1 |
1275 |
phoenix |
/*
|
2 |
|
|
* random.c -- A strong random number generator
|
3 |
|
|
*
|
4 |
|
|
* Version 1.89, last modified 19-Sep-99
|
5 |
|
|
*
|
6 |
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
|
7 |
|
|
* rights reserved.
|
8 |
|
|
*
|
9 |
|
|
* Redistribution and use in source and binary forms, with or without
|
10 |
|
|
* modification, are permitted provided that the following conditions
|
11 |
|
|
* are met:
|
12 |
|
|
* 1. Redistributions of source code must retain the above copyright
|
13 |
|
|
* notice, and the entire permission notice in its entirety,
|
14 |
|
|
* including the disclaimer of warranties.
|
15 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
16 |
|
|
* notice, this list of conditions and the following disclaimer in the
|
17 |
|
|
* documentation and/or other materials provided with the distribution.
|
18 |
|
|
* 3. The name of the author may not be used to endorse or promote
|
19 |
|
|
* products derived from this software without specific prior
|
20 |
|
|
* written permission.
|
21 |
|
|
*
|
22 |
|
|
* ALTERNATIVELY, this product may be distributed under the terms of
|
23 |
|
|
* the GNU General Public License, in which case the provisions of the GPL are
|
24 |
|
|
* required INSTEAD OF the above restrictions. (This clause is
|
25 |
|
|
* necessary due to a potential bad interaction between the GPL and
|
26 |
|
|
* the restrictions contained in a BSD-style copyright.)
|
27 |
|
|
*
|
28 |
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
29 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
30 |
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
|
31 |
|
|
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
|
32 |
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
33 |
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
34 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
35 |
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
36 |
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
37 |
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
38 |
|
|
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
|
39 |
|
|
* DAMAGE.
|
40 |
|
|
*/
|
41 |
|
|
|
42 |
|
|
/*
|
43 |
|
|
* (now, with legal B.S. out of the way.....)
|
44 |
|
|
*
|
45 |
|
|
* This routine gathers environmental noise from device drivers, etc.,
|
46 |
|
|
* and returns good random numbers, suitable for cryptographic use.
|
47 |
|
|
* Besides the obvious cryptographic uses, these numbers are also good
|
48 |
|
|
* for seeding TCP sequence numbers, and other places where it is
|
49 |
|
|
* desirable to have numbers which are not only random, but hard to
|
50 |
|
|
* predict by an attacker.
|
51 |
|
|
*
|
52 |
|
|
* Theory of operation
|
53 |
|
|
* ===================
|
54 |
|
|
*
|
55 |
|
|
* Computers are very predictable devices. Hence it is extremely hard
|
56 |
|
|
* to produce truly random numbers on a computer --- as opposed to
|
57 |
|
|
* pseudo-random numbers, which can easily generated by using a
|
58 |
|
|
* algorithm. Unfortunately, it is very easy for attackers to guess
|
59 |
|
|
* the sequence of pseudo-random number generators, and for some
|
60 |
|
|
* applications this is not acceptable. So instead, we must try to
|
61 |
|
|
* gather "environmental noise" from the computer's environment, which
|
62 |
|
|
* must be hard for outside attackers to observe, and use that to
|
63 |
|
|
* generate random numbers. In a Unix environment, this is best done
|
64 |
|
|
* from inside the kernel.
|
65 |
|
|
*
|
66 |
|
|
* Sources of randomness from the environment include inter-keyboard
|
67 |
|
|
* timings, inter-interrupt timings from some interrupts, and other
|
68 |
|
|
* events which are both (a) non-deterministic and (b) hard for an
|
69 |
|
|
* outside observer to measure. Randomness from these sources are
|
70 |
|
|
* added to an "entropy pool", which is mixed using a CRC-like function.
|
71 |
|
|
* This is not cryptographically strong, but it is adequate assuming
|
72 |
|
|
* the randomness is not chosen maliciously, and it is fast enough that
|
73 |
|
|
* the overhead of doing it on every interrupt is very reasonable.
|
74 |
|
|
* As random bytes are mixed into the entropy pool, the routines keep
|
75 |
|
|
* an *estimate* of how many bits of randomness have been stored into
|
76 |
|
|
* the random number generator's internal state.
|
77 |
|
|
*
|
78 |
|
|
* When random bytes are desired, they are obtained by taking the SHA
|
79 |
|
|
* hash of the contents of the "entropy pool". The SHA hash avoids
|
80 |
|
|
* exposing the internal state of the entropy pool. It is believed to
|
81 |
|
|
* be computationally infeasible to derive any useful information
|
82 |
|
|
* about the input of SHA from its output. Even if it is possible to
|
83 |
|
|
* analyze SHA in some clever way, as long as the amount of data
|
84 |
|
|
* returned from the generator is less than the inherent entropy in
|
85 |
|
|
* the pool, the output data is totally unpredictable. For this
|
86 |
|
|
* reason, the routine decreases its internal estimate of how many
|
87 |
|
|
* bits of "true randomness" are contained in the entropy pool as it
|
88 |
|
|
* outputs random numbers.
|
89 |
|
|
*
|
90 |
|
|
* If this estimate goes to zero, the routine can still generate
|
91 |
|
|
* random numbers; however, an attacker may (at least in theory) be
|
92 |
|
|
* able to infer the future output of the generator from prior
|
93 |
|
|
* outputs. This requires successful cryptanalysis of SHA, which is
|
94 |
|
|
* not believed to be feasible, but there is a remote possibility.
|
95 |
|
|
* Nonetheless, these numbers should be useful for the vast majority
|
96 |
|
|
* of purposes.
|
97 |
|
|
*
|
98 |
|
|
* Exported interfaces ---- output
|
99 |
|
|
* ===============================
|
100 |
|
|
*
|
101 |
|
|
* There are three exported interfaces; the first is one designed to
|
102 |
|
|
* be used from within the kernel:
|
103 |
|
|
*
|
104 |
|
|
* void get_random_bytes(void *buf, int nbytes);
|
105 |
|
|
*
|
106 |
|
|
* This interface will return the requested number of random bytes,
|
107 |
|
|
* and place it in the requested buffer.
|
108 |
|
|
*
|
109 |
|
|
* The two other interfaces are two character devices /dev/random and
|
110 |
|
|
* /dev/urandom. /dev/random is suitable for use when very high
|
111 |
|
|
* quality randomness is desired (for example, for key generation or
|
112 |
|
|
* one-time pads), as it will only return a maximum of the number of
|
113 |
|
|
* bits of randomness (as estimated by the random number generator)
|
114 |
|
|
* contained in the entropy pool.
|
115 |
|
|
*
|
116 |
|
|
* The /dev/urandom device does not have this limit, and will return
|
117 |
|
|
* as many bytes as are requested. As more and more random bytes are
|
118 |
|
|
* requested without giving time for the entropy pool to recharge,
|
119 |
|
|
* this will result in random numbers that are merely cryptographically
|
120 |
|
|
* strong. For many applications, however, this is acceptable.
|
121 |
|
|
*
|
122 |
|
|
* Exported interfaces ---- input
|
123 |
|
|
* ==============================
|
124 |
|
|
*
|
125 |
|
|
* The current exported interfaces for gathering environmental noise
|
126 |
|
|
* from the devices are:
|
127 |
|
|
*
|
128 |
|
|
* void add_keyboard_randomness(unsigned char scancode);
|
129 |
|
|
* void add_mouse_randomness(__u32 mouse_data);
|
130 |
|
|
* void add_interrupt_randomness(int irq);
|
131 |
|
|
* void add_blkdev_randomness(int irq);
|
132 |
|
|
*
|
133 |
|
|
* add_keyboard_randomness() uses the inter-keypress timing, as well as the
|
134 |
|
|
* scancode as random inputs into the "entropy pool".
|
135 |
|
|
*
|
136 |
|
|
* add_mouse_randomness() uses the mouse interrupt timing, as well as
|
137 |
|
|
* the reported position of the mouse from the hardware.
|
138 |
|
|
*
|
139 |
|
|
* add_interrupt_randomness() uses the inter-interrupt timing as random
|
140 |
|
|
* inputs to the entropy pool. Note that not all interrupts are good
|
141 |
|
|
* sources of randomness! For example, the timer interrupts is not a
|
142 |
|
|
* good choice, because the periodicity of the interrupts is too
|
143 |
|
|
* regular, and hence predictable to an attacker. Disk interrupts are
|
144 |
|
|
* a better measure, since the timing of the disk interrupts are more
|
145 |
|
|
* unpredictable.
|
146 |
|
|
*
|
147 |
|
|
* add_blkdev_randomness() times the finishing time of block requests.
|
148 |
|
|
*
|
149 |
|
|
* All of these routines try to estimate how many bits of randomness a
|
150 |
|
|
* particular randomness source. They do this by keeping track of the
|
151 |
|
|
* first and second order deltas of the event timings.
|
152 |
|
|
*
|
153 |
|
|
* Ensuring unpredictability at system startup
|
154 |
|
|
* ============================================
|
155 |
|
|
*
|
156 |
|
|
* When any operating system starts up, it will go through a sequence
|
157 |
|
|
* of actions that are fairly predictable by an adversary, especially
|
158 |
|
|
* if the start-up does not involve interaction with a human operator.
|
159 |
|
|
* This reduces the actual number of bits of unpredictability in the
|
160 |
|
|
* entropy pool below the value in entropy_count. In order to
|
161 |
|
|
* counteract this effect, it helps to carry information in the
|
162 |
|
|
* entropy pool across shut-downs and start-ups. To do this, put the
|
163 |
|
|
* following lines an appropriate script which is run during the boot
|
164 |
|
|
* sequence:
|
165 |
|
|
*
|
166 |
|
|
* echo "Initializing random number generator..."
|
167 |
|
|
* random_seed=/var/run/random-seed
|
168 |
|
|
* # Carry a random seed from start-up to start-up
|
169 |
|
|
* # Load and then save the whole entropy pool
|
170 |
|
|
* if [ -f $random_seed ]; then
|
171 |
|
|
* cat $random_seed >/dev/urandom
|
172 |
|
|
* else
|
173 |
|
|
* touch $random_seed
|
174 |
|
|
* fi
|
175 |
|
|
* chmod 600 $random_seed
|
176 |
|
|
* poolfile=/proc/sys/kernel/random/poolsize
|
177 |
|
|
* [ -r $poolfile ] && bytes=`cat $poolfile` || bytes=512
|
178 |
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=$bytes
|
179 |
|
|
*
|
180 |
|
|
* and the following lines in an appropriate script which is run as
|
181 |
|
|
* the system is shutdown:
|
182 |
|
|
*
|
183 |
|
|
* # Carry a random seed from shut-down to start-up
|
184 |
|
|
* # Save the whole entropy pool
|
185 |
|
|
* echo "Saving random seed..."
|
186 |
|
|
* random_seed=/var/run/random-seed
|
187 |
|
|
* touch $random_seed
|
188 |
|
|
* chmod 600 $random_seed
|
189 |
|
|
* poolfile=/proc/sys/kernel/random/poolsize
|
190 |
|
|
* [ -r $poolfile ] && bytes=`cat $poolfile` || bytes=512
|
191 |
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=$bytes
|
192 |
|
|
*
|
193 |
|
|
* For example, on most modern systems using the System V init
|
194 |
|
|
* scripts, such code fragments would be found in
|
195 |
|
|
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
|
196 |
|
|
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
|
197 |
|
|
*
|
198 |
|
|
* Effectively, these commands cause the contents of the entropy pool
|
199 |
|
|
* to be saved at shut-down time and reloaded into the entropy pool at
|
200 |
|
|
* start-up. (The 'dd' in the addition to the bootup script is to
|
201 |
|
|
* make sure that /etc/random-seed is different for every start-up,
|
202 |
|
|
* even if the system crashes without executing rc.0.) Even with
|
203 |
|
|
* complete knowledge of the start-up activities, predicting the state
|
204 |
|
|
* of the entropy pool requires knowledge of the previous history of
|
205 |
|
|
* the system.
|
206 |
|
|
*
|
207 |
|
|
* Configuring the /dev/random driver under Linux
|
208 |
|
|
* ==============================================
|
209 |
|
|
*
|
210 |
|
|
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
|
211 |
|
|
* the /dev/mem major number (#1). So if your system does not have
|
212 |
|
|
* /dev/random and /dev/urandom created already, they can be created
|
213 |
|
|
* by using the commands:
|
214 |
|
|
*
|
215 |
|
|
* mknod /dev/random c 1 8
|
216 |
|
|
* mknod /dev/urandom c 1 9
|
217 |
|
|
*
|
218 |
|
|
* Acknowledgements:
|
219 |
|
|
* =================
|
220 |
|
|
*
|
221 |
|
|
* Ideas for constructing this random number generator were derived
|
222 |
|
|
* from Pretty Good Privacy's random number generator, and from private
|
223 |
|
|
* discussions with Phil Karn. Colin Plumb provided a faster random
|
224 |
|
|
* number generator, which speed up the mixing function of the entropy
|
225 |
|
|
* pool, taken from PGPfone. Dale Worley has also contributed many
|
226 |
|
|
* useful ideas and suggestions to improve this driver.
|
227 |
|
|
*
|
228 |
|
|
* Any flaws in the design are solely my responsibility, and should
|
229 |
|
|
* not be attributed to the Phil, Colin, or any of authors of PGP.
|
230 |
|
|
*
|
231 |
|
|
* The code for SHA transform was taken from Peter Gutmann's
|
232 |
|
|
* implementation, which has been placed in the public domain.
|
233 |
|
|
* The code for MD5 transform was taken from Colin Plumb's
|
234 |
|
|
* implementation, which has been placed in the public domain.
|
235 |
|
|
* The MD5 cryptographic checksum was devised by Ronald Rivest, and is
|
236 |
|
|
* documented in RFC 1321, "The MD5 Message Digest Algorithm".
|
237 |
|
|
*
|
238 |
|
|
* Further background information on this topic may be obtained from
|
239 |
|
|
* RFC 1750, "Randomness Recommendations for Security", by Donald
|
240 |
|
|
* Eastlake, Steve Crocker, and Jeff Schiller.
|
241 |
|
|
*/
|
242 |
|
|
|
243 |
|
|
#include <linux/utsname.h>
|
244 |
|
|
#include <linux/config.h>
|
245 |
|
|
#include <linux/module.h>
|
246 |
|
|
#include <linux/kernel.h>
|
247 |
|
|
#include <linux/major.h>
|
248 |
|
|
#include <linux/string.h>
|
249 |
|
|
#include <linux/fcntl.h>
|
250 |
|
|
#include <linux/slab.h>
|
251 |
|
|
#include <linux/random.h>
|
252 |
|
|
#include <linux/poll.h>
|
253 |
|
|
#include <linux/init.h>
|
254 |
|
|
#include <linux/interrupt.h>
|
255 |
|
|
#include <linux/spinlock.h>
|
256 |
|
|
|
257 |
|
|
#include <asm/processor.h>
|
258 |
|
|
#include <asm/uaccess.h>
|
259 |
|
|
#include <asm/irq.h>
|
260 |
|
|
#include <asm/io.h>
|
261 |
|
|
|
262 |
|
|
/*
|
263 |
|
|
* Configuration information
|
264 |
|
|
*/
|
265 |
|
|
#define DEFAULT_POOL_SIZE 512
|
266 |
|
|
#define SECONDARY_POOL_SIZE 128
|
267 |
|
|
#define BATCH_ENTROPY_SIZE 256
|
268 |
|
|
#define USE_SHA
|
269 |
|
|
|
270 |
|
|
/*
|
271 |
|
|
* The minimum number of bits of entropy before we wake up a read on
|
272 |
|
|
* /dev/random. Should always be at least 8, or at least 1 byte.
|
273 |
|
|
*/
|
274 |
|
|
static int random_read_wakeup_thresh = 8;
|
275 |
|
|
|
276 |
|
|
/*
|
277 |
|
|
* If the entropy count falls under this number of bits, then we
|
278 |
|
|
* should wake up processes which are selecting or polling on write
|
279 |
|
|
* access to /dev/random.
