OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [mm/] [init.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * Initialize MMU support.
3
 *
4
 * Copyright (C) 1998-2002 Hewlett-Packard Co
5
 *      David Mosberger-Tang <davidm@hpl.hp.com>
6
 */
7
#include <linux/config.h>
8
#include <linux/module.h>
9
#include <linux/kernel.h>
10
#include <linux/init.h>
11
 
12
#include <linux/bootmem.h>
13
#include <linux/mm.h>
14
#include <linux/personality.h>
15
#include <linux/reboot.h>
16
#include <linux/slab.h>
17
#include <linux/swap.h>
18
#include <linux/efi.h>
19
#include <linux/mmzone.h>
20
 
21
#include <asm/bitops.h>
22
#include <asm/dma.h>
23
#include <asm/ia32.h>
24
#include <asm/io.h>
25
#include <asm/machvec.h>
26
#include <asm/numa.h>
27
#include <asm/pgalloc.h>
28
#include <asm/sal.h>
29
#include <asm/system.h>
30
#include <asm/uaccess.h>
31
#include <asm/mca.h>
32
 
33
/* References to section boundaries: */
34
extern char _stext, _etext, _edata, __init_begin, __init_end;
35
 
36
extern void ia64_tlb_init (void);
37
extern int  filter_rsvd_memory (unsigned long, unsigned long, void *);
38
 
39
/* Note - may be changed by platform_setup */
40
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
41
#define LARGE_GAP 0x40000000 /* Use virtual mem map if a hole is > than this */
42
 
43
static unsigned long totalram_pages, reserved_pages;
44
struct page *zero_page_memmap_ptr;              /* map entry for zero page */
45
 
46
unsigned long vmalloc_end = VMALLOC_END_INIT;
47
 
48
static struct page *vmem_map;
49
static unsigned long num_dma_physpages;
50
 
51
int
52
do_check_pgt_cache (int low, int high)
53
{
54
        int freed = 0;
55
 
56
        if (pgtable_cache_size > high) {
57
                do {
58
                        if (pgd_quicklist)
59
                                free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed;
60
                        if (pmd_quicklist)
61
                                free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed;
62
                        if (pte_quicklist)
63
                                free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed;
64
                } while (pgtable_cache_size > low);
65
        }
66
        return freed;
67
}
68
 
69
inline void
70
ia64_set_rbs_bot (void)
71
{
72
        unsigned long stack_size = current->rlim[RLIMIT_STACK].rlim_max & -16;
73
 
74
        if (stack_size > MAX_USER_STACK_SIZE)
75
                stack_size = MAX_USER_STACK_SIZE;
76
        current->thread.rbs_bot = STACK_TOP - stack_size;
77
}
78
 
79
/*
80
 * This performs some platform-dependent address space initialization.
81
 * On IA-64, we want to setup the VM area for the register backing
82
 * store (which grows upwards) and install the gateway page which is
83
 * used for signal trampolines, etc.
84
 */
85
void
86
ia64_init_addr_space (void)
87
{
88
        struct vm_area_struct *vma;
89
 
90
        ia64_set_rbs_bot();
91
 
92
        /*
93
         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
94
         * the problem.  When the process attempts to write to the register backing store
95
         * for the first time, it will get a SEGFAULT in this case.
96
         */
97
        vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
98
        if (vma) {
99
                vma->vm_mm = current->mm;
100
                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
101
                vma->vm_end = vma->vm_start + PAGE_SIZE;
102
                vma->vm_page_prot = PAGE_COPY;
103
                vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP;
104
                vma->vm_ops = NULL;
105
                vma->vm_pgoff = 0;
106
                vma->vm_file = NULL;
107
                vma->vm_private_data = NULL;
108
                insert_vm_struct(current->mm, vma);
109
        }
110
 
111
        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
112
        if (!(current->personality & MMAP_PAGE_ZERO)) {
113
                vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
114
                if (vma) {
115
                        memset(vma, 0, sizeof(*vma));
116
                        vma->vm_mm = current->mm;
117
                        vma->vm_end = PAGE_SIZE;
118
                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
119
                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
120
                        insert_vm_struct(current->mm, vma);
121
                }
122
        }
123
}
124
 
125
void
126
free_initmem (void)
127
{
128
        unsigned long addr, eaddr;
129
 
