OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [kernel/] [time.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * linux/arch/ia64/kernel/time.c
3
 *
4
 * Copyright (C) 1998-2001 Hewlett-Packard Co
5
 * Copyright (C) 1998-2000 Stephane Eranian <eranian@hpl.hp.com>
6
 * Copyright (C) 1999-2001 David Mosberger <davidm@hpl.hp.com>
7
 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8
 * Copyright (C) 1999-2000 VA Linux Systems
9
 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10
 */
11
#include <linux/config.h>
12
 
13
#include <linux/init.h>
14
#include <linux/kernel.h>
15
#include <linux/sched.h>
16
#include <linux/time.h>
17
#include <linux/interrupt.h>
18
#include <linux/efi.h>
19
 
20
#include <asm/delay.h>
21
#include <asm/hw_irq.h>
22
#include <asm/ptrace.h>
23
#include <asm/sal.h>
24
#include <asm/system.h>
25
 
26
extern rwlock_t xtime_lock;
27
extern unsigned long wall_jiffies;
28
extern unsigned long last_time_offset;
29
 
30
#ifdef CONFIG_IA64_DEBUG_IRQ
31
 
32
unsigned long last_cli_ip;
33
 
34
#endif
35
 
36
static void
37
do_profile (unsigned long ip)
38
{
39
        extern unsigned long prof_cpu_mask;
40
        extern char _stext;
41
 
42
        if (!prof_buffer)
43
                return;
44
 
45
        if (!((1UL << smp_processor_id()) & prof_cpu_mask))
46
                return;
47
 
48
        ip -= (unsigned long) &_stext;
49
        ip >>= prof_shift;
50
        /*
51
         * Don't ignore out-of-bounds IP values silently, put them into the last
52
         * histogram slot, so if present, they will show up as a sharp peak.
53
         */
54
        if (ip > prof_len - 1)
55
                ip = prof_len - 1;
56
 
57
        atomic_inc((atomic_t *) &prof_buffer[ip]);
58
}
59
 
60
/*
61
 * Return the number of micro-seconds that elapsed since the last update to jiffy.  The
62
 * xtime_lock must be at least read-locked when calling this routine.
63
 */
64
static inline unsigned long
65
gettimeoffset (void)
66
{
67
        unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
68
        unsigned long now, last_tick;
69
#       define time_keeper_id   0        /* smp_processor_id() of time-keeper */
70
 
71
        last_tick = (cpu_data(time_keeper_id)->itm_next
72
                     - (lost + 1)*cpu_data(time_keeper_id)->itm_delta);
73
 
74
        now = ia64_get_itc();
75
        if ((long) (now - last_tick) < 0) {
76
                printk(KERN_ERR "CPU %d: now < last_tick (now=0x%lx,last_tick=0x%lx)!\n",
77
                       smp_processor_id(), now, last_tick);
78
                return last_time_offset;
79
        }
80
        elapsed_cycles = now - last_tick;
81
        return (elapsed_cycles*local_cpu_data->usec_per_cyc) >> IA64_USEC_PER_CYC_SHIFT;
82
}
83
 
84
void
85
do_settimeofday (struct timeval *tv)
86
{
87
        write_lock_irq(&xtime_lock);
88
        {
89
                /*
90
                 * This is revolting. We need to set "xtime" correctly. However, the value
91
                 * in this location is the value at the most recent update of wall time.
92
                 * Discover what correction gettimeofday would have done, and then undo
93
                 * it!
94
                 */
95
                tv->tv_usec -= gettimeoffset();
96
 
97
                while (tv->tv_usec < 0) {
98
                        tv->tv_usec += 1000000;
99
                        tv->tv_sec--;
100
                }
101
 
102
                xtime = *tv;
103
                time_adjust = 0;         /* stop active adjtime() */
104
                time_status |= STA_UNSYNC;
105
                time_maxerror = NTP_PHASE_LIMIT;
106
                time_esterror = NTP_PHASE_LIMIT;
107
        }
108
        write_unlock_irq(&xtime_lock);
109
}
110
 
111
void
112
do_gettimeofday (struct timeval *tv)
113
{
114
        unsigned long flags, usec, sec, old;
115
 
116
        read_lock_irqsave(&xtime_lock, flags);
117
        {
118
                usec = gettimeoffset();
119
 
120
                /*
121
                 * Ensure time never goes backwards, even when ITC on different CPUs are
122
                 * not perfectly synchronized.
123
                 */
124
                do {
125
                        old = last_time_offset;
126
                        if (usec <= old) {
127
                                usec = old;
128
                                break;
129
                        }
130
                } while (cmpxchg(&last_time_offset, old, usec) != old);
131
 
132
                sec = xtime.tv_sec;
133
                usec += xtime.tv_usec;
134
        }
135
        read_unlock_irqrestore(&xtime_lock, flags);
136
 
137
        while (usec >= 1000000) {
138
                usec -= 1000000;
139
                ++sec;
140
        }
141
 
142
        tv->tv_sec = sec;
143
        tv->tv_usec = usec;
144
}
145
 
146
static void
147
timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
148
{
149
        unsigned long new_itm;
150
 