|
280 |
|
|
*/
|
281 |
|
|
static int random_write_wakeup_thresh = 128;
|
282 |
|
|
|
283 |
|
|
/*
|
284 |
|
|
* A pool of size .poolwords is stirred with a primitive polynomial
|
285 |
|
|
* of degree .poolwords over GF(2). The taps for various sizes are
|
286 |
|
|
* defined below. They are chosen to be evenly spaced (minimum RMS
|
287 |
|
|
* distance from evenly spaced; the numbers in the comments are a
|
288 |
|
|
* scaled squared error sum) except for the last tap, which is 1 to
|
289 |
|
|
* get the twisting happening as fast as possible.
|
290 |
|
|
*/
|
291 |
|
|
static struct poolinfo {
|
292 |
|
|
int poolwords;
|
293 |
|
|
int tap1, tap2, tap3, tap4, tap5;
|
294 |
|
|
} poolinfo_table[] = {
|
295 |
|
|
/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
|
296 |
|
|
{ 2048, 1638, 1231, 819, 411, 1 },
|
297 |
|
|
|
298 |
|
|
/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
|
299 |
|
|
{ 1024, 817, 615, 412, 204, 1 },
|
300 |
|
|
#if 0 /* Alternate polynomial */
|
301 |
|
|
/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
|
302 |
|
|
{ 1024, 819, 616, 410, 207, 2 },
|
303 |
|
|
#endif
|
304 |
|
|
|
305 |
|
|
/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
|
306 |
|
|
{ 512, 411, 308, 208, 104, 1 },
|
307 |
|
|
#if 0 /* Alternates */
|
308 |
|
|
/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
|
309 |
|
|
{ 512, 409, 307, 206, 102, 2 },
|
310 |
|
|
/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
|
311 |
|
|
{ 512, 409, 309, 205, 103, 2 },
|
312 |
|
|
#endif
|
313 |
|
|
|
314 |
|
|
/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
|
315 |
|
|
{ 256, 205, 155, 101, 52, 1 },
|
316 |
|
|
|
317 |
|
|
/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
|
318 |
|
|
{ 128, 103, 76, 51, 25, 1 },
|
319 |
|
|
#if 0 /* Alternate polynomial */
|
320 |
|
|
/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
|
321 |
|
|
{ 128, 103, 78, 51, 27, 2 },
|
322 |
|
|
#endif
|
323 |
|
|
|
324 |
|
|
/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
|
325 |
|
|
{ 64, 52, 39, 26, 14, 1 },
|
326 |
|
|
|
327 |
|
|
/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
|
328 |
|
|
{ 32, 26, 20, 14, 7, 1 },
|
329 |
|
|
|
330 |
|
|
{ 0, 0, 0, 0, 0, 0 },
|
331 |
|
|
};
|
332 |
|
|
|
333 |
|
|
#define POOLBITS poolwords*32
|
334 |
|
|
#define POOLBYTES poolwords*4
|
335 |
|
|
|
336 |
|
|
/*
|
337 |
|
|
* For the purposes of better mixing, we use the CRC-32 polynomial as
|
338 |
|
|
* well to make a twisted Generalized Feedback Shift Reigster
|
339 |
|
|
*
|
340 |
|
|
* (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
|
341 |
|
|
* Transactions on Modeling and Computer Simulation 2(3):179-194.
|
342 |
|
|
* Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
|
343 |
|
|
* II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
|
344 |
|
|
*
|
345 |
|
|
* Thanks to Colin Plumb for suggesting this.
|
346 |
|
|
*
|
347 |
|
|
* We have not analyzed the resultant polynomial to prove it primitive;
|
348 |
|
|
* in fact it almost certainly isn't. Nonetheless, the irreducible factors
|
349 |
|
|
* of a random large-degree polynomial over GF(2) are more than large enough
|
350 |
|
|
* that periodicity is not a concern.
|
351 |
|
|
*
|
352 |
|
|
* The input hash is much less sensitive than the output hash. All
|
353 |
|
|
* that we want of it is that it be a good non-cryptographic hash;
|
354 |
|
|
* i.e. it not produce collisions when fed "random" data of the sort
|
355 |
|
|
* we expect to see. As long as the pool state differs for different
|
356 |
|
|
* inputs, we have preserved the input entropy and done a good job.
|
357 |
|
|
* The fact that an intelligent attacker can construct inputs that
|
358 |
|
|
* will produce controlled alterations to the pool's state is not
|
359 |
|
|
* important because we don't consider such inputs to contribute any
|
360 |
|
|
* randomness. The only property we need with respect to them is that
|
361 |
|
|
* the attacker can't increase his/her knowledge of the pool's state.
|
362 |
|
|
* Since all additions are reversible (knowing the final state and the
|
363 |
|
|
* input, you can reconstruct the initial state), if an attacker has
|
364 |
|
|
* any uncertainty about the initial state, he/she can only shuffle
|
365 |
|
|
* that uncertainty about, but never cause any collisions (which would
|
366 |
|
|
* decrease the uncertainty).
|
367 |
|
|
*
|
368 |
|
|
* The chosen system lets the state of the pool be (essentially) the input
|
369 |
|
|
* modulo the generator polymnomial. Now, for random primitive polynomials,
|
370 |
|
|
* this is a universal class of hash functions, meaning that the chance
|
371 |
|
|
* of a collision is limited by the attacker's knowledge of the generator
|
372 |
|
|
* polynomail, so if it is chosen at random, an attacker can never force
|
373 |
|
|
* a collision. Here, we use a fixed polynomial, but we *can* assume that
|
374 |
|
|
* ###--> it is unknown to the processes generating the input entropy. <-###
|
375 |
|
|
* Because of this important property, this is a good, collision-resistant
|
376 |
|
|
* hash; hash collisions will occur no more often than chance.
|
377 |
|
|
*/
|
378 |
|
|
|
379 |
|
|
/*
|
380 |
|
|
* Linux 2.2 compatibility
|
381 |
|
|
*/
|
382 |
|
|
#ifndef DECLARE_WAITQUEUE
|
383 |
|
|
#define DECLARE_WAITQUEUE(WAIT, PTR) struct wait_queue WAIT = { PTR, NULL }
|
384 |
|
|
#endif
|
385 |
|
|
#ifndef DECLARE_WAIT_QUEUE_HEAD
|
386 |
|
|
#define DECLARE_WAIT_QUEUE_HEAD(WAIT) struct wait_queue *WAIT
|
387 |
|
|
#endif
|
388 |
|
|
|
389 |
|
|
/*
|
390 |
|
|
* Static global variables
|
391 |
|
|
*/
|
392 |
|
|
static struct entropy_store *random_state; /* The default global store */
|
393 |
|
|
static struct entropy_store *sec_random_state; /* secondary store */
|
394 |
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
|
395 |
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
396 |
|
|
|
397 |
|
|
/*
|
398 |
|
|
* Forward procedure declarations
|
399 |
|
|
*/
|
400 |
|
|
#ifdef CONFIG_SYSCTL
|
401 |
|
|
static void sysctl_init_random(struct entropy_store *random_state);
|
402 |
|
|
#endif
|
403 |
|
|
|
404 |
|
|
/*****************************************************************
|
405 |
|
|
*
|
406 |
|
|
* Utility functions, with some ASM defined functions for speed
|
407 |
|
|
* purposes
|
408 |
|
|
*
|
409 |
|
|
*****************************************************************/
|
410 |
|
|
|
411 |
|
|
/*
|
412 |
|
|
* Unfortunately, while the GCC optimizer for the i386 understands how
|
413 |
|
|
* to optimize a static rotate left of x bits, it doesn't know how to
|
414 |
|
|
* deal with a variable rotate of x bits. So we use a bit of asm magic.
|
415 |
|
|
*/
|
416 |
|
|
#if (!defined (__i386__))
|
417 |
|
|
static inline __u32 rotate_left(int i, __u32 word)
|
418 |
|
|
{
|
419 |
|
|
return (word << i) | (word >> (32 - i));
|
420 |
|
|
|
421 |
|
|
}
|
422 |
|
|
#else
|
423 |
|
|
static inline __u32 rotate_left(int i, __u32 word)
|
424 |
|
|
{
|
425 |
|
|
__asm__("roll %%cl,%0"
|
426 |
|
|
:"=r" (word)
|
427 |
|
|
:"0" (word),"c" (i));
|
428 |
|
|
return word;
|
429 |
|
|
}
|
430 |
|
|
#endif
|
431 |
|
|
|
432 |
|
|
/*
|
433 |
|
|
* More asm magic....
|
434 |
|
|
*
|
435 |
|
|
* For entropy estimation, we need to do an integral base 2
|
436 |
|
|
* logarithm.
|
437 |
|
|
*
|
438 |
|
|
* Note the "12bits" suffix - this is used for numbers between
|
439 |
|
|
* 0 and 4095 only. This allows a few shortcuts.
|
440 |
|
|
*/
|
441 |
|
|
#if 0 /* Slow but clear version */
|
442 |
|
|
static inline __u32 int_ln_12bits(__u32 word)
|
443 |
|
|
{
|
444 |
|
|
__u32 nbits = 0;
|
445 |
|
|
|
446 |
|
|
while (word >>= 1)
|
447 |
|
|
nbits++;
|
448 |
|
|
return nbits;
|
449 |
|
|
}
|
450 |
|
|
#else /* Faster (more clever) version, courtesy Colin Plumb */
|
451 |
|
|
static inline __u32 int_ln_12bits(__u32 word)
|
452 |
|
|
{
|
453 |
|
|
/* Smear msbit right to make an n-bit mask */
|
454 |
|
|
word |= word >> 8;
|
455 |
|
|
word |= word >> 4;
|
456 |
|
|
word |= word >> 2;
|
457 |
|
|
word |= word >> 1;
|
458 |
|
|
/* Remove one bit to make this a logarithm */
|
459 |
|
|
word >>= 1;
|
460 |
|
|
/* Count the bits set in the word */
|
461 |
|
|
word -= (word >> 1) & 0x555;
|
462 |
|
|
word = (word & 0x333) + ((word >> 2) & 0x333);
|
463 |
|
|
word += (word >> 4);
|
464 |
|
|
word += (word >> 8);
|
465 |
|
|
return word & 15;
|
466 |
|
|
}
|
467 |
|
|
#endif
|
468 |
|
|
|
469 |
|
|
#if 0
|
470 |
|
|
#define DEBUG_ENT(fmt, arg...) printk(KERN_DEBUG "random: " fmt, ## arg)
|
471 |
|
|
#else
|
472 |
|
|
#define DEBUG_ENT(fmt, arg...) do {} while (0)
|
473 |
|
|
#endif
|
474 |
|
|
|
475 |
|
|
/**********************************************************************
|
476 |
|
|
*
|
477 |
|
|
* OS independent entropy store. Here are the functions which handle
|
478 |
|
|
* storing entropy in an entropy pool.
|
479 |
|
|
*
|
480 |
|
|
**********************************************************************/
|
481 |
|
|
|
482 |
|
|
struct entropy_store {
|
483 |
|
|
unsigned add_ptr;
|
484 |
|
|
int entropy_count;
|
485 |
|
|
int input_rotate;
|
486 |
|
|
int extract_count;
|
487 |
|
|
struct poolinfo poolinfo;
|
488 |
|
|
__u32 *pool;
|
489 |
|
|
};
|
490 |
|
|
|
491 |
|
|
/*
|
492 |
|
|
* Initialize the entropy store. The input argument is the size of
|
493 |
|
|
* the random pool.
|
494 |
|
|
*
|
495 |
|
|
* Returns an negative error if there is a problem.
|
496 |
|
|
*/
|
497 |
|
|
static int create_entropy_store(int size, struct entropy_store **ret_bucket)
|
498 |
|
|
{
|
499 |
|
|
struct entropy_store *r;
|
500 |
|
|
struct poolinfo *p;
|
501 |
|
|
int poolwords;
|
502 |
|
|
|
503 |
|
|
poolwords = (size + 3) / 4; /* Convert bytes->words */
|
504 |
|
|
/* The pool size must be a multiple of 16 32-bit words */
|
505 |
|
|
poolwords = ((poolwords + 15) / 16) * 16;
|
506 |
|
|
|
507 |
|
|
for (p = poolinfo_table; p->poolwords; p++) {
|
508 |
|
|
if (poolwords == p->poolwords)
|
509 |
|
|
break;
|
510 |
|
|
}
|
511 |
|
|
if (p->poolwords == 0)
|
512 |
|
|
return -EINVAL;
|
513 |
|
|
|
514 |
|
|
r = kmalloc(sizeof(struct entropy_store), GFP_KERNEL);
|
515 |
|
|
if (!r)
|
516 |
|
|
return -ENOMEM;
|
517 |
|
|
|
518 |
|
|
memset (r, 0, sizeof(struct entropy_store));
|
519 |
|
|
r->poolinfo = *p;
|
520 |
|
|
|
521 |
|
|
r->pool = kmalloc(POOLBYTES, GFP_KERNEL);
|
522 |
|
|
if (!r->pool) {
|
523 |
|
|
kfree(r);
|
524 |
|
|
return -ENOMEM;
|
525 |
|
|
}
|
526 |
|
|
memset(r->pool, 0, POOLBYTES);
|
527 |
|
|
*ret_bucket = r;
|
528 |
|
|
return 0;
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
/* Clear the entropy pool and associated counters. */
|
532 |
|
|
static void clear_entropy_store(struct entropy_store *r)
|
533 |
|
|
{
|
534 |
|
|
r->add_ptr = 0;
|
535 |
|
|
r->entropy_count = 0;
|
536 |
|
|
r->input_rotate = 0;
|
537 |
|
|
r->extract_count = 0;
|
538 |
|
|
memset(r->pool, 0, r->poolinfo.POOLBYTES);
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
static void free_entropy_store(struct entropy_store *r)
|
542 |
|
|
{
|
543 |
|
|
if (r->pool)
|
544 |
|
|
kfree(r->pool);
|
545 |
|
|
kfree(r);
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
/*
|
549 |
|
|
* This function adds a byte into the entropy "pool". It does not
|
550 |
|
|
* update the entropy estimate. The caller should call
|
551 |
|
|
* credit_entropy_store if this is appropriate.
|
552 |
|
|
*
|
553 |
|
|
* The pool is stirred with a primitive polynomial of the appropriate
|
554 |
|
|
* degree, and then twisted. We twist by three bits at a time because
|
555 |
|
|
* it's cheap to do so and helps slightly in the expected case where
|
556 |
|
|
* the entropy is concentrated in the low-order bits.
|
557 |
|
|
*/
|
558 |
|
|
static void add_entropy_words(struct entropy_store *r, const __u32 *in,
|
559 |
|
|
int nwords)
|
560 |
|
|
{
|
561 |
|
|
static __u32 const twist_table[8] = {
|
562 |
|
|
0, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
|
563 |
|
|
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
|
564 |
|
|
unsigned i;
|
565 |
|
|
int new_rotate;
|
566 |
|
|
int wordmask = r->poolinfo.poolwords - 1;
|
567 |
|
|
__u32 w;
|
568 |
|
|
|
569 |
|
|
while (nwords--) {
|
570 |
|
|
w = rotate_left(r->input_rotate, *in++);
|
571 |
|
|
i = r->add_ptr = (r->add_ptr - 1) & wordmask;
|
572 |
|
|
/*
|
573 |
|
|
* Normally, we add 7 bits of rotation to the pool.
|
574 |
|
|
* At the beginning of the pool, add an extra 7 bits
|
575 |
|
|
* rotation, so that successive passes spread the
|
576 |
|
|
* input bits across the pool evenly.