130
        addr = (unsigned long) ia64_imva(&__init_begin);
131
        eaddr = (unsigned long) ia64_imva(&__init_end);
132
        for (; addr < eaddr; addr += PAGE_SIZE) {
133
                clear_bit(PG_reserved, &virt_to_page((void *)addr)->flags);
134
                set_page_count(virt_to_page((void *)addr), 1);
135
                free_page(addr);
136
                ++totalram_pages;
137
        }
138
        printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
139
                (&__init_end - &__init_begin) >> 10);
140
}
141
 
142
void
143
free_initrd_mem(unsigned long start, unsigned long end)
144
{
145
        /*
146
         * EFI uses 4KB pages while the kernel can use 4KB  or bigger.
147
         * Thus EFI and the kernel may have different page sizes. It is
148
         * therefore possible to have the initrd share the same page as
149
         * the end of the kernel (given current setup).
150
         *
151
         * To avoid freeing/using the wrong page (kernel sized) we:
152
         *      - align up the beginning of initrd
153
         *      - align down the end of initrd
154
         *
155
         *  |             |
156
         *  |=============| a000
157
         *  |             |
158
         *  |             |
159
         *  |             | 9000
160
         *  |/////////////|
161
         *  |/////////////|
162
         *  |=============| 8000
163
         *  |///INITRD////|
164
         *  |/////////////|
165
         *  |/////////////| 7000
166
         *  |             |
167
         *  |KKKKKKKKKKKKK|
168
         *  |=============| 6000
169
         *  |KKKKKKKKKKKKK|
170
         *  |KKKKKKKKKKKKK|
171
         *  K=kernel using 8KB pages
172
         *
173
         * In this example, we must free page 8000 ONLY. So we must align up
174
         * initrd_start and keep initrd_end as is.
175
         */
176
        start = PAGE_ALIGN(start);
177
        end = end & PAGE_MASK;
178
 
179
        if (start < end)
180
                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
181
 
182
        for (; start < end; start += PAGE_SIZE) {
183
                if (!VALID_PAGE(virt_to_page((void *)start)))
184
                        continue;
185
                clear_bit(PG_reserved, &virt_to_page((void *)start)->flags);
186
                set_page_count(virt_to_page((void *)start), 1);
187
                free_page(start);
188
                ++totalram_pages;
189
        }
190
}
191
 
192
void
193
si_meminfo (struct sysinfo *val)
194
{
195
        val->totalram = totalram_pages;
196
        val->sharedram = 0;
197
        val->freeram = nr_free_pages();
198
        val->bufferram = atomic_read(&buffermem_pages);
199
        val->totalhigh = 0;
200
        val->freehigh = 0;
201
        val->mem_unit = PAGE_SIZE;
202
        return;
203
}
204
 
205
void
206
show_mem(void)
207
{
208
        int i, reserved;
209
        int shared, cached;
210
        pg_data_t *pgdat;
211
        char *tchar = (numnodes > 1) ? "\t" : "";
212
 
213
        printk("Mem-info:\n");
214
        show_free_areas();
215
 
216
        printk("Free swap:       %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
217
        for_each_pgdat(pgdat) {
218
                reserved=0;
219
                cached=0;
220
                shared=0;
221
                if (numnodes > 1)
222
                        printk("Node ID: %d\n", pgdat->node_id);
223
                for(i = 0; i < pgdat->node_size; i++) {
224
                        if (!VALID_PAGE(pgdat->node_mem_map+i))
225
                                continue;
226
                        if (PageReserved(pgdat->node_mem_map+i))
227
                                reserved++;
228
                        else if (PageSwapCache(pgdat->node_mem_map+i))
229
                                cached++;
230
                        else if (page_count(pgdat->node_mem_map + i))
231
                                shared += page_count(pgdat->node_mem_map + i) - 1;
232
                }
233
                printk("%s%ld pages of RAM\n", tchar, pgdat->node_size);
234
                printk("%s%d reserved pages\n", tchar, reserved);
235
                printk("%s%d pages shared\n", tchar, shared);
236
                printk("%s%d pages swap cached\n", tchar, cached);
237
        }
238
        printk("Total of %ld pages in page table cache\n", pgtable_cache_size);
239
        show_buffers();
240
        printk("%d free buffer pages\n", nr_free_buffer_pages());
241
}
242
 
