->vm_file = NULL;
|
903 |
|
|
vma->vm_raend = 0;
|
904 |
|
|
vma->vm_private_data = psb; /* information needed by the pfm_vm_close() function */
|
905 |
|
|
|
906 |
|
|
/*
|
907 |
|
|
* Now we have everything we need and we can initialize
|
908 |
|
|
* and connect all the data structures
|
909 |
|
|
*/
|
910 |
|
|
|
911 |
|
|
psb->psb_hdr = smpl_buf;
|
912 |
|
|
psb->psb_addr = ((char *)smpl_buf)+sizeof(perfmon_smpl_hdr_t); /* first entry */
|
913 |
|
|
psb->psb_size = size; /* aligned size */
|
914 |
|
|
psb->psb_index = 0;
|
915 |
|
|
psb->psb_entries = entries;
|
916 |
|
|
psb->psb_refcnt = 1;
|
917 |
|
|
psb->psb_flags = PSB_HAS_VMA;
|
918 |
|
|
|
919 |
|
|
spin_lock_init(&psb->psb_lock);
|
920 |
|
|
|
921 |
|
|
/*
|
922 |
|
|
* XXX: will need to do cacheline alignment to avoid false sharing in SMP mode and
|
923 |
|
|
* multitask monitoring.
|
924 |
|
|
*/
|
925 |
|
|
psb->psb_entry_size = sizeof(perfmon_smpl_entry_t) + regcount*sizeof(u64);
|
926 |
|
|
|
927 |
|
|
DBprintk(("psb @%p entry_size=%ld hdr=%p addr=%p refcnt=%lu psb_flags=0x%x\n",
|
928 |
|
|
(void *)psb,psb->psb_entry_size, (void *)psb->psb_hdr,
|
929 |
|
|
(void *)psb->psb_addr, psb->psb_refcnt, psb->psb_flags));
|
930 |
|
|
|
931 |
|
|
/* initialize some of the fields of user visible buffer header */
|
932 |
|
|
psb->psb_hdr->hdr_version = PFM_SMPL_VERSION;
|
933 |
|
|
psb->psb_hdr->hdr_entry_size = psb->psb_entry_size;
|
934 |
|
|
psb->psb_hdr->hdr_pmds[0] = which_pmds[0];
|
935 |
|
|
|
936 |
|
|
/*
|
937 |
|
|
* Let's do the difficult operations next.
|
938 |
|
|
*
|
939 |
|
|
* now we atomically find some area in the address space and
|
940 |
|
|
* remap the buffer in it.
|
941 |
|
|
*/
|
942 |
|
|
down_write(¤t->mm->mmap_sem);
|
943 |
|
|
|
944 |
|
|
|
945 |
|
|
/* find some free area in address space, must have mmap sem held */
|
946 |
|
|
vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
|
947 |
|
|
if (vma->vm_start == 0UL) {
|
948 |
|
|
DBprintk(("Cannot find unmapped area for size %ld\n", size));
|
949 |
|
|
up_write(¤t->mm->mmap_sem);
|
950 |
|
|
goto error;
|
951 |
|
|
}
|
952 |
|
|
vma->vm_end = vma->vm_start + size;
|
953 |
|
|
|
954 |
|
|
DBprintk(("entries=%ld aligned size=%ld, unmapped @0x%lx\n", entries, size, vma->vm_start));
|
955 |
|
|
|
956 |
|
|
/* can only be applied to current, need to have the mm semaphore held when called */
|
957 |
|
|
if (pfm_remap_buffer((unsigned long)smpl_buf, vma->vm_start, size)) {
|
958 |
|
|
DBprintk(("Can't remap buffer\n"));
|
959 |
|
|
up_write(¤t->mm->mmap_sem);
|
960 |
|
|
goto error;
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
/*
|
964 |
|
|
* now insert the vma in the vm list for the process, must be
|
965 |
|
|
* done with mmap lock held
|
966 |
|
|
*/
|
967 |
|
|
insert_vm_struct(mm, vma);
|
968 |
|
|
|
969 |
|
|
mm->total_vm += size >> PAGE_SHIFT;
|
970 |
|
|
|
971 |
|
|
up_write(¤t->mm->mmap_sem);
|
972 |
|
|
|
973 |
|
|
/* store which PMDS to record */
|
974 |
|
|
ctx->ctx_smpl_regs[0] = which_pmds[0];
|
975 |
|
|
|
976 |
|
|
|
977 |
|
|
/* link to perfmon context */
|
978 |
|
|
ctx->ctx_psb = psb;
|
979 |
|
|
|
980 |
|
|
/*
|
981 |
|
|
* keep track of user level virtual address
|
982 |
|
|
*/
|
983 |
|
|
ctx->ctx_smpl_vaddr = *(unsigned long *)user_vaddr = vma->vm_start;
|
984 |
|
|
|
985 |
|
|
return 0;
|
986 |
|
|
|
987 |
|
|
error:
|
988 |
|
|
kmem_cache_free(vm_area_cachep, vma);
|
989 |
|
|
error_kmem:
|
990 |
|
|
kfree(psb);
|
991 |
|
|
error_kmalloc:
|
992 |
|
|
pfm_rvfree(smpl_buf, size);
|
993 |
|
|
return -ENOMEM;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
static int
|
997 |
|
|
pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned long cpu_mask)
|
998 |
|
|
{
|
999 |
|
|
unsigned long m, undo_mask;
|
1000 |
|
|
unsigned int n, i;
|
1001 |
|
|
|
1002 |
|
|
/*
|
1003 |
|
|
* validy checks on cpu_mask have been done upstream
|
1004 |
|
|
*/
|
1005 |
|
|
LOCK_PFS();
|
1006 |
|
|
|
1007 |
|
|
if (is_syswide) {
|
1008 |
|
|
/*
|
1009 |
|
|
* cannot mix system wide and per-task sessions
|
1010 |
|
|
*/
|
1011 |
|
|
if (pfm_sessions.pfs_task_sessions > 0UL) {
|
1012 |
|
|
DBprintk(("system wide not possible, %u conflicting task_sessions\n",
|
1013 |
|
|
pfm_sessions.pfs_task_sessions));
|
1014 |
|
|
goto abort;
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
m = cpu_mask; undo_mask = 0UL; n = 0;
|
1018 |
|
|
DBprintk(("cpu_mask=0x%lx\n", cpu_mask));
|
1019 |
|
|
for(i=0; m; i++, m>>=1) {
|
1020 |
|
|
|
1021 |
|
|
if ((m & 0x1) == 0UL) continue;
|
1022 |
|
|
|
1023 |
|
|
if (pfm_sessions.pfs_sys_session[i]) goto undo;
|
1024 |
|
|
|
1025 |
|
|
DBprintk(("reserving CPU%d currently on CPU%d\n", i, smp_processor_id()));
|
1026 |
|
|
|
1027 |
|
|
pfm_sessions.pfs_sys_session[i] = task;
|
1028 |
|
|
undo_mask |= 1UL << i;
|
1029 |
|
|
n++;
|
1030 |
|
|
}
|
1031 |
|
|
pfm_sessions.pfs_sys_sessions += n;
|
1032 |
|
|
} else {
|
1033 |
|
|
if (pfm_sessions.pfs_sys_sessions) goto abort;
|
1034 |
|
|
pfm_sessions.pfs_task_sessions++;
|
1035 |
|
|
}
|
1036 |
|
|
UNLOCK_PFS();
|
1037 |
|
|
return 0;
|
1038 |
|
|
undo:
|
1039 |
|
|
DBprintk(("system wide not possible, conflicting session [%d] on CPU%d\n",
|
1040 |
|
|
pfm_sessions.pfs_sys_session[i]->pid, i));
|
1041 |
|
|
|
1042 |
|
|
for(i=0; undo_mask; i++, undo_mask >>=1) {
|
1043 |
|
|
pfm_sessions.pfs_sys_session[i] = NULL;
|
1044 |
|
|
}
|
1045 |
|
|
abort:
|
1046 |
|
|
UNLOCK_PFS();
|
1047 |
|
|
|
1048 |
|
|
return -EBUSY;
|
1049 |
|
|
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
static int
|
1053 |
|
|
pfm_unreserve_session(struct task_struct *task, int is_syswide, unsigned long cpu_mask)
|
1054 |
|
|
{
|
1055 |
|
|
pfm_context_t *ctx;
|
1056 |
|
|
unsigned long m;
|
1057 |
|
|
unsigned int n, i;
|
1058 |
|
|
|
1059 |
|
|
ctx = task ? task->thread.pfm_context : NULL;
|
1060 |
|
|
|
1061 |
|
|
/*
|
1062 |
|
|
* validy checks on cpu_mask have been done upstream
|
1063 |
|
|
*/
|
1064 |
|
|
LOCK_PFS();
|
1065 |
|
|
|
1066 |
|
|
DBprintk(("[%d] sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu_mask=0x%lx\n",
|
1067 |
|
|
task->pid,
|
1068 |
|
|
pfm_sessions.pfs_sys_sessions,
|
1069 |
|
|
pfm_sessions.pfs_task_sessions,
|
1070 |
|
|
pfm_sessions.pfs_sys_use_dbregs,
|
1071 |
|
|
is_syswide,
|
1072 |
|
|
cpu_mask));
|
1073 |
|
|
|
1074 |
|
|
|
1075 |
|
|
if (is_syswide) {
|
1076 |
|
|
m = cpu_mask; n = 0;
|
1077 |
|
|
for(i=0; m; i++, m>>=1) {
|
1078 |
|
|
if ((m & 0x1) == 0UL) continue;
|
1079 |
|
|
pfm_sessions.pfs_sys_session[i] = NULL;
|
1080 |
|
|
n++;
|
1081 |
|
|
}
|
1082 |
|
|
/*
|
1083 |
|
|
* would not work with perfmon+more than one bit in cpu_mask
|
1084 |
|
|
*/
|
1085 |
|
|
if (ctx && ctx->ctx_fl_using_dbreg) {
|
1086 |
|
|
if (pfm_sessions.pfs_sys_use_dbregs == 0) {
|
1087 |
|
|
printk(KERN_DEBUG "perfmon: invalid release for [%d] "
|
1088 |
|
|
"sys_use_dbregs=0\n", task->pid);
|
1089 |
|
|
} else {
|
1090 |
|
|
pfm_sessions.pfs_sys_use_dbregs--;
|
1091 |
|
|
}
|
1092 |
|
|
}
|
1093 |
|
|
pfm_sessions.pfs_sys_sessions -= n;
|
1094 |
|
|
|
1095 |
|
|
DBprintk(("CPU%d sys_sessions=%u\n",
|
1096 |
|
|
smp_processor_id(), pfm_sessions.pfs_sys_sessions));
|
1097 |
|
|
} else {
|
1098 |
|
|
pfm_sessions.pfs_task_sessions--;
|
1099 |
|
|
DBprintk(("[%d] task_sessions=%u\n",
|
1100 |
|
|
task->pid, pfm_sessions.pfs_task_sessions));
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
UNLOCK_PFS();
|
1104 |
|
|
|
1105 |
|
|
return 0;
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
static void
|
1109 |
|
|
pfm_send_notification_signal(unsigned long data)
|
1110 |
|
|
{
|
1111 |
|
|
pfm_context_t *ctx = (pfm_context_t *)data;
|
1112 |
|
|
struct siginfo si;
|
1113 |
|
|
int ret;
|
1114 |
|
|
|
1115 |
|
|
DBprintk(("[%d] tasklet called\n", current->pid));
|
1116 |
|
|
|
1117 |
|
|
LOCK_CTX(ctx);
|
1118 |
|
|
|
1119 |
|
|
if (ctx->ctx_notify_task == NULL) {
|
1120 |
|
|
printk(KERN_INFO "perfmon: tasklet lost notify_task\n");
|
1121 |
|
|
goto nothing_to_do;
|
1122 |
|
|
}
|
1123 |
|
|
/* no leak */
|
1124 |
|
|
memset(&si,0, sizeof(si));
|
1125 |
|
|
|
1126 |
|
|
si.si_addr = NULL;
|
1127 |
|
|
si.si_pid = current->pid; /* irrelevant */
|
1128 |
|
|
si.si_signo = SIGPROF;
|
1129 |
|
|
si.si_code = PROF_OVFL; /* indicates a perfmon SIGPROF signal */
|
1130 |
|
|
si.si_pfm_ovfl[0] = ctx->ctx_ovfl_regs[0];
|
1131 |
|
|
|
1132 |
|
|
if (ctx->ctx_notify_task != current) read_lock(&tasklist_lock);
|
1133 |
|
|
|
1134 |
|
|
DBprintk_ovfl(("[%d] tasklet sending notification to [%d]\n", current->pid, ctx->ctx_notify_task->pid));
|
1135 |
|
|
|
1136 |
|
|
ret = send_sig_info(SIGPROF, &si, ctx->ctx_notify_task);
|
1137 |
|
|
if (ret != 0) printk(KERN_ERR "send_sig_info(process %d, SIGPROF)=%d\n", ctx->ctx_notify_task->pid, ret);
|
1138 |
|
|
|
1139 |
|
|
/*
|
1140 |
|
|
* now undo the protections in order
|
1141 |
|
|
*/
|
1142 |
|
|
if (ctx->ctx_notify_task != current) read_unlock(&tasklist_lock);
|
1143 |
|
|
nothing_to_do:
|
1144 |
|
|
UNLOCK_CTX(ctx);
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/*
|
1148 |
|
|
* XXX: do something better here
|
1149 |
|
|
*/
|
1150 |
|
|
static int
|
1151 |
|
|
pfm_bad_permissions(struct task_struct *task)
|
1152 |
|
|
{
|
1153 |
|
|
/* stolen from bad_signal() */
|
1154 |
|
|
return (current->session != task->session)
|
1155 |
|
|
&& (current->euid ^ task->suid) && (current->euid ^ task->uid)
|
1156 |
|
|
&& (current->uid ^ task->suid) && (current->uid ^ task->uid);
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
static int
|
1160 |
|
|
pfx_is_sane(struct task_struct *task, pfarg_context_t *pfx)
|
1161 |
|
|
{
|
1162 |
|
|
unsigned long smpl_pmds = pfx->ctx_smpl_regs[0];
|
1163 |
|
|
int ctx_flags;
|
1164 |
|
|
int cpu;
|
1165 |
|
|
|
1166 |
|
|
/* valid signal */
|
1167 |
|
|
|
1168 |
|
|
/* cannot send to process 1, 0 means do not notify */
|
1169 |
|
|
if (pfx->ctx_notify_pid == 1) {
|
1170 |
|
|
DBprintk(("invalid notify_pid %d\n", pfx->ctx_notify_pid));
|
1171 |
|
|
return -EINVAL;
|
1172 |
|
|
}
|
1173 |
|
|
ctx_flags = pfx->ctx_flags;
|
1174 |
|
|
|
1175 |
|
|
if ((ctx_flags & PFM_FL_INHERIT_MASK) == (PFM_FL_INHERIT_ONCE|PFM_FL_INHERIT_ALL)) {
|
1176 |
|
|
DBprintk(("invalid inherit mask 0x%x\n",ctx_flags & PFM_FL_INHERIT_MASK));
|
1177 |
|
|
return -EINVAL;
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
|
1181 |
|
|
DBprintk(("cpu_mask=0x%lx\n", pfx->ctx_cpu_mask));
|
1182 |
|
|
/*
|
1183 |
|
|
* cannot block in this mode
|
1184 |
|
|
*/
|
1185 |
|
|
if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
|
1186 |
|
|
DBprintk(("cannot use blocking mode when in system wide monitoring\n"));
|
1187 |
|
|
return -EINVAL;
|
1188 |
|
|
}
|
1189 |
|
|
/*
|
1190 |
|
|
* must only have one bit set in the CPU mask
|
1191 |
|
|
*/
|
1192 |
|
|
if (hweight64(pfx->ctx_cpu_mask) != 1UL) {
|
1193 |
|
|
DBprintk(("invalid CPU mask specified\n"));
|
1194 |
|
|
return -EINVAL;
|
1195 |
|
|
}
|
1196 |
|
|
/*
|
1197 |
|
|
* and it must be a valid CPU
|
1198 |
|
|
*/
|
1199 |
|
|
cpu = ffz(~pfx->ctx_cpu_mask);
|
1200 |
|
|
if (cpu_online(cpu) == 0) {
|
1201 |
|
|
DBprintk(("CPU%d is not online\n", cpu));
|
1202 |
|
|
return -EINVAL;
|
1203 |
|
|
}
|
1204 |
|
|
/*
|
1205 |
|
|
* check for pre-existing pinning, if conflicting reject
|
1206 |
|
|
*/
|
1207 |
|
|
if (task->cpus_allowed != ~0UL && (task->cpus_allowed & (1UL<<cpu)) == 0) {
|
1208 |
|
|
DBprintk(("[%d] pinned on 0x%lx, mask for CPU%d \n", task->pid,
|
1209 |
|
|
task->cpus_allowed, cpu));
|
1210 |
|
|
return -EINVAL;
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
} else {
|
1214 |
|
|
/*
|
1215 |
|
|
* must provide a target for the signal in blocking mode even when
|
1216 |
|
|
* no counter is configured with PFM_FL_REG_OVFL_NOTIFY
|
1217 |
|
|
*/
|
1218 |
|
|
if ((ctx_flags & PFM_FL_NOTIFY_BLOCK) && pfx->ctx_notify_pid == 0) {
|
1219 |
|
|
DBprintk(("must have notify_pid when blocking for [%d]\n", task->pid));
|
1220 |
|
|
return -EINVAL;
|
1221 |
|
|
}
|
1222 |
|
|
#if 0
|
1223 |
|
|
if ((ctx_flags & PFM_FL_NOTIFY_BLOCK) && pfx->ctx_notify_pid == task->pid) {
|
1224 |
|
|
DBprintk(("cannot notify self when blocking for [%d]\n", task->pid));
|
1225 |
|
|
return -EINVAL;
|
1226 |
|
|
}
|
1227 |
|
|
#endif
|
1228 |
|
|
}
|
1229 |
|
|
/* verify validity of smpl_regs */
|
1230 |
|
|
if ((smpl_pmds & pmu_conf.impl_pmds[0]) != smpl_pmds) {
|
1231 |
|
|
DBprintk(("invalid smpl_regs 0x%lx\n", smpl_pmds));
|
1232 |
|
|
return -EINVAL;
|
1233 |
|
|
}
|
1234 |
|
|
/* probably more to add here */
|
1235 |
|
|
|
1236 |
|
|
return 0;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
static int
|
1240 |
|
|
pfm_context_create(struct task_struct *task, pfm_context_t *ctx, void *req, int count,
|
1241 |
|
|
struct pt_regs *regs)
|
1242 |
|
|
{
|
1243 |
|
|
pfarg_context_t tmp;
|
1244 |
|
|
void *uaddr = NULL;
|
1245 |
|
|
int ret;
|
1246 |
|
|
int ctx_flags;
|
1247 |
|
|
pid_t notify_pid;
|
1248 |
|
|
|
1249 |
|
|
/* a context has already been defined */
|
1250 |
|
|
if (ctx) return -EBUSY;
|
1251 |
|
|
|
1252 |
|
|
/*
|
1253 |
|
|
* not yet supported
|
1254 |
|
|
*/
|
1255 |
|
|
if (task != current) return -EINVAL;
|
1256 |
|
|
|
1257 |
|
|
if (__copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
|
1258 |
|
|
|
1259 |
|
|
ret = pfx_is_sane(task, &tmp);
|
1260 |
|
|
if (ret < 0) return ret;
|
1261 |
|
|
|
1262 |
|
|
ctx_flags = tmp.ctx_flags;
|
1263 |
|
|
|
1264 |
|
|
ret = pfm_reserve_session(task, ctx_flags & PFM_FL_SYSTEM_WIDE, tmp.ctx_cpu_mask);
|
1265 |
|
|
if (ret) goto abort;
|
1266 |
|
|
|
1267 |
|
|
ret = -ENOMEM;
|
1268 |
|
|
|
1269 |
|
|
ctx = pfm_context_alloc();
|
1270 |
|
|
if (!ctx) goto error;
|
1271 |
|
|
|
1272 |
|
|
/* record the creator (important for inheritance) */
|
1273 |
|
|
ctx->ctx_owner = current;
|
1274 |
|
|
|
1275 |
|
|
notify_pid = tmp.ctx_notify_pid;
|
1276 |
|
|
|
1277 |
|
|
spin_lock_init(&ctx->ctx_lock);
|
1278 |
|
|
|
1279 |
|
|
if (notify_pid == current->pid) {
|
1280 |
|
|
|
1281 |
|
|
ctx->ctx_notify_task = current;
|
1282 |
|
|
task->thread.pfm_context = ctx;
|
1283 |
|
|
|
1284 |
|
|
} else if (notify_pid!=0) {
|
1285 |
|
|
struct task_struct *notify_task;
|
1286 |
|
|
|
1287 |
|
|
read_lock(&tasklist_lock);
|
1288 |
|
|
|
1289 |
|
|
notify_task = find_task_by_pid(notify_pid);
|
1290 |
|
|
|
1291 |
|
|
if (notify_task) {
|
1292 |
|
|
|
1293 |
|
|
ret = -EPERM;
|
1294 |
|
|
|
1295 |
|
|
/*
|
1296 |
|
|
* check if we can send this task a signal
|
1297 |
|
|
*/
|
1298 |
|
|
if (pfm_bad_permissions(notify_task)) {
|
1299 |
|
|
read_unlock(&tasklist_lock);
|
1300 |
|
|
goto buffer_error;
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
/*
|
1304 |
|
|
* make visible
|
1305 |
|
|
* must be done inside critical section
|
1306 |
|
|
*
|
1307 |
|
|
* if the initialization does not go through it is still
|
1308 |
|
|
* okay because child will do the scan for nothing which
|
1309 |
|
|
* won't hurt.
|
1310 |
|
|
*/
|
1311 |
|
|
task->thread.pfm_context = ctx;
|
1312 |
|
|
|
1313 |
|
|
/*
|
1314 |
|
|
* will cause task to check on exit for monitored
|
1315 |
|
|
* processes that would notify it. see release_thread()
|
1316 |
|
|
* Note: the scan MUST be done in release thread, once the
|
1317 |
|
|
* task has been detached from the tasklist otherwise you are
|
1318 |
|
|
* exposed to race conditions.
|
1319 |
|
|
*/
|
1320 |
|
|
atomic_add(1, &ctx->ctx_notify_task->thread.pfm_notifiers_check);
|
1321 |
|
|
|
1322 |
|
|
ctx->ctx_notify_task = notify_task;
|
1323 |
|
|
}
|
1324 |
|
|
read_unlock(&tasklist_lock);
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
/*
|
1328 |
|
|
* notification process does not exist
|
1329 |
|
|
*/
|
1330 |
|
|
if (notify_pid != 0 && ctx->ctx_notify_task == NULL) {
|
1331 |
|
|
ret = -EINVAL;
|
1332 |
|
|
goto buffer_error;
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
if (tmp.ctx_smpl_entries) {
|
1336 |
|
|
DBprintk(("sampling entries=%lu\n",tmp.ctx_smpl_entries));
|
1337 |
|
|
|
1338 |
|
|
ret = pfm_smpl_buffer_alloc(ctx, tmp.ctx_smpl_regs,
|
1339 |
|
|
tmp.ctx_smpl_entries, &uaddr);
|
1340 |
|
|
if (ret<0) goto buffer_error;
|
1341 |
|
|
|
1342 |
|
|
tmp.ctx_smpl_vaddr = uaddr;
|
1343 |
|
|
}
|
1344 |
|
|
/* initialization of context's flags */
|
1345 |
|
|
ctx->ctx_fl_inherit = ctx_flags & PFM_FL_INHERIT_MASK;
|
1346 |
|
|
ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
|
1347 |
|
|
ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
|
1348 |
|
|
ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
|
1349 |
|
|
ctx->ctx_fl_unsecure = (ctx_flags & PFM_FL_UNSECURE) ? 1: 0;
|
1350 |
|
|
ctx->ctx_fl_frozen = 0;
|
1351 |
|
|
/*
|
1352 |
|
|
* setting this flag to 0 here means, that the creator or the task that the
|
1353 |
|
|
* context is being attached are granted access. Given that a context can only
|
1354 |
|
|
* be created for the calling process this, in effect only allows the creator
|
1355 |
|
|
* to access the context. See pfm_protect() for more.
|
1356 |
|
|
*/
|
1357 |
|
|
ctx->ctx_fl_protected = 0;
|
1358 |
|
|
|
1359 |
|
|
/* for system wide mode only (only 1 bit set) */
|
1360 |
|
|
ctx->ctx_cpu = ffz(~tmp.ctx_cpu_mask);
|
1361 |
|
|
|
1362 |
|
|
/* SMP only, means no CPU */
|
1363 |
|
|
ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
|
1364 |
|
|
SET_LAST_CPU(ctx, -1);
|
1365 |
|
|
|
1366 |
|
|
sema_init(&ctx->ctx_restart_sem, 0); /* init this semaphore to locked */
|
1367 |
|
|
|
1368 |
|
|
/*
|
1369 |
|
|
* initialize tasklet for signal notifications
|
1370 |
|
|
*
|
1371 |
|
|
* ALL signal-based (or any notification using data structures
|
1372 |
|
|
* external to perfmon) MUST use tasklets to avoid lock contentions
|
1373 |
|
|
* when a signal has to be sent for overflow interrupt handler.