|
577 |
|
|
*/
|
578 |
|
|
new_rotate = r->input_rotate + 14;
|
579 |
|
|
if (i)
|
580 |
|
|
new_rotate = r->input_rotate + 7;
|
581 |
|
|
r->input_rotate = new_rotate & 31;
|
582 |
|
|
|
583 |
|
|
/* XOR in the various taps */
|
584 |
|
|
w ^= r->pool[(i + r->poolinfo.tap1) & wordmask];
|
585 |
|
|
w ^= r->pool[(i + r->poolinfo.tap2) & wordmask];
|
586 |
|
|
w ^= r->pool[(i + r->poolinfo.tap3) & wordmask];
|
587 |
|
|
w ^= r->pool[(i + r->poolinfo.tap4) & wordmask];
|
588 |
|
|
w ^= r->pool[(i + r->poolinfo.tap5) & wordmask];
|
589 |
|
|
w ^= r->pool[i];
|
590 |
|
|
r->pool[i] = (w >> 3) ^ twist_table[w & 7];
|
591 |
|
|
}
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
/*
|
595 |
|
|
* Credit (or debit) the entropy store with n bits of entropy
|
596 |
|
|
*/
|
597 |
|
|
static void credit_entropy_store(struct entropy_store *r, int nbits)
|
598 |
|
|
{
|
599 |
|
|
if (r->entropy_count + nbits < 0) {
|
600 |
|
|
DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
|
601 |
|
|
r->entropy_count, nbits);
|
602 |
|
|
r->entropy_count = 0;
|
603 |
|
|
} else if (r->entropy_count + nbits > r->poolinfo.POOLBITS) {
|
604 |
|
|
r->entropy_count = r->poolinfo.POOLBITS;
|
605 |
|
|
} else {
|
606 |
|
|
r->entropy_count += nbits;
|
607 |
|
|
if (nbits)
|
608 |
|
|
DEBUG_ENT("%s added %d bits, now %d\n",
|
609 |
|
|
r == sec_random_state ? "secondary" :
|
610 |
|
|
r == random_state ? "primary" : "unknown",
|
611 |
|
|
nbits, r->entropy_count);
|
612 |
|
|
}
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/**********************************************************************
|
616 |
|
|
*
|
617 |
|
|
* Entropy batch input management
|
618 |
|
|
*
|
619 |
|
|
* We batch entropy to be added to avoid increasing interrupt latency
|
620 |
|
|
*
|
621 |
|
|
**********************************************************************/
|
622 |
|
|
|
623 |
|
|
static __u32 *batch_entropy_pool;
|
624 |
|
|
static int *batch_entropy_credit;
|
625 |
|
|
static int batch_max;
|
626 |
|
|
static int batch_head, batch_tail;
|
627 |
|
|
static struct tq_struct batch_tqueue;
|
628 |
|
|
static void batch_entropy_process(void *private_);
|
629 |
|
|
|
630 |
|
|
/* note: the size must be a power of 2 */
|
631 |
|
|
static int __init batch_entropy_init(int size, struct entropy_store *r)
|
632 |
|
|
{
|
633 |
|
|
batch_entropy_pool = kmalloc(2*size*sizeof(__u32), GFP_KERNEL);
|
634 |
|
|
if (!batch_entropy_pool)
|
635 |
|
|
return -1;
|
636 |
|
|
batch_entropy_credit =kmalloc(size*sizeof(int), GFP_KERNEL);
|
637 |
|
|
if (!batch_entropy_credit) {
|
638 |
|
|
kfree(batch_entropy_pool);
|
639 |
|
|
return -1;
|
640 |
|
|
}
|
641 |
|
|
batch_head = batch_tail = 0;
|
642 |
|
|
batch_max = size;
|
643 |
|
|
batch_tqueue.routine = batch_entropy_process;
|
644 |
|
|
batch_tqueue.data = r;
|
645 |
|
|
return 0;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
/*
|
649 |
|
|
* Changes to the entropy data is put into a queue rather than being added to
|
650 |
|
|
* the entropy counts directly. This is presumably to avoid doing heavy
|
651 |
|
|
* hashing calculations during an interrupt in add_timer_randomness().
|
652 |
|
|
* Instead, the entropy is only added to the pool once per timer tick.
|
653 |
|
|
*/
|
654 |
|
|
void batch_entropy_store(u32 a, u32 b, int num)
|
655 |
|
|
{
|
656 |
|
|
int new;
|
657 |
|
|
|
658 |
|
|
if (!batch_max)
|
659 |
|
|
return;
|
660 |
|
|
|
661 |
|
|
batch_entropy_pool[2*batch_head] = a;
|
662 |
|
|
batch_entropy_pool[(2*batch_head) + 1] = b;
|
663 |
|
|
batch_entropy_credit[batch_head] = num;
|
664 |
|
|
|
665 |
|
|
new = (batch_head+1) & (batch_max-1);
|
666 |
|
|
if (new != batch_tail) {
|
667 |
|
|
queue_task(&batch_tqueue, &tq_timer);
|
668 |
|
|
batch_head = new;
|
669 |
|
|
} else {
|
670 |
|
|
DEBUG_ENT("batch entropy buffer full\n");
|
671 |
|
|
}
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
/*
|
675 |
|
|
* Flush out the accumulated entropy operations, adding entropy to the passed
|
676 |
|
|
* store (normally random_state). If that store has enough entropy, alternate
|
677 |
|
|
* between randomizing the data of the primary and secondary stores.
|
678 |
|
|
*/
|
679 |
|
|
static void batch_entropy_process(void *private_)
|
680 |
|
|
{
|
681 |
|
|
struct entropy_store *r = (struct entropy_store *) private_, *p;
|
682 |
|
|
int max_entropy = r->poolinfo.POOLBITS;
|
683 |
|
|
|
684 |
|
|
if (!batch_max)
|
685 |
|
|
return;
|
686 |
|
|
|
687 |
|
|
p = r;
|
688 |
|
|
while (batch_head != batch_tail) {
|
689 |
|
|
if (r->entropy_count >= max_entropy) {
|
690 |
|
|
r = (r == sec_random_state) ? random_state :
|
691 |
|
|
sec_random_state;
|
692 |
|
|
max_entropy = r->poolinfo.POOLBITS;
|
693 |
|
|
}
|
694 |
|
|
add_entropy_words(r, batch_entropy_pool + 2*batch_tail, 2);
|
695 |
|
|
credit_entropy_store(r, batch_entropy_credit[batch_tail]);
|
696 |
|
|
batch_tail = (batch_tail+1) & (batch_max-1);
|
697 |
|
|
}
|
698 |
|
|
if (p->entropy_count >= random_read_wakeup_thresh)
|
699 |
|
|
wake_up_interruptible(&random_read_wait);
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
/*********************************************************************
|
703 |
|
|
*
|
704 |
|
|
* Entropy input management
|
705 |
|
|
*
|
706 |
|
|
*********************************************************************/
|
707 |
|
|
|
708 |
|
|
/* There is one of these per entropy source */
|
709 |
|
|
struct timer_rand_state {
|
710 |
|
|
__u32 last_time;
|
711 |
|
|
__s32 last_delta,last_delta2;
|
712 |
|
|
int dont_count_entropy:1;
|
713 |
|
|
};
|
714 |
|
|
|
715 |
|
|
static struct timer_rand_state keyboard_timer_state;
|
716 |
|
|
static struct timer_rand_state mouse_timer_state;
|
717 |
|
|
static struct timer_rand_state extract_timer_state;
|
718 |
|
|
#ifndef CONFIG_ARCH_S390
|
719 |
|
|
static struct timer_rand_state *irq_timer_state[NR_IRQS];
|
720 |
|
|
#endif
|
721 |
|
|
static struct timer_rand_state *blkdev_timer_state[MAX_BLKDEV];
|
722 |
|
|
|
723 |
|
|
/*
|
724 |
|
|
* This function adds entropy to the entropy "pool" by using timing
|
725 |
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
726 |
|
|
* of how many bits of entropy this call has added to the pool.
|
727 |
|
|
*
|
728 |
|
|
* The number "num" is also added to the pool - it should somehow describe
|
729 |
|
|
* the type of event which just happened. This is currently 0-255 for
|
730 |
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
731 |
|
|
* On the i386, this is assumed to be at most 16 bits, and the high bits
|
732 |
|
|
* are used for a high-resolution timer.
|
733 |
|
|
*
|
734 |
|
|
*/
|
735 |
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
|
736 |
|
|
{
|
737 |
|
|
__u32 time;
|
738 |
|
|
__s32 delta, delta2, delta3;
|
739 |
|
|
int entropy = 0;
|
740 |
|
|
|
741 |
|
|
#if defined (__i386__)
|
742 |
|
|
if (cpu_has_tsc) {
|
743 |
|
|
__u32 high;
|
744 |
|
|
rdtsc(time, high);
|
745 |
|
|
num ^= high;
|
746 |
|
|
} else {
|
747 |
|
|
time = jiffies;
|
748 |
|
|
}
|
749 |
|
|
#elif defined (__x86_64__)
|
750 |
|
|
__u32 high;
|
751 |
|
|
rdtsc(time, high);
|
752 |
|
|
num ^= high;
|
753 |
|
|
#else
|
754 |
|
|
time = jiffies;
|
755 |
|
|
#endif
|
756 |
|
|
|
757 |
|
|
/*
|
758 |
|
|
* Calculate number of bits of randomness we probably added.
|
759 |
|
|
* We take into account the first, second and third-order deltas
|
760 |
|
|
* in order to make our estimate.
|
761 |
|
|
*/
|
762 |
|
|
if (!state->dont_count_entropy) {
|
763 |
|
|
delta = time - state->last_time;
|
764 |
|
|
state->last_time = time;
|
765 |
|
|
|
766 |
|
|
delta2 = delta - state->last_delta;
|
767 |
|
|
state->last_delta = delta;
|
768 |
|
|
|
769 |
|
|
delta3 = delta2 - state->last_delta2;
|
770 |
|
|
state->last_delta2 = delta2;
|
771 |
|
|
|
772 |
|
|
if (delta < 0)
|
773 |
|
|
delta = -delta;
|
774 |
|
|
if (delta2 < 0)
|
775 |
|
|
delta2 = -delta2;
|
776 |
|
|
if (delta3 < 0)
|
777 |
|
|
delta3 = -delta3;
|
778 |
|
|
if (delta > delta2)
|
779 |
|
|
delta = delta2;
|
780 |
|
|
if (delta > delta3)
|
781 |
|
|
delta = delta3;
|
782 |
|
|
|
783 |
|
|
/*
|
784 |
|
|
* delta is now minimum absolute delta.
|
785 |
|
|
* Round down by 1 bit on general principles,
|
786 |
|
|
* and limit entropy entimate to 12 bits.
|
787 |
|
|
*/
|
788 |
|
|
delta >>= 1;
|
789 |
|
|
delta &= (1 << 12) - 1;
|
790 |
|
|
|
791 |
|
|
entropy = int_ln_12bits(delta);
|
792 |
|
|
}
|
793 |
|
|
batch_entropy_store(num, time, entropy);
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
#ifndef CONFIG_ARCH_S390
|
797 |
|
|
void add_keyboard_randomness(unsigned char scancode)
|
798 |
|
|
{
|
799 |
|
|
static unsigned char last_scancode;
|
800 |
|
|
/* ignore autorepeat (multiple key down w/o key up) */
|
801 |
|
|
if (scancode != last_scancode) {
|
802 |
|
|
last_scancode = scancode;
|
803 |
|
|
add_timer_randomness(&keyboard_timer_state, scancode);
|
804 |
|
|
}
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
void add_mouse_randomness(__u32 mouse_data)
|
808 |
|
|
{
|
809 |
|
|
add_timer_randomness(&mouse_timer_state, mouse_data);
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
void add_interrupt_randomness(int irq)
|
813 |
|
|
{
|
814 |
|
|
if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
|
815 |
|
|
return;
|
816 |
|
|
|
817 |
|
|
add_timer_randomness(irq_timer_state[irq], 0x100+irq);
|
818 |
|
|
}
|
819 |
|
|
#endif
|
820 |
|
|
|
821 |
|
|
void add_blkdev_randomness(int major)
|
822 |
|
|
{
|
823 |
|
|
if (major >= MAX_BLKDEV)
|
824 |
|
|
return;
|
825 |
|
|
|
826 |
|
|
if (blkdev_timer_state[major] == 0) {
|
827 |
|
|
rand_initialize_blkdev(major, GFP_ATOMIC);
|
828 |
|
|
if (blkdev_timer_state[major] == 0)
|
829 |
|
|
return;
|
830 |
|
|
}
|
831 |
|
|
|
832 |
|
|
add_timer_randomness(blkdev_timer_state[major], 0x200+major);
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
/******************************************************************
|
836 |
|
|
*
|
837 |
|
|
* Hash function definition
|
838 |
|
|
*
|
839 |
|
|
*******************************************************************/
|
840 |
|
|
|
841 |
|
|
/*
|
842 |
|
|
* This chunk of code defines a function
|
843 |
|
|
* void HASH_TRANSFORM(__u32 digest[HASH_BUFFER_SIZE + HASH_EXTRA_SIZE],
|
844 |
|
|
* __u32 const data[16])
|
845 |
|
|
*
|
846 |
|
|
* The function hashes the input data to produce a digest in the first
|
847 |
|
|
* HASH_BUFFER_SIZE words of the digest[] array, and uses HASH_EXTRA_SIZE
|
848 |
|
|
* more words for internal purposes. (This buffer is exported so the
|
849 |
|
|
* caller can wipe it once rather than this code doing it each call,
|
850 |
|
|
* and tacking it onto the end of the digest[] array is the quick and
|
851 |
|
|
* dirty way of doing it.)
|
852 |
|
|
*
|
853 |
|
|
* It so happens that MD5 and SHA share most of the initial vector
|
854 |
|
|
* used to initialize the digest[] array before the first call:
|
855 |
|
|
* 1) 0x67452301
|
856 |
|
|
* 2) 0xefcdab89
|
857 |
|
|
* 3) 0x98badcfe
|
858 |
|
|
* 4) 0x10325476
|
859 |
|
|
* 5) 0xc3d2e1f0 (SHA only)
|
860 |
|
|
*
|
861 |
|
|
* For /dev/random purposes, the length of the data being hashed is
|
862 |
|
|
* fixed in length, so appending a bit count in the usual way is not
|
863 |
|
|
* cryptographically necessary.
|
864 |
|
|
*/
|
865 |
|
|
|
866 |
|
|
#ifdef USE_SHA
|
867 |
|
|
|
868 |
|
|
#define HASH_BUFFER_SIZE 5
|
869 |
|
|
#define HASH_EXTRA_SIZE 80
|
870 |
|
|
#define HASH_TRANSFORM SHATransform
|
871 |
|
|
|
872 |
|
|
/* Various size/speed tradeoffs are available. Choose 0..3. */
|
873 |
|
|
#define SHA_CODE_SIZE 0
|
874 |
|
|
|
875 |
|
|
/*
|
876 |
|
|
* SHA transform algorithm, taken from code written by Peter Gutmann,
|
877 |
|
|
* and placed in the public domain.
|
878 |
|
|
*/
|
879 |
|
|
|
880 |
|
|
/* The SHA f()-functions. */
|
881 |
|
|
|
882 |
|
|
#define f1(x,y,z) ( z ^ (x & (y^z)) ) /* Rounds 0-19: x ? y : z */
|
883 |
|
|
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39: XOR */
|
884 |
|
|
#define f3(x,y,z) ( (x & y) + (z & (x ^ y)) ) /* Rounds 40-59: majority */
|
885 |
|
|
#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79: XOR */
|
886 |
|
|
|
887 |
|
|
/* The SHA Mysterious Constants */
|
888 |
|
|
|
889 |
|
|
#define K1 0x5A827999L /* Rounds 0-19: sqrt(2) * 2^30 */
|
890 |
|
|
#define K2 0x6ED9EBA1L /* Rounds 20-39: sqrt(3) * 2^30 */
|
891 |
|
|
#define K3 0x8F1BBCDCL /* Rounds 40-59: sqrt(5) * 2^30 */
|
892 |
|
|
#define K4 0xCA62C1D6L /* Rounds 60-79: sqrt(10) * 2^30 */
|
893 |
|
|
|
894 |
|
|
#define ROTL(n,X) ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
|
895 |
|
|
|
896 |
|
|
#define subRound(a, b, c, d, e, f, k, data) \
|
897 |
|
|
( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
|
898 |
|
|
|
899 |
|
|
|
900 |
|
|
static void SHATransform(__u32 digest[85], __u32 const data[16])
|
901 |
|
|
{
|
902 |
|
|
__u32 A, B, C, D, E; /* Local vars */
|
903 |
|
|
__u32 TEMP;
|
904 |
|
|
int i;
|
905 |
|
|
#define W (digest + HASH_BUFFER_SIZE) /* Expanded data array */
|
906 |
|
|
|
907 |
|
|
/*
|
908 |
|
|
* Do the preliminary expansion of 16 to 80 words. Doing it
|
909 |
|
|
* out-of-line line this is faster than doing it in-line on
|
910 |
|
|
* register-starved machines like the x86, and not really any
|
911 |
|
|
* slower on real processors.