243
/*
244
 * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection
245
 * (execute-only, typically).
246
 */
247
struct page *
248
put_gate_page (struct page *page, unsigned long address)
249
{
250
        pgd_t *pgd;
251
        pmd_t *pmd;
252
        pte_t *pte;
253
 
254
        if (!PageReserved(page))
255
                printk(KERN_ERR "put_gate_page: gate page at 0x%p not in reserved memory\n",
256
                       page_address(page));
257
 
258
        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
259
 
260
        spin_lock(&init_mm.page_table_lock);
261
        {
262
                pmd = pmd_alloc(&init_mm, pgd, address);
263
                if (!pmd)
264
                        goto out;
265
                pte = pte_alloc(&init_mm, pmd, address);
266
                if (!pte)
267
                        goto out;
268
                if (!pte_none(*pte)) {
269
                        pte_ERROR(*pte);
270
                        goto out;
271
                }
272
                flush_page_to_ram(page);
273
                set_pte(pte, mk_pte(page, PAGE_GATE));
274
        }
275
  out:  spin_unlock(&init_mm.page_table_lock);
276
        /* no need for flush_tlb */
277
        return page;
278
}
279
 
280
void __init
281
ia64_mmu_init (void *my_cpu_data)
282
{
283
        unsigned long psr, rid, pta, impl_va_bits;
284
        extern void __init tlb_init (void);
285
#ifdef CONFIG_IA64_MCA
286
        int cpu;
287
#endif
288
 
289
#ifdef CONFIG_DISABLE_VHPT
290
#       define VHPT_ENABLE_BIT  0
291
#else
292
#       define VHPT_ENABLE_BIT  1
293
#endif
294
 
295
        /*
296
         * Set up the kernel identity mapping for regions 6 and 5.  The mapping for region
297
         * 7 is setup up in _start().
298
         */
299
        psr = ia64_clear_ic();
300
 
301
        rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET);
302
        ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (IA64_GRANULE_SHIFT << 2));
303
 
304
        rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START);
305
        ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1);
306
 
307
        /* ensure rr6 is up-to-date before inserting the PERCPU_ADDR translation: */
308
        ia64_srlz_d();
309
 
310
        ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
311
                 pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)), PAGE_SHIFT);
312
 
313
        ia64_set_psr(psr);
314
        ia64_srlz_i();
315
 
316
        /*
317
         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318
         * address space.  The IA-64 architecture guarantees that at least 50 bits of
319
         * virtual address space are implemented but if we pick a large enough page size
320
         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321
         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
322
         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323
         * problem in practice.  Alternatively, we could truncate the top of the mapped
324
         * address space to not permit mappings that would overlap with the VMLPT.
325
         * --davidm 00/12/06
326
         */
327
#       define pte_bits                 3
328
#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
329
        /*
330
         * The virtual page table has to cover the entire implemented address space within
331
         * a region even though not all of this space may be mappable.  The reason for
332
         * this is that the Access bit and Dirty bit fault handlers perform
333
         * non-speculative accesses to the virtual page table, so the address range of the
334
         * virtual page table itself needs to be covered by virtual page table.
335
         */
336
#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
337
#       define POW2(n)                  (1ULL << (n))
338
 
339
        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
340
 
341
        if (impl_va_bits < 51 || impl_va_bits > 61)
342
                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
343
 
344
        /* place the VMLPT at the end of each page-table mapped region: */
345
        pta = POW2(61) - POW2(vmlpt_bits);
346
 
347
        if (POW2(mapped_space_bits) >= pta)
348
                panic("mm/init: overlap between virtually mapped linear page table and "
349
                      "mapped kernel space!");
350
        /*
351
         * Set the (virtually mapped linear) page table address.  Bit
352
         * 8 selects between the short and long format, bits 2-7 the
353
         * size of the table, and bit 0 whether the VHPT walker is
354
         * enabled.
355
         */
356
        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
357
 
358
        ia64_tlb_init();
359
 
360
#ifdef  CONFIG_IA64_MCA
361
        cpu = smp_processor_id();
362
 
363
        /* mca handler uses cr.lid as key to pick the right entry */
364
        ia64_mca_tlb_list[cpu].cr_lid = ia64_get_lid();
365
 