|
1374 |
|
|
*/
|
1375 |
|
|
tasklet_init(&ctx->ctx_tasklet, pfm_send_notification_signal, (unsigned long)ctx);
|
1376 |
|
|
|
1377 |
|
|
if (__copy_to_user(req, &tmp, sizeof(tmp))) {
|
1378 |
|
|
ret = -EFAULT;
|
1379 |
|
|
goto buffer_error;
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
DBprintk(("context=%p, pid=%d notify_task=%p\n",
|
1383 |
|
|
(void *)ctx, task->pid, ctx->ctx_notify_task));
|
1384 |
|
|
|
1385 |
|
|
DBprintk(("context=%p, pid=%d flags=0x%x inherit=%d block=%d system=%d excl_idle=%d unsecure=%d\n",
|
1386 |
|
|
(void *)ctx, task->pid, ctx_flags, ctx->ctx_fl_inherit,
|
1387 |
|
|
ctx->ctx_fl_block, ctx->ctx_fl_system,
|
1388 |
|
|
ctx->ctx_fl_excl_idle,
|
1389 |
|
|
ctx->ctx_fl_unsecure));
|
1390 |
|
|
|
1391 |
|
|
/*
|
1392 |
|
|
* when no notification is required, we can make this visible at the last moment
|
1393 |
|
|
*/
|
1394 |
|
|
if (notify_pid == 0) task->thread.pfm_context = ctx;
|
1395 |
|
|
/*
|
1396 |
|
|
* pin task to CPU and force reschedule on exit to ensure
|
1397 |
|
|
* that when back to user level the task runs on the designated
|
1398 |
|
|
* CPU.
|
1399 |
|
|
*/
|
1400 |
|
|
if (ctx->ctx_fl_system) {
|
1401 |
|
|
ctx->ctx_saved_cpus_allowed = task->cpus_allowed;
|
1402 |
|
|
task->cpus_allowed = tmp.ctx_cpu_mask;
|
1403 |
|
|
task->need_resched = 1;
|
1404 |
|
|
DBprintk(("[%d] rescheduled allowed=0x%lx\n", task->pid, task->cpus_allowed));
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
return 0;
|
1408 |
|
|
|
1409 |
|
|
buffer_error:
|
1410 |
|
|
pfm_context_free(ctx);
|
1411 |
|
|
error:
|
1412 |
|
|
pfm_unreserve_session(task, ctx_flags & PFM_FL_SYSTEM_WIDE , tmp.ctx_cpu_mask);
|
1413 |
|
|
abort:
|
1414 |
|
|
/* make sure we don't leave anything behind */
|
1415 |
|
|
task->thread.pfm_context = NULL;
|
1416 |
|
|
|
1417 |
|
|
return ret;
|
1418 |
|
|
}
|
1419 |
|
|
|
1420 |
|
|
static inline unsigned long
|
1421 |
|
|
pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
|
1422 |
|
|
{
|
1423 |
|
|
unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
|
1424 |
|
|
unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
|
1425 |
|
|
extern unsigned long carta_random32 (unsigned long seed);
|
1426 |
|
|
|
1427 |
|
|
if (reg->flags & PFM_REGFL_RANDOM) {
|
1428 |
|
|
new_seed = carta_random32(old_seed);
|
1429 |
|
|
val -= (old_seed & mask); /* counter values are negative numbers! */
|
1430 |
|
|
if ((mask >> 32) != 0)
|
1431 |
|
|
/* construct a full 64-bit random value: */
|
1432 |
|
|
new_seed |= carta_random32(old_seed >> 32) << 32;
|
1433 |
|
|
reg->seed = new_seed;
|
1434 |
|
|
}
|
1435 |
|
|
reg->lval = val;
|
1436 |
|
|
return val;
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
static void
|
1440 |
|
|
pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int flag)
|
1441 |
|
|
{
|
1442 |
|
|
unsigned long mask = ovfl_regs[0];
|
1443 |
|
|
unsigned long reset_others = 0UL;
|
1444 |
|
|
unsigned long val;
|
1445 |
|
|
int i, is_long_reset = (flag == PFM_PMD_LONG_RESET);
|
1446 |
|
|
|
1447 |
|
|
/*
|
1448 |
|
|
* now restore reset value on sampling overflowed counters
|
1449 |
|
|
*/
|
1450 |
|
|
mask >>= PMU_FIRST_COUNTER;
|
1451 |
|
|
for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
|
1452 |
|
|
if (mask & 0x1) {
|
1453 |
|
|
val = pfm_new_counter_value(ctx->ctx_soft_pmds + i, is_long_reset);
|
1454 |
|
|
reset_others |= ctx->ctx_soft_pmds[i].reset_pmds[0];
|
1455 |
|
|
|
1456 |
|
|
DBprintk_ovfl(("[%d] %s reset soft_pmd[%d]=%lx\n", current->pid,
|
1457 |
|
|
is_long_reset ? "long" : "short", i, val));
|
1458 |
|
|
|
1459 |
|
|
/* upper part is ignored on rval */
|
1460 |
|
|
pfm_write_soft_counter(ctx, i, val);
|
1461 |
|
|
}
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
/*
|
1465 |
|
|
* Now take care of resetting the other registers
|
1466 |
|
|
*/
|
1467 |
|
|
for(i = 0; reset_others; i++, reset_others >>= 1) {
|
1468 |
|
|
|
1469 |
|
|
if ((reset_others & 0x1) == 0) continue;
|
1470 |
|
|
|
1471 |
|
|
val = pfm_new_counter_value(ctx->ctx_soft_pmds + i, is_long_reset);
|
1472 |
|
|
|
1473 |
|
|
if (PMD_IS_COUNTING(i)) {
|
1474 |
|
|
pfm_write_soft_counter(ctx, i, val);
|
1475 |
|
|
} else {
|
1476 |
|
|
ia64_set_pmd(i, val);
|
1477 |
|
|
}
|
1478 |
|
|
DBprintk_ovfl(("[%d] %s reset_others pmd[%d]=%lx\n", current->pid,
|
1479 |
|
|
is_long_reset ? "long" : "short", i, val));
|
1480 |
|
|
}
|
1481 |
|
|
ia64_srlz_d();
|
1482 |
|
|
}
|
1483 |
|
|
|
1484 |
|
|
static int
|
1485 |
|
|
pfm_write_pmcs(struct task_struct *task, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
|
1486 |
|
|
{
|
1487 |
|
|
struct thread_struct *th = &task->thread;
|
1488 |
|
|
pfarg_reg_t tmp, *req = (pfarg_reg_t *)arg;
|
1489 |
|
|
unsigned long value, reset_pmds;
|
1490 |
|
|
unsigned int cnum, reg_flags, flags;
|
1491 |
|
|
int is_monitor, is_counting;
|
1492 |
|
|
int i, ret = -EINVAL;
|
1493 |
|
|
#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
|
1494 |
|
|
|
1495 |
|
|
/* we don't quite support this right now */
|
1496 |
|
|
if (task != current) return -EINVAL;
|
1497 |
|
|
|
1498 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
1499 |
|
|
|
1500 |
|
|
|
1501 |
|
|
/* XXX: ctx locking may be required here */
|
1502 |
|
|
|
1503 |
|
|
for (i = 0; i < count; i++, req++) {
|
1504 |
|
|
|
1505 |
|
|
if (__copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
|
1506 |
|
|
|
1507 |
|
|
cnum = tmp.reg_num;
|
1508 |
|
|
reg_flags = tmp.reg_flags;
|
1509 |
|
|
value = tmp.reg_value;
|
1510 |
|
|
reset_pmds = tmp.reg_reset_pmds[0];
|
1511 |
|
|
flags = 0;
|
1512 |
|
|
|
1513 |
|
|
is_counting = PMC_IS_COUNTING(cnum);
|
1514 |
|
|
is_monitor = PMC_IS_MONITOR(cnum);
|
1515 |
|
|
|
1516 |
|
|
/*
|
1517 |
|
|
* we reject all non implemented PMC as well
|
1518 |
|
|
* as attempts to modify PMC[0-3] which are used
|
1519 |
|
|
* as status registers by the PMU
|
1520 |
|
|
*/
|
1521 |
|
|
if (!PMC_IS_IMPL(cnum) || cnum < 4) {
|
1522 |
|
|
DBprintk(("pmc[%u] is unimplemented or invalid\n", cnum));
|
1523 |
|
|
goto error;
|
1524 |
|
|
}
|
1525 |
|
|
/*
|
1526 |
|
|
* If the PMC is a monitor, then if the value is not the default:
|
1527 |
|
|
* - system-wide session: PMCx.pm=1 (privileged monitor)
|
1528 |
|
|
* - per-task : PMCx.pm=0 (user monitor)
|
1529 |
|
|
*/
|
1530 |
|
|
if ((is_monitor || is_counting) && value != PMC_DFL_VAL(cnum) && PFM_CHECK_PMC_PM(ctx, cnum, value)) {
|
1531 |
|
|
DBprintk(("pmc%u pmc_pm=%ld fl_system=%d\n",
|
1532 |
|
|
cnum,
|
1533 |
|
|
PMC_PM(cnum, value),
|
1534 |
|
|
ctx->ctx_fl_system));
|
1535 |
|
|
goto error;
|
1536 |
|
|
}
|
1537 |
|
|
|
1538 |
|
|
if (is_counting) {
|
1539 |
|
|
pfm_monitor_t *p = (pfm_monitor_t *)&value;
|
1540 |
|
|
/*
|
1541 |
|
|
* enforce generation of overflow interrupt. Necessary on all
|
1542 |
|
|
* CPUs.
|
1543 |
|
|
*/
|
1544 |
|
|
p->pmc_oi = 1;
|
1545 |
|
|
|
1546 |
|
|
if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
|
1547 |
|
|
/*
|
1548 |
|
|
* must have a target for the signal
|
1549 |
|
|
*/
|
1550 |
|
|
if (ctx->ctx_notify_task == NULL) {
|
1551 |
|
|
DBprintk(("cannot set ovfl_notify: no notify_task\n"));
|
1552 |
|
|
goto error;
|
1553 |
|
|
}
|
1554 |
|
|
flags |= PFM_REGFL_OVFL_NOTIFY;
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
|
1558 |
|
|
|
1559 |
|
|
/* verify validity of reset_pmds */
|
1560 |
|
|
if ((reset_pmds & pmu_conf.impl_pmds[0]) != reset_pmds) {
|
1561 |
|
|
DBprintk(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
|
1562 |
|
|
goto error;
|
1563 |
|
|
}
|
1564 |
|
|
} else if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
|
1565 |
|
|
DBprintk(("cannot set ovfl_notify or random on pmc%u\n", cnum));
|
1566 |
|
|
goto error;
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
/*
|
1570 |
|
|
* execute write checker, if any
|
1571 |
|
|
*/
|
1572 |
|
|
if (PMC_WR_FUNC(cnum)) {
|
1573 |
|
|
ret = PMC_WR_FUNC(cnum)(task, cnum, &value, regs);
|
1574 |
|
|
if (ret) goto error;
|
1575 |
|
|
ret = -EINVAL;
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
/*
|
1579 |
|
|
* no error on this register
|
1580 |
|
|
*/
|
1581 |
|
|
PFM_REG_RETFLAG_SET(tmp.reg_flags, 0);
|
1582 |
|
|
|
1583 |
|
|
/*
|
1584 |
|
|
* update register return value, abort all if problem during copy.
|
1585 |
|
|
* we only modify the reg_flags field. no check mode is fine because
|
1586 |
|
|
* access has been verified upfront in sys_perfmonctl().
|
1587 |
|
|
*
|
1588 |
|
|
* If this fails, then the software state is not modified
|
1589 |
|
|
*/
|
1590 |
|
|
if (__put_user(tmp.reg_flags, &req->reg_flags)) return -EFAULT;
|
1591 |
|
|
|
1592 |
|
|
/*
|
1593 |
|
|
* Now we commit the changes to the software state
|
1594 |
|
|
*/
|
1595 |
|
|
|
1596 |
|
|
/*
|
1597 |
|
|
* full flag update each time a register is programmed
|
1598 |
|
|
*/
|
1599 |
|
|
ctx->ctx_soft_pmds[cnum].flags = flags;
|
1600 |
|
|
|
1601 |
|
|
if (is_counting) {
|
1602 |
|
|
ctx->ctx_soft_pmds[cnum].reset_pmds[0] = reset_pmds;
|
1603 |
|
|
|
1604 |
|
|
/* mark all PMDS to be accessed as used */
|
1605 |
|
|
CTX_USED_PMD(ctx, reset_pmds);
|
1606 |
|
|
}
|
1607 |
|
|
|
1608 |
|
|
/*
|
1609 |
|
|
* Needed in case the user does not initialize the equivalent
|
1610 |
|
|
* PMD. Clearing is done in reset_pmu() so there is no possible
|
1611 |
|
|
* leak here.
|
1612 |
|
|
*/
|
1613 |
|
|
CTX_USED_PMD(ctx, pmu_conf.pmc_desc[cnum].dep_pmd[0]);
|
1614 |
|
|
|
1615 |
|
|
/*
|
1616 |
|
|
* keep copy the pmc, used for register reload
|
1617 |
|
|
*/
|
1618 |
|
|
th->pmc[cnum] = value;
|
1619 |
|
|
|
1620 |
|
|
ia64_set_pmc(cnum, value);
|
1621 |
|
|
|
1622 |
|
|
DBprintk(("[%d] pmc[%u]=0x%lx flags=0x%x used_pmds=0x%lx\n",
|
1623 |
|
|
task->pid, cnum, value,
|
1624 |
|
|
ctx->ctx_soft_pmds[cnum].flags,
|
1625 |
|
|
ctx->ctx_used_pmds[0]));
|
1626 |
|
|
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
return 0;
|
1630 |
|
|
|
1631 |
|
|
error:
|
1632 |
|
|
PFM_REG_RETFLAG_SET(tmp.reg_flags, PFM_REG_RETFL_EINVAL);
|
1633 |
|
|
|
1634 |
|
|
if (__put_user(tmp.reg_flags, &req->reg_flags)) ret = -EFAULT;
|
1635 |
|
|
|
1636 |
|
|
DBprintk(("[%d] pmc[%u]=0x%lx error %d\n", task->pid, cnum, value, ret));
|
1637 |
|
|
|
1638 |
|
|
return ret;
|
1639 |
|
|
}
|
1640 |
|
|
|
1641 |
|
|
static int
|
1642 |
|
|
pfm_write_pmds(struct task_struct *task, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
|
1643 |
|
|
{
|
1644 |
|
|
pfarg_reg_t tmp, *req = (pfarg_reg_t *)arg;
|
1645 |
|
|
unsigned long value, hw_value;
|
1646 |
|
|
unsigned int cnum;
|
1647 |
|
|
int i;
|
1648 |
|
|
int ret = -EINVAL;
|
1649 |
|
|
|
1650 |
|
|
/* we don't quite support this right now */
|
1651 |
|
|
if (task != current) return -EINVAL;
|
1652 |
|
|
|
1653 |
|
|
/*
|
1654 |
|
|
* Cannot do anything before PMU is enabled
|
1655 |
|
|
*/
|
1656 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
1657 |
|
|
|
1658 |
|
|
/* XXX: ctx locking may be required here */
|
1659 |
|
|
|
1660 |
|
|
|
1661 |
|
|
for (i = 0; i < count; i++, req++) {
|
1662 |
|
|
|
1663 |
|
|
if (__copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
|
1664 |
|
|
|
1665 |
|
|
cnum = tmp.reg_num;
|
1666 |
|
|
value = tmp.reg_value;
|
1667 |
|
|
|
1668 |
|
|
if (!PMD_IS_IMPL(cnum)) {
|
1669 |
|
|
DBprintk(("pmd[%u] is unimplemented or invalid\n", cnum));
|
1670 |
|
|
goto abort_mission;
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
/*
|
1674 |
|
|
* execute write checker, if any
|
1675 |
|
|
*/
|
1676 |
|
|
if (PMD_WR_FUNC(cnum)) {
|
1677 |
|
|
unsigned long v = value;
|
1678 |
|
|
ret = PMD_WR_FUNC(cnum)(task, cnum, &v, regs);
|
1679 |
|
|
if (ret) goto abort_mission;
|
1680 |
|
|
value = v;
|
1681 |
|
|
ret = -EINVAL;
|
1682 |
|
|
}
|
1683 |
|
|
hw_value = value;
|
1684 |
|
|
/*
|
1685 |
|
|
* no error on this register
|
1686 |
|
|
*/
|
1687 |
|
|
PFM_REG_RETFLAG_SET(tmp.reg_flags, 0);
|
1688 |
|
|
|
1689 |
|
|
if (__put_user(tmp.reg_flags, &req->reg_flags)) return -EFAULT;
|
1690 |
|
|
|
1691 |
|
|
/*
|
1692 |
|
|
* now commit changes to software state
|
1693 |
|
|
*/
|
1694 |
|
|
|
1695 |
|
|
/* update virtualized (64bits) counter */
|
1696 |
|
|
if (PMD_IS_COUNTING(cnum)) {
|
1697 |
|
|
ctx->ctx_soft_pmds[cnum].lval = value;
|
1698 |
|
|
ctx->ctx_soft_pmds[cnum].val = value & ~pmu_conf.ovfl_val;
|
1699 |
|
|
|
1700 |
|
|
hw_value = value & pmu_conf.ovfl_val;
|
1701 |
|
|
|
1702 |
|
|
ctx->ctx_soft_pmds[cnum].long_reset = tmp.reg_long_reset;
|
1703 |
|
|
ctx->ctx_soft_pmds[cnum].short_reset = tmp.reg_short_reset;
|
1704 |
|
|
|
1705 |
|
|
ctx->ctx_soft_pmds[cnum].seed = tmp.reg_random_seed;
|
1706 |
|
|
ctx->ctx_soft_pmds[cnum].mask = tmp.reg_random_mask;
|
1707 |
|
|
}
|
1708 |
|
|
|
1709 |
|
|
/* keep track of what we use */
|
1710 |
|
|
CTX_USED_PMD(ctx, pmu_conf.pmd_desc[(cnum)].dep_pmd[0]);
|
1711 |
|
|
|
1712 |
|
|
/* mark this register as used as well */
|
1713 |
|
|
CTX_USED_PMD(ctx, RDEP(cnum));
|
1714 |
|
|
|
1715 |
|
|
/* writes to unimplemented part is ignored, so this is safe */
|
1716 |
|
|
ia64_set_pmd(cnum, hw_value);
|
1717 |
|
|
|
1718 |
|
|
/* to go away */
|
1719 |
|
|
ia64_srlz_d();
|
1720 |
|
|
|
1721 |
|
|
DBprintk(("[%d] pmd[%u]: value=0x%lx hw_value=0x%lx soft_pmd=0x%lx short_reset=0x%lx "
|
1722 |
|
|
"long_reset=0x%lx hw_pmd=%lx notify=%c used_pmds=0x%lx reset_pmds=0x%lx psr=%d\n",
|
1723 |
|
|
task->pid, cnum,
|
1724 |
|
|
value, hw_value,
|
1725 |
|
|
ctx->ctx_soft_pmds[cnum].val,
|
1726 |
|
|
ctx->ctx_soft_pmds[cnum].short_reset,
|
1727 |
|
|
ctx->ctx_soft_pmds[cnum].long_reset,
|
1728 |
|
|
ia64_get_pmd(cnum) & pmu_conf.ovfl_val,
|
1729 |
|
|
PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
|
1730 |
|
|
ctx->ctx_used_pmds[0],
|
1731 |
|
|
ctx->ctx_soft_pmds[cnum].reset_pmds[0], ia64_psr(regs)->sp));
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
return 0;
|
1735 |
|
|
|
1736 |
|
|
abort_mission:
|
1737 |
|
|
/*
|
1738 |
|
|
* for now, we have only one possibility for error
|
1739 |
|
|
*/
|
1740 |
|
|
PFM_REG_RETFLAG_SET(tmp.reg_flags, PFM_REG_RETFL_EINVAL);
|
1741 |
|
|
|
1742 |
|
|
/*
|
1743 |
|
|
* we change the return value to EFAULT in case we cannot write register return code.
|
1744 |
|
|
* The caller first must correct this error, then a resubmission of the request will
|
1745 |
|
|
* eventually yield the EINVAL.
|
1746 |
|
|
*/
|
1747 |
|
|
if (__put_user(tmp.reg_flags, &req->reg_flags)) ret = -EFAULT;
|
1748 |
|
|
|
1749 |
|
|
DBprintk(("[%d] pmc[%u]=0x%lx ret %d\n", task->pid, cnum, value, ret));
|
1750 |
|
|
|
1751 |
|
|
return ret;
|
1752 |
|
|
}
|
1753 |
|
|
|
1754 |
|
|
static int
|
1755 |
|
|
pfm_read_pmds(struct task_struct *task, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
|
1756 |
|
|
{
|
1757 |
|
|
struct thread_struct *th = &task->thread;
|
1758 |
|
|
unsigned long val, lval;
|
1759 |
|
|
pfarg_reg_t *req = (pfarg_reg_t *)arg;
|
1760 |
|
|
unsigned int cnum, reg_flags = 0;
|
1761 |
|
|
int i, ret = 0;
|
1762 |
|
|
#if __GNUC__ < 3
|
1763 |
|
|
int foo;
|
1764 |
|
|
#endif
|
1765 |
|
|
|
1766 |
|
|
if (!CTX_IS_ENABLED(ctx)) {
|
1767 |
|
|
DBprintk(("context for [%d] is disabled\n", task->pid));
|
1768 |
|
|
return -EINVAL;
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/*
|
1772 |
|
|
* XXX: MUST MAKE SURE WE DON"T HAVE ANY PENDING OVERFLOW BEFORE READING
|
1773 |
|
|
* This is required when the monitoring has been stoppped by user or kernel.
|
1774 |
|
|
* If it is still going on, then that's fine because we a re not guaranteed
|
1775 |
|
|
* to return an accurate value in this case.
|
1776 |
|
|
*/
|
1777 |
|
|
|
1778 |
|
|
/* XXX: ctx locking may be required here */
|
1779 |
|
|
|
1780 |
|
|
/*
|
1781 |
|
|
* should we need to access the PMU, serialization is needed
|
1782 |
|
|
*/
|
1783 |
|
|
ia64_srlz_d();
|
1784 |
|
|
|
1785 |
|
|
for (i = 0; i < count; i++, req++) {
|
1786 |
|
|
|
1787 |
|
|
#if __GNUC__ < 3
|
1788 |
|
|
foo = __get_user(cnum, &req->reg_num);
|
1789 |
|
|
if (foo) return -EFAULT;
|
1790 |
|
|
foo = __get_user(reg_flags, &req->reg_flags);
|
1791 |
|
|
if (foo) return -EFAULT;
|
1792 |
|
|
#else
|
1793 |
|
|
if (__get_user(cnum, &req->reg_num)) return -EFAULT;
|
1794 |
|
|
if (__get_user(reg_flags, &req->reg_flags)) return -EFAULT;
|
1795 |
|
|
#endif
|
1796 |
|
|
lval = 0UL;
|
1797 |
|
|
|
1798 |
|
|
if (!PMD_IS_IMPL(cnum)) goto abort_mission;
|
1799 |
|
|
/*
|
1800 |
|
|
* we can only read the register that we use. That includes
|
1801 |
|
|
* the one we explicitely initialize AND the one we want included
|
1802 |
|
|
* in the sampling buffer (smpl_regs).
|
1803 |
|
|
*
|
1804 |
|
|
* Having this restriction allows optimization in the ctxsw routine
|
1805 |
|
|
* without compromising security (leaks)
|
1806 |
|
|
*/
|
1807 |
|
|
if (!CTX_IS_USED_PMD(ctx, cnum)) goto abort_mission;
|
1808 |
|
|
|
1809 |
|
|
/*
|
1810 |
|
|
* we can access the registers directly only when task
|
1811 |
|
|
* is the OWNER of the local PMU. In SMP, this can
|
1812 |
|
|
* happen only when task == current. In addition
|
1813 |
|
|
* this can happen when task != currrent but
|
1814 |
|
|
* only in UP mode.