151
        new_itm = local_cpu_data->itm_next;
152
 
153
        if (!time_after(ia64_get_itc(), new_itm))
154
                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
155
                       ia64_get_itc(), new_itm);
156
 
157
        while (1) {
158
                /*
159
                 * Do kernel PC profiling here.  We multiply the instruction number by
160
                 * four so that we can use a prof_shift of 2 to get instruction-level
161
                 * instead of just bundle-level accuracy.
162
                 */
163
                if (!user_mode(regs))
164
                        do_profile(regs->cr_iip + 4*ia64_psr(regs)->ri);
165
 
166
#ifdef CONFIG_SMP
167
                smp_do_timer(regs);
168
#endif
169
                new_itm += local_cpu_data->itm_delta;
170
 
171
                if (smp_processor_id() == 0) {
172
                        /*
173
                         * Here we are in the timer irq handler. We have irqs locally
174
                         * disabled, but we don't know if the timer_bh is running on
175
                         * another CPU. We need to avoid to SMP race by acquiring the
176
                         * xtime_lock.
177
                         */
178
                        write_lock(&xtime_lock);
179
                        do_timer(regs);
180
                        local_cpu_data->itm_next = new_itm;
181
                        write_unlock(&xtime_lock);
182
                } else
183
                        local_cpu_data->itm_next = new_itm;
184
 
185
                if (time_after(new_itm, ia64_get_itc()))
186
                        break;
187
        }
188
 
189
        do {
190
            /*
191
             * If we're too close to the next clock tick for comfort, we increase the
192
             * saftey margin by intentionally dropping the next tick(s).  We do NOT update
193
             * itm.next because that would force us to call do_timer() which in turn would
194
             * let our clock run too fast (with the potentially devastating effect of
195
             * losing monotony of time).
196
             */
197
            while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
198
              new_itm += local_cpu_data->itm_delta;
199
            ia64_set_itm(new_itm);
200
            /* double check, in case we got hit by a (slow) PMI: */
201
        } while (time_after_eq(ia64_get_itc(), new_itm));
202
}
203
 
204
/*
205
 * Encapsulate access to the itm structure for SMP.
206
 */
207
void __init
208
ia64_cpu_local_tick (void)
209
{
210
        int cpu = smp_processor_id();
211
        unsigned long shift = 0, delta;
212
 
213
        /* arrange for the cycle counter to generate a timer interrupt: */
214
        ia64_set_itv(IA64_TIMER_VECTOR);
215
 
216
        delta = local_cpu_data->itm_delta;
217
        /*
218
         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
219
         * same time:
220
         */
221
        if (cpu) {
222
                unsigned long hi = 1UL << ia64_fls(cpu);
223
                shift = (2*(cpu - hi) + 1) * delta/hi/2;
224
        }
225
        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
226
        ia64_set_itm(local_cpu_data->itm_next);
227
}
228
 
229
void __init
230
ia64_init_itm (void)
231
{
232
        unsigned long platform_base_freq, itc_freq, drift;
233
        struct pal_freq_ratio itc_ratio, proc_ratio;
234
        long status;
235
 
236
        /*
237
         * According to SAL v2.6, we need to use a SAL call to determine the platform base
238
         * frequency and then a PAL call to determine the frequency ratio between the ITC
239
         * and the base frequency.
240
         */
241
        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &drift);
242
        if (status != 0) {
243
                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
244
        } else {
245
                status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
246
                if (status != 0)
247
                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
248
        }
249
        if (status != 0) {
250
                /* invent "random" values */
251
                printk(KERN_ERR
252
                       "SAL/PAL failed to obtain frequency info---inventing reasonably values\n");
253
                platform_base_freq = 100000000;
254
                itc_ratio.num = 3;
255
                itc_ratio.den = 1;
256
        }
257
        if (platform_base_freq < 40000000) {
258
                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
259
                       platform_base_freq);
260
                platform_base_freq = 75000000;
261
        }
262
        if (!proc_ratio.den)
263
                proc_ratio.den = 1;     /* avoid division by zero */
264
        if (!itc_ratio.den)
265
                itc_ratio.den = 1;      /* avoid division by zero */
266
 
267
        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
268
        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
269
        printk(KERN_INFO "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
270
               "ITC freq=%lu.%03luMHz\n", smp_processor_id(),
271
               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
272
               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
273
 
274
        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
275
        local_cpu_data->itc_freq = itc_freq;
276
        local_cpu_data->cyc_per_usec = (itc_freq + 500000) / 1000000;
277
        local_cpu_data->usec_per_cyc = ((1000000UL<<IA64_USEC_PER_CYC_SHIFT)
278
                                        + itc_freq/2)/itc_freq;
279
 
280
        /* Setup the CPU local timer tick */
281
        ia64_cpu_local_tick();
282
}
283
 
284
static struct irqaction timer_irqaction = {
285
        .handler =      timer_interrupt,
286
        .flags =        SA_INTERRUPT,
287
        .name =         "timer"
288
};
289
 
290
void __init
291
time_init (void)
292
{
293
        register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
294
        efi_gettimeofday((struct timeval *) &xtime);
295
        ia64_init_itm();
296
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.