366
        /* insert this percpu data information into our list for MCA recovery purposes */
367
        ia64_mca_tlb_list[cpu].percpu_paddr = pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL));
368
        /* Also save per-cpu tlb flush recipe for use in physical mode mca handler */
369
        ia64_mca_tlb_list[cpu].ptce_base = local_cpu_data->ptce_base;
370
        ia64_mca_tlb_list[cpu].ptce_count[0] = local_cpu_data->ptce_count[0];
371
        ia64_mca_tlb_list[cpu].ptce_count[1] = local_cpu_data->ptce_count[1];
372
        ia64_mca_tlb_list[cpu].ptce_stride[0] = local_cpu_data->ptce_stride[0];
373
        ia64_mca_tlb_list[cpu].ptce_stride[1] = local_cpu_data->ptce_stride[1];
374
#endif
375
}
376
 
377
static int
378
create_mem_map_page_table (u64 start, u64 end, void *arg)
379
{
380
        unsigned long address, start_page, end_page, next_blk_page;
381
        unsigned long blk_start;
382
        struct page *map_start, *map_end;
383
        int node=0;
384
        pgd_t *pgd;
385
        pmd_t *pmd;
386
        pte_t *pte;
387
 
388
        /* should we use platform_map_nr here? */
389
 
390
        map_start = vmem_map + MAP_NR_DENSE(start);
391
        map_end   = vmem_map + MAP_NR_DENSE(end);
392
 
393
        start_page = (unsigned long) map_start & PAGE_MASK;
394
        end_page = PAGE_ALIGN((unsigned long) map_end);
395
 
396
        /* force the first iteration to get node id */
397
        blk_start = start;
398
        next_blk_page = 0;
399
 
400
        for (address = start_page; address < end_page; address += PAGE_SIZE) {
401
 
402
                /* if we went across a node boundary, get new nid */
403
                if (address >= next_blk_page) {
404
                        struct page *map_next_blk;
405
 
406
                        node = paddr_to_nid(__pa(blk_start));
407
 
408
                        /* get end addr of this memblk as next blk_start */
409
                        blk_start = (unsigned long) __va(min(end, memblk_endpaddr(__pa(blk_start))));
410
                        map_next_blk = vmem_map + MAP_NR_DENSE(blk_start);
411
                        next_blk_page = PAGE_ALIGN((unsigned long) map_next_blk);
412
                }
413
 
414
                pgd = pgd_offset_k(address);
415
                if (pgd_none(*pgd))
416
                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
417
                pmd = pmd_offset(pgd, address);
418
 
419
                if (pmd_none(*pmd))
420
                        pmd_populate(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
421
                pte = pte_offset(pmd, address);
422
 
423
                if (pte_none(*pte))
424
                        set_pte(pte, mk_pte_phys(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)),
425
                                                 PAGE_KERNEL));
426
        }
427
        return 0;
428
}
429
 
430
struct memmap_init_callback_data {
431
        memmap_init_callback_t *memmap_init;
432
        struct page *start;
433
        struct page *end;
434
        int zone;
435
        int highmem;
436
};
437
 
438
struct memmap_count_callback_data {
439
        int node;
440
        unsigned long num_physpages;
441
        unsigned long num_dma_physpages;
442
        unsigned long min_pfn;
443
        unsigned long max_pfn;
444
} cdata;
445
 
446
static int
447
virtual_memmap_init (u64 start, u64 end, void *arg)
448
{
449
        struct memmap_init_callback_data *args;
450
        struct page *map_start, *map_end;
451
 
452
        args = (struct memmap_init_callback_data *) arg;
453
 
454
        /* Should we use platform_map_nr here? */
455
 
456
        map_start = mem_map + MAP_NR_DENSE(start);
457
        map_end   = mem_map + MAP_NR_DENSE(end);
458
 
459
        if (map_start < args->start)
460
                map_start = args->start;
461
        if (map_end > args->end)
462
                map_end = args->end;
463
 
464
        /*
465
         * We have to initialize "out of bounds" struct page elements
466
         * that fit completely on the same pages that were allocated
467
         * for the "in bounds" elements because they may be referenced
468
         * later (and found to be "reserved").
469
         */
470
        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
471
                        / sizeof(struct page);
472
        map_end += ((PAGE_ALIGN((unsigned long) map_end) -
473
                                (unsigned long) map_end)
474
                        / sizeof(struct page));
475
 
