OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [hil/] [hp_sdc_rtc.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * HP i8042 SDC + MSM-58321 BBRTC driver.
3
 *
4
 * Copyright (c) 2001 Brian S. Julin
5
 * All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 * 1. Redistributions of source code must retain the above copyright
11
 *    notice, this list of conditions, and the following disclaimer,
12
 *    without modification.
13
 * 2. The name of the author may not be used to endorse or promote products
14
 *    derived from this software without specific prior written permission.
15
 *
16
 * Alternatively, this software may be distributed under the terms of the
17
 * GNU General Public License ("GPL").
18
 *
19
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
 *
29
 * References:
30
 * System Device Controller Microprocessor Firmware Theory of Operation
31
 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
32
 * efirtc.c by Stephane Eranian/Hewlett Packard
33
 *
34
 */
35
 
36
#include <linux/hp_sdc.h>
37
#include <linux/errno.h>
38
#include <linux/types.h>
39
#include <linux/init.h>
40
#include <linux/module.h>
41
#include <linux/time.h>
42
#include <linux/miscdevice.h>
43
#include <linux/proc_fs.h>
44
#include <linux/poll.h>
45
#include <linux/rtc.h>
46
 
47
MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
48
MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
49
MODULE_LICENSE("Dual BSD/GPL");
50
 
51
#define RTC_VERSION "1.10d"
52
 
53
static unsigned long epoch = 2000;
54
 
55
static struct semaphore i8042tregs;
56
 
57
static hp_sdc_irqhook hp_sdc_rtc_isr;
58
 
59
static struct fasync_struct *hp_sdc_rtc_async_queue;
60
 
61
static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
62
 
63
static loff_t hp_sdc_rtc_llseek(struct file *file, loff_t offset, int origin);
64
 
65
static ssize_t hp_sdc_rtc_read(struct file *file, char *buf,
66
                               size_t count, loff_t *ppos);
67
 
68
static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
69
                            unsigned int cmd, unsigned long arg);
70
 
71
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
72
 
73
static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
74
static int hp_sdc_rtc_release(struct inode *inode, struct file *file);
75
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
76
 
77
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
78
                                int count, int *eof, void *data);
79
 
80
static void hp_sdc_rtc_isr (int irq, void *dev_id,
81
                            uint8_t status, uint8_t data)
82
{
83
        return;
84
}
85
 
86
static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
87
{
88
        struct semaphore tsem;
89
        hp_sdc_transaction t;
90
        uint8_t tseq[91];
91
        int i;
92
 
93
        i = 0;
94
        while (i < 91) {
95
                tseq[i++] = HP_SDC_ACT_DATAREG |
96
                        HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
97
                tseq[i++] = 0x01;                       /* write i8042[0x70] */
98
                tseq[i]   = i / 7;                      /* BBRTC reg address */
99
                i++;
100
                tseq[i++] = HP_SDC_CMD_DO_RTCR;         /* Trigger command   */
101
                tseq[i++] = 2;          /* expect 1 stat/dat pair back.   */
102
                i++; i++;               /* buffer for stat/dat pair       */
103
        }
104
        tseq[84] |= HP_SDC_ACT_SEMAPHORE;
105
        t.endidx =              91;
106
        t.seq =                 tseq;
107
        t.act.semaphore =       &tsem;
108
        init_MUTEX_LOCKED(&tsem);
109
 
110
        if (hp_sdc_enqueue_transaction(&t)) return -1;
111
 
112
        down_interruptible(&tsem);  /* Put ourselves to sleep for results. */
113
 
114
        /* Check for nonpresence of BBRTC */
115
        if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116
               tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117
               tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
118
                return -1;
119
 
120
        memset(rtctm, 0, sizeof(struct rtc_time));
121
        rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122
        rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123
        rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124
        rtctm->tm_wday = (tseq[48] & 0x0f);
125
        rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126
        rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127
        rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
128
 
129
        return 0;
130
}
131
 
132
static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
133
{
134
        struct rtc_time tm, tm_last;
135
        int i = 0;
136
 
137
        /* MSM-58321 has no read latch, so must read twice and compare. */
138
 
139
        if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140
        if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
141
 
142
        while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143
                if (i++ > 4) return -1;
144
                memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145
                if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
146
        }
147
 
148
        memcpy(rtctm, &tm, sizeof(struct rtc_time));
149
 
150
        return 0;
151
}
152
 
153
 
154
static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
155
{
156
        hp_sdc_transaction t;
157
        uint8_t tseq[26] = {
158
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
159
                0,
160
                HP_SDC_CMD_READ_T1, 2, 0, 0,
161
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162
                HP_SDC_CMD_READ_T2, 2, 0, 0,
163
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164
                HP_SDC_CMD_READ_T3, 2, 0, 0,
165
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166
                HP_SDC_CMD_READ_T4, 2, 0, 0,
167
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168
                HP_SDC_CMD_READ_T5, 2, 0, 0
169
        };
170
 
171
        t.endidx = numreg * 5;
172
 
173
        tseq[1] = loadcmd;
174
        tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
175
 
176
        t.seq =                 tseq;
177
        t.act.semaphore =       &i8042tregs;
178
 
179
        down_interruptible(&i8042tregs);  /* Sleep if output regs in use. */
180
 
181
        if (hp_sdc_enqueue_transaction(&t)) return -1;
182
 
183
        down_interruptible(&i8042tregs);  /* Sleep until results come back. */
184
        up(&i8042tregs);
185
 
186
        return (tseq[5] |
187
                ((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
188
                ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
189
}
190
 
191
 
192
/* Read the i8042 real-time clock */
193
static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
194
        int64_t raw;
195
        uint32_t tenms;
196
        unsigned int days;
197
 
198
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
199
        if (raw < 0) return -1;
200
 