|
1815 |
|
|
*/
|
1816 |
|
|
if (task == PMU_OWNER()) {
|
1817 |
|
|
val = ia64_get_pmd(cnum);
|
1818 |
|
|
DBprintk(("reading pmd[%u]=0x%lx from hw\n", cnum, val));
|
1819 |
|
|
} else {
|
1820 |
|
|
/* context has been saved */
|
1821 |
|
|
val = th->pmd[cnum];
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
if (PMD_IS_COUNTING(cnum)) {
|
1825 |
|
|
/*
|
1826 |
|
|
* XXX: need to check for overflow
|
1827 |
|
|
*/
|
1828 |
|
|
val &= pmu_conf.ovfl_val;
|
1829 |
|
|
val += ctx->ctx_soft_pmds[cnum].val;
|
1830 |
|
|
|
1831 |
|
|
lval = ctx->ctx_soft_pmds[cnum].lval;
|
1832 |
|
|
}
|
1833 |
|
|
|
1834 |
|
|
/*
|
1835 |
|
|
* execute read checker, if any
|
1836 |
|
|
*/
|
1837 |
|
|
if (PMD_RD_FUNC(cnum)) {
|
1838 |
|
|
unsigned long v = val;
|
1839 |
|
|
ret = PMD_RD_FUNC(cnum)(task, cnum, &v, regs);
|
1840 |
|
|
val = v;
|
1841 |
|
|
}
|
1842 |
|
|
|
1843 |
|
|
PFM_REG_RETFLAG_SET(reg_flags, ret);
|
1844 |
|
|
|
1845 |
|
|
DBprintk(("read pmd[%u] ret=%d value=0x%lx pmc=0x%lx\n",
|
1846 |
|
|
cnum, ret, val, ia64_get_pmc(cnum)));
|
1847 |
|
|
|
1848 |
|
|
/*
|
1849 |
|
|
* update register return value, abort all if problem during copy.
|
1850 |
|
|
* we only modify the reg_flags field. no check mode is fine because
|
1851 |
|
|
* access has been verified upfront in sys_perfmonctl().
|
1852 |
|
|
*/
|
1853 |
|
|
if (__put_user(cnum, &req->reg_num)) return -EFAULT;
|
1854 |
|
|
if (__put_user(val, &req->reg_value)) return -EFAULT;
|
1855 |
|
|
if (__put_user(reg_flags, &req->reg_flags)) return -EFAULT;
|
1856 |
|
|
if (__put_user(lval, &req->reg_last_reset_value)) return -EFAULT;
|
1857 |
|
|
}
|
1858 |
|
|
|
1859 |
|
|
return 0;
|
1860 |
|
|
|
1861 |
|
|
abort_mission:
|
1862 |
|
|
PFM_REG_RETFLAG_SET(reg_flags, PFM_REG_RETFL_EINVAL);
|
1863 |
|
|
/*
|
1864 |
|
|
* XXX: if this fails, we stick with the original failure, flag not updated!
|
1865 |
|
|
*/
|
1866 |
|
|
__put_user(reg_flags, &req->reg_flags);
|
1867 |
|
|
|
1868 |
|
|
return -EINVAL;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
#ifdef PFM_PMU_USES_DBR
|
1872 |
|
|
/*
|
1873 |
|
|
* Only call this function when a process it trying to
|
1874 |
|
|
* write the debug registers (reading is always allowed)
|
1875 |
|
|
*/
|
1876 |
|
|
int
|
1877 |
|
|
pfm_use_debug_registers(struct task_struct *task)
|
1878 |
|
|
{
|
1879 |
|
|
pfm_context_t *ctx = task->thread.pfm_context;
|
1880 |
|
|
int ret = 0;
|
1881 |
|
|
|
1882 |
|
|
DBprintk(("called for [%d]\n", task->pid));
|
1883 |
|
|
|
1884 |
|
|
/*
|
1885 |
|
|
* do it only once
|
1886 |
|
|
*/
|
1887 |
|
|
if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
|
1888 |
|
|
|
1889 |
|
|
/*
|
1890 |
|
|
* Even on SMP, we do not need to use an atomic here because
|
1891 |
|
|
* the only way in is via ptrace() and this is possible only when the
|
1892 |
|
|
* process is stopped. Even in the case where the ctxsw out is not totally
|
1893 |
|
|
* completed by the time we come here, there is no way the 'stopped' process
|
1894 |
|
|
* could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
|
1895 |
|
|
* So this is always safe.
|
1896 |
|
|
*/
|
1897 |
|
|
if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
|
1898 |
|
|
|
1899 |
|
|
LOCK_PFS();
|
1900 |
|
|
|
1901 |
|
|
/*
|
1902 |
|
|
* We cannot allow setting breakpoints when system wide monitoring
|
1903 |
|
|
* sessions are using the debug registers.
|
1904 |
|
|
*/
|
1905 |
|
|
if (pfm_sessions.pfs_sys_use_dbregs> 0)
|
1906 |
|
|
ret = -1;
|
1907 |
|
|
else
|
1908 |
|
|
pfm_sessions.pfs_ptrace_use_dbregs++;
|
1909 |
|
|
|
1910 |
|
|
DBprintk(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
|
1911 |
|
|
pfm_sessions.pfs_ptrace_use_dbregs,
|
1912 |
|
|
pfm_sessions.pfs_sys_use_dbregs,
|
1913 |
|
|
task->pid, ret));
|
1914 |
|
|
|
1915 |
|
|
UNLOCK_PFS();
|
1916 |
|
|
|
1917 |
|
|
return ret;
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
/*
|
1921 |
|
|
* This function is called for every task that exits with the
|
1922 |
|
|
* IA64_THREAD_DBG_VALID set. This indicates a task which was
|
1923 |
|
|
* able to use the debug registers for debugging purposes via
|
1924 |
|
|
* ptrace(). Therefore we know it was not using them for
|
1925 |
|
|
* perfmormance monitoring, so we only decrement the number
|
1926 |
|
|
* of "ptraced" debug register users to keep the count up to date
|
1927 |
|
|
*/
|
1928 |
|
|
int
|
1929 |
|
|
pfm_release_debug_registers(struct task_struct *task)
|
1930 |
|
|
{
|
1931 |
|
|
int ret;
|
1932 |
|
|
|
1933 |
|
|
LOCK_PFS();
|
1934 |
|
|
if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
|
1935 |
|
|
printk(KERN_DEBUG "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n",
|
1936 |
|
|
task->pid);
|
1937 |
|
|
ret = -1;
|
1938 |
|
|
} else {
|
1939 |
|
|
pfm_sessions.pfs_ptrace_use_dbregs--;
|
1940 |
|
|
ret = 0;
|
1941 |
|
|
}
|
1942 |
|
|
UNLOCK_PFS();
|
1943 |
|
|
|
1944 |
|
|
return ret;
|
1945 |
|
|
}
|
1946 |
|
|
#else /* PFM_PMU_USES_DBR is true */
|
1947 |
|
|
/*
|
1948 |
|
|
* in case, the PMU does not use the debug registers, these two functions are nops.
|
1949 |
|
|
* The first function is called from arch/ia64/kernel/ptrace.c.
|
1950 |
|
|
* The second function is called from arch/ia64/kernel/process.c.
|
1951 |
|
|
*/
|
1952 |
|
|
int
|
1953 |
|
|
pfm_use_debug_registers(struct task_struct *task)
|
1954 |
|
|
{
|
1955 |
|
|
return 0;
|
1956 |
|
|
}
|
1957 |
|
|
|
1958 |
|
|
int
|
1959 |
|
|
pfm_release_debug_registers(struct task_struct *task)
|
1960 |
|
|
{
|
1961 |
|
|
return 0;
|
1962 |
|
|
}
|
1963 |
|
|
#endif /* PFM_PMU_USES_DBR */
|
1964 |
|
|
|
1965 |
|
|
static int
|
1966 |
|
|
pfm_restart(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
1967 |
|
|
struct pt_regs *regs)
|
1968 |
|
|
{
|
1969 |
|
|
void *sem = &ctx->ctx_restart_sem;
|
1970 |
|
|
|
1971 |
|
|
/*
|
1972 |
|
|
* Cannot do anything before PMU is enabled
|
1973 |
|
|
*/
|
1974 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
1975 |
|
|
|
1976 |
|
|
if (task == current) {
|
1977 |
|
|
DBprintk(("restarting self %d frozen=%d ovfl_regs=0x%lx\n",
|
1978 |
|
|
task->pid,
|
1979 |
|
|
ctx->ctx_fl_frozen,
|
1980 |
|
|
ctx->ctx_ovfl_regs[0]));
|
1981 |
|
|
|
1982 |
|
|
pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
|
1983 |
|
|
|
1984 |
|
|
ctx->ctx_ovfl_regs[0] = 0UL;
|
1985 |
|
|
|
1986 |
|
|
/*
|
1987 |
|
|
* We ignore block/don't block because we never block
|
1988 |
|
|
* for a self-monitoring process.
|
1989 |
|
|
*/
|
1990 |
|
|
ctx->ctx_fl_frozen = 0;
|
1991 |
|
|
|
1992 |
|
|
if (CTX_HAS_SMPL(ctx)) {
|
1993 |
|
|
ctx->ctx_psb->psb_hdr->hdr_count = 0;
|
1994 |
|
|
ctx->ctx_psb->psb_index = 0;
|
1995 |
|
|
}
|
1996 |
|
|
|
1997 |
|
|
/* simply unfreeze */
|
1998 |
|
|
pfm_unfreeze_pmu();
|
1999 |
|
|
|
2000 |
|
|
return 0;
|
2001 |
|
|
}
|
2002 |
|
|
/* restart on another task */
|
2003 |
|
|
|
2004 |
|
|
/*
|
2005 |
|
|
* if blocking, then post the semaphore.
|
2006 |
|
|
* if non-blocking, then we ensure that the task will go into
|
2007 |
|
|
* pfm_overflow_must_block() before returning to user mode.
|
2008 |
|
|
* We cannot explicitely reset another task, it MUST always
|
2009 |
|
|
* be done by the task itself. This works for system wide because
|
2010 |
|
|
* the tool that is controlling the session is doing "self-monitoring".
|
2011 |
|
|
*
|
2012 |
|
|
* XXX: what if the task never goes back to user?
|
2013 |
|
|
*
|
2014 |
|
|
*/
|
2015 |
|
|
if (CTX_OVFL_NOBLOCK(ctx) == 0) {
|
2016 |
|
|
DBprintk(("unblocking %d \n", task->pid));
|
2017 |
|
|
up(sem);
|
2018 |
|
|
} else {
|
2019 |
|
|
task->thread.pfm_ovfl_block_reset = 1;
|
2020 |
|
|
}
|
2021 |
|
|
#if 0
|
2022 |
|
|
/*
|
2023 |
|
|
* in case of non blocking mode, then it's just a matter of
|
2024 |
|
|
* of reseting the sampling buffer (if any) index. The PMU
|
2025 |
|
|
* is already active.
|
2026 |
|
|
*/
|
2027 |
|
|
|
2028 |
|
|
/*
|
2029 |
|
|
* must reset the header count first
|
2030 |
|
|
*/
|
2031 |
|
|
if (CTX_HAS_SMPL(ctx)) {
|
2032 |
|
|
DBprintk(("resetting sampling indexes for %d \n", task->pid));
|
2033 |
|
|
ctx->ctx_psb->psb_hdr->hdr_count = 0;
|
2034 |
|
|
ctx->ctx_psb->psb_index = 0;
|
2035 |
|
|
}
|
2036 |
|
|
#endif
|
2037 |
|
|
return 0;
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
static int
|
2041 |
|
|
pfm_stop(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2042 |
|
|
struct pt_regs *regs)
|
2043 |
|
|
{
|
2044 |
|
|
/* we don't quite support this right now */
|
2045 |
|
|
if (task != current) return -EINVAL;
|
2046 |
|
|
|
2047 |
|
|
/*
|
2048 |
|
|
* Cannot do anything before PMU is enabled
|
2049 |
|
|
*/
|
2050 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
2051 |
|
|
|
2052 |
|
|
DBprintk(("[%d] fl_system=%d owner=%p current=%p\n",
|
2053 |
|
|
current->pid,
|
2054 |
|
|
ctx->ctx_fl_system, PMU_OWNER(),
|
2055 |
|
|
current));
|
2056 |
|
|
|
2057 |
|
|
/* simply stop monitoring but not the PMU */
|
2058 |
|
|
if (ctx->ctx_fl_system) {
|
2059 |
|
|
|
2060 |
|
|
/* disable dcr pp */
|
2061 |
|
|
ia64_set_dcr(ia64_get_dcr() & ~IA64_DCR_PP);
|
2062 |
|
|
|
2063 |
|
|
/* stop monitoring */
|
2064 |
|
|
pfm_clear_psr_pp();
|
2065 |
|
|
ia64_srlz_i();
|
2066 |
|
|
|
2067 |
|
|
PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
|
2068 |
|
|
|
2069 |
|
|
ia64_psr(regs)->pp = 0;
|
2070 |
|
|
|
2071 |
|
|
} else {
|
2072 |
|
|
|
2073 |
|
|
/* stop monitoring */
|
2074 |
|
|
pfm_clear_psr_up();
|
2075 |
|
|
ia64_srlz_i();
|
2076 |
|
|
|
2077 |
|
|
/*
|
2078 |
|
|
* clear user level psr.up
|
2079 |
|
|
*/
|
2080 |
|
|
ia64_psr(regs)->up = 0;
|
2081 |
|
|
}
|
2082 |
|
|
return 0;
|
2083 |
|
|
}
|
2084 |
|
|
|
2085 |
|
|
static int
|
2086 |
|
|
pfm_disable(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2087 |
|
|
struct pt_regs *regs)
|
2088 |
|
|
{
|
2089 |
|
|
/* we don't quite support this right now */
|
2090 |
|
|
if (task != current) return -EINVAL;
|
2091 |
|
|
|
2092 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
2093 |
|
|
|
2094 |
|
|
/*
|
2095 |
|
|
* stop monitoring, freeze PMU, and save state in context
|
2096 |
|
|
* this call will clear IA64_THREAD_PM_VALID for per-task sessions.
|
2097 |
|
|
*/
|
2098 |
|
|
pfm_flush_regs(task);
|
2099 |
|
|
|
2100 |
|
|
if (ctx->ctx_fl_system) {
|
2101 |
|
|
ia64_psr(regs)->pp = 0;
|
2102 |
|
|
} else {
|
2103 |
|
|
ia64_psr(regs)->up = 0;
|
2104 |
|
|
}
|
2105 |
|
|
/*
|
2106 |
|
|
* goes back to default behavior: no user level control
|
2107 |
|
|
* no need to change live psr.sp because useless at the kernel level
|
2108 |
|
|
*/
|
2109 |
|
|
ia64_psr(regs)->sp = 1;
|
2110 |
|
|
|
2111 |
|
|
DBprintk(("enabling psr.sp for [%d]\n", current->pid));
|
2112 |
|
|
|
2113 |
|
|
ctx->ctx_flags.state = PFM_CTX_DISABLED;
|
2114 |
|
|
|
2115 |
|
|
return 0;
|
2116 |
|
|
}
|
2117 |
|
|
|
2118 |
|
|
static int
|
2119 |
|
|
pfm_context_destroy(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2120 |
|
|
struct pt_regs *regs)
|
2121 |
|
|
{
|
2122 |
|
|
/* we don't quite support this right now */
|
2123 |
|
|
if (task != current) return -EINVAL;
|
2124 |
|
|
|
2125 |
|
|
/*
|
2126 |
|
|
* if context was never enabled, then there is not much
|
2127 |
|
|
* to do
|
2128 |
|
|
*/
|
2129 |
|
|
if (!CTX_IS_ENABLED(ctx)) goto skipped_stop;
|
2130 |
|
|
|
2131 |
|
|
/*
|
2132 |
|
|
* Disable context: stop monitoring, flush regs to software state (useless here),
|
2133 |
|
|
* and freeze PMU
|
2134 |
|
|
*
|
2135 |
|
|
* The IA64_THREAD_PM_VALID is cleared by pfm_flush_regs() called from pfm_disable()
|
2136 |
|
|
*/
|
2137 |
|
|
pfm_disable(task, ctx, arg, count, regs);
|
2138 |
|
|
|
2139 |
|
|
if (ctx->ctx_fl_system) {
|
2140 |
|
|
ia64_psr(regs)->pp = 0;
|
2141 |
|
|
} else {
|
2142 |
|
|
ia64_psr(regs)->up = 0;
|
2143 |
|
|
}
|
2144 |
|
|
|
2145 |
|
|
skipped_stop:
|
2146 |
|
|
/*
|
2147 |
|
|
* remove sampling buffer mapping, if any
|
2148 |
|
|
*/
|
2149 |
|
|
if (ctx->ctx_smpl_vaddr) {
|
2150 |
|
|
pfm_remove_smpl_mapping(task);
|
2151 |
|
|
ctx->ctx_smpl_vaddr = 0UL;
|
2152 |
|
|
}
|
2153 |
|
|
/* now free context and related state */
|
2154 |
|
|
pfm_context_exit(task);
|
2155 |
|
|
|
2156 |
|
|
return 0;
|
2157 |
|
|
}
|
2158 |
|
|
|
2159 |
|
|
/*
|
2160 |
|
|
* does nothing at the moment
|
2161 |
|
|
*/
|
2162 |
|
|
static int
|
2163 |
|
|
pfm_context_unprotect(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2164 |
|
|
struct pt_regs *regs)
|
2165 |
|
|
{
|
2166 |
|
|
return 0;
|
2167 |
|
|
}
|
2168 |
|
|
|
2169 |
|
|
static int
|
2170 |
|
|
pfm_protect_context(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2171 |
|
|
struct pt_regs *regs)
|
2172 |
|
|
{
|
2173 |
|
|
/*
|
2174 |
|
|
* from now on, only the creator of the context has access to it
|
2175 |
|
|
*/
|
2176 |
|
|
ctx->ctx_fl_protected = 1;
|
2177 |
|
|
|
2178 |
|
|
/*
|
2179 |
|
|
* reinforce secure monitoring: cannot toggle psr.up
|
2180 |
|
|
*/
|
2181 |
|
|
if (ctx->ctx_fl_unsecure == 0) ia64_psr(regs)->sp = 1;
|
2182 |
|
|
|
2183 |
|
|
DBprintk(("[%d] protected psr.sp=%d\n", task->pid, ia64_psr(regs)->sp));
|
2184 |
|
|
|
2185 |
|
|
return 0;
|
2186 |
|
|
}
|
2187 |
|
|
|
2188 |
|
|
static int
|
2189 |
|
|
pfm_debug(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2190 |
|
|
struct pt_regs *regs)
|
2191 |
|
|
{
|
2192 |
|
|
unsigned int mode = *(unsigned int *)arg;
|
2193 |
|
|
|
2194 |
|
|
pfm_sysctl.debug = mode == 0 ? 0 : 1;
|
2195 |
|
|
|
2196 |
|
|
printk(KERN_INFO "perfmon debugging %s\n", pfm_sysctl.debug ? "on" : "off");
|
2197 |
|
|
|
2198 |
|
|
return 0;
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
#ifdef PFM_PMU_USES_DBR
|
2202 |
|
|
|
2203 |
|
|
typedef struct {
|
2204 |
|
|
unsigned long ibr_mask:56;
|
2205 |
|
|
unsigned long ibr_plm:4;
|
2206 |
|
|
unsigned long ibr_ig:3;
|
2207 |
|
|
unsigned long ibr_x:1;
|
2208 |
|
|
} ibr_mask_reg_t;
|
2209 |
|
|
|
2210 |
|
|
typedef struct {
|
2211 |
|
|
unsigned long dbr_mask:56;
|
2212 |
|
|
unsigned long dbr_plm:4;
|
2213 |
|
|
unsigned long dbr_ig:2;
|
2214 |
|
|
unsigned long dbr_w:1;
|
2215 |
|
|
unsigned long dbr_r:1;
|
2216 |
|
|
} dbr_mask_reg_t;
|
2217 |
|
|
|
2218 |
|
|
typedef union {
|
2219 |
|
|
unsigned long val;
|
2220 |
|
|
ibr_mask_reg_t ibr;
|
2221 |
|
|
dbr_mask_reg_t dbr;
|
2222 |
|
|
} dbreg_t;
|
2223 |
|
|
|
2224 |
|
|
|
2225 |
|
|
static int
|
2226 |
|
|
pfm_write_ibr_dbr(int mode, struct task_struct *task, void *arg, int count, struct pt_regs *regs)
|
2227 |
|
|
{
|
2228 |
|
|
struct thread_struct *thread = &task->thread;
|
2229 |
|
|
pfm_context_t *ctx = task->thread.pfm_context;
|
2230 |
|
|
pfarg_dbreg_t tmp, *req = (pfarg_dbreg_t *)arg;
|
2231 |
|
|
dbreg_t dbreg;
|
2232 |
|
|
unsigned int rnum;
|
2233 |
|
|
int first_time;
|
2234 |
|
|
int i, ret = 0;
|
2235 |
|
|
|
2236 |
|
|
/*
|
2237 |
|
|
* we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
|
2238 |
|
|
* ensuring that no real breakpoint can be installed via this call.
|
2239 |
|
|
*/
|
2240 |
|
|
|
2241 |
|
|
first_time = ctx->ctx_fl_using_dbreg == 0;
|
2242 |
|
|
|
2243 |
|
|
/*
|
2244 |
|
|
* check for debug registers in system wide mode
|
2245 |
|
|
*
|
2246 |
|
|
*/
|
2247 |
|
|
LOCK_PFS();
|
2248 |
|
|
if (ctx->ctx_fl_system && first_time) {
|
2249 |
|
|
if (pfm_sessions.pfs_ptrace_use_dbregs)
|
2250 |
|
|
ret = -EBUSY;
|
2251 |
|
|
else
|
2252 |
|
|
pfm_sessions.pfs_sys_use_dbregs++;
|
2253 |
|
|
}
|
2254 |
|
|
UNLOCK_PFS();
|
2255 |
|
|
|
2256 |
|
|
if (ret != 0) return ret;
|
2257 |
|
|
|
2258 |
|
|
if (ctx->ctx_fl_system) {
|
2259 |
|
|
/* we mark ourselves as owner of the debug registers */
|
2260 |
|
|
ctx->ctx_fl_using_dbreg = 1;
|
2261 |
|
|
DBprintk(("system-wide setting fl_using_dbreg for [%d]\n", task->pid));
|
2262 |
|
|
} else if (first_time) {
|
2263 |
|
|
ret= -EBUSY;
|
2264 |
|
|
if ((thread->flags & IA64_THREAD_DBG_VALID) != 0) {
|
2265 |
|
|
DBprintk(("debug registers already in use for [%d]\n", task->pid));
|
2266 |
|
|
goto abort_mission;
|
2267 |
|
|
}
|
2268 |
|
|
/* we mark ourselves as owner of the debug registers */
|
2269 |
|
|
ctx->ctx_fl_using_dbreg = 1;
|
2270 |
|
|
|
2271 |
|
|
DBprintk(("setting fl_using_dbreg for [%d]\n", task->pid));
|
2272 |
|
|
/*
|
2273 |
|
|
* Given debug registers cannot be used for both debugging
|
2274 |
|
|
* and performance monitoring at the same time, we reuse
|
2275 |
|
|
* the storage area to save and restore the registers on ctxsw.
|
2276 |
|
|
*/
|
2277 |
|
|
memset(task->thread.dbr, 0, sizeof(task->thread.dbr));
|
2278 |
|
|
memset(task->thread.ibr, 0, sizeof(task->thread.ibr));
|
2279 |
|
|
}
|
2280 |
|
|
|
2281 |
|
|
if (first_time) {
|
2282 |
|
|
DBprintk(("[%d] clearing ibrs,dbrs\n", task->pid));
|
2283 |
|
|
/*
|
2284 |
|
|
* clear hardware registers to make sure we don't
|
2285 |
|
|
* pick up stale state.
|
2286 |
|
|
*
|
2287 |
|
|
* for a system wide session, we do not use
|
2288 |
|
|
* thread.dbr, thread.ibr because this process
|
2289 |
|
|
* never leaves the current CPU and the state
|
2290 |
|
|
* is shared by all processes running on it
|
2291 |
|
|
*/
|
2292 |
|
|
for (i=0; i < pmu_conf.num_ibrs; i++) {
|
2293 |
|
|
ia64_set_ibr(i, 0UL);
|
2294 |
|
|
}
|
2295 |
|
|
ia64_srlz_i();
|
2296 |
|
|
for (i=0; i < pmu_conf.num_dbrs; i++) {
|
2297 |
|
|
ia64_set_dbr(i, 0UL);
|
2298 |
|
|
}
|
2299 |
|
|
ia64_srlz_d();
|
2300 |
|
|
}
|
2301 |
|
|
|
2302 |
|
|
ret = -EFAULT;
|
2303 |
|
|
|
2304 |
|
|
/*
|
2305 |
|
|
* Now install the values into the registers
|
2306 |
|
|
*/
|
2307 |
|
|
for (i = 0; i < count; i++, req++) {
|
2308 |
|
|
|
2309 |
|
|
if (__copy_from_user(&tmp, req, sizeof(tmp))) goto abort_mission;
|
2310 |
|
|
|
2311 |
|
|
rnum = tmp.dbreg_num;
|
2312 |
|
|
dbreg.val = tmp.dbreg_value;
|
2313 |
|
|
|
2314 |
|
|
ret = -EINVAL;
|
2315 |
|
|
|
2316 |
|
|
if ((mode == 0 && !IBR_IS_IMPL(rnum)) || ((mode == 1) && !DBR_IS_IMPL(rnum))) {
|
2317 |
|
|
DBprintk(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
|
2318 |
|
|
rnum, dbreg.val, mode, i, count));
|
2319 |
|
|
|
2320 |
|
|
goto abort_mission;
|
2321 |
|
|
}
|
2322 |
|
|
|
2323 |
|
|
/*
|
2324 |
|
|
* make sure we do not install enabled breakpoint
|
2325 |
|
|
*/
|
2326 |
|
|
if (rnum & 0x1) {
|
2327 |
|
|
if (mode == 0)
|
2328 |
|
|
dbreg.ibr.ibr_x = 0;
|
2329 |
|
|
else
|
2330 |
|
|
dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
|
2331 |
|
|
}
|
2332 |
|
|
|
2333 |
|
|
/*
|
2334 |
|
|
* clear return flags and copy back to user
|
2335 |
|
|
*
|
2336 |
|
|
* XXX: fix once EAGAIN is implemented
|
2337 |
|
|
*/
|
2338 |
|
|
ret = -EFAULT;
|
2339 |
|
|
|
2340 |
|
|
PFM_REG_RETFLAG_SET(tmp.dbreg_flags, 0);
|
2341 |
|
|
|
2342 |
|
|
if (__copy_to_user(req, &tmp, sizeof(tmp))) goto abort_mission;
|
2343 |
|
|
|
2344 |
|
|
/*
|
2345 |
|
|
* Debug registers, just like PMC, can only be modified
|
2346 |
|
|
* by a kernel call. Moreover, perfmon() access to those
|
2347 |
|
|
* registers are centralized in this routine. The hardware
|
2348 |
|
|
* does not modify the value of these registers, therefore,
|
2349 |
|
|
* if we save them as they are written, we can avoid having
|
2350 |
|
|
* to save them on context switch out. This is made possible
|
2351 |
|
|
* by the fact that when perfmon uses debug registers, ptrace()
|
2352 |
|
|
* won't be able to modify them concurrently.
