OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [m68k/] [fpsp040/] [decbin.S] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
|
2
|       decbin.sa 3.3 12/19/90
3
|
4
|       Description: Converts normalized packed bcd value pointed to by
5
|       register A6 to extended-precision value in FP0.
6
|
7
|       Input: Normalized packed bcd value in ETEMP(a6).
8
|
9
|       Output: Exact floating-point representation of the packed bcd value.
10
|
11
|       Saves and Modifies: D2-D5
12
|
13
|       Speed: The program decbin takes ??? cycles to execute.
14
|
15
|       Object Size:
16
|
17
|       External Reference(s): None.
18
|
19
|       Algorithm:
20
|       Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
21
|       and NaN operands are dispatched without entering this routine)
22
|       value in 68881/882 format at location ETEMP(A6).
23
|
24
|       A1.     Convert the bcd exponent to binary by successive adds and muls.
25
|       Set the sign according to SE. Subtract 16 to compensate
26
|       for the mantissa which is to be interpreted as 17 integer
27
|       digits, rather than 1 integer and 16 fraction digits.
28
|       Note: this operation can never overflow.
29
|
30
|       A2. Convert the bcd mantissa to binary by successive
31
|       adds and muls in FP0. Set the sign according to SM.
32
|       The mantissa digits will be converted with the decimal point
33
|       assumed following the least-significant digit.
34
|       Note: this operation can never overflow.
35
|
36
|       A3. Count the number of leading/trailing zeros in the
37
|       bcd string.  If SE is positive, count the leading zeros;
38
|       if negative, count the trailing zeros.  Set the adjusted
39
|       exponent equal to the exponent from A1 and the zero count
40
|       added if SM = 1 and subtracted if SM = 0.  Scale the
41
|       mantissa the equivalent of forcing in the bcd value:
42
|
43
|       SM = 0  a non-zero digit in the integer position
44
|       SM = 1  a non-zero digit in Mant0, lsd of the fraction
45
|
46
|       this will insure that any value, regardless of its
47
|       representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
48
|       consistently.
49
|
50
|       A4. Calculate the factor 10^exp in FP1 using a table of
51
|       10^(2^n) values.  To reduce the error in forming factors
52
|       greater than 10^27, a directed rounding scheme is used with
53
|       tables rounded to RN, RM, and RP, according to the table
54
|       in the comments of the pwrten section.
55
|
56
|       A5. Form the final binary number by scaling the mantissa by
57
|       the exponent factor.  This is done by multiplying the
58
|       mantissa in FP0 by the factor in FP1 if the adjusted
59
|       exponent sign is positive, and dividing FP0 by FP1 if
60
|       it is negative.
61
|
62
|       Clean up and return.  Check if the final mul or div resulted
63
|       in an inex2 exception.  If so, set inex1 in the fpsr and
64
|       check if the inex1 exception is enabled.  If so, set d7 upper
65
|       word to $0100.  This will signal unimp.sa that an enabled inex1
66
|       exception occurred.  Unimp will fix the stack.
67
|
68
 
69
|               Copyright (C) Motorola, Inc. 1990
70
|                       All Rights Reserved
71
|
72
|       THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
73
|       The copyright notice above does not evidence any
74
|       actual or intended publication of such source code.
75
 
76
|DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
77
 
78
        |section        8
79
 
80
        .include "fpsp.h"
81
 
82
|
83
|       PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
84
|       to nearest, minus, and plus, respectively.  The tables include
85
|       10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
86
|       is required until the power is greater than 27, however, all
87
|       tables include the first 5 for ease of indexing.
88
|
89
        |xref   PTENRN
90
        |xref   PTENRM
91
        |xref   PTENRP
92
 
93
RTABLE: .byte   0,0,0,0
94
        .byte   2,3,2,3
95
        .byte   2,3,3,2
96
        .byte   3,2,2,3
97
 
98
        .global decbin
99
        .global calc_e
100
        .global pwrten
101
        .global calc_m
102
        .global norm
103
        .global ap_st_z
104
        .global ap_st_n
105
|
106
        .set    FNIBS,7
107
        .set    FSTRT,0
108
|
109
        .set    ESTRT,4
110
        .set    EDIGITS,2       |
111
|
112
| Constants in single precision
113
FZERO:  .long   0x00000000
114
FONE:   .long   0x3F800000
115
FTEN:   .long   0x41200000
116
 
