OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [sh/] [kernel/] [time.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/* $Id: time.c,v 1.1.1.1 2004-04-15 01:17:38 phoenix Exp $
2
 *
3
 *  linux/arch/sh/kernel/time.c
4
 *
5
 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
6
 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
7
 *  Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp>
8
 *
9
 *  Some code taken from i386 version.
10
 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
11
 */
12
 
13
#include <linux/config.h>
14
#include <linux/errno.h>
15
#include <linux/sched.h>
16
#include <linux/kernel.h>
17
#include <linux/param.h>
18
#include <linux/string.h>
19
#include <linux/mm.h>
20
#include <linux/interrupt.h>
21
#include <linux/time.h>
22
#include <linux/delay.h>
23
#include <linux/init.h>
24
#include <linux/smp.h>
25
 
26
#include <asm/processor.h>
27
#include <asm/uaccess.h>
28
#include <asm/io.h>
29
#include <asm/irq.h>
30
#include <asm/delay.h>
31
#include <asm/machvec.h>
32
#include <asm/rtc.h>
33
#ifdef CONFIG_SH_KGDB
34
#include <asm/kgdb.h>
35
#endif
36
 
37
#include <linux/timex.h>
38
#include <linux/irq.h>
39
 
40
#define TMU_TOCR_INIT   0x00    /* Don't output RTC clock */
41
 
42
#define TMU0_TCR_INIT   0x0020  /* Clock/4, rising edge; interrupt on */
43
#define TMU0_TCR_CALIB  0x0000  /* Clock/4, rising edge; no interrupt */
44
#define TMU0_TSTR_INIT  0x01    /* Bit to turn on TMU0 */
45
 
46
#define TMU1_TCR_INIT   0x0000  /* Clock/4, rising edge; no interrupt */
47
#define TMU1_TSTR_INIT  0x02    /* Bit to turn on TMU1 */
48
 
49
#if defined(__sh3__)
50
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
51
#define TMU_TSTR        0xA412FE92      /* Byte access */
52
 
53
#define TMU0_TCOR       0xA412FE94      /* Long access */
54
#define TMU0_TCNT       0xA412FE98      /* Long access */
55
#define TMU0_TCR        0xA412FE9C      /* Word access */
56
 
57
#define TMU1_TCOR       0xA412FEA0      /* Long access */
58
#define TMU1_TCNT       0xA412FEA4      /* Long access */
59
#define TMU1_TCR        0xA412FEA8      /* Word access */
60
 
61
#define FRQCR           0xA415FF80
62
#else
63
#define TMU_TOCR        0xfffffe90      /* Byte access */
64
#define TMU_TSTR        0xfffffe92      /* Byte access */
65
 
66
#define TMU0_TCOR       0xfffffe94      /* Long access */
67
#define TMU0_TCNT       0xfffffe98      /* Long access */
68
#define TMU0_TCR        0xfffffe9c      /* Word access */
69
 
70
#define TMU1_TCOR       0xfffffea0      /* Long access */
71
#define TMU1_TCNT       0xfffffea4      /* Long access */
72
#define TMU1_TCR        0xfffffea8      /* Word access */
73
 
74
#define FRQCR           0xffffff80
75
#endif
76
#elif defined(__SH4__)
77
#define TMU_TOCR        0xffd80000      /* Byte access */
78
#define TMU_TSTR        0xffd80004      /* Byte access */
79
 
80
#define TMU0_TCOR       0xffd80008      /* Long access */
81
#define TMU0_TCNT       0xffd8000c      /* Long access */
82
#define TMU0_TCR        0xffd80010      /* Word access */
83
 
84
#define TMU1_TCOR       0xffd80014      /* Long access */
85
#define TMU1_TCNT       0xffd80018      /* Long access */
86
#define TMU1_TCR        0xffd8001c      /* Word access */
87
 