|
912 |
|
|
*/
|
913 |
|
|
memcpy(W, data, 16*sizeof(__u32));
|
914 |
|
|
for (i = 0; i < 64; i++) {
|
915 |
|
|
TEMP = W[i] ^ W[i+2] ^ W[i+8] ^ W[i+13];
|
916 |
|
|
W[i+16] = ROTL(1, TEMP);
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
/* Set up first buffer and local data buffer */
|
920 |
|
|
A = digest[ 0 ];
|
921 |
|
|
B = digest[ 1 ];
|
922 |
|
|
C = digest[ 2 ];
|
923 |
|
|
D = digest[ 3 ];
|
924 |
|
|
E = digest[ 4 ];
|
925 |
|
|
|
926 |
|
|
/* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
|
927 |
|
|
#if SHA_CODE_SIZE == 0
|
928 |
|
|
/*
|
929 |
|
|
* Approximately 50% of the speed of the largest version, but
|
930 |
|
|
* takes up 1/16 the space. Saves about 6k on an i386 kernel.
|
931 |
|
|
*/
|
932 |
|
|
for (i = 0; i < 80; i++) {
|
933 |
|
|
if (i < 40) {
|
934 |
|
|
if (i < 20)
|
935 |
|
|
TEMP = f1(B, C, D) + K1;
|
936 |
|
|
else
|
937 |
|
|
TEMP = f2(B, C, D) + K2;
|
938 |
|
|
} else {
|
939 |
|
|
if (i < 60)
|
940 |
|
|
TEMP = f3(B, C, D) + K3;
|
941 |
|
|
else
|
942 |
|
|
TEMP = f4(B, C, D) + K4;
|
943 |
|
|
}
|
944 |
|
|
TEMP += ROTL(5, A) + E + W[i];
|
945 |
|
|
E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
|
946 |
|
|
}
|
947 |
|
|
#elif SHA_CODE_SIZE == 1
|
948 |
|
|
for (i = 0; i < 20; i++) {
|
949 |
|
|
TEMP = f1(B, C, D) + K1 + ROTL(5, A) + E + W[i];
|
950 |
|
|
E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
|
951 |
|
|
}
|
952 |
|
|
for (; i < 40; i++) {
|
953 |
|
|
TEMP = f2(B, C, D) + K2 + ROTL(5, A) + E + W[i];
|
954 |
|
|
E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
|
955 |
|
|
}
|
956 |
|
|
for (; i < 60; i++) {
|
957 |
|
|
TEMP = f3(B, C, D) + K3 + ROTL(5, A) + E + W[i];
|
958 |
|
|
E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
|
959 |
|
|
}
|
960 |
|
|
for (; i < 80; i++) {
|
961 |
|
|
TEMP = f4(B, C, D) + K4 + ROTL(5, A) + E + W[i];
|
962 |
|
|
E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
|
963 |
|
|
}
|
964 |
|
|
#elif SHA_CODE_SIZE == 2
|
965 |
|
|
for (i = 0; i < 20; i += 5) {
|
966 |
|
|
subRound( A, B, C, D, E, f1, K1, W[ i ] );
|
967 |
|
|
subRound( E, A, B, C, D, f1, K1, W[ i+1 ] );
|
968 |
|
|
subRound( D, E, A, B, C, f1, K1, W[ i+2 ] );
|
969 |
|
|
subRound( C, D, E, A, B, f1, K1, W[ i+3 ] );
|
970 |
|
|
subRound( B, C, D, E, A, f1, K1, W[ i+4 ] );
|
971 |
|
|
}
|
972 |
|
|
for (; i < 40; i += 5) {
|
973 |
|
|
subRound( A, B, C, D, E, f2, K2, W[ i ] );
|
974 |
|
|
subRound( E, A, B, C, D, f2, K2, W[ i+1 ] );
|
975 |
|
|
subRound( D, E, A, B, C, f2, K2, W[ i+2 ] );
|
976 |
|
|
subRound( C, D, E, A, B, f2, K2, W[ i+3 ] );
|
977 |
|
|
subRound( B, C, D, E, A, f2, K2, W[ i+4 ] );
|
978 |
|
|
}
|
979 |
|
|
for (; i < 60; i += 5) {
|
980 |
|
|
subRound( A, B, C, D, E, f3, K3, W[ i ] );
|
981 |
|
|
subRound( E, A, B, C, D, f3, K3, W[ i+1 ] );
|
982 |
|
|
subRound( D, E, A, B, C, f3, K3, W[ i+2 ] );
|
983 |
|
|
subRound( C, D, E, A, B, f3, K3, W[ i+3 ] );
|
984 |
|
|
subRound( B, C, D, E, A, f3, K3, W[ i+4 ] );
|
985 |
|
|
}
|
986 |
|
|
for (; i < 80; i += 5) {
|
987 |
|
|
subRound( A, B, C, D, E, f4, K4, W[ i ] );
|
988 |
|
|
subRound( E, A, B, C, D, f4, K4, W[ i+1 ] );
|
989 |
|
|
subRound( D, E, A, B, C, f4, K4, W[ i+2 ] );
|
990 |
|
|
subRound( C, D, E, A, B, f4, K4, W[ i+3 ] );
|
991 |
|
|
subRound( B, C, D, E, A, f4, K4, W[ i+4 ] );
|
992 |
|
|
}
|
993 |
|
|
#elif SHA_CODE_SIZE == 3 /* Really large version */
|
994 |
|
|
subRound( A, B, C, D, E, f1, K1, W[ 0 ] );
|
995 |
|
|
subRound( E, A, B, C, D, f1, K1, W[ 1 ] );
|
996 |
|
|
subRound( D, E, A, B, C, f1, K1, W[ 2 ] );
|
997 |
|
|
subRound( C, D, E, A, B, f1, K1, W[ 3 ] );
|
998 |
|
|
subRound( B, C, D, E, A, f1, K1, W[ 4 ] );
|
999 |
|
|
subRound( A, B, C, D, E, f1, K1, W[ 5 ] );
|
1000 |
|
|
subRound( E, A, B, C, D, f1, K1, W[ 6 ] );
|
1001 |
|
|
subRound( D, E, A, B, C, f1, K1, W[ 7 ] );
|
1002 |
|
|
subRound( C, D, E, A, B, f1, K1, W[ 8 ] );
|
1003 |
|
|
subRound( B, C, D, E, A, f1, K1, W[ 9 ] );
|
1004 |
|
|
subRound( A, B, C, D, E, f1, K1, W[ 10 ] );
|
1005 |
|
|
subRound( E, A, B, C, D, f1, K1, W[ 11 ] );
|
1006 |
|
|
subRound( D, E, A, B, C, f1, K1, W[ 12 ] );
|
1007 |
|
|
subRound( C, D, E, A, B, f1, K1, W[ 13 ] );
|
1008 |
|
|
subRound( B, C, D, E, A, f1, K1, W[ 14 ] );
|
1009 |
|
|
subRound( A, B, C, D, E, f1, K1, W[ 15 ] );
|
1010 |
|
|
subRound( E, A, B, C, D, f1, K1, W[ 16 ] );
|
1011 |
|
|
subRound( D, E, A, B, C, f1, K1, W[ 17 ] );
|
1012 |
|
|
subRound( C, D, E, A, B, f1, K1, W[ 18 ] );
|
1013 |
|
|
subRound( B, C, D, E, A, f1, K1, W[ 19 ] );
|
1014 |
|
|
|
1015 |
|
|
subRound( A, B, C, D, E, f2, K2, W[ 20 ] );
|
1016 |
|
|
subRound( E, A, B, C, D, f2, K2, W[ 21 ] );
|
1017 |
|
|
subRound( D, E, A, B, C, f2, K2, W[ 22 ] );
|
1018 |
|
|
subRound( C, D, E, A, B, f2, K2, W[ 23 ] );
|
1019 |
|
|
subRound( B, C, D, E, A, f2, K2, W[ 24 ] );
|
1020 |
|
|
subRound( A, B, C, D, E, f2, K2, W[ 25 ] );
|
1021 |
|
|
subRound( E, A, B, C, D, f2, K2, W[ 26 ] );
|
1022 |
|
|
subRound( D, E, A, B, C, f2, K2, W[ 27 ] );
|
1023 |
|
|
subRound( C, D, E, A, B, f2, K2, W[ 28 ] );
|
1024 |
|
|
subRound( B, C, D, E, A, f2, K2, W[ 29 ] );
|
1025 |
|
|
subRound( A, B, C, D, E, f2, K2, W[ 30 ] );
|
1026 |
|
|
subRound( E, A, B, C, D, f2, K2, W[ 31 ] );
|
1027 |
|
|
subRound( D, E, A, B, C, f2, K2, W[ 32 ] );
|
1028 |
|
|
subRound( C, D, E, A, B, f2, K2, W[ 33 ] );
|
1029 |
|
|
subRound( B, C, D, E, A, f2, K2, W[ 34 ] );
|
1030 |
|
|
subRound( A, B, C, D, E, f2, K2, W[ 35 ] );
|
1031 |
|
|
subRound( E, A, B, C, D, f2, K2, W[ 36 ] );
|
1032 |
|
|
subRound( D, E, A, B, C, f2, K2, W[ 37 ] );
|
1033 |
|
|
subRound( C, D, E, A, B, f2, K2, W[ 38 ] );
|
1034 |
|
|
subRound( B, C, D, E, A, f2, K2, W[ 39 ] );
|
1035 |
|
|
|
1036 |
|
|
subRound( A, B, C, D, E, f3, K3, W[ 40 ] );
|
1037 |
|
|
subRound( E, A, B, C, D, f3, K3, W[ 41 ] );
|
1038 |
|
|
subRound( D, E, A, B, C, f3, K3, W[ 42 ] );
|
1039 |
|
|
subRound( C, D, E, A, B, f3, K3, W[ 43 ] );
|
1040 |
|
|
subRound( B, C, D, E, A, f3, K3, W[ 44 ] );
|
1041 |
|
|
subRound( A, B, C, D, E, f3, K3, W[ 45 ] );
|
1042 |
|
|
subRound( E, A, B, C, D, f3, K3, W[ 46 ] );
|
1043 |
|
|
subRound( D, E, A, B, C, f3, K3, W[ 47 ] );
|
1044 |
|
|
subRound( C, D, E, A, B, f3, K3, W[ 48 ] );
|
1045 |
|
|
subRound( B, C, D, E, A, f3, K3, W[ 49 ] );
|
1046 |
|
|
subRound( A, B, C, D, E, f3, K3, W[ 50 ] );
|
1047 |
|
|
subRound( E, A, B, C, D, f3, K3, W[ 51 ] );
|
1048 |
|
|
subRound( D, E, A, B, C, f3, K3, W[ 52 ] );
|
1049 |
|
|
subRound( C, D, E, A, B, f3, K3, W[ 53 ] );
|
1050 |
|
|
subRound( B, C, D, E, A, f3, K3, W[ 54 ] );
|
1051 |
|
|
subRound( A, B, C, D, E, f3, K3, W[ 55 ] );
|
1052 |
|
|
subRound( E, A, B, C, D, f3, K3, W[ 56 ] );
|
1053 |
|
|
subRound( D, E, A, B, C, f3, K3, W[ 57 ] );
|
1054 |
|
|
subRound( C, D, E, A, B, f3, K3, W[ 58 ] );
|
1055 |
|
|
subRound( B, C, D, E, A, f3, K3, W[ 59 ] );
|
1056 |
|
|
|
1057 |
|
|
subRound( A, B, C, D, E, f4, K4, W[ 60 ] );
|
1058 |
|
|
subRound( E, A, B, C, D, f4, K4, W[ 61 ] );
|
1059 |
|
|
subRound( D, E, A, B, C, f4, K4, W[ 62 ] );
|
1060 |
|
|
subRound( C, D, E, A, B, f4, K4, W[ 63 ] );
|
1061 |
|
|
subRound( B, C, D, E, A, f4, K4, W[ 64 ] );
|
1062 |
|
|
subRound( A, B, C, D, E, f4, K4, W[ 65 ] );
|
1063 |
|
|
subRound( E, A, B, C, D, f4, K4, W[ 66 ] );
|
1064 |
|
|
subRound( D, E, A, B, C, f4, K4, W[ 67 ] );
|
1065 |
|
|
subRound( C, D, E, A, B, f4, K4, W[ 68 ] );
|
1066 |
|
|
subRound( B, C, D, E, A, f4, K4, W[ 69 ] );
|
1067 |
|
|
subRound( A, B, C, D, E, f4, K4, W[ 70 ] );
|
1068 |
|
|
subRound( E, A, B, C, D, f4, K4, W[ 71 ] );
|
1069 |
|
|
subRound( D, E, A, B, C, f4, K4, W[ 72 ] );
|
1070 |
|
|
subRound( C, D, E, A, B, f4, K4, W[ 73 ] );
|
1071 |
|
|
subRound( B, C, D, E, A, f4, K4, W[ 74 ] );
|
1072 |
|
|
subRound( A, B, C, D, E, f4, K4, W[ 75 ] );
|
1073 |
|
|
subRound( E, A, B, C, D, f4, K4, W[ 76 ] );
|
1074 |
|
|
subRound( D, E, A, B, C, f4, K4, W[ 77 ] );
|
1075 |
|
|
subRound( C, D, E, A, B, f4, K4, W[ 78 ] );
|
1076 |
|
|
subRound( B, C, D, E, A, f4, K4, W[ 79 ] );
|
1077 |
|
|
#else
|
1078 |
|
|
#error Illegal SHA_CODE_SIZE
|
1079 |
|
|
#endif
|
1080 |
|
|
|
1081 |
|
|
/* Build message digest */
|
1082 |
|
|
digest[ 0 ] += A;
|
1083 |
|
|
digest[ 1 ] += B;
|
1084 |
|
|
digest[ 2 ] += C;
|
1085 |
|
|
digest[ 3 ] += D;
|
1086 |
|
|
digest[ 4 ] += E;
|
1087 |
|
|
|
1088 |
|
|
/* W is wiped by the caller */
|
1089 |
|
|
#undef W
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
#undef ROTL
|
1093 |
|
|
#undef f1
|
1094 |
|
|
#undef f2
|
1095 |
|
|
#undef f3
|
1096 |
|
|
#undef f4
|
1097 |
|
|
#undef K1
|
1098 |
|
|
#undef K2
|
1099 |
|
|
#undef K3
|
1100 |
|
|
#undef K4
|
1101 |
|
|
#undef subRound
|
1102 |
|
|
|
1103 |
|
|
#else /* !USE_SHA - Use MD5 */
|
1104 |
|
|
|
1105 |
|
|
#define HASH_BUFFER_SIZE 4
|
1106 |
|
|
#define HASH_EXTRA_SIZE 0
|
1107 |
|
|
#define HASH_TRANSFORM MD5Transform
|
1108 |
|
|
|
1109 |
|
|
/*
|
1110 |
|
|
* MD5 transform algorithm, taken from code written by Colin Plumb,
|
1111 |
|
|
* and put into the public domain
|
1112 |
|
|
*/
|
1113 |
|
|
|
1114 |
|
|
/* The four core functions - F1 is optimized somewhat */
|
1115 |
|
|
|
1116 |
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */
|
1117 |
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
1118 |
|
|
#define F2(x, y, z) F1(z, x, y)
|
1119 |
|
|
#define F3(x, y, z) (x ^ y ^ z)
|
1120 |
|
|
#define F4(x, y, z) (y ^ (x | ~z))
|
1121 |
|
|
|
1122 |
|
|
/* This is the central step in the MD5 algorithm. */
|
1123 |
|
|
#define MD5STEP(f, w, x, y, z, data, s) \
|
1124 |
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
|
1125 |
|
|
|
1126 |
|
|
/*
|
1127 |
|
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
1128 |
|
|
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
1129 |
|
|
* the data and converts bytes into longwords for this routine.