117
        .set    TEN,10
118
 
119
|
120
decbin:
121
        | fmovel        #0,FPCR         ;clr real fpcr
122
        moveml  %d2-%d5,-(%a7)
123
|
124
| Calculate exponent:
125
|  1. Copy bcd value in memory for use as a working copy.
126
|  2. Calculate absolute value of exponent in d1 by mul and add.
127
|  3. Correct for exponent sign.
128
|  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
129
|     (i.e., all digits assumed left of the decimal point.)
130
|
131
| Register usage:
132
|
133
|  calc_e:
134
|       (*)  d0: temp digit storage
135
|       (*)  d1: accumulator for binary exponent
136
|       (*)  d2: digit count
137
|       (*)  d3: offset pointer
138
|       ( )  d4: first word of bcd
139
|       ( )  a0: pointer to working bcd value
140
|       ( )  a6: pointer to original bcd value
141
|       (*)  FP_SCR1: working copy of original bcd value
142
|       (*)  L_SCR1: copy of original exponent word
143
|
144
calc_e:
145
        movel   #EDIGITS,%d2    |# of nibbles (digits) in fraction part
146
        moveql  #ESTRT,%d3      |counter to pick up digits
147
        leal    FP_SCR1(%a6),%a0        |load tmp bcd storage address
148
        movel   ETEMP(%a6),(%a0)        |save input bcd value
149
        movel   ETEMP_HI(%a6),4(%a0) |save words 2 and 3
150
        movel   ETEMP_LO(%a6),8(%a0) |and work with these
151
        movel   (%a0),%d4       |get first word of bcd
152
        clrl    %d1             |zero d1 for accumulator
153
e_gd:
154
        mulul   #TEN,%d1        |mul partial product by one digit place
155
        bfextu  %d4{%d3:#4},%d0 |get the digit and zero extend into d0
156
        addl    %d0,%d1         |d1 = d1 + d0
157
        addqb   #4,%d3          |advance d3 to the next digit
158
        dbf     %d2,e_gd        |if we have used all 3 digits, exit loop
159
        btst    #30,%d4         |get SE
160
        beqs    e_pos           |don't negate if pos
161
        negl    %d1             |negate before subtracting
162
e_pos:
163
        subl    #16,%d1         |sub to compensate for shift of mant
164
        bges    e_save          |if still pos, do not neg
165
        negl    %d1             |now negative, make pos and set SE
166
        orl     #0x40000000,%d4 |set SE in d4,
167
        orl     #0x40000000,(%a0)       |and in working bcd
168
e_save:
169
        movel   %d1,L_SCR1(%a6) |save exp in memory
170
|
171
|
172
| Calculate mantissa:
173
|  1. Calculate absolute value of mantissa in fp0 by mul and add.
174
|  2. Correct for mantissa sign.
175
|     (i.e., all digits assumed left of the decimal point.)
176
|
177
| Register usage:
178
|
179
|  calc_m:
180
|       (*)  d0: temp digit storage
181
|       (*)  d1: lword counter
182
|       (*)  d2: digit count
183
|       (*)  d3: offset pointer
184
|       ( )  d4: words 2 and 3 of bcd
185
|       ( )  a0: pointer to working bcd value
186
|       ( )  a6: pointer to original bcd value
187
|       (*) fp0: mantissa accumulator
188
|       ( )  FP_SCR1: working copy of original bcd value
189
|       ( )  L_SCR1: copy of original exponent word
190
|
191
calc_m:
192
        moveql  #1,%d1          |word counter, init to 1
193
        fmoves  FZERO,%fp0      |accumulator
194
|
195
|
196
|  Since the packed number has a long word between the first & second parts,
197
|  get the integer digit then skip down & get the rest of the
198
|  mantissa.  We will unroll the loop once.
199
|
200
        bfextu  (%a0){#28:#4},%d0       |integer part is ls digit in long word
201
        faddb   %d0,%fp0                |add digit to sum in fp0
202
|
203
|
204
|  Get the rest of the mantissa.
205
|
206
loadlw:
207
        movel   (%a0,%d1.L*4),%d4       |load mantissa longword into d4
208
        moveql  #FSTRT,%d3      |counter to pick up digits
209
        moveql  #FNIBS,%d2      |reset number of digits per a0 ptr
210
md2b:
211
        fmuls   FTEN,%fp0       |fp0 = fp0 * 10
212
        bfextu  %d4{%d3:#4},%d0 |get the digit and zero extend
213
        faddb   %d0,%fp0        |fp0 = fp0 + digit
214
|
215
|
216
|  If all the digits (8) in that long word have been converted (d2=0),
217
|  then inc d1 (=2) to point to the next long word and reset d3 to 0
218
|  to initialize the digit offset, and set d2 to 7 for the digit count;
219
|  else continue with this long word.
220
|
221
        addqb   #4,%d3          |advance d3 to the next digit
222
        dbf     %d2,md2b                |check for last digit in this lw
223
nextlw:
224
        addql   #1,%d1          |inc lw pointer in mantissa
225
        cmpl    #2,%d1          |test for last lw
226
        ble     loadlw          |if not, get last one
227
 