|
2353 |
|
|
*/
|
2354 |
|
|
if (mode == 0) {
|
2355 |
|
|
CTX_USED_IBR(ctx, rnum);
|
2356 |
|
|
|
2357 |
|
|
ia64_set_ibr(rnum, dbreg.val);
|
2358 |
|
|
ia64_srlz_i();
|
2359 |
|
|
|
2360 |
|
|
thread->ibr[rnum] = dbreg.val;
|
2361 |
|
|
|
2362 |
|
|
DBprintk(("write ibr%u=0x%lx used_ibrs=0x%lx\n", rnum, dbreg.val, ctx->ctx_used_ibrs[0]));
|
2363 |
|
|
} else {
|
2364 |
|
|
CTX_USED_DBR(ctx, rnum);
|
2365 |
|
|
|
2366 |
|
|
ia64_set_dbr(rnum, dbreg.val);
|
2367 |
|
|
ia64_srlz_d();
|
2368 |
|
|
|
2369 |
|
|
thread->dbr[rnum] = dbreg.val;
|
2370 |
|
|
|
2371 |
|
|
DBprintk(("write dbr%u=0x%lx used_dbrs=0x%lx\n", rnum, dbreg.val, ctx->ctx_used_dbrs[0]));
|
2372 |
|
|
}
|
2373 |
|
|
}
|
2374 |
|
|
|
2375 |
|
|
return 0;
|
2376 |
|
|
|
2377 |
|
|
abort_mission:
|
2378 |
|
|
/*
|
2379 |
|
|
* in case it was our first attempt, we undo the global modifications
|
2380 |
|
|
*/
|
2381 |
|
|
if (first_time) {
|
2382 |
|
|
LOCK_PFS();
|
2383 |
|
|
if (ctx->ctx_fl_system) {
|
2384 |
|
|
pfm_sessions.pfs_sys_use_dbregs--;
|
2385 |
|
|
}
|
2386 |
|
|
UNLOCK_PFS();
|
2387 |
|
|
ctx->ctx_fl_using_dbreg = 0;
|
2388 |
|
|
}
|
2389 |
|
|
/*
|
2390 |
|
|
* install error return flag
|
2391 |
|
|
*/
|
2392 |
|
|
if (ret != -EFAULT) {
|
2393 |
|
|
/*
|
2394 |
|
|
* XXX: for now we can only come here on EINVAL
|
2395 |
|
|
*/
|
2396 |
|
|
PFM_REG_RETFLAG_SET(tmp.dbreg_flags, PFM_REG_RETFL_EINVAL);
|
2397 |
|
|
if (__put_user(tmp.dbreg_flags, &req->dbreg_flags)) ret = -EFAULT;
|
2398 |
|
|
}
|
2399 |
|
|
return ret;
|
2400 |
|
|
}
|
2401 |
|
|
|
2402 |
|
|
static int
|
2403 |
|
|
pfm_write_ibrs(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2404 |
|
|
struct pt_regs *regs)
|
2405 |
|
|
{
|
2406 |
|
|
/* we don't quite support this right now */
|
2407 |
|
|
if (task != current) return -EINVAL;
|
2408 |
|
|
|
2409 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
2410 |
|
|
|
2411 |
|
|
return pfm_write_ibr_dbr(0, task, arg, count, regs);
|
2412 |
|
|
}
|
2413 |
|
|
|
2414 |
|
|
static int
|
2415 |
|
|
pfm_write_dbrs(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2416 |
|
|
struct pt_regs *regs)
|
2417 |
|
|
{
|
2418 |
|
|
/* we don't quite support this right now */
|
2419 |
|
|
if (task != current) return -EINVAL;
|
2420 |
|
|
|
2421 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
2422 |
|
|
|
2423 |
|
|
return pfm_write_ibr_dbr(1, task, arg, count, regs);
|
2424 |
|
|
}
|
2425 |
|
|
|
2426 |
|
|
#endif /* PFM_PMU_USES_DBR */
|
2427 |
|
|
|
2428 |
|
|
static int
|
2429 |
|
|
pfm_get_features(struct task_struct *task, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
|
2430 |
|
|
{
|
2431 |
|
|
pfarg_features_t tmp;
|
2432 |
|
|
|
2433 |
|
|
memset(&tmp, 0, sizeof(tmp));
|
2434 |
|
|
|
2435 |
|
|
tmp.ft_version = PFM_VERSION;
|
2436 |
|
|
tmp.ft_smpl_version = PFM_SMPL_VERSION;
|
2437 |
|
|
|
2438 |
|
|
if (__copy_to_user(arg, &tmp, sizeof(tmp))) return -EFAULT;
|
2439 |
|
|
|
2440 |
|
|
return 0;
|
2441 |
|
|
}
|
2442 |
|
|
|
2443 |
|
|
static int
|
2444 |
|
|
pfm_start(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2445 |
|
|
struct pt_regs *regs)
|
2446 |
|
|
{
|
2447 |
|
|
/* we don't quite support this right now */
|
2448 |
|
|
if (task != current) return -EINVAL;
|
2449 |
|
|
|
2450 |
|
|
/*
|
2451 |
|
|
* Cannot do anything before PMU is enabled
|
2452 |
|
|
*/
|
2453 |
|
|
if (!CTX_IS_ENABLED(ctx)) return -EINVAL;
|
2454 |
|
|
|
2455 |
|
|
DBprintk(("[%d] fl_system=%d owner=%p current=%p\n",
|
2456 |
|
|
current->pid,
|
2457 |
|
|
ctx->ctx_fl_system, PMU_OWNER(),
|
2458 |
|
|
current));
|
2459 |
|
|
|
2460 |
|
|
if (PMU_OWNER() != task) {
|
2461 |
|
|
printk(KERN_DEBUG "perfmon: pfm_start task [%d] not pmu owner\n", task->pid);
|
2462 |
|
|
return -EINVAL;
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
if (ctx->ctx_fl_system) {
|
2466 |
|
|
|
2467 |
|
|
PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
|
2468 |
|
|
|
2469 |
|
|
/* set user level psr.pp */
|
2470 |
|
|
ia64_psr(regs)->pp = 1;
|
2471 |
|
|
|
2472 |
|
|
/* start monitoring at kernel level */
|
2473 |
|
|
pfm_set_psr_pp();
|
2474 |
|
|
|
2475 |
|
|
/* enable dcr pp */
|
2476 |
|
|
ia64_set_dcr(ia64_get_dcr()|IA64_DCR_PP);
|
2477 |
|
|
|
2478 |
|
|
ia64_srlz_i();
|
2479 |
|
|
|
2480 |
|
|
} else {
|
2481 |
|
|
if ((task->thread.flags & IA64_THREAD_PM_VALID) == 0) {
|
2482 |
|
|
printk(KERN_DEBUG "perfmon: pfm_start task flag not set for [%d]\n",
|
2483 |
|
|
task->pid);
|
2484 |
|
|
return -EINVAL;
|
2485 |
|
|
}
|
2486 |
|
|
/* set user level psr.up */
|
2487 |
|
|
ia64_psr(regs)->up = 1;
|
2488 |
|
|
|
2489 |
|
|
/* start monitoring at kernel level */
|
2490 |
|
|
pfm_set_psr_up();
|
2491 |
|
|
|
2492 |
|
|
ia64_srlz_i();
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
return 0;
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
static int
|
2499 |
|
|
pfm_enable(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2500 |
|
|
struct pt_regs *regs)
|
2501 |
|
|
{
|
2502 |
|
|
/* we don't quite support this right now */
|
2503 |
|
|
if (task != current) {
|
2504 |
|
|
DBprintk(("task [%d] != current [%d]\n", task->pid, current->pid));
|
2505 |
|
|
return -EINVAL;
|
2506 |
|
|
}
|
2507 |
|
|
|
2508 |
|
|
#ifndef CONFIG_SMP
|
2509 |
|
|
if (ctx->ctx_fl_system == 0 && PMU_OWNER() && PMU_OWNER() != current)
|
2510 |
|
|
pfm_lazy_save_regs(PMU_OWNER());
|
2511 |
|
|
#endif
|
2512 |
|
|
|
2513 |
|
|
/* reset all registers to stable quiet state */
|
2514 |
|
|
pfm_reset_pmu(task);
|
2515 |
|
|
|
2516 |
|
|
/* make sure nothing starts */
|
2517 |
|
|
if (ctx->ctx_fl_system) {
|
2518 |
|
|
ia64_psr(regs)->pp = 0;
|
2519 |
|
|
ia64_psr(regs)->up = 0; /* just to make sure! */
|
2520 |
|
|
|
2521 |
|
|
/* make sure monitoring is stopped */
|
2522 |
|
|
pfm_clear_psr_pp();
|
2523 |
|
|
ia64_srlz_i();
|
2524 |
|
|
|
2525 |
|
|
PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
|
2526 |
|
|
PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
|
2527 |
|
|
if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
|
2528 |
|
|
} else {
|
2529 |
|
|
/*
|
2530 |
|
|
* needed in case the task was a passive task during
|
2531 |
|
|
* a system wide session and now wants to have its own
|
2532 |
|
|
* session
|
2533 |
|
|
*/
|
2534 |
|
|
ia64_psr(regs)->pp = 0; /* just to make sure! */
|
2535 |
|
|
ia64_psr(regs)->up = 0;
|
2536 |
|
|
|
2537 |
|
|
/* make sure monitoring is stopped */
|
2538 |
|
|
pfm_clear_psr_up();
|
2539 |
|
|
ia64_srlz_i();
|
2540 |
|
|
|
2541 |
|
|
DBprintk(("clearing psr.sp for [%d]\n", current->pid));
|
2542 |
|
|
|
2543 |
|
|
/* allow user level control */
|
2544 |
|
|
ia64_psr(regs)->sp = 0;
|
2545 |
|
|
|
2546 |
|
|
/* PMU state will be saved/restored on ctxsw */
|
2547 |
|
|
task->thread.flags |= IA64_THREAD_PM_VALID;
|
2548 |
|
|
}
|
2549 |
|
|
|
2550 |
|
|
SET_PMU_OWNER(task);
|
2551 |
|
|
|
2552 |
|
|
ctx->ctx_flags.state = PFM_CTX_ENABLED;
|
2553 |
|
|
SET_LAST_CPU(ctx, smp_processor_id());
|
2554 |
|
|
INC_ACTIVATION();
|
2555 |
|
|
SET_ACTIVATION(ctx);
|
2556 |
|
|
|
2557 |
|
|
/* simply unfreeze */
|
2558 |
|
|
pfm_unfreeze_pmu();
|
2559 |
|
|
|
2560 |
|
|
return 0;
|
2561 |
|
|
}
|
2562 |
|
|
|
2563 |
|
|
static int
|
2564 |
|
|
pfm_get_pmc_reset(struct task_struct *task, pfm_context_t *ctx, void *arg, int count,
|
2565 |
|
|
struct pt_regs *regs)
|
2566 |
|
|
{
|
2567 |
|
|
pfarg_reg_t tmp, *req = (pfarg_reg_t *)arg;
|
2568 |
|
|
unsigned int cnum;
|
2569 |
|
|
int i, ret = -EINVAL;
|
2570 |
|
|
|
2571 |
|
|
for (i = 0; i < count; i++, req++) {
|
2572 |
|
|
|
2573 |
|
|
if (__copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
|
2574 |
|
|
|
2575 |
|
|
cnum = tmp.reg_num;
|
2576 |
|
|
|
2577 |
|
|
if (!PMC_IS_IMPL(cnum)) goto abort_mission;
|
2578 |
|
|
|
2579 |
|
|
tmp.reg_value = PMC_DFL_VAL(cnum);
|
2580 |
|
|
|
2581 |
|
|
PFM_REG_RETFLAG_SET(tmp.reg_flags, 0);
|
2582 |
|
|
|
2583 |
|
|
DBprintk(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, tmp.reg_value));
|
2584 |
|
|
|
2585 |
|
|
if (__copy_to_user(req, &tmp, sizeof(tmp))) return -EFAULT;
|
2586 |
|
|
}
|
2587 |
|
|
return 0;
|
2588 |
|
|
abort_mission:
|
2589 |
|
|
PFM_REG_RETFLAG_SET(tmp.reg_flags, PFM_REG_RETFL_EINVAL);
|
2590 |
|
|
if (__copy_to_user(req, &tmp, sizeof(tmp))) ret = -EFAULT;
|
2591 |
|
|
|
2592 |
|
|
return ret;
|
2593 |
|
|
}
|
2594 |
|
|
|
2595 |
|
|
/*
|
2596 |
|
|
* functions MUST be listed in the increasing order of their index (see permfon.h)
|
2597 |
|
|
*/
|
2598 |
|
|
static pfm_cmd_desc_t pfm_cmd_tab[]={
|
2599 |
|
|
/* 0 */{ NULL, 0, 0, 0}, /* not used */
|
2600 |
|
|
/* 1 */{ pfm_write_pmcs, PFM_CMD_PID|PFM_CMD_CTX|PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, sizeof(pfarg_reg_t)},
|
2601 |
|
|
/* 2 */{ pfm_write_pmds, PFM_CMD_PID|PFM_CMD_CTX|PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, sizeof(pfarg_reg_t)},
|
2602 |
|
|
/* 3 */{ pfm_read_pmds,PFM_CMD_PID|PFM_CMD_CTX|PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, sizeof(pfarg_reg_t)},
|
2603 |
|
|
/* 4 */{ pfm_stop, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2604 |
|
|
/* 5 */{ pfm_start, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2605 |
|
|
/* 6 */{ pfm_enable, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2606 |
|
|
/* 7 */{ pfm_disable, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2607 |
|
|
/* 8 */{ pfm_context_create, PFM_CMD_PID|PFM_CMD_ARG_RW, 1, sizeof(pfarg_context_t)},
|
2608 |
|
|
/* 9 */{ pfm_context_destroy, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2609 |
|
|
/* 10 */{ pfm_restart, PFM_CMD_PID|PFM_CMD_CTX|PFM_CMD_NOCHK, 0, 0},
|
2610 |
|
|
/* 11 */{ pfm_protect_context, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2611 |
|
|
/* 12 */{ pfm_get_features, PFM_CMD_ARG_RW, 0, 0},
|
2612 |
|
|
/* 13 */{ pfm_debug, 0, 1, sizeof(unsigned int)},
|
2613 |
|
|
/* 14 */{ pfm_context_unprotect, PFM_CMD_PID|PFM_CMD_CTX, 0, 0},
|
2614 |
|
|
/* 15 */{ pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, sizeof(pfarg_reg_t)},
|
2615 |
|
|
/* 16 */{ NULL, 0, 0, 0}, /* not used */
|
2616 |
|
|
/* 17 */{ NULL, 0, 0, 0}, /* not used */
|
2617 |
|
|
/* 18 */{ NULL, 0, 0, 0}, /* not used */
|
2618 |
|
|
/* 19 */{ NULL, 0, 0, 0}, /* not used */
|
2619 |
|
|
/* 20 */{ NULL, 0, 0, 0}, /* not used */
|
2620 |
|
|
/* 21 */{ NULL, 0, 0, 0}, /* not used */
|
2621 |
|
|
/* 22 */{ NULL, 0, 0, 0}, /* not used */
|
2622 |
|
|
/* 23 */{ NULL, 0, 0, 0}, /* not used */
|
2623 |
|
|
/* 24 */{ NULL, 0, 0, 0}, /* not used */
|
2624 |
|
|
/* 25 */{ NULL, 0, 0, 0}, /* not used */
|
2625 |
|
|
/* 26 */{ NULL, 0, 0, 0}, /* not used */
|
2626 |
|
|
/* 27 */{ NULL, 0, 0, 0}, /* not used */
|
2627 |
|
|
/* 28 */{ NULL, 0, 0, 0}, /* not used */
|
2628 |
|
|
/* 29 */{ NULL, 0, 0, 0}, /* not used */
|
2629 |
|
|
/* 30 */{ NULL, 0, 0, 0}, /* not used */
|
2630 |
|
|
/* 31 */{ NULL, 0, 0, 0}, /* not used */
|
2631 |
|
|
#ifdef PFM_PMU_USES_DBR
|
2632 |
|
|
/* 32 */{ pfm_write_ibrs, PFM_CMD_PID|PFM_CMD_CTX|PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, sizeof(pfarg_dbreg_t)},
|
2633 |
|
|
/* 33 */{ pfm_write_dbrs, PFM_CMD_PID|PFM_CMD_CTX|PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, sizeof(pfarg_dbreg_t)}
|
2634 |
|
|
#endif
|
2635 |
|
|
};
|
2636 |
|
|
#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
|
2637 |
|
|
|
2638 |
|
|
static int
|
2639 |
|
|
check_task_state(struct task_struct *task)
|
2640 |
|
|
{
|
2641 |
|
|
int ret = 0;
|
2642 |
|
|
#ifdef CONFIG_SMP
|
2643 |
|
|
/* We must wait until the state has been completely
|
2644 |
|
|
* saved. There can be situations where the reader arrives before
|
2645 |
|
|
* after the task is marked as STOPPED but before pfm_save_regs()
|
2646 |
|
|
* is completed.
|
2647 |
|
|
*/
|
2648 |
|
|
for (;;) {
|
2649 |
|
|
|
2650 |
|
|
task_lock(task);
|
2651 |
|
|
DBprintk((" [%d] state=%ld\n", task->pid, task->state));
|
2652 |
|
|
if (!task_has_cpu(task)) break;
|
2653 |
|
|
task_unlock(task);
|
2654 |
|
|
|
2655 |
|
|
do {
|
2656 |
|
|
if (task->state != TASK_ZOMBIE && task->state != TASK_STOPPED) {
|
2657 |
|
|
DBprintk(("warning [%d] not in stable state %ld\n", task->pid, task->state));
|
2658 |
|
|
return -EBUSY;
|
2659 |
|
|
}
|
2660 |
|
|
barrier();
|
2661 |
|
|
cpu_relax();
|
2662 |
|
|
} while (task_has_cpu(task));
|
2663 |
|
|
}
|
2664 |
|
|
task_unlock(task);
|
2665 |
|
|
#else
|
2666 |
|
|
if (task->state != TASK_ZOMBIE && task->state != TASK_STOPPED) {
|
2667 |
|
|
DBprintk(("warning [%d] not in stable state %ld\n", task->pid, task->state));
|
2668 |
|
|
ret = -EBUSY;
|
2669 |
|
|
}
|
2670 |
|
|
#endif
|
2671 |
|
|
return ret;
|
2672 |
|
|
}
|
2673 |
|
|
|
2674 |
|
|
asmlinkage long
|
2675 |
|
|
sys_perfmonctl (pid_t pid, int cmd, void *arg, int count, long arg5, long arg6, long arg7,
|
2676 |
|
|
long arg8, long stack)
|
2677 |
|
|
{
|
2678 |
|
|
struct pt_regs *regs = (struct pt_regs *)&stack;
|
2679 |
|
|
struct task_struct *task = current;
|
2680 |
|
|
pfm_context_t *ctx;
|
2681 |
|
|
size_t sz;
|
2682 |
|
|
long ret;
|
2683 |
|
|
int narg;
|
2684 |
|
|
|
2685 |
|
|
/*
|
2686 |
|
|
* reject any call if perfmon was disabled at initialization time
|
2687 |
|
|
*/
|
2688 |
|
|
if (PFM_IS_DISABLED()) return -ENOSYS;
|
2689 |
|
|
|
2690 |
|
|
DBprintk(("cmd=%d idx=%d valid=%d narg=0x%x\n", cmd, PFM_CMD_IDX(cmd),
|
2691 |
|
|
PFM_CMD_IS_VALID(cmd), PFM_CMD_NARG(cmd)));
|
2692 |
|
|
|
2693 |
|
|
if (PFM_CMD_IS_VALID(cmd) == 0) return -EINVAL;
|
2694 |
|
|
|
2695 |
|
|
/* ingore arguments when command has none */
|
2696 |
|
|
narg = PFM_CMD_NARG(cmd);
|
2697 |
|
|
if ((narg == PFM_CMD_ARG_MANY && count == 0) || (narg > 0 && narg != count)) return -EINVAL;
|
2698 |
|
|
|
2699 |
|
|
sz = PFM_CMD_ARG_SIZE(cmd);
|
2700 |
|
|
|
2701 |
|
|
if (PFM_CMD_READ_ARG(cmd) && !access_ok(VERIFY_READ, arg, sz*count)) return -EFAULT;
|
2702 |
|
|
|
2703 |
|
|
if (PFM_CMD_RW_ARG(cmd) && !access_ok(VERIFY_WRITE, arg, sz*count)) return -EFAULT;
|
2704 |
|
|
|
2705 |
|
|
if (PFM_CMD_USE_PID(cmd)) {
|
2706 |
|
|
/*
|
2707 |
|
|
* XXX: may need to fine tune this one
|
2708 |
|
|
*/
|
2709 |
|
|
if (pid < 2) return -EPERM;
|
2710 |
|
|
|
2711 |
|
|
if (pid != current->pid) {
|
2712 |
|
|
|
2713 |
|
|
ret = -ESRCH;
|
2714 |
|
|
|
2715 |
|
|
read_lock(&tasklist_lock);
|
2716 |
|
|
|
2717 |
|
|
task = find_task_by_pid(pid);
|
2718 |
|
|
|
2719 |
|
|
if (!task) goto abort_call;
|
2720 |
|
|
|
2721 |
|
|
ret = -EPERM;
|
2722 |
|
|
|
2723 |
|
|
if (pfm_bad_permissions(task)) goto abort_call;
|
2724 |
|
|
|
2725 |
|
|
if (PFM_CMD_CHK(cmd)) {
|
2726 |
|
|
ret = check_task_state(task);
|
2727 |
|
|
if (ret != 0) {
|
2728 |
|
|
DBprintk(("check_task_state=%ld for [%d]\n", ret, task->pid));
|
2729 |
|
|
goto abort_call;
|
2730 |
|
|
}
|
2731 |
|
|
}
|
2732 |
|
|
}
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
ctx = PFM_GET_CTX(task);
|
2736 |
|
|
|
2737 |
|
|
if (PFM_CMD_USE_CTX(cmd)) {
|
2738 |
|
|
ret = -EINVAL;
|
2739 |
|
|
if (ctx == NULL) {
|
2740 |
|
|
DBprintk(("no context for task %d\n", task->pid));
|
2741 |
|
|
goto abort_call;
|
2742 |
|
|
}
|
2743 |
|
|
|
2744 |
|
|
|
2745 |
|
|
ret = -EPERM;
|
2746 |
|
|
/*
|
2747 |
|
|
* we only grant access to the context if:
|
2748 |
|
|
* - the caller is the creator of the context (ctx_owner)
|
2749 |
|
|
* OR - the context is attached to the caller AND The context IS NOT
|
2750 |
|
|
* in protected mode
|
2751 |
|
|
*/
|
2752 |
|
|
if (ctx->ctx_owner != current && (ctx->ctx_fl_protected || task != current)) {
|
2753 |
|
|
DBprintk(("context protected, no access for [%d]\n", task->pid));
|
2754 |
|
|
goto abort_call;
|
2755 |
|
|
}
|
2756 |
|
|
}
|
2757 |
|
|
|
2758 |
|
|
ret = (*pfm_cmd_tab[PFM_CMD_IDX(cmd)].cmd_func)(task, ctx, arg, count, regs);
|
2759 |
|
|
|
2760 |
|
|
abort_call:
|
2761 |
|
|
if (task != current) read_unlock(&tasklist_lock);
|
2762 |
|
|
|
2763 |
|
|
return ret;
|
2764 |
|
|
}
|
2765 |
|
|
|
2766 |
|
|
void asmlinkage
|
2767 |
|
|
pfm_ovfl_block_reset(u64 arg0, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5,
|
2768 |
|
|
u64 arg6, u64 arg7, long info)
|
2769 |
|
|
{
|
2770 |
|
|
struct thread_struct *th = ¤t->thread;
|
2771 |
|
|
pfm_context_t *ctx = current->thread.pfm_context;
|
2772 |
|
|
int ret;
|
2773 |
|
|
|
2774 |
|
|
/*
|
2775 |
|
|
* clear the flag, to make sure we won't get here
|
2776 |
|
|
* again
|
2777 |
|
|
*/
|
2778 |
|
|
th->pfm_ovfl_block_reset = 0;
|
2779 |
|
|
|
2780 |
|
|
/*
|
2781 |
|
|
* do some sanity checks first
|
2782 |
|
|
*/
|
2783 |
|
|
if (!ctx) {
|
2784 |
|
|
printk(KERN_DEBUG "perfmon: [%d] has no PFM context\n", current->pid);
|
2785 |
|
|
return;
|
2786 |
|
|
}
|
2787 |
|
|
|
2788 |
|
|
if (CTX_OVFL_NOBLOCK(ctx)) goto non_blocking;
|
2789 |
|
|
|
2790 |
|
|
DBprintk(("[%d] before sleeping\n", current->pid));
|
2791 |
|
|
|
2792 |
|
|
/*
|
2793 |
|
|
* may go through without blocking on SMP systems
|
2794 |
|
|
* if restart has been received already by the time we call down()
|
2795 |
|
|
*/
|
2796 |
|
|
ret = down_interruptible(&ctx->ctx_restart_sem);
|
2797 |
|
|
|
2798 |
|
|
DBprintk(("[%d] after sleeping ret=%d\n", current->pid, ret));
|
2799 |
|
|
|
2800 |
|
|
/*
|
2801 |
|
|
* in case of interruption of down() we don't restart anything
|
2802 |
|
|
*/
|
2803 |
|
|
if (ret >= 0) {
|
2804 |
|
|
|
2805 |
|
|
non_blocking:
|
2806 |
|
|
/* we reactivate on context switch */
|
2807 |
|
|
ctx->ctx_fl_frozen = 0;
|
2808 |
|
|
/*
|
2809 |
|
|
* the ovfl_sem is cleared by the restart task and this is safe because we always
|
2810 |
|
|
* use the local reference
|
2811 |
|
|
*/
|
2812 |
|
|
|
2813 |
|
|
pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
|
2814 |
|
|
|
2815 |
|
|
ctx->ctx_ovfl_regs[0] = 0UL;
|
2816 |
|
|
|
2817 |
|
|
/*
|
2818 |
|
|
* Unlock sampling buffer and reset index atomically
|
2819 |
|
|
* XXX: not really needed when blocking
|
2820 |
|
|
*/
|
2821 |
|
|
if (CTX_HAS_SMPL(ctx)) {
|
2822 |
|
|
ctx->ctx_psb->psb_hdr->hdr_count = 0;
|
2823 |
|
|
ctx->ctx_psb->psb_index = 0;
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
pfm_unfreeze_pmu();
|
2827 |
|
|
|
2828 |
|
|
/* state restored, can go back to work (user mode) */
|
2829 |
|
|
}
|
2830 |
|
|
}
|
2831 |
|
|
|
2832 |
|
|
/*
|
2833 |
|
|
* This function will record an entry in the sampling if it is not full already.