|
1130 |
|
|
*/
|
1131 |
|
|
static void MD5Transform(__u32 buf[HASH_BUFFER_SIZE], __u32 const in[16])
|
1132 |
|
|
{
|
1133 |
|
|
__u32 a, b, c, d;
|
1134 |
|
|
|
1135 |
|
|
a = buf[0];
|
1136 |
|
|
b = buf[1];
|
1137 |
|
|
c = buf[2];
|
1138 |
|
|
d = buf[3];
|
1139 |
|
|
|
1140 |
|
|
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
|
1141 |
|
|
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
|
1142 |
|
|
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
|
1143 |
|
|
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
|
1144 |
|
|
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
|
1145 |
|
|
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
|
1146 |
|
|
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
|
1147 |
|
|
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
|
1148 |
|
|
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
|
1149 |
|
|
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
|
1150 |
|
|
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
|
1151 |
|
|
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
|
1152 |
|
|
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
|
1153 |
|
|
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
|
1154 |
|
|
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
|
1155 |
|
|
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
|
1156 |
|
|
|
1157 |
|
|
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
|
1158 |
|
|
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
|
1159 |
|
|
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
|
1160 |
|
|
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
|
1161 |
|
|
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
|
1162 |
|
|
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
|
1163 |
|
|
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
|
1164 |
|
|
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
|
1165 |
|
|
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
|
1166 |
|
|
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
|
1167 |
|
|
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
|
1168 |
|
|
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
|
1169 |
|
|
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
|
1170 |
|
|
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
|
1171 |
|
|
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
|
1172 |
|
|
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
|
1173 |
|
|
|
1174 |
|
|
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
|
1175 |
|
|
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
|
1176 |
|
|
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
|
1177 |
|
|
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
|
1178 |
|
|
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
|
1179 |
|
|
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
|
1180 |
|
|
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
|
1181 |
|
|
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
|
1182 |
|
|
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
|
1183 |
|
|
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
|
1184 |
|
|
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
|
1185 |
|
|
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
|
1186 |
|
|
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
|
1187 |
|
|
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
|
1188 |
|
|
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
|
1189 |
|
|
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
|
1190 |
|
|
|
1191 |
|
|
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
|
1192 |
|
|
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
|
1193 |
|
|
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
|
1194 |
|
|
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
|
1195 |
|
|
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
|
1196 |
|
|
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
|
1197 |
|
|
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
|
1198 |
|
|
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
|
1199 |
|
|
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
|
1200 |
|
|
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
|
1201 |
|
|
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
|
1202 |
|
|
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
|
1203 |
|
|
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
|
1204 |
|
|
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
|
1205 |
|
|
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
|
1206 |
|
|
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
|
1207 |
|
|
|
1208 |
|
|
buf[0] += a;
|
1209 |
|
|
buf[1] += b;
|
1210 |
|
|
buf[2] += c;
|
1211 |
|
|
buf[3] += d;
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
#undef F1
|
1215 |
|
|
#undef F2
|
1216 |
|
|
#undef F3
|
1217 |
|
|
#undef F4
|
1218 |
|
|
#undef MD5STEP
|
1219 |
|
|
|
1220 |
|
|
#endif /* !USE_SHA */
|
1221 |
|
|
|
1222 |
|
|
/*********************************************************************
|
1223 |
|
|
*
|
1224 |
|
|
* Entropy extraction routines
|
1225 |
|
|
*
|
1226 |
|
|
*********************************************************************/
|
1227 |
|
|
|
1228 |
|
|
#define EXTRACT_ENTROPY_USER 1
|
1229 |
|
|
#define EXTRACT_ENTROPY_SECONDARY 2
|
1230 |
|
|
#define TMP_BUF_SIZE (HASH_BUFFER_SIZE + HASH_EXTRA_SIZE)
|
1231 |
|
|
#define SEC_XFER_SIZE (TMP_BUF_SIZE*4)
|
1232 |
|
|
|
1233 |
|
|
static ssize_t extract_entropy(struct entropy_store *r, void * buf,
|
1234 |
|
|
size_t nbytes, int flags);
|
1235 |
|
|
|
1236 |
|
|
/*
|
1237 |
|
|
* This utility inline function is responsible for transfering entropy
|
1238 |
|
|
* from the primary pool to the secondary extraction pool. We pull
|
1239 |
|
|
* randomness under two conditions; one is if there isn't enough entropy
|
1240 |
|
|
* in the secondary pool. The other is after we have extracted 1024 bytes,
|
1241 |
|
|
* at which point we do a "catastrophic reseeding".
|
1242 |
|
|
*/
|
1243 |
|
|
static inline void xfer_secondary_pool(struct entropy_store *r,
|
1244 |
|
|
size_t nbytes, __u32 *tmp)
|
1245 |
|
|
{
|
1246 |
|
|
if (r->entropy_count < nbytes * 8 &&
|
1247 |
|
|
r->entropy_count < r->poolinfo.POOLBITS) {
|
1248 |
|
|
int nwords = min_t(int,
|
1249 |
|
|
r->poolinfo.poolwords - r->entropy_count/32,
|
1250 |
|
|
sizeof(tmp) / 4);
|
1251 |
|
|
|
1252 |
|
|
DEBUG_ENT("xfer %d from primary to %s (have %d, need %d)\n",
|
1253 |
|
|
nwords * 32,
|
1254 |
|
|
r == sec_random_state ? "secondary" : "unknown",
|
1255 |
|
|
r->entropy_count, nbytes * 8);
|
1256 |
|
|
|
1257 |
|
|
extract_entropy(random_state, tmp, nwords * 4, 0);
|
1258 |
|
|
add_entropy_words(r, tmp, nwords);
|
1259 |
|
|
credit_entropy_store(r, nwords * 32);
|
1260 |
|
|
}
|
1261 |
|
|
if (r->extract_count > 1024) {
|
1262 |
|
|
DEBUG_ENT("reseeding %s with %d from primary\n",
|
1263 |
|
|
r == sec_random_state ? "secondary" : "unknown",
|
1264 |
|
|
sizeof(tmp) * 8);
|
1265 |
|
|
extract_entropy(random_state, tmp, sizeof(tmp), 0);
|
1266 |
|
|
add_entropy_words(r, tmp, sizeof(tmp) / 4);
|
1267 |
|
|
r->extract_count = 0;
|
1268 |
|
|
}
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
/*
|
1272 |
|
|
* This function extracts randomness from the "entropy pool", and
|
1273 |
|
|
* returns it in a buffer. This function computes how many remaining
|
1274 |
|
|
* bits of entropy are left in the pool, but it does not restrict the
|
1275 |
|
|
* number of bytes that are actually obtained. If the EXTRACT_ENTROPY_USER
|
1276 |
|
|
* flag is given, then the buf pointer is assumed to be in user space.
|
1277 |
|
|
*
|
1278 |
|
|
* If the EXTRACT_ENTROPY_SECONDARY flag is given, then we are actually
|
1279 |
|
|
* extracting entropy from the secondary pool, and can refill from the
|
1280 |
|
|
* primary pool if needed.
|
1281 |
|
|
*
|
1282 |
|
|
* Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
|
1283 |
|
|
*/
|
1284 |
|
|
static ssize_t extract_entropy(struct entropy_store *r, void * buf,
|
1285 |
|
|
size_t nbytes, int flags)
|
1286 |
|
|
{
|
1287 |
|
|
ssize_t ret, i;
|
1288 |
|
|
__u32 tmp[TMP_BUF_SIZE];
|
1289 |
|
|
__u32 x;
|
1290 |
|
|
|
1291 |
|
|
add_timer_randomness(&extract_timer_state, nbytes);
|
1292 |
|
|
|
1293 |
|
|
/* Redundant, but just in case... */
|
1294 |
|
|
if (r->entropy_count > r->poolinfo.POOLBITS)
|
1295 |
|
|
r->entropy_count = r->poolinfo.POOLBITS;
|
1296 |
|
|
|
1297 |
|
|
if (flags & EXTRACT_ENTROPY_SECONDARY)
|
1298 |
|
|
xfer_secondary_pool(r, nbytes, tmp);
|
1299 |
|
|
|
1300 |
|
|
DEBUG_ENT("%s has %d bits, want %d bits\n",
|
1301 |
|
|
r == sec_random_state ? "secondary" :
|
1302 |
|
|
r == random_state ? "primary" : "unknown",
|
1303 |
|
|
r->entropy_count, nbytes * 8);
|
1304 |
|
|
|
1305 |
|
|
if (r->entropy_count / 8 >= nbytes)
|
1306 |
|
|
r->entropy_count -= nbytes*8;
|
1307 |
|
|
else
|
1308 |
|
|
r->entropy_count = 0;
|
1309 |
|
|
|
1310 |
|
|
if (r->entropy_count < random_write_wakeup_thresh)
|
1311 |
|
|
wake_up_interruptible(&random_write_wait);
|
1312 |
|
|
|
1313 |
|
|
r->extract_count += nbytes;
|
1314 |
|
|
|
1315 |
|
|
ret = 0;
|
1316 |
|
|
while (nbytes) {
|
1317 |
|
|
/*
|
1318 |
|
|
* Check if we need to break out or reschedule....
|
1319 |
|
|
*/
|
1320 |
|
|
if ((flags & EXTRACT_ENTROPY_USER) && current->need_resched) {
|
1321 |
|
|
if (signal_pending(current)) {
|
1322 |
|
|
if (ret == 0)
|
1323 |
|
|
ret = -ERESTARTSYS;
|
1324 |
|
|
break;
|
1325 |
|
|
}
|
1326 |
|
|
schedule();
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
/* Hash the pool to get the output */
|
1330 |
|
|
tmp[0] = 0x67452301;
|
1331 |
|
|
tmp[1] = 0xefcdab89;
|
1332 |
|
|
tmp[2] = 0x98badcfe;
|
1333 |
|
|
tmp[3] = 0x10325476;
|
1334 |
|
|
#ifdef USE_SHA
|
1335 |
|
|
tmp[4] = 0xc3d2e1f0;
|
1336 |
|
|
#endif
|
1337 |
|
|
/*
|
1338 |
|
|
* As we hash the pool, we mix intermediate values of
|
1339 |
|
|
* the hash back into the pool. This eliminates
|
1340 |
|
|
* backtracking attacks (where the attacker knows
|
1341 |
|
|
* the state of the pool plus the current outputs, and
|
1342 |
|
|
* attempts to find previous ouputs), unless the hash
|
1343 |
|
|
* function can be inverted.
|
1344 |
|
|
*/
|
1345 |
|
|
for (i = 0, x = 0; i < r->poolinfo.poolwords; i += 16, x+=2) {
|
1346 |
|
|
HASH_TRANSFORM(tmp, r->pool+i);
|
1347 |
|
|
add_entropy_words(r, &tmp[x%HASH_BUFFER_SIZE], 1);
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/*
|
1351 |
|
|
* In case the hash function has some recognizable
|
1352 |
|
|
* output pattern, we fold it in half.
|
1353 |
|
|
*/
|
1354 |
|
|
for (i = 0; i < HASH_BUFFER_SIZE/2; i++)
|
1355 |
|
|
tmp[i] ^= tmp[i + (HASH_BUFFER_SIZE+1)/2];
|
1356 |
|
|
#if HASH_BUFFER_SIZE & 1 /* There's a middle word to deal with */
|
1357 |
|
|
x = tmp[HASH_BUFFER_SIZE/2];
|
1358 |
|
|
x ^= (x >> 16); /* Fold it in half */
|
1359 |
|
|
((__u16 *)tmp)[HASH_BUFFER_SIZE-1] = (__u16)x;
|
1360 |
|
|
#endif
|
1361 |
|
|
|
1362 |
|
|
/* Copy data to destination buffer */
|
1363 |
|
|
i = min(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
|
1364 |
|
|
if (flags & EXTRACT_ENTROPY_USER) {
|
1365 |
|
|
i -= copy_to_user(buf, (__u8 const *)tmp, i);
|
1366 |
|
|
if (!i) {
|
1367 |
|
|
ret = -EFAULT;
|
1368 |
|
|
break;
|
1369 |
|
|
}
|
1370 |
|
|
} else
|
1371 |
|
|
memcpy(buf, (__u8 const *)tmp, i);
|
1372 |
|
|
nbytes -= i;
|
1373 |
|
|
buf += i;
|
1374 |
|
|
ret += i;
|
1375 |
|
|
add_timer_randomness(&extract_timer_state, nbytes);
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
/* Wipe data just returned from memory */
|
1379 |
|
|
memset(tmp, 0, sizeof(tmp));
|
1380 |
|
|
|
1381 |
|
|
return ret;
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
/*
|
1385 |
|
|
* This function is the exported kernel interface. It returns some
|
1386 |
|
|
* number of good random numbers, suitable for seeding TCP sequence
|
1387 |
|
|
* numbers, etc.
|
1388 |
|
|
*/
|
1389 |
|
|
void get_random_bytes(void *buf, int nbytes)
|
1390 |
|
|
{
|
1391 |
|
|
if (sec_random_state)
|
1392 |
|
|
extract_entropy(sec_random_state, (char *) buf, nbytes,
|
1393 |
|
|
EXTRACT_ENTROPY_SECONDARY);
|
1394 |
|
|
else if (random_state)
|
1395 |
|
|
extract_entropy(random_state, (char *) buf, nbytes, 0);
|
1396 |
|
|
else
|
1397 |
|
|
printk(KERN_NOTICE "get_random_bytes called before "
|
1398 |
|
|
"random driver initialization\n");
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
/*********************************************************************
|
1402 |
|
|
*
|
1403 |
|
|
* Functions to interface with Linux
|
1404 |
|
|
*
|
1405 |
|
|
*********************************************************************/
|
1406 |
|
|
|
1407 |
|
|
/*
|
1408 |
|
|
* Initialize the random pool with standard stuff.
|
1409 |
|
|
*
|
1410 |
|
|
* NOTE: This is an OS-dependent function.
|
1411 |
|
|
*/
|
1412 |
|
|
static void init_std_data(struct entropy_store *r)
|
1413 |
|
|
{
|
1414 |
|
|
struct timeval tv;
|
1415 |
|
|
__u32 words[2];
|
1416 |
|
|
char *p;
|
1417 |
|
|
int i;
|
1418 |
|
|
|
1419 |
|
|
do_gettimeofday(&tv);
|
1420 |
|
|
words[0] = tv.tv_sec;
|
1421 |
|
|
words[1] = tv.tv_usec;
|
1422 |
|
|
add_entropy_words(r, words, 2);
|
1423 |
|
|
|
1424 |
|
|
/*
|
1425 |
|
|
* This doesn't lock system.utsname. However, we are generating
|
1426 |
|
|
* entropy so a race with a name set here is fine.
|
1427 |
|
|
*/
|
1428 |
|
|
p = (char *) &system_utsname;
|
1429 |
|
|
for (i = sizeof(system_utsname) / sizeof(words); i; i--) {
|
1430 |
|
|
memcpy(words, p, sizeof(words));
|
1431 |
|
|
add_entropy_words(r, words, sizeof(words)/4);
|
1432 |
|
|
p += sizeof(words);
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
void __init rand_initialize(void)
|
1437 |
|
|
{
|
1438 |
|
|
int i;
|
1439 |
|
|
|
1440 |
|
|
if (create_entropy_store(DEFAULT_POOL_SIZE, &random_state))
|
1441 |
|
|
return; /* Error, return */
|
1442 |
|
|
if (batch_entropy_init(BATCH_ENTROPY_SIZE, random_state))
|
1443 |
|
|
return; /* Error, return */
|
1444 |
|
|
if (create_entropy_store(SECONDARY_POOL_SIZE, &sec_random_state))
|
1445 |
|
|
return; /* Error, return */
|
1446 |
|
|
clear_entropy_store(random_state);
|
1447 |
|
|
clear_entropy_store(sec_random_state);
|
1448 |
|
|
init_std_data(random_state);
|
1449 |
|
|
#ifdef CONFIG_SYSCTL
|
1450 |
|
|
sysctl_init_random(random_state);
|
1451 |
|
|
#endif
|
1452 |
|
|
#ifndef CONFIG_ARCH_S390
|
1453 |
|
|
for (i = 0; i < NR_IRQS; i++)
|
1454 |
|
|
irq_timer_state[i] = NULL;
|
1455 |
|
|
#endif
|
1456 |
|
|
for (i = 0; i < MAX_BLKDEV; i++)
|
1457 |
|
|
blkdev_timer_state[i] = NULL;
|
1458 |
|
|
memset(&keyboard_timer_state, 0, sizeof(struct timer_rand_state));
|
1459 |
|
|
memset(&mouse_timer_state, 0, sizeof(struct timer_rand_state));
|
1460 |
|
|
memset(&extract_timer_state, 0, sizeof(struct timer_rand_state));
|
1461 |
|
|
extract_timer_state.dont_count_entropy = 1;
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
#ifndef CONFIG_ARCH_S390
|
1465 |
|
|
void rand_initialize_irq(int irq)
|
1466 |
|
|
{
|
1467 |
|
|
struct timer_rand_state *state;
|
1468 |
|
|
|
1469 |
|
|
if (irq >= NR_IRQS || irq_timer_state[irq])
|
1470 |
|
|
return;
|
1471 |
|
|
|
1472 |
|
|
/*
|
1473 |
|
|
* If kmalloc returns null, we just won't use that entropy
|
1474 |
|
|
* source.