228
|
229
|  Check the sign of the mant and make the value in fp0 the same sign.
230
|
231
m_sign:
232
        btst    #31,(%a0)       |test sign of the mantissa
233
        beq     ap_st_z         |if clear, go to append/strip zeros
234
        fnegx   %fp0            |if set, negate fp0
235
 
236
|
237
| Append/strip zeros:
238
|
239
|  For adjusted exponents which have an absolute value greater than 27*,
240
|  this routine calculates the amount needed to normalize the mantissa
241
|  for the adjusted exponent.  That number is subtracted from the exp
242
|  if the exp was positive, and added if it was negative.  The purpose
243
|  of this is to reduce the value of the exponent and the possibility
244
|  of error in calculation of pwrten.
245
|
246
|  1. Branch on the sign of the adjusted exponent.
247
|  2p.(positive exp)
248
|   2. Check M16 and the digits in lwords 2 and 3 in descending order.
249
|   3. Add one for each zero encountered until a non-zero digit.
250
|   4. Subtract the count from the exp.
251
|   5. Check if the exp has crossed zero in #3 above; make the exp abs
252
|          and set SE.
253
|       6. Multiply the mantissa by 10**count.
254
|  2n.(negative exp)
255
|   2. Check the digits in lwords 3 and 2 in descending order.
256
|   3. Add one for each zero encountered until a non-zero digit.
257
|   4. Add the count to the exp.
258
|   5. Check if the exp has crossed zero in #3 above; clear SE.
259
|   6. Divide the mantissa by 10**count.
260
|
261
|  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
262
|   any adjustment due to append/strip zeros will drive the resultant
263
|   exponent towards zero.  Since all pwrten constants with a power
264
|   of 27 or less are exact, there is no need to use this routine to
265
|   attempt to lessen the resultant exponent.
266
|
267
| Register usage:
268
|
269
|  ap_st_z:
270
|       (*)  d0: temp digit storage
271
|       (*)  d1: zero count
272
|       (*)  d2: digit count
273
|       (*)  d3: offset pointer
274
|       ( )  d4: first word of bcd
275
|       (*)  d5: lword counter
276
|       ( )  a0: pointer to working bcd value
277
|       ( )  FP_SCR1: working copy of original bcd value
278
|       ( )  L_SCR1: copy of original exponent word
279
|
280
|
281
| First check the absolute value of the exponent to see if this
282
| routine is necessary.  If so, then check the sign of the exponent
283
| and do append (+) or strip (-) zeros accordingly.
284
| This section handles a positive adjusted exponent.
285
|
286
ap_st_z:
287
        movel   L_SCR1(%a6),%d1 |load expA for range test
288
        cmpl    #27,%d1         |test is with 27
289
        ble     pwrten          |if abs(expA) <28, skip ap/st zeros
290
        btst    #30,(%a0)       |check sign of exp
291
        bne     ap_st_n         |if neg, go to neg side
292
        clrl    %d1             |zero count reg
293
        movel   (%a0),%d4               |load lword 1 to d4
294
        bfextu  %d4{#28:#4},%d0 |get M16 in d0
295
        bnes    ap_p_fx         |if M16 is non-zero, go fix exp
296
        addql   #1,%d1          |inc zero count
297
        moveql  #1,%d5          |init lword counter
298
        movel   (%a0,%d5.L*4),%d4       |get lword 2 to d4
299
        bnes    ap_p_cl         |if lw 2 is zero, skip it
300
        addql   #8,%d1          |and inc count by 8
301
        addql   #1,%d5          |inc lword counter
302
        movel   (%a0,%d5.L*4),%d4       |get lword 3 to d4
303
ap_p_cl:
304
        clrl    %d3             |init offset reg
305
        moveql  #7,%d2          |init digit counter
306
ap_p_gd:
307
        bfextu  %d4{%d3:#4},%d0 |get digit
308
        bnes    ap_p_fx         |if non-zero, go to fix exp
309
        addql   #4,%d3          |point to next digit
310
        addql   #1,%d1          |inc digit counter
311
        dbf     %d2,ap_p_gd     |get next digit
312
ap_p_fx:
313
        movel   %d1,%d0         |copy counter to d2
314
        movel   L_SCR1(%a6),%d1 |get adjusted exp from memory
315
        subl    %d0,%d1         |subtract count from exp