|
2834 |
|
|
* Input:
|
2835 |
|
|
* ovfl_mask: mask of overflowed PMD. MUST NEVER be 0.
|
2836 |
|
|
* Return:
|
2837 |
|
|
* 0 : buffer is not full (did not BECOME full: still space or was already full)
|
2838 |
|
|
* 1 : buffer is full (recorded the last entry)
|
2839 |
|
|
*/
|
2840 |
|
|
static int
|
2841 |
|
|
pfm_record_sample(struct task_struct *task, pfm_context_t *ctx, unsigned long ovfl_mask, struct pt_regs *regs)
|
2842 |
|
|
{
|
2843 |
|
|
pfm_smpl_buffer_desc_t *psb = ctx->ctx_psb;
|
2844 |
|
|
unsigned long *e, m, idx;
|
2845 |
|
|
perfmon_smpl_entry_t *h;
|
2846 |
|
|
int j;
|
2847 |
|
|
|
2848 |
|
|
idx = ia64_fetch_and_add(1, &psb->psb_index);
|
2849 |
|
|
DBprintk_ovfl(("recording index=%ld entries=%ld\n", idx-1, psb->psb_entries));
|
2850 |
|
|
|
2851 |
|
|
/*
|
2852 |
|
|
* XXX: there is a small chance that we could run out on index before resetting
|
2853 |
|
|
* but index is unsigned long, so it will take some time.....
|
2854 |
|
|
* We use > instead of == because fetch_and_add() is off by one (see below)
|
2855 |
|
|
*
|
2856 |
|
|
* This case can happen in non-blocking mode or with multiple processes.
|
2857 |
|
|
* For non-blocking, we need to reload and continue.
|
2858 |
|
|
*/
|
2859 |
|
|
if (idx > psb->psb_entries) return 0;
|
2860 |
|
|
|
2861 |
|
|
/* first entry is really entry 0, not 1 caused by fetch_and_add */
|
2862 |
|
|
idx--;
|
2863 |
|
|
|
2864 |
|
|
h = (perfmon_smpl_entry_t *)(((char *)psb->psb_addr) + idx*(psb->psb_entry_size));
|
2865 |
|
|
|
2866 |
|
|
/*
|
2867 |
|
|
* initialize entry header
|
2868 |
|
|
*/
|
2869 |
|
|
h->pid = ctx->ctx_fl_system ? current->pid : task->pid;
|
2870 |
|
|
h->cpu = smp_processor_id();
|
2871 |
|
|
h->last_reset_value = ovfl_mask ? ctx->ctx_soft_pmds[ffz(~ovfl_mask)].lval : 0UL;
|
2872 |
|
|
h->ip = regs ? regs->cr_iip | ((regs->cr_ipsr >> 41) & 0x3): 0x0UL;
|
2873 |
|
|
h->regs = ovfl_mask; /* which registers overflowed */
|
2874 |
|
|
|
2875 |
|
|
/* guaranteed to monotonically increase on each cpu */
|
2876 |
|
|
h->stamp = pfm_get_stamp();
|
2877 |
|
|
|
2878 |
|
|
/* position for first pmd */
|
2879 |
|
|
e = (unsigned long *)(h+1);
|
2880 |
|
|
|
2881 |
|
|
/*
|
2882 |
|
|
* selectively store PMDs in increasing index number
|
2883 |
|
|
*/
|
2884 |
|
|
m = ctx->ctx_smpl_regs[0];
|
2885 |
|
|
for (j=0; m; m >>=1, j++) {
|
2886 |
|
|
|
2887 |
|
|
if ((m & 0x1) == 0) continue;
|
2888 |
|
|
|
2889 |
|
|
if (PMD_IS_COUNTING(j)) {
|
2890 |
|
|
*e = pfm_read_soft_counter(ctx, j);
|
2891 |
|
|
} else {
|
2892 |
|
|
*e = ia64_get_pmd(j); /* slow */
|
2893 |
|
|
}
|
2894 |
|
|
DBprintk_ovfl(("e=%p pmd%d =0x%lx\n", (void *)e, j, *e));
|
2895 |
|
|
e++;
|
2896 |
|
|
}
|
2897 |
|
|
pfm_stats[smp_processor_id()].pfm_recorded_samples_count++;
|
2898 |
|
|
|
2899 |
|
|
/*
|
2900 |
|
|
* make the new entry visible to user, needs to be atomic
|
2901 |
|
|
*/
|
2902 |
|
|
ia64_fetch_and_add(1, &psb->psb_hdr->hdr_count);
|
2903 |
|
|
|
2904 |
|
|
DBprintk_ovfl(("index=%ld entries=%ld hdr_count=%ld\n",
|
2905 |
|
|
idx, psb->psb_entries, psb->psb_hdr->hdr_count));
|
2906 |
|
|
/*
|
2907 |
|
|
* sampling buffer full ?
|
2908 |
|
|
*/
|
2909 |
|
|
if (idx == (psb->psb_entries-1)) {
|
2910 |
|
|
DBprintk_ovfl(("sampling buffer full\n"));
|
2911 |
|
|
/*
|
2912 |
|
|
* XXX: must reset buffer in blocking mode and lost notified
|
2913 |
|
|
*/
|
2914 |
|
|
pfm_stats[smp_processor_id()].pfm_full_smpl_buffer_count++;
|
2915 |
|
|
return 1;
|
2916 |
|
|
}
|
2917 |
|
|
return 0;
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/*
|
2921 |
|
|
* main overflow processing routine.
|
2922 |
|
|
* it can be called from the interrupt path or explicitely during the context switch code
|
2923 |
|
|
* Return:
|
2924 |
|
|
* new value of pmc[0]. if 0x0 then unfreeze, else keep frozen
|
2925 |
|
|
*/
|
2926 |
|
|
static unsigned long
|
2927 |
|
|
pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
|
2928 |
|
|
{
|
2929 |
|
|
unsigned long mask;
|
2930 |
|
|
struct thread_struct *t;
|
2931 |
|
|
unsigned long old_val;
|
2932 |
|
|
unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL;
|
2933 |
|
|
int i;
|
2934 |
|
|
int ret = 1;
|
2935 |
|
|
/*
|
2936 |
|
|
* It is never safe to access the task for which the overflow interrupt is destinated
|
2937 |
|
|
* using the current variable as the interrupt may occur in the middle of a context switch
|
2938 |
|
|
* where current does not hold the task that is running yet.
|
2939 |
|
|
*
|
2940 |
|
|
* For monitoring, however, we do need to get access to the task which caused the overflow
|
2941 |
|
|
* to account for overflow on the counters.
|
2942 |
|
|
*
|
2943 |
|
|
* We accomplish this by maintaining a current owner of the PMU per CPU. During context
|
2944 |
|
|
* switch the ownership is changed in a way such that the reflected owner is always the
|
2945 |
|
|
* valid one, i.e. the one that caused the interrupt.
|
2946 |
|
|
*/
|
2947 |
|
|
|
2948 |
|
|
t = &task->thread;
|
2949 |
|
|
|
2950 |
|
|
/*
|
2951 |
|
|
* XXX: debug test
|
2952 |
|
|
* Don't think this could happen given upfront tests
|
2953 |
|
|
*/
|
2954 |
|
|
if ((t->flags & IA64_THREAD_PM_VALID) == 0 && ctx->ctx_fl_system == 0) {
|
2955 |
|
|
printk(KERN_DEBUG "perfmon: Spurious overflow interrupt: process %d not "
|
2956 |
|
|
"using perfmon\n", task->pid);
|
2957 |
|
|
return 0x1;
|
2958 |
|
|
}
|
2959 |
|
|
/*
|
2960 |
|
|
* sanity test. Should never happen
|
2961 |
|
|
*/
|
2962 |
|
|
if ((pmc0 & 0x1) == 0) {
|
2963 |
|
|
printk(KERN_DEBUG "perfmon: pid %d pmc0=0x%lx assumption error for freeze bit\n",
|
2964 |
|
|
task->pid, pmc0);
|
2965 |
|
|
return 0x0;
|
2966 |
|
|
}
|
2967 |
|
|
|
2968 |
|
|
mask = pmc0 >> PMU_FIRST_COUNTER;
|
2969 |
|
|
|
2970 |
|
|
DBprintk_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s"
|
2971 |
|
|
" mode used_pmds=0x%lx used_pmcs=0x%lx reload_pmcs=0x%lx\n",
|
2972 |
|
|
pmc0, task->pid, (regs ? regs->cr_iip : 0),
|
2973 |
|
|
CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
|
2974 |
|
|
ctx->ctx_used_pmds[0],
|
2975 |
|
|
ctx->ctx_used_pmcs[0],
|
2976 |
|
|
ctx->ctx_reload_pmcs[0]));
|
2977 |
|
|
|
2978 |
|
|
/*
|
2979 |
|
|
* First we update the virtual counters
|
2980 |
|
|
*/
|
2981 |
|
|
for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
|
2982 |
|
|
|
2983 |
|
|
/* skip pmd which did not overflow */
|
2984 |
|
|
if ((mask & 0x1) == 0) continue;
|
2985 |
|
|
|
2986 |
|
|
DBprintk_ovfl(("pmd[%d] overflowed hw_pmd=0x%lx soft_pmd=0x%lx\n",
|
2987 |
|
|
i, ia64_get_pmd(i), ctx->ctx_soft_pmds[i].val));
|
2988 |
|
|
|
2989 |
|
|
/*
|
2990 |
|
|
* Note that the pmd is not necessarily 0 at this point as qualified events
|
2991 |
|
|
* may have happened before the PMU was frozen. The residual count is not
|
2992 |
|
|
* taken into consideration here but will be with any read of the pmd via
|
2993 |
|
|
* pfm_read_pmds().
|
2994 |
|
|
*/
|
2995 |
|
|
old_val = ctx->ctx_soft_pmds[i].val;
|
2996 |
|
|
ctx->ctx_soft_pmds[i].val += 1 + pmu_conf.ovfl_val;
|
2997 |
|
|
|
2998 |
|
|
/*
|
2999 |
|
|
* check for overflow condition
|
3000 |
|
|
*/
|
3001 |
|
|
if (old_val > ctx->ctx_soft_pmds[i].val) {
|
3002 |
|
|
|
3003 |
|
|
ovfl_pmds |= 1UL << i;
|
3004 |
|
|
|
3005 |
|
|
if (PMC_OVFL_NOTIFY(ctx, i)) {
|
3006 |
|
|
ovfl_notify |= 1UL << i;
|
3007 |
|
|
}
|
3008 |
|
|
} else {
|
3009 |
|
|
/*
|
3010 |
|
|
* clear top bits (maintain counts in lower part, may not always be zero)
|
3011 |
|
|
*/
|
3012 |
|
|
ia64_set_pmd(i, ia64_get_pmd(i) & pmu_conf.ovfl_val);
|
3013 |
|
|
}
|
3014 |
|
|
DBprintk_ovfl(("soft_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
|
3015 |
|
|
i, ctx->ctx_soft_pmds[i].val, old_val,
|
3016 |
|
|
ia64_get_pmd(i) & pmu_conf.ovfl_val, ovfl_pmds, ovfl_notify));
|
3017 |
|
|
}
|
3018 |
|
|
|
3019 |
|
|
/*
|
3020 |
|
|
* check for sampling buffer
|
3021 |
|
|
*
|
3022 |
|
|
* if present, record sample only when a 64-bit counter has overflowed.
|
3023 |
|
|
* We propagate notification ONLY when buffer becomes full.
|
3024 |
|
|
*/
|
3025 |
|
|
if(CTX_HAS_SMPL(ctx) && ovfl_pmds) {
|
3026 |
|
|
ret = pfm_record_sample(task, ctx, ovfl_pmds, regs);
|
3027 |
|
|
if (ret == 1) {
|
3028 |
|
|
/*
|
3029 |
|
|
* Sampling buffer became full
|
3030 |
|
|
* If no notication was requested, then we reset buffer index
|
3031 |
|
|
* and reset registers (done below) and resume.
|
3032 |
|
|
* If notification requested, then defer reset until pfm_restart()
|
3033 |
|
|
*/
|
3034 |
|
|
if (ovfl_notify == 0UL) {
|
3035 |
|
|
ctx->ctx_psb->psb_hdr->hdr_count = 0UL;
|
3036 |
|
|
ctx->ctx_psb->psb_index = 0UL;
|
3037 |
|
|
}
|
3038 |
|
|
} else {
|
3039 |
|
|
/*
|
3040 |
|
|
* sample recorded in buffer, no need to notify user
|
3041 |
|
|
*/
|
3042 |
|
|
ovfl_notify = 0UL;
|
3043 |
|
|
}
|
3044 |
|
|
}
|
3045 |
|
|
|
3046 |
|
|
/*
|
3047 |
|
|
* No overflow requiring a user level notification
|
3048 |
|
|
*/
|
3049 |
|
|
if (ovfl_notify == 0UL) {
|
3050 |
|
|
if (ovfl_pmds)
|
3051 |
|
|
pfm_reset_regs(ctx, &ovfl_pmds, PFM_PMD_SHORT_RESET);
|
3052 |
|
|
return 0x0;
|
3053 |
|
|
}
|
3054 |
|
|
|
3055 |
|
|
/*
|
3056 |
|
|
* keep track of what to reset when unblocking
|
3057 |
|
|
*/
|
3058 |
|
|
ctx->ctx_ovfl_regs[0] = ovfl_pmds;
|
3059 |
|
|
|
3060 |
|
|
/*
|
3061 |
|
|
* As a consequence of the overflow, we always resume
|
3062 |
|
|
* with monitoring turned off. pfm_restart() will
|
3063 |
|
|
* reactivate.
|
3064 |
|
|
*/
|
3065 |
|
|
ctx->ctx_fl_frozen = 1;
|
3066 |
|
|
|
3067 |
|
|
/*
|
3068 |
|
|
* we have come to this point because there was an overflow and that notification
|
3069 |
|
|
* was requested. The notify_task may have disappeared, in which case notify_task
|
3070 |
|
|
* is NULL.
|
3071 |
|
|
*/
|
3072 |
|
|
LOCK_CTX(ctx);
|
3073 |
|
|
|
3074 |
|
|
if (ctx->ctx_notify_task) {
|
3075 |
|
|
if (CTX_OVFL_NOBLOCK(ctx) == 0 && ctx->ctx_notify_task != task) {
|
3076 |
|
|
t->pfm_ovfl_block_reset = 1; /* will cause blocking */
|
3077 |
|
|
} else {
|
3078 |
|
|
t->pfm_ovfl_block_reset = 0;
|
3079 |
|
|
}
|
3080 |
|
|
|
3081 |
|
|
DBprintk_ovfl(("[%d] scheduling tasklet\n", current->pid));
|
3082 |
|
|
|
3083 |
|
|
/*
|
3084 |
|
|
* the tasklet is responsible for sending the notification
|
3085 |
|
|
* not the PMU owner nor the current task.
|
3086 |
|
|
*/
|
3087 |
|
|
tasklet_schedule(&ctx->ctx_tasklet);
|
3088 |
|
|
|
3089 |
|
|
} else {
|
3090 |
|
|
DBprintk_ovfl(("notification task has disappeared !\n"));
|
3091 |
|
|
t->pfm_ovfl_block_reset = 0;
|
3092 |
|
|
}
|
3093 |
|
|
|
3094 |
|
|
UNLOCK_CTX(ctx);
|
3095 |
|
|
|
3096 |
|
|
DBprintk_ovfl(("return pmc0=0x%x must_block=%ld\n",
|
3097 |
|
|
ctx->ctx_fl_frozen ? 0x1 : 0x0, t->pfm_ovfl_block_reset));
|
3098 |
|
|
|
3099 |
|
|
return ctx->ctx_fl_frozen ? 0x1 : 0x0;
|
3100 |
|
|
}
|
3101 |
|
|
|
3102 |
|
|
static void
|
3103 |
|
|
pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
|
3104 |
|
|
{
|
3105 |
|
|
u64 pmc0;
|
3106 |
|
|
struct task_struct *task;
|
3107 |
|
|
pfm_context_t *ctx;
|
3108 |
|
|
|
3109 |
|
|
pfm_stats[smp_processor_id()].pfm_ovfl_intr_count++;
|
3110 |
|
|
|
3111 |
|
|
/*
|
3112 |
|
|
* if an alternate handler is registered, just bypass the default one
|
3113 |
|
|
*/
|
3114 |
|
|
if (pfm_alternate_intr_handler) {
|
3115 |
|
|
(*pfm_alternate_intr_handler->handler)(irq, arg, regs);
|
3116 |
|
|
return;
|
3117 |
|
|
}
|
3118 |
|
|
|
3119 |
|
|
/*
|
3120 |
|
|
* srlz.d done before arriving here
|
3121 |
|
|
*
|
3122 |
|
|
* This is slow
|
3123 |
|
|
*/
|
3124 |
|
|
pmc0 = ia64_get_pmc(0);
|
3125 |
|
|
task = PMU_OWNER();
|
3126 |
|
|
/*
|
3127 |
|
|
* if we have some pending bits set
|
3128 |
|
|
* assumes : if any PM[0].bit[63-1] is set, then PMC[0].fr = 1
|
3129 |
|
|
*/
|
3130 |
|
|
if (PMC0_HAS_OVFL(pmc0) && task) {
|
3131 |
|
|
/*
|
3132 |
|
|
* we assume that pmc0.fr is always set here
|
3133 |
|
|
*/
|
3134 |
|
|
ctx = PFM_GET_CTX(task);
|
3135 |
|
|
|
3136 |
|
|
/* sanity check */
|
3137 |
|
|
if (!ctx) {
|
3138 |
|
|
printk(KERN_DEBUG "perfmon: Spurious overflow interrupt: process %d has "
|
3139 |
|
|
"no PFM context\n", task->pid);
|
3140 |
|
|
return;
|
3141 |
|
|
}
|
3142 |
|
|
/*
|
3143 |
|
|
* assume PMC[0].fr = 1 at this point
|
3144 |
|
|
*/
|
3145 |
|
|
pmc0 = pfm_overflow_handler(task, ctx, pmc0, regs);
|
3146 |
|
|
|
3147 |
|
|
/*
|
3148 |
|
|
* we can only update pmc0 when the overflow
|
3149 |
|
|
* is for the current context or we are in system
|
3150 |
|
|
* wide mode. In UP (per-task) the current
|
3151 |
|
|
* task may not be the one owning the PMU,
|
3152 |
|
|
* same thing for system-wide.
|
3153 |
|
|
*/
|
3154 |
|
|
if (task == current || ctx->ctx_fl_system) {
|
3155 |
|
|
/*
|
3156 |
|
|
* We always clear the overflow status bits and either unfreeze
|
3157 |
|
|
* or keep the PMU frozen.
|
3158 |
|
|
*/
|
3159 |
|
|
ia64_set_pmc(0, pmc0);
|
3160 |
|
|
ia64_srlz_d();
|
3161 |
|
|
} else {
|
3162 |
|
|
task->thread.pmc[0] = pmc0;
|
3163 |
|
|
}
|
3164 |
|
|
} else {
|
3165 |
|
|
pfm_stats[smp_processor_id()].pfm_spurious_ovfl_intr_count++;
|
3166 |
|
|
}
|
3167 |
|
|
}
|
3168 |
|
|
|
3169 |
|
|
/* for debug only */
|
3170 |
|
|
static int
|
3171 |
|
|
pfm_proc_info(char *page)
|
3172 |
|
|
{
|
3173 |
|
|
char *p = page;
|
3174 |
|
|
int i;
|
3175 |
|
|
|
3176 |
|
|
p += sprintf(p, "fastctxsw : %s\n", pfm_sysctl.fastctxsw > 0 ? "Yes": "No");
|
3177 |
|
|
p += sprintf(p, "ovfl_mask : 0x%lx\n", pmu_conf.ovfl_val);
|
3178 |
|
|
|
3179 |
|
|
for(i=0; i < NR_CPUS; i++) {
|
3180 |
|
|
if (cpu_online(i) == 0) continue;
|
3181 |
|
|
p += sprintf(p, "CPU%-2d overflow intrs : %lu\n", i, pfm_stats[i].pfm_ovfl_intr_count);
|
3182 |
|
|
p += sprintf(p, "CPU%-2d spurious intrs : %lu\n", i, pfm_stats[i].pfm_spurious_ovfl_intr_count);
|
3183 |
|
|
p += sprintf(p, "CPU%-2d recorded samples : %lu\n", i, pfm_stats[i].pfm_recorded_samples_count);
|
3184 |
|
|
p += sprintf(p, "CPU%-2d smpl buffer full : %lu\n", i, pfm_stats[i].pfm_full_smpl_buffer_count);
|
3185 |
|
|
p += sprintf(p, "CPU%-2d syst_wide : %d\n", i, cpu_data(i)->pfm_syst_info & PFM_CPUINFO_SYST_WIDE ? 1 : 0);
|
3186 |
|
|
p += sprintf(p, "CPU%-2d dcr_pp : %d\n", i, cpu_data(i)->pfm_syst_info & PFM_CPUINFO_DCR_PP ? 1 : 0);
|
3187 |
|
|
p += sprintf(p, "CPU%-2d exclude idle : %d\n", i, cpu_data(i)->pfm_syst_info & PFM_CPUINFO_EXCL_IDLE ? 1 : 0);
|
3188 |
|
|
p += sprintf(p, "CPU%-2d owner : %d\n", i, pmu_owners[i].owner ? pmu_owners[i].owner->pid: -1);
|
3189 |
|
|
p += sprintf(p, "CPU%-2d activations : %lu\n", i, pmu_owners[i].activation_number);
|
3190 |
|
|
}
|
3191 |
|
|
|
3192 |
|
|
LOCK_PFS();
|
3193 |
|
|
|
3194 |
|
|
p += sprintf(p, "proc_sessions : %u\n"
|
3195 |
|
|
"sys_sessions : %u\n"
|
3196 |
|
|
"sys_use_dbregs : %u\n"
|
3197 |
|
|
"ptrace_use_dbregs : %u\n",
|
3198 |
|
|
pfm_sessions.pfs_task_sessions,
|
3199 |
|
|
pfm_sessions.pfs_sys_sessions,
|
3200 |
|
|
pfm_sessions.pfs_sys_use_dbregs,
|
3201 |
|
|
pfm_sessions.pfs_ptrace_use_dbregs);
|
3202 |
|
|
|
3203 |
|
|
UNLOCK_PFS();
|
3204 |
|
|
|
3205 |
|
|
return p - page;
|
3206 |
|
|
}
|
3207 |
|
|
|
3208 |
|
|
/* /proc interface, for debug only */
|
3209 |
|
|
static int
|
3210 |
|
|
perfmon_read_entry(char *page, char **start, off_t off, int count, int *eof, void *data)
|
3211 |
|
|
{
|
3212 |
|
|
int len = pfm_proc_info(page);
|
3213 |
|
|
|
3214 |
|
|
if (len <= off+count) *eof = 1;
|
3215 |
|
|
|
3216 |
|
|
*start = page + off;
|
3217 |
|
|
len -= off;
|
3218 |
|
|
|
3219 |
|
|
if (len>count) len = count;
|
3220 |
|
|
if (len<0) len = 0;
|
3221 |
|
|
|
3222 |
|
|
return len;
|
3223 |
|
|
}
|
3224 |
|
|
|
3225 |
|
|
/*
|
3226 |
|
|
* we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
|
3227 |
|
|
* during pfm_enable() hence before pfm_start(). We cannot assume monitoring
|
3228 |
|
|
* is active or inactive based on mode. We must rely on the value in
|
3229 |
|
|
* local_cpu_data->pfm_syst_info
|
3230 |
|
|
*/
|
3231 |
|
|
void
|
3232 |
|
|
pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
|
3233 |
|
|
{
|
3234 |
|
|
struct pt_regs *regs;
|
3235 |
|
|
unsigned long dcr;
|
3236 |
|
|
unsigned long dcr_pp;
|
3237 |
|
|
|
3238 |
|
|
dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
|
3239 |
|
|
|
3240 |
|
|
/*
|
3241 |
|
|
* pid 0 is guaranteed to be the idle task. There is one such task with pid 0
|
3242 |
|
|
* on every CPU, so we can rely on the pid to identify the idle task.