88
#define FRQCR           0xffc00000
89
 
90
/* Core Processor Version Register */
91
#define CCN_PVR         0xff000030
92
#define CCN_PVR_CHIP_SHIFT 24
93
#define CCN_PVR_CHIP_MASK  0xff
94
#define CCN_PVR_CHIP_ST40STB1 0x4
95
 
96
#ifdef CONFIG_CPU_SUBTYPE_ST40
97
#define CLOCKGEN_MEMCLKCR 0xbb040038
98
#define MEMCLKCR_RATIO_MASK 0x7
99
#endif /* CONFIG_CPU_SUBTYPE_ST40 */
100
#endif /* __sh3__ or __SH4__ */
101
 
102
extern rwlock_t xtime_lock;
103
extern unsigned long wall_jiffies;
104
#define TICK_SIZE tick
105
 
106
static unsigned long do_gettimeoffset(void)
107
{
108
        int count;
109
 
110
        static int count_p = 0x7fffffff;    /* for the first call after boot */
111
        static unsigned long jiffies_p = 0;
112
 
113
        /*
114
         * cache volatile jiffies temporarily; we have IRQs turned off.
115
         */
116
        unsigned long jiffies_t;
117
 
118
        /* timer count may underflow right here */
119
        count = ctrl_inl(TMU0_TCNT);    /* read the latched count */
120
 
121
        jiffies_t = jiffies;
122
 
123
        /*
124
         * avoiding timer inconsistencies (they are rare, but they happen)...
125
         * there is one kind of problem that must be avoided here:
126
         *  1. the timer counter underflows
127
         */
128
 
129
        if( jiffies_t == jiffies_p ) {
130
                if( count > count_p ) {
131
                        /* the nutcase */
132
 
133
                        if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */
134
                                /*
135
                                 * We cannot detect lost timer interrupts ...
136
                                 * well, that's why we call them lost, don't we? :)
137
                                 * [hmm, on the Pentium and Alpha we can ... sort of]
138
                                 */
139
                                count -= LATCH;
140
                        } else {
141
                                printk("do_slow_gettimeoffset(): hardware timer problem?\n");
142
                        }
143
                }
144
        } else
145
                jiffies_p = jiffies_t;
146
 
147
        count_p = count;
148
 
149
        count = ((LATCH-1) - count) * TICK_SIZE;
150
        count = (count + LATCH/2) / LATCH;
151
 
152
        return count;
153
}
154
 
155
void do_gettimeofday(struct timeval *tv)
156
{
157
        unsigned long flags;
158
        unsigned long usec, sec;
159
 
160
        read_lock_irqsave(&xtime_lock, flags);
161
        usec = do_gettimeoffset();
162
        {
163
                unsigned long lost = jiffies - wall_jiffies;
164
                if (lost)
165
                        usec += lost * (1000000 / HZ);
166
        }
167
        sec = xtime.tv_sec;
168
        usec += xtime.tv_usec;
169
        read_unlock_irqrestore(&xtime_lock, flags);
170
 
171
        while (usec >= 1000000) {
172
                usec -= 1000000;
173
                sec++;
174
        }
175
 
176
        tv->tv_sec = sec;
177
        tv->tv_usec = usec;
178
}
179
 
180
void do_settimeofday(struct timeval *tv)
181
{
182
        write_lock_irq(&xtime_lock);
183
        /*
184
         * This is revolting. We need to set "xtime" correctly. However, the
185
         * value in this location is the value at the most recent update of
186
         * wall time.  Discover what correction gettimeofday() would have
187
         * made, and then undo it!
188
         */
189
        tv->tv_usec -= do_gettimeoffset();
190
        tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);
191
 
192
        while (tv->tv_usec < 0) {
193
                tv->tv_usec += 1000000;
194
                tv->tv_sec--;
195
        }
196
 
197
        xtime = *tv;
198
        time_adjust = 0;         /* stop active adjtime() */
199
        time_status |= STA_UNSYNC;
200
        time_maxerror = NTP_PHASE_LIMIT;
201
        time_esterror = NTP_PHASE_LIMIT;
202
        write_unlock_irq(&xtime_lock);
203
}
204
 