476
        if (map_start < map_end)
477
                (*args->memmap_init)(map_start, map_end, args->zone,
478
                                     page_to_phys(map_start), args->highmem);
479
 
480
        return 0;
481
}
482
 
483
unsigned long
484
arch_memmap_init (memmap_init_callback_t *memmap_init, struct page *start,
485
        struct page *end, int zone, unsigned long start_paddr, int highmem)
486
{
487
        if (!vmem_map)
488
                memmap_init(start,end,zone,page_to_phys(start),highmem);
489
        else {
490
                struct memmap_init_callback_data args;
491
 
492
                args.memmap_init = memmap_init;
493
                args.start = start;
494
                args.end = end;
495
                args.zone = zone;
496
                args.highmem = highmem;
497
 
498
                efi_memmap_walk(virtual_memmap_init, &args);
499
        }
500
 
501
        return page_to_phys(end-1) + PAGE_SIZE;;
502
}
503
 
504
int
505
ia64_page_valid (struct page *page)
506
{
507
        char byte;
508
 
509
        return     (__get_user(byte, (char *) page) == 0)
510
                && (__get_user(byte, (char *) (page + 1) - 1) == 0);
511
}
512
 
513
#define GRANULEROUNDDOWN(n) ((n) & ~(IA64_GRANULE_SIZE-1))
514
#define GRANULEROUNDUP(n) (((n)+IA64_GRANULE_SIZE-1) & ~(IA64_GRANULE_SIZE-1))
515
#define ORDERROUNDDOWN(n) ((n) & ~((PAGE_SIZE<<MAX_ORDER)-1))
516
static int
517
count_pages (u64 start, u64 end, int node)
518
{
519
        start = __pa(start);
520
        end = __pa(end);
521
        if (node == cdata.node) {
522
                cdata.num_physpages += (end - start) >> PAGE_SHIFT;
523
                if (start <= __pa(MAX_DMA_ADDRESS))
524
                        cdata.num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >> PAGE_SHIFT;
525
                start = GRANULEROUNDDOWN(__pa(start));
526
                start = ORDERROUNDDOWN(start);
527
                end = GRANULEROUNDUP(__pa(end));
528
                cdata.max_pfn = max(cdata.max_pfn, end >> PAGE_SHIFT);
529
                cdata.min_pfn = min(cdata.min_pfn, start >> PAGE_SHIFT);
530
        }
531
        return 0;
532
}
533
 
534
static int
535
find_largest_hole(u64 start, u64 end, void *arg)
536
{
537
        u64 *max_gap = arg;
538
        static u64 last_end = PAGE_OFFSET;
539
 
540
        /* NOTE: this algorithm assumes efi memmap table is ordered */
541
 
542
        if (*max_gap < (start - last_end))
543
                *max_gap = start - last_end;
544
        last_end = end;
545
        return 0;
546
}
547
 
548
/*
549
 * Set up the page tables.
550
 */
551
void
552
paging_init (void)
553
{
554
        unsigned long max_dma;
555
        unsigned long zones_size[MAX_NR_ZONES];
556
        unsigned long zholes_size[MAX_NR_ZONES];
557
        unsigned long max_gap;
558
        int node;
559
 
560
        /* initialize mem_map[] */
561
 
562
        max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
563
        max_gap = 0;
564
        efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
565
 
566
        for (node=0; node < numnodes; node++) {
567
                memset(zones_size, 0, sizeof(zones_size));
568
                memset(zholes_size, 0, sizeof(zholes_size));
569
                memset(&cdata, 0, sizeof(cdata));
570
 
571
                cdata.node = node;
572
                cdata.min_pfn = ~0;
573
 
574
                efi_memmap_walk(filter_rsvd_memory, count_pages);
575
                num_dma_physpages += cdata.num_dma_physpages;
576
                num_physpages += cdata.num_physpages;
577
 