|
3243 |
|
|
*/
|
3244 |
|
|
if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
|
3245 |
|
|
regs = (struct pt_regs *)((unsigned long) task + IA64_STK_OFFSET);
|
3246 |
|
|
regs--;
|
3247 |
|
|
ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
|
3248 |
|
|
return;
|
3249 |
|
|
}
|
3250 |
|
|
/*
|
3251 |
|
|
* we are the idle task and there is exclusion.
|
3252 |
|
|
*
|
3253 |
|
|
* if monitoring has started
|
3254 |
|
|
*/
|
3255 |
|
|
if (dcr_pp) {
|
3256 |
|
|
dcr = ia64_get_dcr();
|
3257 |
|
|
/*
|
3258 |
|
|
* context switching in?
|
3259 |
|
|
*/
|
3260 |
|
|
if (is_ctxswin) {
|
3261 |
|
|
/* mask monitoring for the idle task */
|
3262 |
|
|
ia64_set_dcr(dcr & ~IA64_DCR_PP);
|
3263 |
|
|
pfm_clear_psr_pp();
|
3264 |
|
|
ia64_srlz_i();
|
3265 |
|
|
return;
|
3266 |
|
|
}
|
3267 |
|
|
/*
|
3268 |
|
|
* context switching out
|
3269 |
|
|
* restore normal kernel level settings
|
3270 |
|
|
*
|
3271 |
|
|
* Due to inlining this odd if-then-else construction generates
|
3272 |
|
|
* better code.
|
3273 |
|
|
*/
|
3274 |
|
|
ia64_set_dcr(dcr |IA64_DCR_PP);
|
3275 |
|
|
pfm_set_psr_pp();
|
3276 |
|
|
ia64_srlz_i();
|
3277 |
|
|
}
|
3278 |
|
|
}
|
3279 |
|
|
|
3280 |
|
|
#ifdef CONFIG_SMP
|
3281 |
|
|
void
|
3282 |
|
|
pfm_save_regs(struct task_struct *task)
|
3283 |
|
|
{
|
3284 |
|
|
pfm_context_t *ctx;
|
3285 |
|
|
struct thread_struct *t;
|
3286 |
|
|
u64 psr;
|
3287 |
|
|
|
3288 |
|
|
ctx = PFM_GET_CTX(task);
|
3289 |
|
|
if (ctx == NULL) goto save_error;
|
3290 |
|
|
t = &task->thread;
|
3291 |
|
|
|
3292 |
|
|
/*
|
3293 |
|
|
* sanity check
|
3294 |
|
|
*/
|
3295 |
|
|
if (ctx->ctx_last_activation != GET_ACTIVATION()) {
|
3296 |
|
|
DBprintk(("ctx_activation=%lu activation=%lu: no save\n",
|
3297 |
|
|
ctx->ctx_last_activation, GET_ACTIVATION()));
|
3298 |
|
|
return;
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
/*
|
3302 |
|
|
* save current PSR: needed because we modify it
|
3303 |
|
|
*/
|
3304 |
|
|
psr = pfm_get_psr();
|
3305 |
|
|
|
3306 |
|
|
/*
|
3307 |
|
|
* stop monitoring:
|
3308 |
|
|
* This is the last instruction which may generate an overflow
|
3309 |
|
|
*
|
3310 |
|
|
* We do not need to set psr.sp because, it is irrelevant in kernel.
|
3311 |
|
|
* It will be restored from ipsr when going back to user level
|
3312 |
|
|
*/
|
3313 |
|
|
pfm_clear_psr_up();
|
3314 |
|
|
|
3315 |
|
|
/*
|
3316 |
|
|
* keep a copy of the saved psr (for reload)
|
3317 |
|
|
*/
|
3318 |
|
|
ctx->ctx_saved_psr = psr;
|
3319 |
|
|
|
3320 |
|
|
/*
|
3321 |
|
|
* release ownership of this PMU.
|
3322 |
|
|
*/
|
3323 |
|
|
SET_PMU_OWNER(NULL);
|
3324 |
|
|
|
3325 |
|
|
/*
|
3326 |
|
|
* we systematically save the PMD as we have no
|
3327 |
|
|
* guarantee we will be schedule at that same
|
3328 |
|
|
* CPU again.
|
3329 |
|
|
*/
|
3330 |
|
|
pfm_save_pmds(t->pmd, ctx->ctx_used_pmds[0]);
|
3331 |
|
|
|
3332 |
|
|
/*
|
3333 |
|
|
* save pmc0 ia64_srlz_d() done in pfm_save_pmds()
|
3334 |
|
|
* we will need it on the restore path to check
|
3335 |
|
|
* for pending overflow.
|
3336 |
|
|
*/
|
3337 |
|
|
t->pmc[0] = ia64_get_pmc(0);
|
3338 |
|
|
|
3339 |
|
|
return;
|
3340 |
|
|
|
3341 |
|
|
save_error:
|
3342 |
|
|
printk(KERN_ERR "perfmon: pfm_save_regs CPU%d [%d] NULL context PM_VALID=%ld\n",
|
3343 |
|
|
smp_processor_id(), task->pid,
|
3344 |
|
|
task->thread.flags & IA64_THREAD_PM_VALID);
|
3345 |
|
|
}
|
3346 |
|
|
|
3347 |
|
|
#else /* !CONFIG_SMP */
|
3348 |
|
|
|
3349 |
|
|
void
|
3350 |
|
|
pfm_save_regs(struct task_struct *task)
|
3351 |
|
|
{
|
3352 |
|
|
pfm_context_t *ctx;
|
3353 |
|
|
u64 psr;
|
3354 |
|
|
|
3355 |
|
|
ctx = PFM_GET_CTX(task);
|
3356 |
|
|
if (ctx == NULL) goto save_error;
|
3357 |
|
|
/*
|
3358 |
|
|
* save current PSR: needed because we modify it
|
3359 |
|
|
*/
|
3360 |
|
|
psr = pfm_get_psr();
|
3361 |
|
|
|
3362 |
|
|
/*
|
3363 |
|
|
* stop monitoring:
|
3364 |
|
|
* This is the last instruction which may generate an overflow
|
3365 |
|
|
*
|
3366 |
|
|
* We do not need to set psr.sp because, it is irrelevant in kernel.
|
3367 |
|
|
* It will be restored from ipsr when going back to user level
|
3368 |
|
|
*/
|
3369 |
|
|
pfm_clear_psr_up();
|
3370 |
|
|
|
3371 |
|
|
/*
|
3372 |
|
|
* keep a copy of the saved psr (for reload)
|
3373 |
|
|
*/
|
3374 |
|
|
ctx->ctx_saved_psr = psr;
|
3375 |
|
|
|
3376 |
|
|
return;
|
3377 |
|
|
save_error:
|
3378 |
|
|
printk(KERN_ERR "perfmon: pfm_save_regs CPU%d [%d] NULL context PM_VALID=%ld\n",
|
3379 |
|
|
smp_processor_id(), task->pid,
|
3380 |
|
|
task->thread.flags & IA64_THREAD_PM_VALID);
|
3381 |
|
|
}
|
3382 |
|
|
|
3383 |
|
|
static unsigned long
|
3384 |
|
|
pfm_lazy_save_regs (struct task_struct *task)
|
3385 |
|
|
{
|
3386 |
|
|
pfm_context_t *ctx;
|
3387 |
|
|
struct thread_struct *t;
|
3388 |
|
|
|
3389 |
|
|
ctx = PFM_GET_CTX(task);
|
3390 |
|
|
t = &task->thread;
|
3391 |
|
|
|
3392 |
|
|
DBprintk(("on [%d] used_pmds=0x%lx\n", task->pid, ctx->ctx_used_pmds[0]));
|
3393 |
|
|
|
3394 |
|
|
/*
|
3395 |
|
|
* release ownership of this PMU.
|
3396 |
|
|
* must be done before we save the registers.
|
3397 |
|
|
*
|
3398 |
|
|
* after this call any PMU interrupt is treated
|
3399 |
|
|
* as spurious.
|
3400 |
|
|
*/
|
3401 |
|
|
SET_PMU_OWNER(NULL);
|
3402 |
|
|
|
3403 |
|
|
/*
|
3404 |
|
|
* save all the pmds we use
|
3405 |
|
|
*/
|
3406 |
|
|
pfm_save_pmds(t->pmd, ctx->ctx_used_pmds[0]);
|
3407 |
|
|
|
3408 |
|
|
/*
|
3409 |
|
|
* save pmc0 ia64_srlz_d() done in pfm_save_pmds()
|
3410 |
|
|
* it is needed to check for pended overflow
|
3411 |
|
|
* on the restore path
|
3412 |
|
|
*/
|
3413 |
|
|
t->pmc[0] = ia64_get_pmc(0);
|
3414 |
|
|
|
3415 |
|
|
return t->pmc[0];
|
3416 |
|
|
}
|
3417 |
|
|
#endif /* CONFIG_SMP */
|
3418 |
|
|
|
3419 |
|
|
#ifdef CONFIG_SMP
|
3420 |
|
|
void
|
3421 |
|
|
pfm_load_regs (struct task_struct *task)
|
3422 |
|
|
{
|
3423 |
|
|
pfm_context_t *ctx;
|
3424 |
|
|
struct thread_struct *t;
|
3425 |
|
|
struct task_struct *owner;
|
3426 |
|
|
unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
|
3427 |
|
|
u64 psr;
|
3428 |
|
|
|
3429 |
|
|
ctx = PFM_GET_CTX(task);
|
3430 |
|
|
if (unlikely(ctx == NULL)) {
|
3431 |
|
|
printk(KERN_ERR "perfmon: pfm_load_regs() null context\n");
|
3432 |
|
|
return;
|
3433 |
|
|
}
|
3434 |
|
|
|
3435 |
|
|
owner = PMU_OWNER();
|
3436 |
|
|
t = &task->thread;
|
3437 |
|
|
|
3438 |
|
|
/*
|
3439 |
|
|
* possible on unload
|
3440 |
|
|
*/
|
3441 |
|
|
if ((t->flags & IA64_THREAD_PM_VALID) == 0) {
|
3442 |
|
|
DBprintk(("[%d] PM_VALID=0, nothing to do\n", task->pid));
|
3443 |
|
|
return;
|
3444 |
|
|
}
|
3445 |
|
|
|
3446 |
|
|
/*
|
3447 |
|
|
* we restore ALL the debug registers to avoid picking up
|
3448 |
|
|
* stale state.
|
3449 |
|
|
*
|
3450 |
|
|
* This must be done even when the task is still the owner
|
3451 |
|
|
* as the registers may have been modified via ptrace()
|
3452 |
|
|
* (not perfmon) by the previous task.
|
3453 |
|
|
*/
|
3454 |
|
|
if (ctx->ctx_fl_using_dbreg) {
|
3455 |
|
|
pfm_restore_ibrs(t->ibr, pmu_conf.num_ibrs);
|
3456 |
|
|
pfm_restore_dbrs(t->dbr, pmu_conf.num_dbrs);
|
3457 |
|
|
}
|
3458 |
|
|
|
3459 |
|
|
/*
|
3460 |
|
|
* retrieve saved psr
|
3461 |
|
|
*/
|
3462 |
|
|
psr = ctx->ctx_saved_psr;
|
3463 |
|
|
|
3464 |
|
|
/*
|
3465 |
|
|
* if we were the last user of the PMU on that CPU,
|
3466 |
|
|
* then nothing to do except restore psr
|
3467 |
|
|
*/
|
3468 |
|
|
if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
|
3469 |
|
|
/*
|
3470 |
|
|
* retrieve partial reload masks (due to user modifications)
|
3471 |
|
|
*/
|
3472 |
|
|
pmc_mask = 0UL;
|
3473 |
|
|
pmd_mask = 0UL;
|
3474 |
|
|
|
3475 |
|
|
if (pmc_mask || pmd_mask) DBprintk(("partial reload [%d] pmd_mask=0x%lx pmc_mask=0x%lx\n", task->pid, pmd_mask, pmc_mask));
|
3476 |
|
|
} else {
|
3477 |
|
|
/*
|
3478 |
|
|
* To avoid leaking information to the user level when psr.sp=0,
|
3479 |
|
|
* we must reload ALL implemented pmds (even the ones we don't use).
|
3480 |
|
|
* In the kernel we only allow PFM_READ_PMDS on registers which
|
3481 |
|
|
* we initialized or requested (sampling) so there is no risk there.
|
3482 |
|
|
*/
|
3483 |
|
|
pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_reload_pmds[0];
|
3484 |
|
|
|
3485 |
|
|
/*
|
3486 |
|
|
* ALL accessible PMCs are systematically reloaded, unused registers
|
3487 |
|
|
* get their default (from pfm_reset_pmu_state()) values to avoid picking
|
3488 |
|
|
* up stale configuration.
|
3489 |
|
|
*
|
3490 |
|
|
* PMC0 is never in the mask. It is always restored separately.
|
3491 |
|
|
*/
|
3492 |
|
|
pmc_mask = ctx->ctx_reload_pmcs[0];
|
3493 |
|
|
|
3494 |
|
|
DBprintk(("full reload for [%d] owner=%d activation=%lu last_activation=%lu last_cpu=%d pmd_mask=0x%lx pmc_mask=0x%lx\n",
|
3495 |
|
|
task->pid, owner ? owner->pid : -1,
|
3496 |
|
|
GET_ACTIVATION(), ctx->ctx_last_activation,
|
3497 |
|
|
GET_LAST_CPU(ctx), pmd_mask, pmc_mask));
|
3498 |
|
|
|
3499 |
|
|
}
|
3500 |
|
|
|
3501 |
|
|
if (pmd_mask) pfm_restore_pmds(t->pmd, pmd_mask);
|
3502 |
|
|
if (pmc_mask) pfm_restore_pmcs(t->pmc, pmc_mask);
|
3503 |
|
|
|
3504 |
|
|
/*
|
3505 |
|
|
* check for pending overflow at the time the state
|
3506 |
|
|
* was saved.
|
3507 |
|
|
*/
|
3508 |
|
|
if (PMC0_HAS_OVFL(t->pmc[0])) {
|
3509 |
|
|
struct pt_regs *regs = TASK_PTREGS(task);
|
3510 |
|
|
pfm_overflow_handler(task, ctx, t->pmc[0], regs);
|
3511 |
|
|
}
|
3512 |
|
|
|
3513 |
|
|
/*
|
3514 |
|
|
* fl_frozen==1 when we are in blocking mode waiting for restart
|
3515 |
|
|
*/
|
3516 |
|
|
if (ctx->ctx_fl_frozen == 0) {
|
3517 |
|
|
pfm_unfreeze_pmu();
|
3518 |
|
|
}
|
3519 |
|
|
|
3520 |
|
|
SET_LAST_CPU(ctx, smp_processor_id());
|
3521 |
|
|
|
3522 |
|
|
/*
|
3523 |
|
|
* dump activation value for this PMU
|
3524 |
|
|
*/
|
3525 |
|
|
INC_ACTIVATION();
|
3526 |
|
|
/*
|
3527 |
|
|
* record current activation for this context
|
3528 |
|
|
*/
|
3529 |
|
|
SET_ACTIVATION(ctx);
|
3530 |
|
|
|
3531 |
|
|
/*
|
3532 |
|
|
* establish new ownership. Interrupts
|
3533 |
|
|
* are still masked at this point.
|
3534 |
|
|
*/
|
3535 |
|
|
SET_PMU_OWNER(task);
|
3536 |
|
|
|
3537 |
|
|
/*
|
3538 |
|
|
* restore the psr we changed
|
3539 |
|
|
*/
|
3540 |
|
|
pfm_set_psr_l(psr);
|
3541 |
|
|
|
3542 |
|
|
}
|
3543 |
|
|
#else /* !CONFIG_SMP */
|
3544 |
|
|
/*
|
3545 |
|
|
* reload PMU state for UP kernels
|
3546 |
|
|
*/
|
3547 |
|
|
void
|
3548 |
|
|
pfm_load_regs (struct task_struct *task)
|
3549 |
|
|
{
|
3550 |
|
|
struct thread_struct *t;
|
3551 |
|
|
pfm_context_t *ctx;
|
3552 |
|
|
struct task_struct *owner;
|
3553 |
|
|
unsigned long pmd_mask, pmc_mask;
|
3554 |
|
|
unsigned long prev_pmc0 = ~0UL;
|
3555 |
|
|
u64 psr;
|
3556 |
|
|
|
3557 |
|
|
owner = PMU_OWNER();
|
3558 |
|
|
ctx = PFM_GET_CTX(task);
|
3559 |
|
|
t = &task->thread;
|
3560 |
|
|
|
3561 |
|
|
/*
|
3562 |
|
|
* we restore ALL the debug registers to avoid picking up
|
3563 |
|
|
* stale state.
|
3564 |
|
|
*
|
3565 |
|
|
* This must be done even when the task is still the owner
|
3566 |
|
|
* as the registers may have been modified via ptrace()
|
3567 |
|
|
* (not perfmon) by the previous task.
|
3568 |
|
|
*/
|
3569 |
|
|
if (ctx->ctx_fl_using_dbreg) {
|
3570 |
|
|
pfm_restore_ibrs(t->ibr, pmu_conf.num_ibrs);
|
3571 |
|
|
pfm_restore_dbrs(t->dbr, pmu_conf.num_dbrs);
|
3572 |
|
|
}
|
3573 |
|
|
|
3574 |
|
|
/*
|
3575 |
|
|
* retrieved save psr
|
3576 |
|
|
*/
|
3577 |
|
|
psr = ctx->ctx_saved_psr;
|
3578 |
|
|
|
3579 |
|
|
/*
|
3580 |
|
|
* short path, our state is still there, just
|
3581 |
|
|
* need to restore psr and we go
|
3582 |
|
|
*
|
3583 |
|
|
* we do not touch either PMC nor PMD. the psr is not touched
|
3584 |
|
|
* by the overflow_handler. So we are safe w.r.t. to interrupt
|
3585 |
|
|
* concurrency even without interrupt masking.
|
3586 |
|
|
*/
|
3587 |
|
|
if (owner == task) {
|
3588 |
|
|
pfm_set_psr_l(psr);
|
3589 |
|
|
return;
|
3590 |
|
|
}
|
3591 |
|
|
|
3592 |
|
|
DBprintk(("reload for [%d] owner=%d\n", task->pid, owner ? owner->pid : -1));
|
3593 |
|
|
|
3594 |
|
|
/*
|
3595 |
|
|
* someone else is still using the PMU, first push it out and
|
3596 |
|
|
* then we'll be able to install our stuff !
|
3597 |
|
|
*
|
3598 |
|
|
* Upon return, there will be no owner for the current PMU
|
3599 |
|
|
*/
|
3600 |
|
|
if (owner) prev_pmc0 = pfm_lazy_save_regs(owner);
|
3601 |
|
|
/*
|
3602 |
|
|
* To avoid leaking information to the user level when psr.sp=0,
|
3603 |
|
|
* we must reload ALL implemented pmds (even the ones we don't use).
|
3604 |
|
|
* In the kernel we only allow PFM_READ_PMDS on registers which
|
3605 |
|
|
* we initialized or requested (sampling) so there is no risk there.
|
3606 |
|
|
*/
|
3607 |
|
|
pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_reload_pmds[0];
|
3608 |
|
|
|
3609 |
|
|
/*
|
3610 |
|
|
* ALL accessible PMCs are systematically reloaded, unused registers
|
3611 |
|
|
* get their default (from pfm_reset_pmu_state()) values to avoid picking
|
3612 |
|
|
* up stale configuration.
|
3613 |
|
|
*
|
3614 |
|
|
* PMC0 is never in the mask. It is always restored separately.
|
3615 |
|
|
*/
|
3616 |
|
|
pmc_mask = ctx->ctx_reload_pmcs[0];
|
3617 |
|
|
|
3618 |
|
|
pfm_restore_pmds(t->pmd, pmd_mask);
|
3619 |
|
|
pfm_restore_pmcs(t->pmc, pmc_mask);
|
3620 |
|
|
|
3621 |
|
|
/*
|
3622 |
|
|
* Check for pending overflow when state was last saved.
|
3623 |
|
|
* invoked handler is overflow status bits set.
|
3624 |
|
|
*
|
3625 |
|
|
* Any PMU overflow in flight at this point, will still
|
3626 |
|
|
* be treated as spurious because we have no declared
|
3627 |
|
|
* owner. Note that the first level interrupt handler
|
3628 |
|
|
* DOES NOT TOUCH any PMC except PMC0 for which we have
|
3629 |
|
|
* a copy already.
|
3630 |
|
|
*/
|
3631 |
|
|
if (PMC0_HAS_OVFL(t->pmc[0])) {
|
3632 |
|
|
struct pt_regs *regs = TASK_PTREGS(task);
|
3633 |
|
|
pfm_overflow_handler(task, ctx, t->pmc[0], regs);
|
3634 |
|
|
}
|
3635 |
|
|
|
3636 |
|
|
|
3637 |
|
|
|
3638 |
|
|
/*
|
3639 |
|
|
* fl_frozen==1 when we are in blocking mode waiting for restart
|
3640 |
|
|
*/
|
3641 |
|
|
if (ctx->ctx_fl_frozen == 0) {
|
3642 |
|
|
pfm_unfreeze_pmu();
|
3643 |
|
|
} else if (prev_pmc0 == 0UL && ctx->ctx_fl_frozen) {
|
3644 |
|
|
/*
|
3645 |
|
|
* owner is still NULL at this point.
|
3646 |
|
|
*
|
3647 |
|
|
* if the previous owner (from lazy_save_regs())
|
3648 |
|
|
* was not in frozen state, then we need to freeze
|
3649 |
|
|
* the PMU if the new context is frozen.
|
3650 |
|
|
*
|
3651 |
|
|
* on McKinley this will generate a spurious interrupt
|
3652 |
|
|
* but we have no other way.
|
3653 |
|
|
*/
|
3654 |
|
|
pfm_freeze_pmu();
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
/*
|
3658 |
|
|
* establish new ownership. If there was an in-flight
|
3659 |
|
|
* overflow interrupt, it will be treated as spurious
|
3660 |
|
|
* before and after the call, because no overflow
|
3661 |
|
|
* status bit can possibly be set. No new overflow
|
3662 |
|
|
* can be generated because, at this point, psr.up
|
3663 |
|
|
* is still cleared.
|
3664 |
|
|
*/
|
3665 |
|
|
SET_PMU_OWNER(task);
|
3666 |
|
|
|
3667 |
|
|
/*
|
3668 |
|
|
* restore the psr. This is the point at which
|
3669 |
|
|
* new overflow interrupts can be generated again.