316
        bges    ap_p_fm         |if still pos, go to pwrten
317
        negl    %d1             |now its neg; get abs
318
        movel   (%a0),%d4               |load lword 1 to d4
319
        orl     #0x40000000,%d4 | and set SE in d4
320
        orl     #0x40000000,(%a0)       | and in memory
321
|
322
| Calculate the mantissa multiplier to compensate for the striping of
323
| zeros from the mantissa.
324
|
325
ap_p_fm:
326
        movel   #PTENRN,%a1     |get address of power-of-ten table
327
        clrl    %d3             |init table index
328
        fmoves  FONE,%fp1       |init fp1 to 1
329
        moveql  #3,%d2          |init d2 to count bits in counter
330
ap_p_el:
331
        asrl    #1,%d0          |shift lsb into carry
332
        bccs    ap_p_en         |if 1, mul fp1 by pwrten factor
333
        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
334
ap_p_en:
335
        addl    #12,%d3         |inc d3 to next rtable entry
336
        tstl    %d0             |check if d0 is zero
337
        bnes    ap_p_el         |if not, get next bit
338
        fmulx   %fp1,%fp0               |mul mantissa by 10**(no_bits_shifted)
339
        bra     pwrten          |go calc pwrten
340
|
341
| This section handles a negative adjusted exponent.
342
|
343
ap_st_n:
344
        clrl    %d1             |clr counter
345
        moveql  #2,%d5          |set up d5 to point to lword 3
346
        movel   (%a0,%d5.L*4),%d4       |get lword 3
347
        bnes    ap_n_cl         |if not zero, check digits
348
        subl    #1,%d5          |dec d5 to point to lword 2
349
        addql   #8,%d1          |inc counter by 8
350
        movel   (%a0,%d5.L*4),%d4       |get lword 2
351
ap_n_cl:
352
        movel   #28,%d3         |point to last digit
353
        moveql  #7,%d2          |init digit counter
354
ap_n_gd:
355
        bfextu  %d4{%d3:#4},%d0 |get digit
356
        bnes    ap_n_fx         |if non-zero, go to exp fix
357
        subql   #4,%d3          |point to previous digit
358
        addql   #1,%d1          |inc digit counter
359
        dbf     %d2,ap_n_gd     |get next digit
360
ap_n_fx:
361
        movel   %d1,%d0         |copy counter to d0
362
        movel   L_SCR1(%a6),%d1 |get adjusted exp from memory
363
        subl    %d0,%d1         |subtract count from exp
364
        bgts    ap_n_fm         |if still pos, go fix mantissa
365
        negl    %d1             |take abs of exp and clr SE
366
        movel   (%a0),%d4               |load lword 1 to d4
367
        andl    #0xbfffffff,%d4 | and clr SE in d4
368
        andl    #0xbfffffff,(%a0)       | and in memory
369
|
370
| Calculate the mantissa multiplier to compensate for the appending of
371
| zeros to the mantissa.
372
|
373
ap_n_fm:
374
        movel   #PTENRN,%a1     |get address of power-of-ten table
375
        clrl    %d3             |init table index
376
        fmoves  FONE,%fp1       |init fp1 to 1
377
        moveql  #3,%d2          |init d2 to count bits in counter
378
ap_n_el:
379
        asrl    #1,%d0          |shift lsb into carry
380
        bccs    ap_n_en         |if 1, mul fp1 by pwrten factor
381
        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
382
ap_n_en:
383
        addl    #12,%d3         |inc d3 to next rtable entry
384
        tstl    %d0             |check if d0 is zero
385
        bnes    ap_n_el         |if not, get next bit
386
        fdivx   %fp1,%fp0               |div mantissa by 10**(no_bits_shifted)
387
|
388
|
389
| Calculate power-of-ten factor from adjusted and shifted exponent.
390
|
391
| Register usage:
392
|
393
|  pwrten:
394
|       (*)  d0: temp
395
|       ( )  d1: exponent
396
|       (*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
397
|       (*)  d3: FPCR work copy
398
|       ( )  d4: first word of bcd
399
|       (*)  a1: RTABLE pointer
400
|  calc_p:
401
|       (*)  d0: temp
402
|       ( )  d1: exponent
403
|       (*)  d3: PWRTxx table index
404
|       ( )  a0: pointer to working copy of bcd
405
|       (*)  a1: PWRTxx pointer
406
|       (*) fp1: power-of-ten accumulator