|
1475 |
|
|
*/
|
1476 |
|
|
state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
1477 |
|
|
if (state) {
|
1478 |
|
|
memset(state, 0, sizeof(struct timer_rand_state));
|
1479 |
|
|
irq_timer_state[irq] = state;
|
1480 |
|
|
}
|
1481 |
|
|
}
|
1482 |
|
|
#endif
|
1483 |
|
|
|
1484 |
|
|
void rand_initialize_blkdev(int major, int mode)
|
1485 |
|
|
{
|
1486 |
|
|
struct timer_rand_state *state;
|
1487 |
|
|
|
1488 |
|
|
if (major >= MAX_BLKDEV || blkdev_timer_state[major])
|
1489 |
|
|
return;
|
1490 |
|
|
|
1491 |
|
|
/*
|
1492 |
|
|
* If kmalloc returns null, we just won't use that entropy
|
1493 |
|
|
* source.
|
1494 |
|
|
*/
|
1495 |
|
|
state = kmalloc(sizeof(struct timer_rand_state), mode);
|
1496 |
|
|
if (state) {
|
1497 |
|
|
memset(state, 0, sizeof(struct timer_rand_state));
|
1498 |
|
|
blkdev_timer_state[major] = state;
|
1499 |
|
|
}
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
|
1503 |
|
|
static ssize_t
|
1504 |
|
|
random_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)
|
1505 |
|
|
{
|
1506 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
1507 |
|
|
ssize_t n, retval = 0, count = 0;
|
1508 |
|
|
|
1509 |
|
|
if (nbytes == 0)
|
1510 |
|
|
return 0;
|
1511 |
|
|
|
1512 |
|
|
add_wait_queue(&random_read_wait, &wait);
|
1513 |
|
|
while (nbytes > 0) {
|
1514 |
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
1515 |
|
|
|
1516 |
|
|
n = nbytes;
|
1517 |
|
|
if (n > SEC_XFER_SIZE)
|
1518 |
|
|
n = SEC_XFER_SIZE;
|
1519 |
|
|
if (n > random_state->entropy_count / 8)
|
1520 |
|
|
n = random_state->entropy_count / 8;
|
1521 |
|
|
if (n == 0) {
|
1522 |
|
|
if (file->f_flags & O_NONBLOCK) {
|
1523 |
|
|
retval = -EAGAIN;
|
1524 |
|
|
break;
|
1525 |
|
|
}
|
1526 |
|
|
if (signal_pending(current)) {
|
1527 |
|
|
retval = -ERESTARTSYS;
|
1528 |
|
|
break;
|
1529 |
|
|
}
|
1530 |
|
|
schedule();
|
1531 |
|
|
continue;
|
1532 |
|
|
}
|
1533 |
|
|
n = extract_entropy(sec_random_state, buf, n,
|
1534 |
|
|
EXTRACT_ENTROPY_USER |
|
1535 |
|
|
EXTRACT_ENTROPY_SECONDARY);
|
1536 |
|
|
if (n < 0) {
|
1537 |
|
|
retval = n;
|
1538 |
|
|
break;
|
1539 |
|
|
}
|
1540 |
|
|
count += n;
|
1541 |
|
|
buf += n;
|
1542 |
|
|
nbytes -= n;
|
1543 |
|
|
break; /* This break makes the device work */
|
1544 |
|
|
/* like a named pipe */
|
1545 |
|
|
}
|
1546 |
|
|
current->state = TASK_RUNNING;
|
1547 |
|
|
remove_wait_queue(&random_read_wait, &wait);
|
1548 |
|
|
|
1549 |
|
|
/*
|
1550 |
|
|
* If we gave the user some bytes, update the access time.
|
1551 |
|
|
*/
|
1552 |
|
|
if (count != 0) {
|
1553 |
|
|
UPDATE_ATIME(file->f_dentry->d_inode);
|
1554 |
|
|
}
|
1555 |
|
|
|
1556 |
|
|
return (count ? count : retval);
|
1557 |
|
|
}
|
1558 |
|
|
|
1559 |
|
|
static ssize_t
|
1560 |
|
|
urandom_read(struct file * file, char * buf,
|
1561 |
|
|
size_t nbytes, loff_t *ppos)
|
1562 |
|
|
{
|
1563 |
|
|
return extract_entropy(sec_random_state, buf, nbytes,
|
1564 |
|
|
EXTRACT_ENTROPY_USER |
|
1565 |
|
|
EXTRACT_ENTROPY_SECONDARY);
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
static unsigned int
|
1569 |
|
|
random_poll(struct file *file, poll_table * wait)
|
1570 |
|
|
{
|
1571 |
|
|
unsigned int mask;
|
1572 |
|
|
|
1573 |
|
|
poll_wait(file, &random_read_wait, wait);
|
1574 |
|
|
poll_wait(file, &random_write_wait, wait);
|
1575 |
|
|
mask = 0;
|
1576 |
|
|
if (random_state->entropy_count >= random_read_wakeup_thresh)
|
1577 |
|
|
mask |= POLLIN | POLLRDNORM;
|
1578 |
|
|
if (random_state->entropy_count < random_write_wakeup_thresh)
|
1579 |
|
|
mask |= POLLOUT | POLLWRNORM;
|
1580 |
|
|
return mask;
|
1581 |
|
|
}
|
1582 |
|
|
|
1583 |
|
|
static ssize_t
|
1584 |
|
|
random_write(struct file * file, const char * buffer,
|
1585 |
|
|
size_t count, loff_t *ppos)
|
1586 |
|
|
{
|
1587 |
|
|
int ret = 0;
|
1588 |
|
|
size_t bytes;
|
1589 |
|
|
__u32 buf[16];
|
1590 |
|
|
const char *p = buffer;
|
1591 |
|
|
size_t c = count;
|
1592 |
|
|
|
1593 |
|
|
while (c > 0) {
|
1594 |
|
|
bytes = min(c, sizeof(buf));
|
1595 |
|
|
|
1596 |
|
|
bytes -= copy_from_user(&buf, p, bytes);
|
1597 |
|
|
if (!bytes) {
|
1598 |
|
|
ret = -EFAULT;
|
1599 |
|
|
break;
|
1600 |
|
|
}
|
1601 |
|
|
c -= bytes;
|
1602 |
|
|
p += bytes;
|
1603 |
|
|
|
1604 |
|
|
add_entropy_words(random_state, buf, (bytes + 3) / 4);
|
1605 |
|
|
}
|
1606 |
|
|
if (p == buffer) {
|
1607 |
|
|
return (ssize_t)ret;
|
1608 |
|
|
} else {
|
1609 |
|
|
file->f_dentry->d_inode->i_mtime = CURRENT_TIME;
|
1610 |
|
|
mark_inode_dirty(file->f_dentry->d_inode);
|
1611 |
|
|
return (ssize_t)(p - buffer);
|
1612 |
|
|
}
|
1613 |
|
|
}
|
1614 |
|
|
|
1615 |
|
|
static int
|
1616 |
|
|
random_ioctl(struct inode * inode, struct file * file,
|
1617 |
|
|
unsigned int cmd, unsigned long arg)
|
1618 |
|
|
{
|
1619 |
|
|
int *p, size, ent_count;
|
1620 |
|
|
int retval;
|
1621 |
|
|
|
1622 |
|
|
switch (cmd) {
|
1623 |
|
|
case RNDGETENTCNT:
|
1624 |
|
|
ent_count = random_state->entropy_count;
|
1625 |
|
|
if (put_user(ent_count, (int *) arg))
|
1626 |
|
|
return -EFAULT;
|
1627 |
|
|
return 0;
|
1628 |
|
|
case RNDADDTOENTCNT:
|
1629 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1630 |
|
|
return -EPERM;
|
1631 |
|
|
if (get_user(ent_count, (int *) arg))
|
1632 |
|
|
return -EFAULT;
|
1633 |
|
|
credit_entropy_store(random_state, ent_count);
|
1634 |
|
|
/*
|
1635 |
|
|
* Wake up waiting processes if we have enough
|
1636 |
|
|
* entropy.
|
1637 |
|
|
*/
|
1638 |
|
|
if (random_state->entropy_count >= random_read_wakeup_thresh)
|
1639 |
|
|
wake_up_interruptible(&random_read_wait);
|
1640 |
|
|
return 0;
|
1641 |
|
|
case RNDGETPOOL:
|
1642 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1643 |
|
|
return -EPERM;
|
1644 |
|
|
p = (int *) arg;
|
1645 |
|
|
ent_count = random_state->entropy_count;
|
1646 |
|
|
if (put_user(ent_count, p++) ||
|
1647 |
|
|
get_user(size, p) ||
|
1648 |
|
|
put_user(random_state->poolinfo.poolwords, p++))
|
1649 |
|
|
return -EFAULT;
|
1650 |
|
|
if (size < 0)
|
1651 |
|
|
return -EINVAL;
|
1652 |
|
|
if (size > random_state->poolinfo.poolwords)
|
1653 |
|
|
size = random_state->poolinfo.poolwords;
|
1654 |
|
|
if (copy_to_user(p, random_state->pool, size * sizeof(__u32)))
|
1655 |
|
|
return -EFAULT;
|
1656 |
|
|
return 0;
|
1657 |
|
|
case RNDADDENTROPY:
|
1658 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1659 |
|
|
return -EPERM;
|
1660 |
|
|
p = (int *) arg;
|
1661 |
|
|
if (get_user(ent_count, p++))
|
1662 |
|
|
return -EFAULT;
|
1663 |
|
|
if (ent_count < 0)
|
1664 |
|
|
return -EINVAL;
|
1665 |
|
|
if (get_user(size, p++))
|
1666 |
|
|
return -EFAULT;
|
1667 |
|
|
retval = random_write(file, (const char *) p,
|
1668 |
|
|
size, &file->f_pos);
|
1669 |
|
|
if (retval < 0)
|
1670 |
|
|
return retval;
|
1671 |
|
|
credit_entropy_store(random_state, ent_count);
|
1672 |
|
|
/*
|
1673 |
|
|
* Wake up waiting processes if we have enough
|
1674 |
|
|
* entropy.
|
1675 |
|
|
*/
|
1676 |
|
|
if (random_state->entropy_count >= random_read_wakeup_thresh)
|
1677 |
|
|
wake_up_interruptible(&random_read_wait);
|
1678 |
|
|
return 0;
|
1679 |
|
|
case RNDZAPENTCNT:
|
1680 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1681 |
|
|
return -EPERM;
|
1682 |
|
|
random_state->entropy_count = 0;
|
1683 |
|
|
return 0;
|
1684 |
|
|
case RNDCLEARPOOL:
|
1685 |
|
|
/* Clear the entropy pool and associated counters. */
|
1686 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1687 |
|
|
return -EPERM;
|
1688 |
|
|
clear_entropy_store(random_state);
|
1689 |
|
|
init_std_data(random_state);
|
1690 |
|
|
return 0;
|
1691 |
|
|
default:
|
1692 |
|
|
return -EINVAL;
|
1693 |
|
|
}
|
1694 |
|
|
}
|
1695 |
|
|
|
1696 |
|
|
struct file_operations random_fops = {
|
1697 |
|
|
read: random_read,
|
1698 |
|
|
write: random_write,
|
1699 |
|
|
poll: random_poll,
|
1700 |
|
|
ioctl: random_ioctl,
|
1701 |
|
|
};
|
1702 |
|
|
|
1703 |
|
|
struct file_operations urandom_fops = {
|
1704 |
|
|
read: urandom_read,
|
1705 |
|
|
write: random_write,
|
1706 |
|
|
ioctl: random_ioctl,
|
1707 |
|
|
};
|
1708 |
|
|
|
1709 |
|
|
/***************************************************************
|
1710 |
|
|
* Random UUID interface
|
1711 |
|
|
*
|
1712 |
|
|
* Used here for a Boot ID, but can be useful for other kernel
|
1713 |
|
|
* drivers.
|
1714 |
|
|
***************************************************************/
|
1715 |
|
|
|
1716 |
|
|
/*
|
1717 |
|
|
* Generate random UUID
|
1718 |
|
|
*/
|
1719 |
|
|
void generate_random_uuid(unsigned char uuid_out[16])
|
1720 |
|
|
{
|
1721 |
|
|
get_random_bytes(uuid_out, 16);
|
1722 |
|
|
/* Set UUID version to 4 --- truely random generation */
|
1723 |
|
|
uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
|
1724 |
|
|
/* Set the UUID variant to DCE */
|
1725 |
|
|
uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
|
1726 |
|
|
}
|
1727 |
|
|
|
1728 |
|
|
/********************************************************************
|
1729 |
|
|
*
|
1730 |
|
|
* Sysctl interface
|
1731 |
|
|
*
|
1732 |
|
|
********************************************************************/
|
1733 |
|
|
|
1734 |
|
|
#ifdef CONFIG_SYSCTL
|
1735 |
|
|
|
1736 |
|
|
#include <linux/sysctl.h>
|
1737 |
|
|
|
1738 |
|
|
static int sysctl_poolsize;
|
1739 |
|
|
static int min_read_thresh, max_read_thresh;
|
1740 |
|
|
static int min_write_thresh, max_write_thresh;
|
1741 |
|
|
static char sysctl_bootid[16];
|
1742 |
|
|
|
1743 |
|
|
/*
|
1744 |
|
|
* This function handles a request from the user to change the pool size
|
1745 |
|
|
* of the primary entropy store.
|
1746 |
|
|
*/
|
1747 |
|
|
static int change_poolsize(int poolsize)
|
1748 |
|
|
{
|
1749 |
|
|
struct entropy_store *new_store, *old_store;
|
1750 |
|
|
int ret;
|
1751 |
|
|
|
1752 |
|
|
if ((ret = create_entropy_store(poolsize, &new_store)))
|
1753 |
|
|
return ret;
|
1754 |
|
|
|
1755 |
|
|
add_entropy_words(new_store, random_state->pool,
|
1756 |
|
|
random_state->poolinfo.poolwords);
|
1757 |
|
|
credit_entropy_store(new_store, random_state->entropy_count);
|
1758 |
|
|
|
1759 |
|
|
sysctl_init_random(new_store);
|
1760 |
|
|
old_store = random_state;
|
1761 |
|
|
random_state = batch_tqueue.data = new_store;
|
1762 |
|
|
free_entropy_store(old_store);
|
1763 |
|
|
return 0;
|
1764 |
|
|
}
|
1765 |
|
|
|
1766 |
|
|
static int proc_do_poolsize(ctl_table *table, int write, struct file *filp,
|
1767 |
|
|
void *buffer, size_t *lenp)
|
1768 |
|
|
{
|
1769 |
|
|
int ret;
|
1770 |
|
|
|
1771 |
|
|
sysctl_poolsize = random_state->poolinfo.POOLBYTES;
|
1772 |
|
|
|
1773 |
|
|
ret = proc_dointvec(table, write, filp, buffer, lenp);
|
1774 |
|
|
if (ret || !write ||
|
1775 |
|
|
(sysctl_poolsize == random_state->poolinfo.POOLBYTES))
|
1776 |
|
|
return ret;
|
1777 |
|
|
|
1778 |
|
|
return change_poolsize(sysctl_poolsize);
|
1779 |
|
|
}
|
1780 |
|
|
|
1781 |
|
|
static int poolsize_strategy(ctl_table *table, int *name, int nlen,
|
1782 |
|
|
void *oldval, size_t *oldlenp,
|
1783 |
|
|
void *newval, size_t newlen, void **context)
|
1784 |
|
|
{
|
1785 |
|
|
int len;
|
1786 |
|
|
|
1787 |
|
|
sysctl_poolsize = random_state->poolinfo.POOLBYTES;
|
1788 |
|
|
|
1789 |
|
|
/*
|
1790 |
|
|
* We only handle the write case, since the read case gets
|
1791 |
|
|
* handled by the default handler (and we don't care if the
|
1792 |
|
|
* write case happens twice; it's harmless).