205
/* last time the RTC clock got updated */
206
static long last_rtc_update;
207
 
208
static __inline__ void sh_do_profile (unsigned long pc)
209
{
210
        extern int _stext;
211
 
212
        if (!prof_buffer)
213
                return;
214
 
215
        if(pc >= 0xa0000000UL && pc < 0xc0000000UL)
216
                pc -= 0x20000000;
217
        pc -= (unsigned long) &_stext;
218
        pc >>= prof_shift;
219
        /*
220
         * Don't ignore out-of-bounds PC values silently,
221
         * put them into the last histogram slot, so if
222
         * present, they will show up as a sharp peak.
223
         */
224
        if (pc > prof_len-1)
225
                pc = prof_len-1;
226
        prof_buffer[pc]++;
227
}
228
 
229
/*
230
 * timer_interrupt() needs to keep up the real-time clock,
231
 * as well as call the "do_timer()" routine every clocktick
232
 */
233
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
234
{
235
        do_timer(regs);
236
 
237
        if (!user_mode(regs))
238
                sh_do_profile(regs->pc);
239
 
240
#ifdef CONFIG_HEARTBEAT
241
        if (sh_mv.mv_heartbeat != NULL)
242
                sh_mv.mv_heartbeat();
243
#endif
244
 
245
        /*
246
         * If we have an externally synchronized Linux clock, then update
247
         * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
248
         * called as close as possible to 500 ms before the new second starts.
249
         */
250
        if ((time_status & STA_UNSYNC) == 0 &&
251
            xtime.tv_sec > last_rtc_update + 660 &&
252
            xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
253
            xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
254
                if (sh_mv.mv_rtc_settimeofday(&xtime) == 0)
255
                        last_rtc_update = xtime.tv_sec;
256
                else
257
                        last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
258
        }
259
}
260
 
261
/*
262
 * This is the same as the above, except we _also_ save the current
263
 * Time Stamp Counter value at the time of the timer interrupt, so that
264
 * we later on can estimate the time of day more exactly.
265
 */
266
static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
267
{
268
        unsigned long timer_status;
269
 
270
        /* Clear UNF bit */
271
        timer_status = ctrl_inw(TMU0_TCR);
272
        timer_status &= ~0x100;
273
        ctrl_outw(timer_status, TMU0_TCR);
274
 
275
        /*
276
         * Here we are in the timer irq handler. We just have irqs locally
277
         * disabled but we don't know if the timer_bh is running on the other
278
         * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
279
         * the irq version of write_lock because as just said we have irq
280
         * locally disabled. -arca
281
         */
282
        write_lock(&xtime_lock);
283
        do_timer_interrupt(irq, NULL, regs);
284
        write_unlock(&xtime_lock);
285
}
286
 
287
static unsigned int __init get_timer_frequency(void)
288
{
289
        u32 freq;
290
        struct timeval tv1, tv2;
291
        unsigned long diff_usec;
292
        unsigned long factor;
293
 
294
        /* Setup the timer:  We don't want to generate interrupts, just
295
         * have it count down at its natural rate.
296
         */
297
        ctrl_outb(0, TMU_TSTR);
298
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
299
        ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
300
#endif
301
        ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR);
302
        ctrl_outl(0xffffffff, TMU0_TCOR);
303
        ctrl_outl(0xffffffff, TMU0_TCNT);
304
 
305
        rtc_gettimeofday(&tv2);
306
 
307
        do {
308
                rtc_gettimeofday(&tv1);
309
        } while (tv1.tv_usec == tv2.tv_usec && tv1.tv_sec == tv2.tv_sec);
310
 
311
        /* actually start the timer */
312
        ctrl_outb(TMU0_TSTR_INIT, TMU_TSTR);
313
 