578
                if (cdata.min_pfn >= max_dma) {
579
                        zones_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn;
580
                        zholes_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn - cdata.num_physpages;
581
                } else if (cdata.max_pfn < max_dma) {
582
                        zones_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn;
583
                        zholes_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn - cdata.num_dma_physpages;
584
                } else {
585
                        zones_size[ZONE_DMA] = max_dma - cdata.min_pfn;
586
                        zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - cdata.num_dma_physpages;
587
                        zones_size[ZONE_NORMAL] = cdata.max_pfn - max_dma;
588
                        zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (cdata.num_physpages - cdata.num_dma_physpages);
589
                }
590
 
591
                if (numnodes == 1 && max_gap < LARGE_GAP) {
592
                        vmem_map = (struct page *)0;
593
                        zones_size[ZONE_DMA] += cdata.min_pfn;
594
                        zholes_size[ZONE_DMA] += cdata.min_pfn;
595
                        free_area_init_core(0, NODE_DATA(node), &mem_map, zones_size, 0, zholes_size, NULL);
596
                } else {
597
 
598
                        /* allocate virtual mem_map */
599
 
600
                        if (node == 0) {
601
                                unsigned long map_size;
602
                                map_size = PAGE_ALIGN(max_low_pfn*sizeof(struct page));
603
                                vmalloc_end -= map_size;
604
                                mem_map = vmem_map = (struct page *) vmalloc_end;
605
                                efi_memmap_walk(create_mem_map_page_table, 0);
606
                                printk(KERN_INFO "Virtual mem_map starts at 0x%p\n", mem_map);
607
                        }
608
 
609
                        free_area_init_node(node, NODE_DATA(node), vmem_map+cdata.min_pfn, zones_size,
610
                                cdata.min_pfn<<PAGE_SHIFT, zholes_size);
611
                }
612
        }
613
 
614
        zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
615
}
616
 
617
static int
618
count_reserved_pages (u64 start, u64 end, void *arg)
619
{
620
        unsigned long num_reserved = 0;
621
        struct page *pg;
622
 
623
        for (pg = virt_to_page((void *)start); pg < virt_to_page((void *)end); ++pg)
624
                if (PageReserved(pg))
625
                        ++num_reserved;
626
        reserved_pages += num_reserved;
627
        return 0;
628
}
629
 
630
void
631
mem_init (void)
632
{
633
        extern char __start_gate_section[];
634
        long codesize, datasize, initsize;
635
        unsigned long num_pgt_pages;
636
        pg_data_t *pgdat;
637
 
638
 
639
#ifdef CONFIG_PCI
640
        /*
641
         * This needs to be called _after_ the command line has been parsed but _before_
642
         * any drivers that may need the PCI DMA interface are initialized or bootmem has
643
         * been freed.
644
         */
645
        platform_pci_dma_init();
646
#endif
647
 
648
        if (!mem_map)
649
                BUG();
650
 
651
        max_mapnr = max_low_pfn;
652
        high_memory = __va(max_low_pfn * PAGE_SIZE);
653
 
654
        for_each_pgdat(pgdat)
655
                totalram_pages += free_all_bootmem_node(pgdat);
656
 
657
        reserved_pages = 0;
658
        efi_memmap_walk(filter_rsvd_memory, count_reserved_pages);
659
 
660
        codesize =  (unsigned long) &_etext - (unsigned long) &_stext;
661
        datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
662
        initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
663
 
664
        printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n",
665
               (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
666
               num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
667
               reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
668
 
669
        /*
670
         * Allow for enough (cached) page table pages so that we can map the entire memory
671
         * at least once.  Each task also needs a couple of page tables pages, so add in a
672
         * fudge factor for that (don't use "threads-max" here; that would be wrong!).
673
         * Don't allow the cache to be more than 10% of total memory, though.
674
         */
675
#       define NUM_TASKS        500     /* typical number of tasks */
676
        num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS;
677
        if (num_pgt_pages > nr_free_pages() / 10)
678
                num_pgt_pages = nr_free_pages() / 10;
679
        if (num_pgt_pages > pgt_cache_water[1])
680
                pgt_cache_water[1] = num_pgt_pages;
681
 
682
        /* install the gate page in the global page table: */
683
        put_gate_page(virt_to_page(ia64_imva(__start_gate_section)), GATE_ADDR);
684
 
685
#ifdef CONFIG_IA32_SUPPORT
686
        ia32_gdt_init();
687
#endif
688
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.