|
1793 |
|
|
*/
|
1794 |
|
|
if (newval && newlen) {
|
1795 |
|
|
len = newlen;
|
1796 |
|
|
if (len > table->maxlen)
|
1797 |
|
|
len = table->maxlen;
|
1798 |
|
|
if (copy_from_user(table->data, newval, len))
|
1799 |
|
|
return -EFAULT;
|
1800 |
|
|
}
|
1801 |
|
|
|
1802 |
|
|
if (sysctl_poolsize != random_state->poolinfo.POOLBYTES)
|
1803 |
|
|
return change_poolsize(sysctl_poolsize);
|
1804 |
|
|
|
1805 |
|
|
return 0;
|
1806 |
|
|
}
|
1807 |
|
|
|
1808 |
|
|
/*
|
1809 |
|
|
* These functions is used to return both the bootid UUID, and random
|
1810 |
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
1811 |
|
|
* then a new UUID is generated and returned to the user.
|
1812 |
|
|
*
|
1813 |
|
|
* If the user accesses this via the proc interface, it will be returned
|
1814 |
|
|
* as an ASCII string in the standard UUID format. If accesses via the
|
1815 |
|
|
* sysctl system call, it is returned as 16 bytes of binary data.
|
1816 |
|
|
*/
|
1817 |
|
|
static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
|
1818 |
|
|
void *buffer, size_t *lenp)
|
1819 |
|
|
{
|
1820 |
|
|
ctl_table fake_table;
|
1821 |
|
|
unsigned char buf[64], tmp_uuid[16], *uuid;
|
1822 |
|
|
|
1823 |
|
|
uuid = table->data;
|
1824 |
|
|
if (!uuid) {
|
1825 |
|
|
uuid = tmp_uuid;
|
1826 |
|
|
uuid[8] = 0;
|
1827 |
|
|
}
|
1828 |
|
|
if (uuid[8] == 0)
|
1829 |
|
|
generate_random_uuid(uuid);
|
1830 |
|
|
|
1831 |
|
|
sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
|
1832 |
|
|
"%02x%02x%02x%02x%02x%02x",
|
1833 |
|
|
uuid[0], uuid[1], uuid[2], uuid[3],
|
1834 |
|
|
uuid[4], uuid[5], uuid[6], uuid[7],
|
1835 |
|
|
uuid[8], uuid[9], uuid[10], uuid[11],
|
1836 |
|
|
uuid[12], uuid[13], uuid[14], uuid[15]);
|
1837 |
|
|
fake_table.data = buf;
|
1838 |
|
|
fake_table.maxlen = sizeof(buf);
|
1839 |
|
|
|
1840 |
|
|
return proc_dostring(&fake_table, write, filp, buffer, lenp);
|
1841 |
|
|
}
|
1842 |
|
|
|
1843 |
|
|
static int uuid_strategy(ctl_table *table, int *name, int nlen,
|
1844 |
|
|
void *oldval, size_t *oldlenp,
|
1845 |
|
|
void *newval, size_t newlen, void **context)
|
1846 |
|
|
{
|
1847 |
|
|
unsigned char tmp_uuid[16], *uuid;
|
1848 |
|
|
unsigned int len;
|
1849 |
|
|
|
1850 |
|
|
if (!oldval || !oldlenp)
|
1851 |
|
|
return 1;
|
1852 |
|
|
|
1853 |
|
|
uuid = table->data;
|
1854 |
|
|
if (!uuid) {
|
1855 |
|
|
uuid = tmp_uuid;
|
1856 |
|
|
uuid[8] = 0;
|
1857 |
|
|
}
|
1858 |
|
|
if (uuid[8] == 0)
|
1859 |
|
|
generate_random_uuid(uuid);
|
1860 |
|
|
|
1861 |
|
|
if (get_user(len, oldlenp))
|
1862 |
|
|
return -EFAULT;
|
1863 |
|
|
if (len) {
|
1864 |
|
|
if (len > 16)
|
1865 |
|
|
len = 16;
|
1866 |
|
|
if (copy_to_user(oldval, uuid, len) ||
|
1867 |
|
|
put_user(len, oldlenp))
|
1868 |
|
|
return -EFAULT;
|
1869 |
|
|
}
|
1870 |
|
|
return 1;
|
1871 |
|
|
}
|
1872 |
|
|
|
1873 |
|
|
ctl_table random_table[] = {
|
1874 |
|
|
{RANDOM_POOLSIZE, "poolsize",
|
1875 |
|
|
&sysctl_poolsize, sizeof(int), 0644, NULL,
|
1876 |
|
|
&proc_do_poolsize, &poolsize_strategy},
|
1877 |
|
|
{RANDOM_ENTROPY_COUNT, "entropy_avail",
|
1878 |
|
|
NULL, sizeof(int), 0444, NULL,
|
1879 |
|
|
&proc_dointvec},
|
1880 |
|
|
{RANDOM_READ_THRESH, "read_wakeup_threshold",
|
1881 |
|
|
&random_read_wakeup_thresh, sizeof(int), 0644, NULL,
|
1882 |
|
|
&proc_dointvec_minmax, &sysctl_intvec, 0,
|
1883 |
|
|
&min_read_thresh, &max_read_thresh},
|
1884 |
|
|
{RANDOM_WRITE_THRESH, "write_wakeup_threshold",
|
1885 |
|
|
&random_write_wakeup_thresh, sizeof(int), 0644, NULL,
|
1886 |
|
|
&proc_dointvec_minmax, &sysctl_intvec, 0,
|
1887 |
|
|
&min_write_thresh, &max_write_thresh},
|
1888 |
|
|
{RANDOM_BOOT_ID, "boot_id",
|
1889 |
|
|
&sysctl_bootid, 16, 0444, NULL,
|
1890 |
|
|
&proc_do_uuid, &uuid_strategy},
|
1891 |
|
|
{RANDOM_UUID, "uuid",
|
1892 |
|
|
NULL, 16, 0444, NULL,
|
1893 |
|
|
&proc_do_uuid, &uuid_strategy},
|
1894 |
|
|
{0}
|
1895 |
|
|
};
|
1896 |
|
|
|
1897 |
|
|
static void sysctl_init_random(struct entropy_store *random_state)
|
1898 |
|
|
{
|
1899 |
|
|
min_read_thresh = 8;
|
1900 |
|
|
min_write_thresh = 0;
|
1901 |
|
|
max_read_thresh = max_write_thresh = random_state->poolinfo.POOLBITS;
|
1902 |
|
|
random_table[1].data = &random_state->entropy_count;
|
1903 |
|
|
}
|
1904 |
|
|
#endif /* CONFIG_SYSCTL */
|
1905 |
|
|
|
1906 |
|
|
/********************************************************************
|
1907 |
|
|
*
|
1908 |
|
|
* Random funtions for networking
|
1909 |
|
|
*
|
1910 |
|
|
********************************************************************/
|
1911 |
|
|
|
1912 |
|
|
/*
|
1913 |
|
|
* TCP initial sequence number picking. This uses the random number
|
1914 |
|
|
* generator to pick an initial secret value. This value is hashed
|
1915 |
|
|
* along with the TCP endpoint information to provide a unique
|
1916 |
|
|
* starting point for each pair of TCP endpoints. This defeats
|
1917 |
|
|
* attacks which rely on guessing the initial TCP sequence number.
|
1918 |
|
|
* This algorithm was suggested by Steve Bellovin.
|
1919 |
|
|
*
|
1920 |
|
|
* Using a very strong hash was taking an appreciable amount of the total
|
1921 |
|
|
* TCP connection establishment time, so this is a weaker hash,
|
1922 |
|
|
* compensated for by changing the secret periodically.
|
1923 |
|
|
*/
|
1924 |
|
|
|
1925 |
|
|
/* F, G and H are basic MD4 functions: selection, majority, parity */
|
1926 |
|
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
1927 |
|
|
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
|
1928 |
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
1929 |
|
|
|
1930 |
|
|
/*
|
1931 |
|
|
* The generic round function. The application is so specific that
|
1932 |
|
|
* we don't bother protecting all the arguments with parens, as is generally
|
1933 |
|
|
* good macro practice, in favor of extra legibility.
|
1934 |
|
|
* Rotation is separate from addition to prevent recomputation
|
1935 |
|
|
*/
|
1936 |
|
|
#define ROUND(f, a, b, c, d, x, s) \
|
1937 |
|
|
(a += f(b, c, d) + x, a = (a << s) | (a >> (32-s)))
|
1938 |
|
|
#define K1 0
|
1939 |
|
|
#define K2 013240474631UL
|
1940 |
|
|
#define K3 015666365641UL
|
1941 |
|
|
|
1942 |
|
|
/*
|
1943 |
|
|
* Basic cut-down MD4 transform. Returns only 32 bits of result.
|
1944 |
|
|
*/
|
1945 |
|
|
static __u32 halfMD4Transform (__u32 const buf[4], __u32 const in[8])
|
1946 |
|
|
{
|
1947 |
|
|
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
|
1948 |
|
|
|
1949 |
|
|
/* Round 1 */
|
1950 |
|
|
ROUND(F, a, b, c, d, in[0] + K1, 3);
|
1951 |
|
|
ROUND(F, d, a, b, c, in[1] + K1, 7);
|
1952 |
|
|
ROUND(F, c, d, a, b, in[2] + K1, 11);
|
1953 |
|
|
ROUND(F, b, c, d, a, in[3] + K1, 19);
|
1954 |
|
|
ROUND(F, a, b, c, d, in[4] + K1, 3);
|
1955 |
|
|
ROUND(F, d, a, b, c, in[5] + K1, 7);
|
1956 |
|
|
ROUND(F, c, d, a, b, in[6] + K1, 11);
|
1957 |
|
|
ROUND(F, b, c, d, a, in[7] + K1, 19);
|
1958 |
|
|
|
1959 |
|
|
/* Round 2 */
|
1960 |
|
|
ROUND(G, a, b, c, d, in[1] + K2, 3);
|
1961 |
|
|
ROUND(G, d, a, b, c, in[3] + K2, 5);
|
1962 |
|
|
ROUND(G, c, d, a, b, in[5] + K2, 9);
|
1963 |
|
|
ROUND(G, b, c, d, a, in[7] + K2, 13);
|
1964 |
|
|
ROUND(G, a, b, c, d, in[0] + K2, 3);
|
1965 |
|
|
ROUND(G, d, a, b, c, in[2] + K2, 5);
|
1966 |
|
|
ROUND(G, c, d, a, b, in[4] + K2, 9);
|
1967 |
|
|
ROUND(G, b, c, d, a, in[6] + K2, 13);
|
1968 |
|
|
|
1969 |
|
|
/* Round 3 */
|
1970 |
|
|
ROUND(H, a, b, c, d, in[3] + K3, 3);
|
1971 |
|
|
ROUND(H, d, a, b, c, in[7] + K3, 9);
|
1972 |
|
|
ROUND(H, c, d, a, b, in[2] + K3, 11);
|
1973 |
|
|
ROUND(H, b, c, d, a, in[6] + K3, 15);
|
1974 |
|
|
ROUND(H, a, b, c, d, in[1] + K3, 3);
|
1975 |
|
|
ROUND(H, d, a, b, c, in[5] + K3, 9);
|
1976 |
|
|
ROUND(H, c, d, a, b, in[0] + K3, 11);
|
1977 |
|
|
ROUND(H, b, c, d, a, in[4] + K3, 15);
|
1978 |
|
|
|
1979 |
|
|
return buf[1] + b; /* "most hashed" word */
|
1980 |
|
|
/* Alternative: return sum of all words? */
|
1981 |
|
|
}
|
1982 |
|
|
|
1983 |
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
1984 |
|
|
|
1985 |
|
|
static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
|
1986 |
|
|
{
|
1987 |
|
|
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
|
1988 |
|
|
|
1989 |
|
|
/* Round 1 */
|
1990 |
|
|
ROUND(F, a, b, c, d, in[ 0] + K1, 3);
|
1991 |
|
|
ROUND(F, d, a, b, c, in[ 1] + K1, 7);
|
1992 |
|
|
ROUND(F, c, d, a, b, in[ 2] + K1, 11);
|
1993 |
|
|
ROUND(F, b, c, d, a, in[ 3] + K1, 19);
|
1994 |
|
|
ROUND(F, a, b, c, d, in[ 4] + K1, 3);
|
1995 |
|
|
ROUND(F, d, a, b, c, in[ 5] + K1, 7);
|
1996 |
|
|
ROUND(F, c, d, a, b, in[ 6] + K1, 11);
|
1997 |
|
|
ROUND(F, b, c, d, a, in[ 7] + K1, 19);
|
1998 |
|
|
ROUND(F, a, b, c, d, in[ 8] + K1, 3);
|
1999 |
|
|
ROUND(F, d, a, b, c, in[ 9] + K1, 7);
|
2000 |
|
|
ROUND(F, c, d, a, b, in[10] + K1, 11);
|
2001 |
|
|
ROUND(F, b, c, d, a, in[11] + K1, 19);
|
2002 |
|
|
|
2003 |
|
|
/* Round 2 */
|
2004 |
|
|
ROUND(G, a, b, c, d, in[ 1] + K2, 3);
|
2005 |
|
|
ROUND(G, d, a, b, c, in[ 3] + K2, 5);
|
2006 |
|
|
ROUND(G, c, d, a, b, in[ 5] + K2, 9);
|
2007 |
|
|
ROUND(G, b, c, d, a, in[ 7] + K2, 13);
|
2008 |
|
|
ROUND(G, a, b, c, d, in[ 9] + K2, 3);
|
2009 |
|
|
ROUND(G, d, a, b, c, in[11] + K2, 5);
|
2010 |
|
|
ROUND(G, c, d, a, b, in[ 0] + K2, 9);
|
2011 |
|
|
ROUND(G, b, c, d, a, in[ 2] + K2, 13);
|
2012 |
|
|
ROUND(G, a, b, c, d, in[ 4] + K2, 3);
|
2013 |
|
|
ROUND(G, d, a, b, c, in[ 6] + K2, 5);
|
2014 |
|
|
ROUND(G, c, d, a, b, in[ 8] + K2, 9);
|
2015 |
|
|
ROUND(G, b, c, d, a, in[10] + K2, 13);
|
2016 |
|
|
|
2017 |
|
|
/* Round 3 */
|
2018 |
|
|
ROUND(H, a, b, c, d, in[ 3] + K3, 3);
|
2019 |
|
|
ROUND(H, d, a, b, c, in[ 7] + K3, 9);
|
2020 |
|
|
ROUND(H, c, d, a, b, in[11] + K3, 11);
|
2021 |
|
|
ROUND(H, b, c, d, a, in[ 2] + K3, 15);
|
2022 |
|
|
ROUND(H, a, b, c, d, in[ 6] + K3, 3);
|
2023 |
|
|
ROUND(H, d, a, b, c, in[10] + K3, 9);
|
2024 |
|
|
ROUND(H, c, d, a, b, in[ 1] + K3, 11);
|
2025 |
|
|
ROUND(H, b, c, d, a, in[ 5] + K3, 15);
|
2026 |
|
|
ROUND(H, a, b, c, d, in[ 9] + K3, 3);
|
2027 |
|
|
ROUND(H, d, a, b, c, in[ 0] + K3, 9);
|
2028 |
|
|
ROUND(H, c, d, a, b, in[ 4] + K3, 11);
|
2029 |
|
|
ROUND(H, b, c, d, a, in[ 8] + K3, 15);
|
2030 |
|
|
|
2031 |
|
|
return buf[1] + b; /* "most hashed" word */
|
2032 |
|
|
/* Alternative: return sum of all words? */
|
2033 |
|
|
}
|
2034 |
|
|
#endif
|
2035 |
|
|
|
2036 |
|
|
#undef ROUND
|
2037 |
|
|
#undef F
|
2038 |
|
|
#undef G
|
2039 |
|
|
#undef H
|
2040 |
|
|
#undef K1
|
2041 |
|
|
#undef K2
|
2042 |
|
|
#undef K3
|
2043 |
|
|
|
2044 |
|
|
/* This should not be decreased so low that ISNs wrap too fast. */
|
2045 |
|
|
#define REKEY_INTERVAL 300
|
2046 |
|
|
/*
|
2047 |
|
|
* Bit layout of the tcp sequence numbers (before adding current time):
|
2048 |
|
|
* bit 24-31: increased after every key exchange
|
2049 |
|
|
* bit 0-23: hash(source,dest)
|
2050 |
|
|
*
|
2051 |
|
|
* The implementation is similar to the algorithm described
|
2052 |
|
|
* in the Appendix of RFC 1185, except that
|
2053 |
|
|
* - it uses a 1 MHz clock instead of a 250 kHz clock
|
2054 |
|
|
* - it performs a rekey every 5 minutes, which is equivalent
|
2055 |
|
|
* to a (source,dest) tulple dependent forward jump of the
|
2056 |
|
|
* clock by 0..2^(HASH_BITS+1)
|
2057 |
|
|
*
|
2058 |
|
|
* Thus the average ISN wraparound time is 68 minutes instead of
|
2059 |
|
|
* 4.55 hours.