314
        do {
315
                rtc_gettimeofday(&tv2);
316
        } while (tv1.tv_usec == tv2.tv_usec && tv1.tv_sec == tv2.tv_sec);
317
 
318
        freq = 0xffffffff - ctrl_inl(TMU0_TCNT);
319
        if (tv2.tv_usec < tv1.tv_usec) {
320
                tv2.tv_usec += 1000000;
321
                tv2.tv_sec--;
322
        }
323
 
324
        diff_usec = (tv2.tv_sec - tv1.tv_sec) * 1000000 + (tv2.tv_usec - tv1.tv_usec);
325
 
326
        /* this should work well if the RTC has a precision of n Hz, where
327
         * n is an integer.  I don't think we have to worry about the other
328
         * cases. */
329
        factor = (1000000 + diff_usec/2) / diff_usec;
330
 
331
        if (factor * diff_usec > 1100000 ||
332
            factor * diff_usec <  900000)
333
                panic("weird RTC (diff_usec %ld)", diff_usec);
334
 
335
        return freq * factor;
336
}
337
 
338
static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ;
339
static int __init sh_pclk_setup(char *str)
340
{
341
        unsigned int freq;
342
        if (get_option(&str, &freq))
343
                sh_pclk_freq = freq;
344
        return 1;
345
}
346
__setup("sh_pclk=", sh_pclk_setup);
347
 
348
static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
349
 
350
void __init time_init(void)
351
{
352
        unsigned int cpu_clock, master_clock, bus_clock, module_clock;
353
#ifdef CONFIG_CPU_SUBTYPE_ST40
354
        unsigned int memory_clock;
355
#endif
356
        unsigned int timer_freq;
357
        unsigned short frqcr, ifc, pfc, bfc;
358
        unsigned long interval;
359
#if defined(__sh3__)
360
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
361
        static int pfc_table[] = { 1, 2, 3, 4, 6 };
362
#else
363
        static int ifc_table[] = { 1, 2, 4, 1, 3, 1, 1, 1 };
364
        static int pfc_table[] = { 1, 2, 4, 1, 3, 6, 1, 1 };
365
        static int stc_table[] = { 1, 2, 4, 8, 3, 6, 1, 1 };
366
#endif
367
#elif defined(__SH4__)
368
        static int ifc_table[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
369
#define bfc_table ifc_table     /* Same */
370
        static int pfc_table[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
371
 
372
#ifdef CONFIG_CPU_SUBTYPE_ST40
373
        struct frqcr_data {
374
                unsigned short frqcr;
375
                struct {
376
                        unsigned char multiplier;
377
                        unsigned char divisor;
378
                } factor[3];
379
        };
380
 
381
        static struct frqcr_data st40_frqcr_table[] = {
382
                { 0x000, {{1,1}, {1,1}, {1,2}}},
383
                { 0x002, {{1,1}, {1,1}, {1,4}}},
384
                { 0x004, {{1,1}, {1,1}, {1,8}}},
385
                { 0x008, {{1,1}, {1,2}, {1,2}}},
386
                { 0x00A, {{1,1}, {1,2}, {1,4}}},
387
                { 0x00C, {{1,1}, {1,2}, {1,8}}},
388
                { 0x011, {{1,1}, {2,3}, {1,6}}},
389
                { 0x013, {{1,1}, {2,3}, {1,3}}},
390
                { 0x01A, {{1,1}, {1,2}, {1,4}}},
391
                { 0x01C, {{1,1}, {1,2}, {1,8}}},
392
                { 0x023, {{1,1}, {2,3}, {1,3}}},
393
                { 0x02C, {{1,1}, {1,2}, {1,8}}},
394
                { 0x048, {{1,2}, {1,2}, {1,4}}},
395
                { 0x04A, {{1,2}, {1,2}, {1,6}}},
396
                { 0x04C, {{1,2}, {1,2}, {1,8}}},
397
                { 0x05A, {{1,2}, {1,3}, {1,6}}},
398
                { 0x05C, {{1,2}, {1,3}, {1,6}}},
399
                { 0x063, {{1,2}, {1,4}, {1,4}}},
400
                { 0x06C, {{1,2}, {1,4}, {1,8}}},
401
                { 0x091, {{1,3}, {1,3}, {1,6}}},
402
                { 0x093, {{1,3}, {1,3}, {1,6}}},
403
                { 0x0A3, {{1,3}, {1,6}, {1,6}}},
404
                { 0x0DA, {{1,4}, {1,4}, {1,8}}},
405
                { 0x0DC, {{1,4}, {1,4}, {1,8}}},
406
                { 0x0EC, {{1,4}, {1,8}, {1,8}}},
407
                { 0x123, {{1,4}, {1,4}, {1,8}}},
408
                { 0x16C, {{1,4}, {1,8}, {1,8}}},
409
        };
410
 