|
3670 |
|
|
*/
|
3671 |
|
|
pfm_set_psr_l(psr);
|
3672 |
|
|
}
|
3673 |
|
|
#endif /* CONFIG_SMP */
|
3674 |
|
|
|
3675 |
|
|
/*
|
3676 |
|
|
* XXX: make this routine able to work with non current context
|
3677 |
|
|
*/
|
3678 |
|
|
static void
|
3679 |
|
|
pfm_reset_pmu(struct task_struct *task)
|
3680 |
|
|
{
|
3681 |
|
|
struct thread_struct *t = &task->thread;
|
3682 |
|
|
pfm_context_t *ctx = t->pfm_context;
|
3683 |
|
|
int i;
|
3684 |
|
|
|
3685 |
|
|
if (task != current) {
|
3686 |
|
|
printk("perfmon: invalid task in pfm_reset_pmu()\n");
|
3687 |
|
|
return;
|
3688 |
|
|
}
|
3689 |
|
|
|
3690 |
|
|
/* Let's make sure the PMU is frozen */
|
3691 |
|
|
pfm_freeze_pmu();
|
3692 |
|
|
|
3693 |
|
|
/*
|
3694 |
|
|
* install reset values for PMC. We skip PMC0 (done above)
|
3695 |
|
|
* XX: good up to 64 PMCS
|
3696 |
|
|
*/
|
3697 |
|
|
for (i=1; (pmu_conf.pmc_desc[i].type & PFM_REG_END) == 0; i++) {
|
3698 |
|
|
if ((pmu_conf.pmc_desc[i].type & PFM_REG_IMPL) == 0) continue;
|
3699 |
|
|
ia64_set_pmc(i, PMC_DFL_VAL(i));
|
3700 |
|
|
/*
|
3701 |
|
|
* When restoring context, we must restore ALL pmcs, even the ones
|
3702 |
|
|
* that the task does not use to avoid leaks and possibly corruption
|
3703 |
|
|
* of the sesion because of configuration conflicts. So here, we
|
3704 |
|
|
* initialize the entire set used in the context switch restore routine.
|
3705 |
|
|
*/
|
3706 |
|
|
t->pmc[i] = PMC_DFL_VAL(i);
|
3707 |
|
|
DBprintk(("pmc[%d]=0x%lx\n", i, t->pmc[i]));
|
3708 |
|
|
}
|
3709 |
|
|
|
3710 |
|
|
/*
|
3711 |
|
|
* clear reset values for PMD.
|
3712 |
|
|
* XXX: good up to 64 PMDS.
|
3713 |
|
|
*/
|
3714 |
|
|
for (i=0; (pmu_conf.pmd_desc[i].type & PFM_REG_END) == 0; i++) {
|
3715 |
|
|
if ((pmu_conf.pmd_desc[i].type & PFM_REG_IMPL) == 0) continue;
|
3716 |
|
|
ia64_set_pmd(i, 0UL);
|
3717 |
|
|
t->pmd[i] = 0UL;
|
3718 |
|
|
}
|
3719 |
|
|
|
3720 |
|
|
/*
|
3721 |
|
|
* On context switched restore, we must restore ALL pmc and ALL pmd even
|
3722 |
|
|
* when they are not actively used by the task. In UP, the incoming process
|
3723 |
|
|
* may otherwise pick up left over PMC, PMD state from the previous process.
|
3724 |
|
|
* As opposed to PMD, stale PMC can cause harm to the incoming
|
3725 |
|
|
* process because they may change what is being measured.
|
3726 |
|
|
* Therefore, we must systematically reinstall the entire
|
3727 |
|
|
* PMC state. In SMP, the same thing is possible on the
|
3728 |
|
|
* same CPU but also on between 2 CPUs.
|
3729 |
|
|
*
|
3730 |
|
|
* The problem with PMD is information leaking especially
|
3731 |
|
|
* to user level when psr.sp=0
|
3732 |
|
|
*
|
3733 |
|
|
* There is unfortunately no easy way to avoid this problem
|
3734 |
|
|
* on either UP or SMP. This definitively slows down the
|
3735 |
|
|
* pfm_load_regs() function.
|
3736 |
|
|
*/
|
3737 |
|
|
|
3738 |
|
|
/*
|
3739 |
|
|
* We must include all the PMC in this mask to make sure we don't
|
3740 |
|
|
* see any side effect of a stale state, such as opcode matching
|
3741 |
|
|
* or range restrictions, for instance.
|
3742 |
|
|
*
|
3743 |
|
|
* We never directly restore PMC0 so we do not include it in the mask.
|
3744 |
|
|
*/
|
3745 |
|
|
ctx->ctx_reload_pmcs[0] = pmu_conf.impl_pmcs[0] & ~0x1;
|
3746 |
|
|
/*
|
3747 |
|
|
* We must include all the PMD in this mask to avoid picking
|
3748 |
|
|
* up stale value and leak information, especially directly
|
3749 |
|
|
* at the user level when psr.sp=0
|
3750 |
|
|
*/
|
3751 |
|
|
ctx->ctx_reload_pmds[0] = pmu_conf.impl_pmds[0];
|
3752 |
|
|
|
3753 |
|
|
/*
|
3754 |
|
|
* Keep track of the pmds we want to sample
|
3755 |
|
|
* XXX: may be we don't need to save/restore the DEAR/IEAR pmds
|
3756 |
|
|
* but we do need the BTB for sure. This is because of a hardware
|
3757 |
|
|
* buffer of 1 only for non-BTB pmds.
|
3758 |
|
|
*
|
3759 |
|
|
* We ignore the unimplemented pmds specified by the user
|
3760 |
|
|
*/
|
3761 |
|
|
ctx->ctx_used_pmds[0] = ctx->ctx_smpl_regs[0];
|
3762 |
|
|
ctx->ctx_used_pmcs[0] = 1; /* always save/restore PMC[0] */
|
3763 |
|
|
|
3764 |
|
|
/*
|
3765 |
|
|
* useful in case of re-enable after disable
|
3766 |
|
|
*/
|
3767 |
|
|
ctx->ctx_used_ibrs[0] = 0UL;
|
3768 |
|
|
ctx->ctx_used_dbrs[0] = 0UL;
|
3769 |
|
|
|
3770 |
|
|
ia64_srlz_d();
|
3771 |
|
|
}
|
3772 |
|
|
|
3773 |
|
|
/*
|
3774 |
|
|
* This function is called when a thread exits (from exit_thread()).
|
3775 |
|
|
* This is a simplified pfm_save_regs() that simply flushes the current
|
3776 |
|
|
* register state into the save area taking into account any pending
|
3777 |
|
|
* overflow. This time no notification is sent because the task is dying
|
3778 |
|
|
* anyway. The inline processing of overflows avoids loosing some counts.
|
3779 |
|
|
* The PMU is frozen on exit from this call and is to never be reenabled
|
3780 |
|
|
* again for this task.
|
3781 |
|
|
*
|
3782 |
|
|
*/
|
3783 |
|
|
void
|
3784 |
|
|
pfm_flush_regs (struct task_struct *task)
|
3785 |
|
|
{
|
3786 |
|
|
pfm_context_t *ctx;
|
3787 |
|
|
u64 pmc0;
|
3788 |
|
|
unsigned long mask2, val;
|
3789 |
|
|
int i;
|
3790 |
|
|
|
3791 |
|
|
ctx = task->thread.pfm_context;
|
3792 |
|
|
|
3793 |
|
|
if (ctx == NULL) return;
|
3794 |
|
|
|
3795 |
|
|
/*
|
3796 |
|
|
* that's it if context already disabled
|
3797 |
|
|
*/
|
3798 |
|
|
if (ctx->ctx_flags.state == PFM_CTX_DISABLED) return;
|
3799 |
|
|
|
3800 |
|
|
/*
|
3801 |
|
|
* stop monitoring:
|
3802 |
|
|
* This is the only way to stop monitoring without destroying overflow
|
3803 |
|
|
* information in PMC[0].
|
3804 |
|
|
* This is the last instruction which can cause overflow when monitoring
|
3805 |
|
|
* in kernel.
|
3806 |
|
|
* By now, we could still have an overflow interrupt in-flight.
|
3807 |
|
|
*/
|
3808 |
|
|
if (ctx->ctx_fl_system) {
|
3809 |
|
|
|
3810 |
|
|
/* disable dcr pp */
|
3811 |
|
|
ia64_set_dcr(ia64_get_dcr() & ~IA64_DCR_PP);
|
3812 |
|
|
|
3813 |
|
|
/* stop monitoring */
|
3814 |
|
|
pfm_clear_psr_pp();
|
3815 |
|
|
ia64_srlz_i();
|
3816 |
|
|
|
3817 |
|
|
PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
|
3818 |
|
|
PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
|
3819 |
|
|
PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
|
3820 |
|
|
} else {
|
3821 |
|
|
|
3822 |
|
|
/* stop monitoring */
|
3823 |
|
|
pfm_clear_psr_up();
|
3824 |
|
|
ia64_srlz_i();
|
3825 |
|
|
|
3826 |
|
|
/* no more save/restore on ctxsw */
|
3827 |
|
|
current->thread.flags &= ~IA64_THREAD_PM_VALID;
|
3828 |
|
|
}
|
3829 |
|
|
|
3830 |
|
|
/*
|
3831 |
|
|
* Mark the PMU as not owned
|
3832 |
|
|
* This will cause the interrupt handler to do nothing in case an overflow
|
3833 |
|
|
* interrupt was in-flight
|
3834 |
|
|
* This also guarantees that pmc0 will contain the final state
|
3835 |
|
|
* It virtually gives us full control on overflow processing from that point
|
3836 |
|
|
* on.
|
3837 |
|
|
* It must be an atomic operation.
|
3838 |
|
|
*/
|
3839 |
|
|
SET_PMU_OWNER(NULL);
|
3840 |
|
|
|
3841 |
|
|
/*
|
3842 |
|
|
* read current overflow status:
|
3843 |
|
|
*
|
3844 |
|
|
* we are guaranteed to read the final stable state
|
3845 |
|
|
*/
|
3846 |
|
|
ia64_srlz_d();
|
3847 |
|
|
pmc0 = ia64_get_pmc(0); /* slow */
|
3848 |
|
|
|
3849 |
|
|
/*
|
3850 |
|
|
* freeze PMU:
|
3851 |
|
|
*
|
3852 |
|
|
* This destroys the overflow information. This is required to make sure
|
3853 |
|
|
* next process does not start with monitoring on if not requested
|
3854 |
|
|
*/
|
3855 |
|
|
pfm_freeze_pmu();
|
3856 |
|
|
|
3857 |
|
|
/*
|
3858 |
|
|
* We don't need to restore psr, because we are on our way out
|
3859 |
|
|
*/
|
3860 |
|
|
|
3861 |
|
|
/*
|
3862 |
|
|
* This loop flushes the PMD into the PFM context.
|
3863 |
|
|
* It also processes overflow inline.
|
3864 |
|
|
*
|
3865 |
|
|
* IMPORTANT: No notification is sent at this point as the process is dying.
|
3866 |
|
|
* The implicit notification will come from a SIGCHILD or a return from a
|
3867 |
|
|
* waitpid().
|
3868 |
|
|
*
|
3869 |
|
|
*/
|
3870 |
|
|
#ifdef CONFIG_SMP
|
3871 |
|
|
if (GET_LAST_CPU(ctx) != smp_processor_id())
|
3872 |
|
|
printk(KERN_DEBUG "perfmon: [%d] last_cpu=%d\n",
|
3873 |
|
|
task->pid, GET_LAST_CPU(ctx));
|
3874 |
|
|
#endif
|
3875 |
|
|
|
3876 |
|
|
/*
|
3877 |
|
|
* we save all the used pmds
|
3878 |
|
|
* we take care of overflows for pmds used as counters
|
3879 |
|
|
*/
|
3880 |
|
|
mask2 = ctx->ctx_used_pmds[0];
|
3881 |
|
|
for (i = 0; mask2; i++, mask2>>=1) {
|
3882 |
|
|
|
3883 |
|
|
/* skip non used pmds */
|
3884 |
|
|
if ((mask2 & 0x1) == 0) continue;
|
3885 |
|
|
|
3886 |
|
|
val = ia64_get_pmd(i);
|
3887 |
|
|
|
3888 |
|
|
if (PMD_IS_COUNTING(i)) {
|
3889 |
|
|
DBprintk(("[%d] pmd[%d] soft_pmd=0x%lx hw_pmd=0x%lx\n",
|
3890 |
|
|
task->pid,
|
3891 |
|
|
i,
|
3892 |
|
|
ctx->ctx_soft_pmds[i].val,
|
3893 |
|
|
val & pmu_conf.ovfl_val));
|
3894 |
|
|
|
3895 |
|
|
/* collect latest results */
|
3896 |
|
|
ctx->ctx_soft_pmds[i].val += val & pmu_conf.ovfl_val;
|
3897 |
|
|
|
3898 |
|
|
/*
|
3899 |
|
|
* now everything is in ctx_soft_pmds[] and we need
|
3900 |
|
|
* to clear the saved context from save_regs() such that
|
3901 |
|
|
* pfm_read_pmds() gets the correct value
|
3902 |
|
|
*/
|
3903 |
|
|
task->thread.pmd[i] = 0;
|
3904 |
|
|
|
3905 |
|
|
/*
|
3906 |
|
|
* take care of overflow inline
|
3907 |
|
|
*/
|
3908 |
|
|
if (pmc0 & (1UL << i)) {
|
3909 |
|
|
ctx->ctx_soft_pmds[i].val += 1 + pmu_conf.ovfl_val;
|
3910 |
|
|
DBprintk(("[%d] pmd[%d] overflowed soft_pmd=0x%lx\n",
|
3911 |
|
|
task->pid, i, ctx->ctx_soft_pmds[i].val));
|
3912 |
|
|
}
|
3913 |
|
|
} else {
|
3914 |
|
|
DBprintk(("[%d] pmd[%d] hw_pmd=0x%lx\n", task->pid, i, val));
|
3915 |
|
|
/*
|
3916 |
|
|
* not a counter, just save value as is
|
3917 |
|
|
*/
|
3918 |
|
|
task->thread.pmd[i] = val;
|
3919 |
|
|
}
|
3920 |
|
|
}
|
3921 |
|
|
SET_LAST_CPU(ctx, -1);
|
3922 |
|
|
}
|
3923 |
|
|
|
3924 |
|
|
|
3925 |
|
|
/*
|
3926 |
|
|
* task is the newly created task, pt_regs for new child
|
3927 |
|
|
*/
|
3928 |
|
|
int
|
3929 |
|
|
pfm_inherit(struct task_struct *task, struct pt_regs *regs)
|
3930 |
|
|
{
|
3931 |
|
|
pfm_context_t *ctx;
|
3932 |
|
|
pfm_context_t *nctx;
|
3933 |
|
|
struct thread_struct *thread;
|
3934 |
|
|
unsigned long m;
|
3935 |
|
|
int i;
|
3936 |
|
|
|
3937 |
|
|
/*
|
3938 |
|
|
* the new task was copied from parent and therefore points
|
3939 |
|
|
* to the parent's context at this point
|
3940 |
|
|
*/
|
3941 |
|
|
ctx = task->thread.pfm_context;
|
3942 |
|
|
thread = &task->thread;
|
3943 |
|
|
|
3944 |
|
|
/*
|
3945 |
|
|
* for secure sessions, make sure child cannot mess up
|
3946 |
|
|
* the monitoring session.
|
3947 |
|
|
*/
|
3948 |
|
|
if (ctx->ctx_fl_unsecure == 0) {
|
3949 |
|
|
ia64_psr(regs)->sp = 1;
|
3950 |
|
|
DBprintk(("enabling psr.sp for [%d]\n", task->pid));
|
3951 |
|
|
} else {
|
3952 |
|
|
DBprintk(("psr.sp=%d [%d]\n", ia64_psr(regs)->sp, task->pid));
|
3953 |
|
|
}
|
3954 |
|
|
|
3955 |
|
|
|
3956 |
|
|
/*
|
3957 |
|
|
* if there was a virtual mapping for the sampling buffer
|
3958 |
|
|
* the mapping is NOT inherited across fork() (see VM_DONTCOPY),
|
3959 |
|
|
* so we don't have to explicitely remove it here.
|
3960 |
|
|
*
|
3961 |
|
|
*
|
3962 |
|
|
* Part of the clearing of fields is also done in
|
3963 |
|
|
* copy_thread() because the fiels are outside the
|
3964 |
|
|
* pfm_context structure and can affect tasks not
|
3965 |
|
|
* using perfmon.
|
3966 |
|
|
*/
|
3967 |
|
|
|
3968 |
|
|
/* clear pending notification */
|
3969 |
|
|
task->thread.pfm_ovfl_block_reset = 0;
|
3970 |
|
|
|
3971 |
|
|
/*
|
3972 |
|
|
* clear cpu pinning restriction for child
|
3973 |
|
|
*/
|
3974 |
|
|
if (ctx->ctx_fl_system) {
|
3975 |
|
|
task->cpus_allowed = ctx->ctx_saved_cpus_allowed;
|
3976 |
|
|
task->need_resched = 1;
|
3977 |
|
|
|
3978 |
|
|
DBprintk(("setting cpus_allowed for [%d] to 0x%lx from 0x%lx\n",
|
3979 |
|
|
task->pid,
|
3980 |
|
|
ctx->ctx_saved_cpus_allowed,
|
3981 |
|
|
current->cpus_allowed));
|
3982 |
|
|
}
|
3983 |
|
|
|
3984 |
|
|
/*
|
3985 |
|
|
* takes care of easiest case first
|
3986 |
|
|
*/
|
3987 |
|
|
if (CTX_INHERIT_MODE(ctx) == PFM_FL_INHERIT_NONE) {
|
3988 |
|
|
|
3989 |
|
|
DBprintk(("removing PFM context for [%d]\n", task->pid));
|
3990 |
|
|
|
3991 |
|
|
task->thread.pfm_context = NULL;
|
3992 |
|
|
|
3993 |
|
|
/*
|
3994 |
|
|
* we must clear psr.up because the new child does
|
3995 |
|
|
* not have a context and the PM_VALID flag is cleared
|
3996 |
|
|
* in copy_thread().
|
3997 |
|
|
*
|
3998 |
|
|
* we do not clear psr.pp because it is always
|
3999 |
|
|
* controlled by the system wide logic and we should
|
4000 |
|
|
* never be here when system wide is running anyway
|
4001 |
|
|
*/
|
4002 |
|
|
ia64_psr(regs)->up = 0;
|
4003 |
|
|
|
4004 |
|
|
/* copy_thread() clears IA64_THREAD_PM_VALID */
|
4005 |
|
|
return 0;
|
4006 |
|
|
}
|
4007 |
|
|
nctx = pfm_context_alloc();
|
4008 |
|
|
if (nctx == NULL) return -ENOMEM;
|
4009 |
|
|
|
4010 |
|
|
/* copy content */
|
4011 |
|
|
*nctx = *ctx;
|
4012 |
|
|
|
4013 |
|
|
if (CTX_INHERIT_MODE(ctx) == PFM_FL_INHERIT_ONCE) {
|
4014 |
|
|
nctx->ctx_fl_inherit = PFM_FL_INHERIT_NONE;
|
4015 |
|
|
DBprintk(("downgrading to INHERIT_NONE for [%d]\n", task->pid));
|
4016 |
|
|
/*
|
4017 |
|
|
* downgrade parent: once means only first child!
|
4018 |
|
|
*/
|
4019 |
|
|
ctx->ctx_fl_inherit = PFM_FL_INHERIT_NONE;
|
4020 |
|
|
}
|
4021 |
|
|
/*
|
4022 |
|
|
* task is not yet visible in the tasklist, so we do
|
4023 |
|
|
* not need to lock the newly created context.
|
4024 |
|
|
* However, we must grab the tasklist_lock to ensure
|
4025 |
|
|
* that the ctx_owner or ctx_notify_task do not disappear
|
4026 |
|
|
* while we increment their check counters.
|
4027 |
|
|
*/
|
4028 |
|
|
read_lock(&tasklist_lock);
|
4029 |
|
|
|
4030 |
|
|
if (nctx->ctx_notify_task)
|
4031 |
|
|
atomic_inc(&nctx->ctx_notify_task->thread.pfm_notifiers_check);
|
4032 |
|
|
|
4033 |
|
|
if (nctx->ctx_owner)
|
4034 |
|
|
atomic_inc(&nctx->ctx_owner->thread.pfm_owners_check);
|
4035 |
|
|
|
4036 |
|
|
read_unlock(&tasklist_lock);
|
4037 |
|
|
|
4038 |
|
|
|
4039 |
|
|
LOCK_PFS();
|
4040 |
|
|
pfm_sessions.pfs_task_sessions++;
|
4041 |
|
|
UNLOCK_PFS();
|
4042 |
|
|
|
4043 |
|
|
/* initialize counters in new context */
|
4044 |
|
|
m = nctx->ctx_used_pmds[0] >> PMU_FIRST_COUNTER;
|
4045 |
|
|
for(i = PMU_FIRST_COUNTER ; m ; m>>=1, i++) {
|
4046 |
|
|
if ((m & 0x1) && pmu_conf.pmd_desc[i].type == PFM_REG_COUNTING) {
|
4047 |
|
|
nctx->ctx_soft_pmds[i].val = nctx->ctx_soft_pmds[i].lval & ~pmu_conf.ovfl_val;
|
4048 |
|
|
thread->pmd[i] = nctx->ctx_soft_pmds[i].lval & pmu_conf.ovfl_val;
|
4049 |
|
|
} else {
|
4050 |
|
|
thread->pmd[i] = 0UL; /* reset to initial state */
|
4051 |
|
|
}
|
4052 |
|
|
}
|
4053 |
|
|
|
4054 |
|
|
nctx->ctx_fl_frozen = 0;
|
4055 |
|
|
nctx->ctx_ovfl_regs[0] = 0UL;
|
4056 |
|
|
SET_LAST_CPU(nctx, -1);
|
4057 |
|
|
|
4058 |
|
|
/*
|
4059 |
|
|
* here nctx->ctx_psb == ctx->ctx_psb
|
4060 |
|
|
*
|
4061 |
|
|
* increment reference count to sampling
|
4062 |
|
|
* buffer, if any. Note that this is independent
|
4063 |
|
|
* from the virtual mapping. The latter is never
|
4064 |
|
|
* inherited while the former will be if context
|
4065 |
|
|
* is setup to something different from PFM_FL_INHERIT_NONE
|
4066 |
|
|
*/
|
4067 |
|
|
if (nctx->ctx_psb) {
|
4068 |
|
|
LOCK_PSB(nctx->ctx_psb);
|
4069 |
|
|
|
4070 |
|
|
nctx->ctx_psb->psb_refcnt++;
|
4071 |
|
|
|
4072 |
|
|
DBprintk(("updated smpl @ %p refcnt=%lu psb_flags=0x%x\n",
|
4073 |
|
|
ctx->ctx_psb->psb_hdr,
|
4074 |
|
|
ctx->ctx_psb->psb_refcnt,
|
4075 |
|
|
ctx->ctx_psb->psb_flags));
|
4076 |
|
|
|
4077 |
|
|
UNLOCK_PSB(nctx->ctx_psb);
|
4078 |
|
|
|
4079 |
|
|
/*
|
4080 |
|
|
* remove any pointer to sampling buffer mapping
|
4081 |
|
|
*/
|
4082 |
|
|
nctx->ctx_smpl_vaddr = 0;
|
4083 |
|
|
}
|
4084 |
|
|
|
4085 |
|
|
sema_init(&nctx->ctx_restart_sem, 0); /* reset this semaphore to locked */
|
4086 |
|
|
|
4087 |
|
|
/*
|
4088 |
|
|
* propagate kernel psr in new context (used for first ctxsw in
|
4089 |
|
|
*/
|
4090 |
|
|
nctx->ctx_saved_psr = pfm_get_psr();
|
4091 |
|
|
|
4092 |
|
|
/*
|
4093 |
|
|
* force a full reload on ctxsw in
|
4094 |
|
|
*/
|
4095 |
|
|
nctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
|
4096 |
|
|
SET_LAST_CPU(nctx, -1);
|
4097 |
|
|
|
4098 |
|
|
/*
|
4099 |
|
|
* initialize tasklet for signal notifications
|
4100 |
|
|
*
|
4101 |
|
|
* ALL signal-based (or any notification using data structures
|
4102 |
|
|
* external to perfmon) MUST use tasklets to avoid lock contentions
|
4103 |
|
|
* when a signal has to be sent for overflow interrupt handler.
|
4104 |
|
|
*/
|
4105 |
|
|
tasklet_init(&nctx->ctx_tasklet, pfm_send_notification_signal, (unsigned long)nctx);
|
4106 |
|
|
|
4107 |
|
|
/* link with new task */
|
4108 |
|
|
thread->pfm_context = nctx;
|
4109 |
|
|
|
4110 |
|
|
DBprintk(("nctx=%p for process [%d]\n", (void *)nctx, task->pid));
|
4111 |
|
|
|
4112 |
|
|
/*
|
4113 |
|
|
* the copy_thread routine automatically clears
|
4114 |
|
|
* IA64_THREAD_PM_VALID, so we need to reenable it, if it was used by the caller
|
4115 |
|
|
*/
|
4116 |
|
|
if (current->thread.flags & IA64_THREAD_PM_VALID) {
|
4117 |
|
|
DBprintk(("setting PM_VALID for [%d]\n", task->pid));
|
4118 |
|
|
thread->flags |= IA64_THREAD_PM_VALID;
|
4119 |
|
|
}
|
4120 |
|
|
return 0;
|
4121 |
|
|
}
|
4122 |
|
|
|
4123 |
|
|
/*
|
4124 |
|
|
*
|
4125 |
|
|
* We cannot touch any of the PMU registers at this point as we may
|
4126 |
|
|
* not be running on the same CPU the task was last run on. Therefore
|
4127 |
|
|
* it is assumed that the PMU has been stopped appropriately in
|
4128 |
|
|
* pfm_flush_regs() called from exit_thread().