|
2060 |
|
|
*
|
2061 |
|
|
* SMP cleanup and lock avoidance with poor man's RCU.
|
2062 |
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
2063 |
|
|
*
|
2064 |
|
|
*/
|
2065 |
|
|
#define COUNT_BITS 8
|
2066 |
|
|
#define COUNT_MASK ( (1<<COUNT_BITS)-1)
|
2067 |
|
|
#define HASH_BITS 24
|
2068 |
|
|
#define HASH_MASK ( (1<<HASH_BITS)-1 )
|
2069 |
|
|
|
2070 |
|
|
static struct keydata {
|
2071 |
|
|
time_t rekey_time;
|
2072 |
|
|
__u32 count; // already shifted to the final position
|
2073 |
|
|
__u32 secret[12];
|
2074 |
|
|
} ____cacheline_aligned ip_keydata[2];
|
2075 |
|
|
|
2076 |
|
|
static spinlock_t ip_lock = SPIN_LOCK_UNLOCKED;
|
2077 |
|
|
static unsigned int ip_cnt;
|
2078 |
|
|
|
2079 |
|
|
static struct keydata *__check_and_rekey(time_t time)
|
2080 |
|
|
{
|
2081 |
|
|
struct keydata *keyptr;
|
2082 |
|
|
spin_lock_bh(&ip_lock);
|
2083 |
|
|
keyptr = &ip_keydata[ip_cnt&1];
|
2084 |
|
|
if (!keyptr->rekey_time || (time - keyptr->rekey_time) > REKEY_INTERVAL) {
|
2085 |
|
|
keyptr = &ip_keydata[1^(ip_cnt&1)];
|
2086 |
|
|
keyptr->rekey_time = time;
|
2087 |
|
|
get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
|
2088 |
|
|
keyptr->count = (ip_cnt&COUNT_MASK)<<HASH_BITS;
|
2089 |
|
|
mb();
|
2090 |
|
|
ip_cnt++;
|
2091 |
|
|
}
|
2092 |
|
|
spin_unlock_bh(&ip_lock);
|
2093 |
|
|
return keyptr;
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
static inline struct keydata *check_and_rekey(time_t time)
|
2097 |
|
|
{
|
2098 |
|
|
struct keydata *keyptr = &ip_keydata[ip_cnt&1];
|
2099 |
|
|
|
2100 |
|
|
rmb();
|
2101 |
|
|
if (!keyptr->rekey_time || (time - keyptr->rekey_time) > REKEY_INTERVAL) {
|
2102 |
|
|
keyptr = __check_and_rekey(time);
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
return keyptr;
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
2109 |
|
|
__u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
|
2110 |
|
|
__u16 sport, __u16 dport)
|
2111 |
|
|
{
|
2112 |
|
|
struct timeval tv;
|
2113 |
|
|
__u32 seq;
|
2114 |
|
|
__u32 hash[12];
|
2115 |
|
|
struct keydata *keyptr;
|
2116 |
|
|
|
2117 |
|
|
/* The procedure is the same as for IPv4, but addresses are longer.
|
2118 |
|
|
* Thus we must use twothirdsMD4Transform.
|
2119 |
|
|
*/
|
2120 |
|
|
|
2121 |
|
|
do_gettimeofday(&tv); /* We need the usecs below... */
|
2122 |
|
|
keyptr = check_and_rekey(tv.tv_sec);
|
2123 |
|
|
|
2124 |
|
|
memcpy(hash, saddr, 16);
|
2125 |
|
|
hash[4]=(sport << 16) + dport;
|
2126 |
|
|
memcpy(&hash[5],keyptr->secret,sizeof(__u32)*7);
|
2127 |
|
|
|
2128 |
|
|
seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK;
|
2129 |
|
|
seq += keyptr->count;
|
2130 |
|
|
seq += tv.tv_usec + tv.tv_sec*1000000;
|
2131 |
|
|
|
2132 |
|
|
return seq;
|
2133 |
|
|
}
|
2134 |
|
|
|
2135 |
|
|
__u32 secure_ipv6_id(__u32 *daddr)
|
2136 |
|
|
{
|
2137 |
|
|
struct keydata *keyptr;
|
2138 |
|
|
|
2139 |
|
|
keyptr = check_and_rekey(CURRENT_TIME);
|
2140 |
|
|
|
2141 |
|
|
return halfMD4Transform(daddr, keyptr->secret);
|
2142 |
|
|
}
|
2143 |
|
|
|
2144 |
|
|
#endif
|
2145 |
|
|
|
2146 |
|
|
|
2147 |
|
|
__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
|
2148 |
|
|
__u16 sport, __u16 dport)
|
2149 |
|
|
{
|
2150 |
|
|
struct timeval tv;
|
2151 |
|
|
__u32 seq;
|
2152 |
|
|
__u32 hash[4];
|
2153 |
|
|
struct keydata *keyptr;
|
2154 |
|
|
|
2155 |
|
|
/*
|
2156 |
|
|
* Pick a random secret every REKEY_INTERVAL seconds.
|
2157 |
|
|
*/
|
2158 |
|
|
do_gettimeofday(&tv); /* We need the usecs below... */
|
2159 |
|
|
keyptr = check_and_rekey(tv.tv_sec);
|
2160 |
|
|
|
2161 |
|
|
/*
|
2162 |
|
|
* Pick a unique starting offset for each TCP connection endpoints
|
2163 |
|
|
* (saddr, daddr, sport, dport).
|
2164 |
|
|
* Note that the words are placed into the starting vector, which is
|
2165 |
|
|
* then mixed with a partial MD4 over random data.
|
2166 |
|
|
*/
|
2167 |
|
|
hash[0]=saddr;
|
2168 |
|
|
hash[1]=daddr;
|
2169 |
|
|
hash[2]=(sport << 16) + dport;
|
2170 |
|
|
hash[3]=keyptr->secret[11];
|
2171 |
|
|
|
2172 |
|
|
seq = halfMD4Transform(hash, keyptr->secret) & HASH_MASK;
|
2173 |
|
|
seq += keyptr->count;
|
2174 |
|
|
/*
|
2175 |
|
|
* As close as possible to RFC 793, which
|
2176 |
|
|
* suggests using a 250 kHz clock.
|
2177 |
|
|
* Further reading shows this assumes 2 Mb/s networks.
|
2178 |
|
|
* For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
|
2179 |
|
|
* That's funny, Linux has one built in! Use it!
|
2180 |
|
|
* (Networks are faster now - should this be increased?)
|
2181 |
|
|
*/
|
2182 |
|
|
seq += tv.tv_usec + tv.tv_sec*1000000;
|
2183 |
|
|
#if 0
|
2184 |
|
|
printk("init_seq(%lx, %lx, %d, %d) = %d\n",
|
2185 |
|
|
saddr, daddr, sport, dport, seq);
|
2186 |
|
|
#endif
|
2187 |
|
|
return seq;
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
/* The code below is shamelessly stolen from secure_tcp_sequence_number().
|
2191 |
|
|
* All blames to Andrey V. Savochkin <saw@msu.ru>.
|
2192 |
|
|
*/
|
2193 |
|
|
__u32 secure_ip_id(__u32 daddr)
|
2194 |
|
|
{
|
2195 |
|
|
struct keydata *keyptr;
|
2196 |
|
|
__u32 hash[4];
|
2197 |
|
|
|
2198 |
|
|
keyptr = check_and_rekey(CURRENT_TIME);
|
2199 |
|
|
|
2200 |
|
|
/*
|
2201 |
|
|
* Pick a unique starting offset for each IP destination.
|
2202 |
|
|
* The dest ip address is placed in the starting vector,
|
2203 |
|
|
* which is then hashed with random data.
|
2204 |
|
|
*/
|
2205 |
|
|
hash[0] = daddr;
|
2206 |
|
|
hash[1] = keyptr->secret[9];
|
2207 |
|
|
hash[2] = keyptr->secret[10];
|
2208 |
|
|
hash[3] = keyptr->secret[11];
|
2209 |
|
|
|
2210 |
|
|
return halfMD4Transform(hash, keyptr->secret);
|
2211 |
|
|
}
|
2212 |
|
|
|
2213 |
|
|
#ifdef CONFIG_SYN_COOKIES
|
2214 |
|
|
/*
|
2215 |
|
|
* Secure SYN cookie computation. This is the algorithm worked out by
|
2216 |
|
|
* Dan Bernstein and Eric Schenk.
|
2217 |
|
|
*
|
2218 |
|
|
* For linux I implement the 1 minute counter by looking at the jiffies clock.
|
2219 |
|
|
* The count is passed in as a parameter, so this code doesn't much care.
|
2220 |
|
|
*/
|
2221 |
|
|
|
2222 |
|
|
#define COOKIEBITS 24 /* Upper bits store count */
|
2223 |
|
|
#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
|
2224 |
|
|
|
2225 |
|
|
static int syncookie_init;
|
2226 |
|
|
static __u32 syncookie_secret[2][16-3+HASH_BUFFER_SIZE];
|
2227 |
|
|
|
2228 |
|
|
__u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr, __u16 sport,
|
2229 |
|
|
__u16 dport, __u32 sseq, __u32 count, __u32 data)
|
2230 |
|
|
{
|
2231 |
|
|
__u32 tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
|
2232 |
|
|
__u32 seq;
|
2233 |
|
|
|
2234 |
|
|
/*
|
2235 |
|
|
* Pick two random secrets the first time we need a cookie.
|
2236 |
|
|
*/
|
2237 |
|
|
if (syncookie_init == 0) {
|
2238 |
|
|
get_random_bytes(syncookie_secret, sizeof(syncookie_secret));
|
2239 |
|
|
syncookie_init = 1;
|
2240 |
|
|
}
|
2241 |
|
|
|
2242 |
|
|
/*
|
2243 |
|
|
* Compute the secure sequence number.
|
2244 |
|
|
* The output should be:
|
2245 |
|
|
* HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
|
2246 |
|
|
* + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
|
2247 |
|
|
* Where sseq is their sequence number and count increases every
|
2248 |
|
|
* minute by 1.
|
2249 |
|
|
* As an extra hack, we add a small "data" value that encodes the
|
2250 |
|
|
* MSS into the second hash value.
|
2251 |
|
|
*/
|
2252 |
|
|
|
2253 |
|
|
memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
|
2254 |
|
|
tmp[0]=saddr;
|
2255 |
|
|
tmp[1]=daddr;
|
2256 |
|
|
tmp[2]=(sport << 16) + dport;
|
2257 |
|
|
HASH_TRANSFORM(tmp+16, tmp);
|
2258 |
|
|
seq = tmp[17] + sseq + (count << COOKIEBITS);
|
2259 |
|
|
|
2260 |
|
|
memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
|
2261 |
|
|
tmp[0]=saddr;
|
2262 |
|
|
tmp[1]=daddr;
|
2263 |
|
|
tmp[2]=(sport << 16) + dport;
|
2264 |
|
|
tmp[3] = count; /* minute counter */
|
2265 |
|
|
HASH_TRANSFORM(tmp+16, tmp);
|
2266 |
|
|
|
2267 |
|
|
/* Add in the second hash and the data */
|
2268 |
|
|
return seq + ((tmp[17] + data) & COOKIEMASK);
|
2269 |
|
|
}
|
2270 |
|
|
|
2271 |
|
|
/*
|
2272 |
|
|
* This retrieves the small "data" value from the syncookie.
|
2273 |
|
|
* If the syncookie is bad, the data returned will be out of
|
2274 |
|
|
* range. This must be checked by the caller.
|
2275 |
|
|
*
|
2276 |
|
|
* The count value used to generate the cookie must be within
|
2277 |
|
|
* "maxdiff" if the current (passed-in) "count". The return value
|
2278 |
|
|
* is (__u32)-1 if this test fails.
|
2279 |
|
|
*/
|
2280 |
|
|
__u32 check_tcp_syn_cookie(__u32 cookie, __u32 saddr, __u32 daddr, __u16 sport,
|
2281 |
|
|
__u16 dport, __u32 sseq, __u32 count, __u32 maxdiff)
|
2282 |
|
|
{
|
2283 |
|
|
__u32 tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
|
2284 |
|
|
__u32 diff;
|
2285 |
|
|
|
2286 |
|
|
if (syncookie_init == 0)
|
2287 |
|
|
return (__u32)-1; /* Well, duh! */
|
2288 |
|
|
|
2289 |
|
|
/* Strip away the layers from the cookie */
|
2290 |
|
|
memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
|
2291 |
|
|
tmp[0]=saddr;
|
2292 |
|
|
tmp[1]=daddr;
|
2293 |
|
|
tmp[2]=(sport << 16) + dport;
|
2294 |
|
|
HASH_TRANSFORM(tmp+16, tmp);
|
2295 |
|
|
cookie -= tmp[17] + sseq;
|
2296 |
|
|
/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
|
2297 |
|
|
|
2298 |
|
|
diff = (count - (cookie >> COOKIEBITS)) & ((__u32)-1 >> COOKIEBITS);
|
2299 |
|
|
if (diff >= maxdiff)
|
2300 |
|
|
return (__u32)-1;
|
2301 |
|
|
|
2302 |
|
|
memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
|
2303 |
|
|
tmp[0] = saddr;
|
2304 |
|
|
tmp[1] = daddr;
|
2305 |
|
|
tmp[2] = (sport << 16) + dport;
|
2306 |
|
|
tmp[3] = count - diff; /* minute counter */
|
2307 |
|
|
HASH_TRANSFORM(tmp+16, tmp);
|
2308 |
|
|
|
2309 |
|
|
return (cookie - tmp[17]) & COOKIEMASK; /* Leaving the data behind */
|
2310 |
|
|
}
|
2311 |
|
|
#endif
|
2312 |
|
|
|
2313 |
|
|
|
2314 |
|
|
|
2315 |
|
|
#ifndef CONFIG_ARCH_S390
|
2316 |
|
|
EXPORT_SYMBOL(add_keyboard_randomness);
|
2317 |
|
|
EXPORT_SYMBOL(add_mouse_randomness);
|
2318 |
|
|
EXPORT_SYMBOL(add_interrupt_randomness);
|
2319 |
|
|
#endif
|
2320 |
|
|
EXPORT_SYMBOL(add_blkdev_randomness);
|
2321 |
|
|
EXPORT_SYMBOL(batch_entropy_store);
|
2322 |
|
|
EXPORT_SYMBOL(generate_random_uuid);
|
2323 |
|
|
|