411
        struct memclk_data {
412
                unsigned char multiplier;
413
                unsigned char divisor;
414
        };
415
        static struct memclk_data st40_memclk_table[8] = {
416
                {1,1},  // 000
417
                {1,2},  // 001
418
                {1,3},  // 010
419
                {2,3},  // 011
420
                {1,4},  // 100
421
                {1,6},  // 101
422
                {1,8},  // 110
423
                {1,8}   // 111
424
        };
425
#endif
426
#endif
427
 
428
        if(rtc_gettimeofday)
429
                rtc_gettimeofday(&xtime);
430
        else{
431
                xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0);
432
                xtime.tv_usec = 0;
433
        }
434
 
435
        setup_irq(TIMER_IRQ, &irq0);
436
 
437
        if( sh_pclk_freq ){
438
                module_clock = sh_pclk_freq;
439
        }else{
440
                timer_freq = get_timer_frequency();
441
                module_clock = timer_freq * 4;
442
        }
443
 
444
#if defined(__sh3__)
445
        {
446
                unsigned short tmp;
447
 
448
                frqcr = ctrl_inw(FRQCR);
449
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
450
                bfc = ((frqcr & 0x0700) >> 8)+1;
451
                ifc = ((frqcr & 0x0070) >> 4)+1;
452
                tmp = frqcr & 0x0007;
453
                pfc = pfc_table[tmp];
454
#else
455
                tmp  = (frqcr & 0x8000) >> 13;
456
                tmp |= (frqcr & 0x0030) >>  4;
457
                bfc = stc_table[tmp];
458
                tmp  = (frqcr & 0x4000) >> 12;
459
                tmp |= (frqcr & 0x000c) >> 2;
460
                ifc  = ifc_table[tmp];
461
                tmp  = (frqcr & 0x2000) >> 11;
462
                tmp |= frqcr & 0x0003;
463
                pfc = pfc_table[tmp];
464
#endif
465
        }
466
#elif defined(__SH4__)
467
        {
468
#ifdef CONFIG_CPU_SUBTYPE_ST40
469
                unsigned long pvr;
470
 
471
                /* This should probably be moved into the SH3 probing code, and then use the processor
472
                 * structure to determine which CPU we are running on.
473
                 */
474
                pvr = ctrl_inl(CCN_PVR);
475
                printk("PVR %08x\n", pvr);
476
 
477
                if (((pvr >>CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1) {
478
                        /* Unfortunatly the STB1 FRQCR values are different from the 7750 ones */
479
                        struct frqcr_data *d;
480
                        int a;
481
                        unsigned long memclkcr;
482
                        struct memclk_data *e;
483
 
484
                        for (a=0; a<ARRAY_SIZE(st40_frqcr_table); a++) {
485
                                d = &st40_frqcr_table[a];
486
                                if (d->frqcr == (frqcr & 0x1ff))
487
                                        break;
488
                        }
489
                        if (a == ARRAY_SIZE(st40_frqcr_table)) {
490
                                d = st40_frqcr_table;
491
                                printk("ERROR: Unrecognised FRQCR value, using default multipliers\n");
492
                        }
493
 