|
4129 |
|
|
*
|
4130 |
|
|
* The function is called in the context of the parent via a release_thread()
|
4131 |
|
|
* and wait4(). The task is not in the tasklist anymore.
|
4132 |
|
|
*/
|
4133 |
|
|
void
|
4134 |
|
|
pfm_context_exit(struct task_struct *task)
|
4135 |
|
|
{
|
4136 |
|
|
pfm_context_t *ctx = task->thread.pfm_context;
|
4137 |
|
|
|
4138 |
|
|
/*
|
4139 |
|
|
* check sampling buffer
|
4140 |
|
|
*/
|
4141 |
|
|
if (ctx->ctx_psb) {
|
4142 |
|
|
pfm_smpl_buffer_desc_t *psb = ctx->ctx_psb;
|
4143 |
|
|
|
4144 |
|
|
LOCK_PSB(psb);
|
4145 |
|
|
|
4146 |
|
|
DBprintk(("sampling buffer from [%d] @%p size %ld refcnt=%lu psb_flags=0x%x\n",
|
4147 |
|
|
task->pid,
|
4148 |
|
|
psb->psb_hdr, psb->psb_size, psb->psb_refcnt, psb->psb_flags));
|
4149 |
|
|
|
4150 |
|
|
/*
|
4151 |
|
|
* in the case where we are the last user, we may be able to free
|
4152 |
|
|
* the buffer
|
4153 |
|
|
*/
|
4154 |
|
|
psb->psb_refcnt--;
|
4155 |
|
|
|
4156 |
|
|
if (psb->psb_refcnt == 0) {
|
4157 |
|
|
|
4158 |
|
|
/*
|
4159 |
|
|
* The flag is cleared in pfm_vm_close(). which gets
|
4160 |
|
|
* called from do_exit() via exit_mm().
|
4161 |
|
|
* By the time we come here, the task has no more mm context.
|
4162 |
|
|
*
|
4163 |
|
|
* We can only free the psb and buffer here after the vm area
|
4164 |
|
|
* describing the buffer has been removed. This normally happens
|
4165 |
|
|
* as part of do_exit() but the entire mm context is ONLY removed
|
4166 |
|
|
* once its reference counts goes to zero. This is typically
|
4167 |
|
|
* the case except for multi-threaded (several tasks) processes.
|
4168 |
|
|
*
|
4169 |
|
|
* See pfm_vm_close() and pfm_cleanup_smpl_buf() for more details.
|
4170 |
|
|
*/
|
4171 |
|
|
if ((psb->psb_flags & PSB_HAS_VMA) == 0) {
|
4172 |
|
|
|
4173 |
|
|
DBprintk(("cleaning sampling buffer from [%d] @%p size %ld\n",
|
4174 |
|
|
task->pid,
|
4175 |
|
|
psb->psb_hdr, psb->psb_size));
|
4176 |
|
|
|
4177 |
|
|
/*
|
4178 |
|
|
* free the buffer and psb
|
4179 |
|
|
*/
|
4180 |
|
|
pfm_rvfree(psb->psb_hdr, psb->psb_size);
|
4181 |
|
|
kfree(psb);
|
4182 |
|
|
psb = NULL;
|
4183 |
|
|
}
|
4184 |
|
|
}
|
4185 |
|
|
/* psb may have been deleted */
|
4186 |
|
|
if (psb) UNLOCK_PSB(psb);
|
4187 |
|
|
}
|
4188 |
|
|
|
4189 |
|
|
DBprintk(("cleaning [%d] pfm_context @%p notify_task=%p check=%d mm=%p\n",
|
4190 |
|
|
task->pid, ctx,
|
4191 |
|
|
ctx->ctx_notify_task,
|
4192 |
|
|
atomic_read(&task->thread.pfm_notifiers_check), task->mm));
|
4193 |
|
|
|
4194 |
|
|
/*
|
4195 |
|
|
* To avoid getting the notified task or owner task scan the entire process
|
4196 |
|
|
* list when they exit, we decrement notifiers_check and owners_check respectively.
|
4197 |
|
|
*
|
4198 |
|
|
* Of course, there is race condition between decreasing the value and the
|
4199 |
|
|
* task exiting. The danger comes from the fact that, in both cases, we have a
|
4200 |
|
|
* direct pointer to a task structure thereby bypassing the tasklist.
|
4201 |
|
|
* We must make sure that, if we have task!= NULL, the target task is still
|
4202 |
|
|
* present and is identical to the initial task specified
|
4203 |
|
|
* during pfm_context_create(). It may already be detached from the tasklist but
|
4204 |
|
|
* that's okay. Note that it is okay if we miss the deadline and the task scans
|
4205 |
|
|
* the list for nothing, it will affect performance but not correctness.
|
4206 |
|
|
* The correctness is ensured by using the ctx_lock which prevents the
|
4207 |
|
|
* notify_task from changing the fields in our context.
|
4208 |
|
|
* Once holdhing this lock, if we see task!= NULL, then it will stay like
|
4209 |
|
|
* that until we release the lock. If it is NULL already then we came too late.
|
4210 |
|
|
*/
|
4211 |
|
|
LOCK_CTX(ctx);
|
4212 |
|
|
|
4213 |
|
|
if (ctx->ctx_notify_task != NULL) {
|
4214 |
|
|
DBprintk(("[%d], [%d] atomic_sub on [%d] notifiers=%u\n", current->pid,
|
4215 |
|
|
task->pid,
|
4216 |
|
|
ctx->ctx_notify_task->pid,
|
4217 |
|
|
atomic_read(&ctx->ctx_notify_task->thread.pfm_notifiers_check)));
|
4218 |
|
|
|
4219 |
|
|
atomic_dec(&ctx->ctx_notify_task->thread.pfm_notifiers_check);
|
4220 |
|
|
}
|
4221 |
|
|
|
4222 |
|
|
if (ctx->ctx_owner != NULL) {
|
4223 |
|
|
DBprintk(("[%d], [%d] atomic_sub on [%d] owners=%u\n",
|
4224 |
|
|
current->pid,
|
4225 |
|
|
task->pid,
|
4226 |
|
|
ctx->ctx_owner->pid,
|
4227 |
|
|
atomic_read(&ctx->ctx_owner->thread.pfm_owners_check)));
|
4228 |
|
|
|
4229 |
|
|
atomic_dec(&ctx->ctx_owner->thread.pfm_owners_check);
|
4230 |
|
|
}
|
4231 |
|
|
|
4232 |
|
|
UNLOCK_CTX(ctx);
|
4233 |
|
|
|
4234 |
|
|
pfm_unreserve_session(task, ctx->ctx_fl_system, 1UL << ctx->ctx_cpu);
|
4235 |
|
|
|
4236 |
|
|
if (ctx->ctx_fl_system) {
|
4237 |
|
|
/*
|
4238 |
|
|
* remove any CPU pinning
|
4239 |
|
|
*/
|
4240 |
|
|
task->cpus_allowed = ctx->ctx_saved_cpus_allowed;
|
4241 |
|
|
task->need_resched = 1;
|
4242 |
|
|
}
|
4243 |
|
|
|
4244 |
|
|
pfm_context_free(ctx);
|
4245 |
|
|
/*
|
4246 |
|
|
* clean pfm state in thread structure,
|
4247 |
|
|
*/
|
4248 |
|
|
task->thread.pfm_context = NULL;
|
4249 |
|
|
task->thread.pfm_ovfl_block_reset = 0;
|
4250 |
|
|
|
4251 |
|
|
/* pfm_notifiers is cleaned in pfm_cleanup_notifiers() */
|
4252 |
|
|
}
|
4253 |
|
|
|
4254 |
|
|
/*
|
4255 |
|
|
* function invoked from release_thread when pfm_smpl_buf_list is not NULL
|
4256 |
|
|
*/
|
4257 |
|
|
int
|
4258 |
|
|
pfm_cleanup_smpl_buf(struct task_struct *task)
|
4259 |
|
|
{
|
4260 |
|
|
pfm_smpl_buffer_desc_t *tmp, *psb = task->thread.pfm_smpl_buf_list;
|
4261 |
|
|
|
4262 |
|
|
if (psb == NULL) {
|
4263 |
|
|
printk(KERN_DEBUG "perfmon: psb is null in [%d]\n", current->pid);
|
4264 |
|
|
return -1;
|
4265 |
|
|
}
|
4266 |
|
|
/*
|
4267 |
|
|
* Walk through the list and free the sampling buffer and psb
|
4268 |
|
|
*/
|
4269 |
|
|
while (psb) {
|
4270 |
|
|
DBprintk(("[%d] freeing smpl @%p size %ld\n", current->pid, psb->psb_hdr, psb->psb_size));
|
4271 |
|
|
|
4272 |
|
|
pfm_rvfree(psb->psb_hdr, psb->psb_size);
|
4273 |
|
|
tmp = psb->psb_next;
|
4274 |
|
|
kfree(psb);
|
4275 |
|
|
psb = tmp;
|
4276 |
|
|
}
|
4277 |
|
|
|
4278 |
|
|
/* just in case */
|
4279 |
|
|
task->thread.pfm_smpl_buf_list = NULL;
|
4280 |
|
|
|
4281 |
|
|
return 0;
|
4282 |
|
|
}
|
4283 |
|
|
|
4284 |
|
|
/*
|
4285 |
|
|
* function invoked from release_thread to make sure that the ctx_owner field does not
|
4286 |
|
|
* point to an unexisting task.
|
4287 |
|
|
*/
|
4288 |
|
|
void
|
4289 |
|
|
pfm_cleanup_owners(struct task_struct *task)
|
4290 |
|
|
{
|
4291 |
|
|
struct task_struct *p;
|
4292 |
|
|
pfm_context_t *ctx;
|
4293 |
|
|
|
4294 |
|
|
DBprintk(("called by [%d] for [%d]\n", current->pid, task->pid));
|
4295 |
|
|
|
4296 |
|
|
read_lock(&tasklist_lock);
|
4297 |
|
|
|
4298 |
|
|
for_each_task(p) {
|
4299 |
|
|
/*
|
4300 |
|
|
* It is safe to do the 2-step test here, because thread.ctx
|
4301 |
|
|
* is cleaned up only in release_thread() and at that point
|
4302 |
|
|
* the task has been detached from the tasklist which is an
|
4303 |
|
|
* operation which uses the write_lock() on the tasklist_lock
|
4304 |
|
|
* so it cannot run concurrently to this loop. So we have the
|
4305 |
|
|
* guarantee that if we find p and it has a perfmon ctx then
|
4306 |
|
|
* it is going to stay like this for the entire execution of this
|
4307 |
|
|
* loop.
|
4308 |
|
|
*/
|
4309 |
|
|
ctx = p->thread.pfm_context;
|
4310 |
|
|
|
4311 |
|
|
//DBprintk(("[%d] scanning task [%d] ctx=%p\n", task->pid, p->pid, ctx));
|
4312 |
|
|
|
4313 |
|
|
if (ctx && ctx->ctx_owner == task) {
|
4314 |
|
|
DBprintk(("trying for owner [%d] in [%d]\n", task->pid, p->pid));
|
4315 |
|
|
/*
|
4316 |
|
|
* the spinlock is required to take care of a race condition
|
4317 |
|
|
* with the send_sig_info() call. We must make sure that
|
4318 |
|
|
* either the send_sig_info() completes using a valid task,
|
4319 |
|
|
* or the notify_task is cleared before the send_sig_info()
|
4320 |
|
|
* can pick up a stale value. Note that by the time this
|
4321 |
|
|
* function is executed the 'task' is already detached from the
|
4322 |
|
|
* tasklist. The problem is that the notifiers have a direct
|
4323 |
|
|
* pointer to it. It is okay to send a signal to a task in this
|
4324 |
|
|
* stage, it simply will have no effect. But it is better than sending
|
4325 |
|
|
* to a completely destroyed task or worse to a new task using the same
|
4326 |
|
|
* task_struct address.
|
4327 |
|
|
*/
|
4328 |
|
|
LOCK_CTX(ctx);
|
4329 |
|
|
|
4330 |
|
|
ctx->ctx_owner = NULL;
|
4331 |
|
|
|
4332 |
|
|
UNLOCK_CTX(ctx);
|
4333 |
|
|
|
4334 |
|
|
DBprintk(("done for notifier [%d] in [%d]\n", task->pid, p->pid));
|
4335 |
|
|
}
|
4336 |
|
|
}
|
4337 |
|
|
read_unlock(&tasklist_lock);
|
4338 |
|
|
|
4339 |
|
|
atomic_set(&task->thread.pfm_owners_check, 0);
|
4340 |
|
|
}
|
4341 |
|
|
|
4342 |
|
|
|
4343 |
|
|
/*
|
4344 |
|
|
* function called from release_thread to make sure that the ctx_notify_task is not pointing
|
4345 |
|
|
* to an unexisting task
|
4346 |
|
|
*/
|
4347 |
|
|
void
|
4348 |
|
|
pfm_cleanup_notifiers(struct task_struct *task)
|
4349 |
|
|
{
|
4350 |
|
|
struct task_struct *p;
|
4351 |
|
|
pfm_context_t *ctx;
|
4352 |
|
|
|
4353 |
|
|
DBprintk(("called by [%d] for [%d]\n", current->pid, task->pid));
|
4354 |
|
|
|
4355 |
|
|
read_lock(&tasklist_lock);
|
4356 |
|
|
|
4357 |
|
|
for_each_task(p) {
|
4358 |
|
|
/*
|
4359 |
|
|
* It is safe to do the 2-step test here, because thread.ctx
|
4360 |
|
|
* is cleaned up only in release_thread() and at that point
|
4361 |
|
|
* the task has been detached from the tasklist which is an
|
4362 |
|
|
* operation which uses the write_lock() on the tasklist_lock
|
4363 |
|
|
* so it cannot run concurrently to this loop. So we have the
|
4364 |
|
|
* guarantee that if we find p and it has a perfmon ctx then
|
4365 |
|
|
* it is going to stay like this for the entire execution of this
|
4366 |
|
|
* loop.
|
4367 |
|
|
*/
|
4368 |
|
|
ctx = p->thread.pfm_context;
|
4369 |
|
|
|
4370 |
|
|
//DBprintk(("[%d] scanning task [%d] ctx=%p\n", task->pid, p->pid, ctx));
|
4371 |
|
|
|
4372 |
|
|
if (ctx && ctx->ctx_notify_task == task) {
|
4373 |
|
|
DBprintk(("trying for notifier [%d] in [%d]\n", task->pid, p->pid));
|
4374 |
|
|
/*
|
4375 |
|
|
* the spinlock is required to take care of a race condition
|
4376 |
|
|
* with the send_sig_info() call. We must make sure that
|
4377 |
|
|
* either the send_sig_info() completes using a valid task,
|
4378 |
|
|
* or the notify_task is cleared before the send_sig_info()
|
4379 |
|
|
* can pick up a stale value. Note that by the time this
|
4380 |
|
|
* function is executed the 'task' is already detached from the
|
4381 |
|
|
* tasklist. The problem is that the notifiers have a direct
|
4382 |
|
|
* pointer to it. It is okay to send a signal to a task in this
|
4383 |
|
|
* stage, it simply will have no effect. But it is better than sending
|
4384 |
|
|
* to a completely destroyed task or worse to a new task using the same
|
4385 |
|
|
* task_struct address.
|
4386 |
|
|
*/
|
4387 |
|
|
LOCK_CTX(ctx);
|
4388 |
|
|
|
4389 |
|
|
ctx->ctx_notify_task = NULL;
|
4390 |
|
|
|
4391 |
|
|
UNLOCK_CTX(ctx);
|
4392 |
|
|
|
4393 |
|
|
DBprintk(("done for notifier [%d] in [%d]\n", task->pid, p->pid));
|
4394 |
|
|
}
|
4395 |
|
|
}
|
4396 |
|
|
read_unlock(&tasklist_lock);
|
4397 |
|
|
|
4398 |
|
|
atomic_set(&task->thread.pfm_notifiers_check, 0);
|
4399 |
|
|
}
|
4400 |
|
|
|
4401 |
|
|
static struct irqaction perfmon_irqaction = {
|
4402 |
|
|
.handler = pfm_interrupt_handler,
|
4403 |
|
|
.flags = SA_INTERRUPT,
|
4404 |
|
|
.name = "perfmon"
|
4405 |
|
|
};
|
4406 |
|
|
|
4407 |
|
|
int
|
4408 |
|
|
pfm_install_alternate_syswide_subsystem(pfm_intr_handler_desc_t *hdl)
|
4409 |
|
|
{
|
4410 |
|
|
int ret;
|
4411 |
|
|
|
4412 |
|
|
/* some sanity checks */
|
4413 |
|
|
if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
|
4414 |
|
|
|
4415 |
|
|
/* do the easy test first */
|
4416 |
|
|
if (pfm_alternate_intr_handler) return -EBUSY;
|
4417 |
|
|
|
4418 |
|
|
/* reserve our session */
|
4419 |
|
|
ret = pfm_reserve_session(NULL, 1, cpu_online_map);
|
4420 |
|
|
if (ret) return ret;
|
4421 |
|
|
|
4422 |
|
|
if (pfm_alternate_intr_handler) {
|
4423 |
|
|
printk(KERN_DEBUG "perfmon: install_alternate, intr_handler not NULL "
|
4424 |
|
|
"after reserve\n");
|
4425 |
|
|
return -EINVAL;
|
4426 |
|
|
}
|
4427 |
|
|
|
4428 |
|
|
pfm_alternate_intr_handler = hdl;
|
4429 |
|
|
|
4430 |
|
|
return 0;
|
4431 |
|
|
}
|
4432 |
|
|
|
4433 |
|
|
int
|
4434 |
|
|
pfm_remove_alternate_syswide_subsystem(pfm_intr_handler_desc_t *hdl)
|
4435 |
|
|
{
|
4436 |
|
|
if (hdl == NULL) return -EINVAL;
|
4437 |
|
|
|
4438 |
|
|
/* cannot remove someone else's handler! */
|
4439 |
|
|
if (pfm_alternate_intr_handler != hdl) return -EINVAL;
|
4440 |
|
|
|
4441 |
|
|
pfm_alternate_intr_handler = NULL;
|
4442 |
|
|
|
4443 |
|
|
/*
|
4444 |
|
|
* XXX: assume cpu_online_map has not changed since reservation
|
4445 |
|
|
*/
|
4446 |
|
|
pfm_unreserve_session(NULL, 1, cpu_online_map);
|
4447 |
|
|
|
4448 |
|
|
return 0;
|
4449 |
|
|
}
|
4450 |
|
|
|
4451 |
|
|
/*
|
4452 |
|
|
* perfmon initialization routine, called from the initcall() table
|
4453 |
|
|
*/
|
4454 |
|
|
int __init
|
4455 |
|
|
pfm_init(void)
|
4456 |
|
|
{
|
4457 |
|
|
unsigned int n, n_counters, i;
|
4458 |
|
|
|
4459 |
|
|
pmu_conf.disabled = 1;
|
4460 |
|
|
|
4461 |
|
|
printk(KERN_INFO "perfmon: version %u.%u IRQ %u\n", PFM_VERSION_MAJ, PFM_VERSION_MIN,
|
4462 |
|
|
IA64_PERFMON_VECTOR);
|
4463 |
|
|
|
4464 |
|
|
/*
|
4465 |
|
|
* compute the number of implemented PMD/PMC from the
|
4466 |
|
|
* description tables
|
4467 |
|
|
*/
|
4468 |
|
|
n = 0;
|
4469 |
|
|
for (i=0; PMC_IS_LAST(i) == 0; i++) {
|
4470 |
|
|
if (PMC_IS_IMPL(i) == 0) continue;
|
4471 |
|
|
pmu_conf.impl_pmcs[i>>6] |= 1UL << (i&63);
|
4472 |
|
|
n++;
|
4473 |
|
|
}
|
4474 |
|
|
pmu_conf.num_pmcs = n;
|
4475 |
|
|
|
4476 |
|
|
n = 0; n_counters = 0;
|
4477 |
|
|
for (i=0; PMD_IS_LAST(i) == 0; i++) {
|
4478 |
|
|
if (PMD_IS_IMPL(i) == 0) continue;
|
4479 |
|
|
pmu_conf.impl_pmds[i>>6] |= 1UL << (i&63);
|
4480 |
|
|
n++;
|
4481 |
|
|
if (PMD_IS_COUNTING(i)) n_counters++;
|
4482 |
|
|
}
|
4483 |
|
|
pmu_conf.num_pmds = n;
|
4484 |
|
|
pmu_conf.num_counters = n_counters;
|
4485 |
|
|
|
4486 |
|
|
printk(KERN_INFO "perfmon: %u PMCs, %u PMDs, %u counters (%lu bits)\n",
|
4487 |
|
|
pmu_conf.num_pmcs,
|
4488 |
|
|
pmu_conf.num_pmds,
|
4489 |
|
|
pmu_conf.num_counters,
|
4490 |
|
|
ffz(pmu_conf.ovfl_val));
|
4491 |
|
|
|
4492 |
|
|
/* sanity check */
|
4493 |
|
|
if (pmu_conf.num_pmds >= IA64_NUM_PMD_REGS || pmu_conf.num_pmcs >= IA64_NUM_PMC_REGS) {
|
4494 |
|
|
printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
|
4495 |
|
|
return -1;
|
4496 |
|
|
}
|
4497 |
|
|
|
4498 |
|
|
/*
|
4499 |
|
|
* for now here for debug purposes
|
4500 |
|
|
*/
|
4501 |
|
|
perfmon_dir = create_proc_read_entry ("perfmon", 0, 0, perfmon_read_entry, NULL);
|
4502 |
|
|
if (perfmon_dir == NULL) {
|
4503 |
|
|
printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
|
4504 |
|
|
return -1;
|
4505 |
|
|
}
|
4506 |
|
|
|
4507 |
|
|
/*
|
4508 |
|
|
* create /proc/sys/kernel/perfmon
|
4509 |
|
|
*/
|
4510 |
|
|
pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
|
4511 |
|
|
|
4512 |
|
|
/*
|
4513 |
|
|
* initialize all our spinlocks
|
4514 |
|
|
*/
|
4515 |
|
|
spin_lock_init(&pfm_sessions.pfs_lock);
|
4516 |
|
|
|
4517 |
|
|
/* we are all set */
|
4518 |
|
|
pmu_conf.disabled = 0;
|
4519 |
|
|
|
4520 |
|
|
return 0;
|
4521 |
|
|
}
|
4522 |
|
|
|
4523 |
|
|
__initcall(pfm_init);
|
4524 |
|
|
|
4525 |
|
|
void
|
4526 |
|
|
pfm_init_percpu(void)
|
4527 |
|
|
{
|
4528 |
|
|
int i;
|
4529 |
|
|
|
4530 |
|
|
if (smp_processor_id() == 0)
|
4531 |
|
|
register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
|
4532 |
|
|
|
4533 |
|
|
ia64_set_pmv(IA64_PERFMON_VECTOR);
|
4534 |
|
|
ia64_srlz_d();
|
4535 |
|
|
|
4536 |
|
|
/*
|
4537 |
|
|
* we first initialize the PMU to a stable state.
|
4538 |
|
|
* the values may have been changed from their power-up
|
4539 |
|
|
* values by software executed before the kernel took over.
|
4540 |
|
|
*
|
4541 |
|
|
* At this point, pmu_conf has not yet been initialized
|
4542 |
|
|
*
|
4543 |
|
|
* On McKinley, this code is ineffective until PMC4 is initialized.
|
4544 |
|
|
*/
|
4545 |
|
|
for (i=1; PMC_IS_LAST(i) == 0; i++) {
|
4546 |
|
|
if (PMC_IS_IMPL(i) == 0) continue;
|
4547 |
|
|
ia64_set_pmc(i, PMC_DFL_VAL(i));
|
4548 |
|
|
}
|
4549 |
|
|
|
4550 |
|
|
for (i=0; PMD_IS_LAST(i); i++) {
|
4551 |
|
|
if (PMD_IS_IMPL(i) == 0) continue;
|
4552 |
|
|
ia64_set_pmd(i, 0UL);
|
4553 |
|
|
}
|
4554 |
|
|
pfm_freeze_pmu();
|
4555 |
|
|
}
|
4556 |
|
|
|
4557 |
|
|
#else /* !CONFIG_PERFMON */
|
4558 |
|
|
|
4559 |
|
|
asmlinkage long
|
4560 |
|
|
sys_perfmonctl (int pid, int cmd, void *req, int count, long arg5, long arg6,
|
4561 |
|
|
long arg7, long arg8, long stack)
|
4562 |
|
|
{
|
4563 |
|
|
return -ENOSYS;
|
4564 |
|
|
}
|
4565 |
|
|
|
4566 |
|
|
#endif /* !CONFIG_PERFMON */
|