407
|
408
| Pwrten calculates the exponent factor in the selected rounding mode
409
| according to the following table:
410
|
411
|       Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
412
|
413
|       ANY       ANY   RN      RN
414
|
415
|        +         +    RP      RP
416
|        -         +    RP      RM
417
|        +         -    RP      RM
418
|        -         -    RP      RP
419
|
420
|        +         +    RM      RM
421
|        -         +    RM      RP
422
|        +         -    RM      RP
423
|        -         -    RM      RM
424
|
425
|        +         +    RZ      RM
426
|        -         +    RZ      RM
427
|        +         -    RZ      RP
428
|        -         -    RZ      RP
429
|
430
|
431
pwrten:
432
        movel   USER_FPCR(%a6),%d3 |get user's FPCR
433
        bfextu  %d3{#26:#2},%d2 |isolate rounding mode bits
434
        movel   (%a0),%d4               |reload 1st bcd word to d4
435
        asll    #2,%d2          |format d2 to be
436
        bfextu  %d4{#0:#2},%d0  | {FPCR[6],FPCR[5],SM,SE}
437
        addl    %d0,%d2         |in d2 as index into RTABLE
438
        leal    RTABLE,%a1      |load rtable base
439
        moveb   (%a1,%d2),%d0   |load new rounding bits from table
440
        clrl    %d3                     |clear d3 to force no exc and extended
441
        bfins   %d0,%d3{#26:#2} |stuff new rounding bits in FPCR
442
        fmovel  %d3,%FPCR               |write new FPCR
443
        asrl    #1,%d0          |write correct PTENxx table
444
        bccs    not_rp          |to a1
445
        leal    PTENRP,%a1      |it is RP
446
        bras    calc_p          |go to init section
447
not_rp:
448
        asrl    #1,%d0          |keep checking
449
        bccs    not_rm
450
        leal    PTENRM,%a1      |it is RM
451
        bras    calc_p          |go to init section
452
not_rm:
453
        leal    PTENRN,%a1      |it is RN
454
calc_p:
455
        movel   %d1,%d0         |copy exp to d0;use d0
456
        bpls    no_neg          |if exp is negative,
457
        negl    %d0             |invert it
458
        orl     #0x40000000,(%a0)       |and set SE bit
459
no_neg:
460
        clrl    %d3             |table index
461
        fmoves  FONE,%fp1       |init fp1 to 1
462
e_loop:
463
        asrl    #1,%d0          |shift next bit into carry
464
        bccs    e_next          |if zero, skip the mul
465
        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
466
e_next:
467
        addl    #12,%d3         |inc d3 to next rtable entry
468
        tstl    %d0             |check if d0 is zero
469
        bnes    e_loop          |not zero, continue shifting
470
|
471
|
472
|  Check the sign of the adjusted exp and make the value in fp0 the
473
|  same sign. If the exp was pos then multiply fp1*fp0;
474
|  else divide fp0/fp1.
475
|
476
| Register Usage:
477
|  norm:
478
|       ( )  a0: pointer to working bcd value
479
|       (*) fp0: mantissa accumulator
480
|       ( ) fp1: scaling factor - 10**(abs(exp))
481
|
482
norm:
483
        btst    #30,(%a0)       |test the sign of the exponent
484
        beqs    mul             |if clear, go to multiply
485
div:
486
        fdivx   %fp1,%fp0               |exp is negative, so divide mant by exp
487
        bras    end_dec
488
mul:
489
        fmulx   %fp1,%fp0               |exp is positive, so multiply by exp
490
|
491
|
492
| Clean up and return with result in fp0.
493
|
494
| If the final mul/div in decbin incurred an inex exception,
495
| it will be inex2, but will be reported as inex1 by get_op.
496
|
497
end_dec:
498
        fmovel  %FPSR,%d0               |get status register
499
        bclrl   #inex2_bit+8,%d0        |test for inex2 and clear it
500
        fmovel  %d0,%FPSR               |return status reg w/o inex2
501
        beqs    no_exc          |skip this if no exc
502
        orl     #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
503
no_exc:
504
        moveml  (%a7)+,%d2-%d5
505
        rts
506
        |end

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.