494
                        memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR);
495
                        e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];
496
 
497
                        printk("Clock multipliers: CPU: %d/%d Bus: %d/%d Mem: %d/%d Periph: %d/%d\n",
498
                               d->factor[0].multiplier, d->factor[0].divisor,
499
                               d->factor[1].multiplier, d->factor[1].divisor,
500
                               e->multiplier,           e->divisor,
501
                               d->factor[2].multiplier, d->factor[2].divisor);
502
 
503
                        master_clock = module_clock * d->factor[2].divisor    / d->factor[2].multiplier;
504
                        bus_clock    = master_clock * d->factor[1].multiplier / d->factor[1].divisor;
505
                        memory_clock = master_clock * e->multiplier           / e->divisor;
506
                        cpu_clock    = master_clock * d->factor[0].multiplier / d->factor[0].divisor;
507
                        goto skip_calc;
508
                } else
509
#endif
510
                {
511
                        frqcr = ctrl_inw(FRQCR);
512
 
513
                        ifc  = ifc_table[(frqcr>> 6) & 0x0007];
514
                        bfc  = bfc_table[(frqcr>> 3) & 0x0007];
515
                        pfc = pfc_table[frqcr & 0x0007];
516
                }
517
        }
518
#endif
519
        master_clock = module_clock * pfc;
520
        bus_clock = master_clock / bfc;
521
        cpu_clock = master_clock / ifc;
522
#ifdef CONFIG_CPU_SUBTYPE_ST40
523
 skip_calc:
524
#endif
525
        printk("CPU clock: %d.%02dMHz\n",
526
               (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
527
        printk("Bus clock: %d.%02dMHz\n",
528
               (bus_clock/1000000), (bus_clock % 1000000)/10000);
529
#ifdef CONFIG_CPU_SUBTYPE_ST40
530
        printk("Memory clock: %d.%02dMHz\n",
531
               (memory_clock/1000000), (memory_clock % 1000000)/10000);
532
#endif
533
        printk("Module clock: %d.%02dMHz\n",
534
               (module_clock/1000000), (module_clock % 1000000)/10000);
535
        interval = (module_clock/4 + HZ/2) / HZ;
536
 
537
        printk("Interval = %ld\n", interval);
538
 
539
        current_cpu_data.cpu_clock    = cpu_clock;
540
        current_cpu_data.master_clock = master_clock;
541
        current_cpu_data.bus_clock    = bus_clock;
542
#ifdef CONFIG_CPU_SUBTYPE_ST40
543
        current_cpu_data.memory_clock = memory_clock;
544
#endif
545
        current_cpu_data.module_clock = module_clock;
546
 
547
        /* Stop all timers */
548
        ctrl_outb(0, TMU_TSTR);
549
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
550
        ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
551
#endif
552
 
553
        /* Start TMU0 (jiffy interrupts) */
554
        ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
555
        ctrl_outl(interval, TMU0_TCOR);
556
        ctrl_outl(interval, TMU0_TCNT);
557
        ctrl_outb(TMU0_TSTR_INIT, TMU_TSTR);
558
 
559
#if defined(CONFIG_START_TMU1)
560
        /* Start TMU1 (free-running) */
561
        ctrl_outw(TMU1_TCR_INIT, TMU1_TCR);
562
        ctrl_outl(0xffffffff, TMU1_TCOR);
563
        ctrl_outl(0xffffffff, TMU1_TCNT);
564
        ctrl_outb((ctrl_inb(TMU_TSTR) | TMU1_TSTR_INIT), TMU_TSTR);
565
#endif
566
 
567
#if defined(CONFIG_SH_KGDB)
568
        /*
569
         * Set up kgdb as requested. We do it here because the serial
570
         * init uses the timer vars we just set up for figuring baud.
571
         */
572
        kgdb_init();
573
#endif
574
 
575
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.