201
        tenms = (uint32_t)raw & 0xffffff;
202
        days  = (unsigned int)(raw >> 24) & 0xffff;
203
 
204
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
205
        res->tv_sec =  (time_t)(tenms / 100) + days * 86400;
206
 
207
        return 0;
208
}
209
 
210
 
211
/* Read the i8042 fast handshake timer */
212
static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
213
        uint64_t raw;
214
        unsigned int tenms;
215
 
216
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
217
        if (raw < 0) return -1;
218
 
219
        tenms = (unsigned int)raw & 0xffff;
220
 
221
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
222
        res->tv_sec  = (time_t)(tenms / 100);
223
 
224
        return 0;
225
}
226
 
227
 
228
/* Read the i8042 match timer (a.k.a. alarm) */
229
static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
230
        int64_t raw;
231
        uint32_t tenms;
232
 
233
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
234
        if (raw < 0) return -1;
235
 
236
        tenms = (uint32_t)raw & 0xffffff;
237
 
238
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
239
        res->tv_sec  = (time_t)(tenms / 100);
240
 
241
        return 0;
242
}
243
 
244
 
245
/* Read the i8042 delay timer */
246
static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
247
        int64_t raw;
248
        uint32_t tenms;
249
 
250
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
251
        if (raw < 0) return -1;
252
 
253
        tenms = (uint32_t)raw & 0xffffff;
254
 
255
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
256
        res->tv_sec  = (time_t)(tenms / 100);
257
 
258
        return 0;
259
}
260
 
261
 
262
/* Read the i8042 cycle timer (a.k.a. periodic) */
263
static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
264
        int64_t raw;
265
        uint32_t tenms;
266
 
267
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
268
        if (raw < 0) return -1;
269
 
270
        tenms = (uint32_t)raw & 0xffffff;
271
 
272
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
273
        res->tv_sec  = (time_t)(tenms / 100);
274
 
275
        return 0;
276
}
277
 
278
 
279
/* Set the i8042 real-time clock */
280
static int hp_sdc_rtc_set_rt (struct timeval *setto)
281
{
282
        uint32_t tenms;
283
        unsigned int days;
284
        hp_sdc_transaction t;
285
        uint8_t tseq[11] = {
286
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287
                HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
288
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
289
                HP_SDC_CMD_SET_RTD, 2, 0, 0
290
        };
291
 
292
        t.endidx = 10;
293
 
294
        if (0xffff < setto->tv_sec / 86400) return -1;
295
        days = setto->tv_sec / 86400;
296
        if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
297
        days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
298
        if (days > 0xffff) return -1;
299
 
300
        if (0xffffff < setto->tv_sec) return -1;
301
        tenms  = setto->tv_sec * 100;
302
        if (0xffffff < setto->tv_usec / 10000) return -1;
303
        tenms += setto->tv_usec / 10000;
304
        if (tenms > 0xffffff) return -1;
305
 
306
        tseq[3] = (uint8_t)(tenms & 0xff);
307
        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
308
        tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
309
 
310
        tseq[9] = (uint8_t)(days & 0xff);
311
        tseq[10] = (uint8_t)((days >> 8) & 0xff);
312
 
313
        t.seq = tseq;
314
 
315
        if (hp_sdc_enqueue_transaction(&t)) return -1;
316
        return 0;
317
}
318
 
319
/* Set the i8042 fast handshake timer */
320
static int hp_sdc_rtc_set_fhs (struct timeval *setto)
321
{
322
        uint32_t tenms;
323
        hp_sdc_transaction t;
324
        uint8_t tseq[5] = {
325
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
326
                HP_SDC_CMD_SET_FHS, 2, 0, 0
327
        };
328
 
329
        t.endidx = 4;
330
 
331
        if (0xffff < setto->tv_sec) return -1;
332
        tenms  = setto->tv_sec * 100;
333
        if (0xffff < setto->tv_usec / 10000) return -1;
334
        tenms += setto->tv_usec / 10000;
335
        if (tenms > 0xffff) return -1;
336
 
337
        tseq[3] = (uint8_t)(tenms & 0xff);
338
        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
339
 
340
        t.seq = tseq;
341
 
342
        if (hp_sdc_enqueue_transaction(&t)) return -1;
343
        return 0;
344
}
345
 
346
 
347
/* Set the i8042 match timer (a.k.a. alarm) */
348
#define hp_sdc_rtc_set_mt (setto) \
349
        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
350
 
351
/* Set the i8042 delay timer */
352
#define hp_sdc_rtc_set_dt (setto) \
353
        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
354
 
355
/* Set the i8042 cycle timer (a.k.a. periodic) */
356
#define hp_sdc_rtc_set_ct (setto) \
357
        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
358
 
359
/* Set one of the i8042 3-byte wide timers */
360
static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
361
{
362
        uint32_t tenms;
363
        hp_sdc_transaction t;
364
        uint8_t tseq[6] = {
365
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
366
                0, 3, 0, 0, 0
367
        };
368
 
369
        t.endidx = 6;
370
 
371
        if (0xffffff < setto->tv_sec) return -1;
372
        tenms  = setto->tv_sec * 100;
373
        if (0xffffff < setto->tv_usec / 10000) return -1;
374
        tenms += setto->tv_usec / 10000;
375
        if (tenms > 0xffffff) return -1;
376
 
377
        tseq[1] = setcmd;
378
        tseq[3] = (uint8_t)(tenms & 0xff);
379
        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
380
        tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);
381
 
382
        t.seq =                 tseq;
383
 
384
        if (hp_sdc_enqueue_transaction(&t)) {
385
                return -1;
386
        }
387
        return 0;
388
}
389
 
390
static loff_t hp_sdc_rtc_llseek(struct file *file, loff_t offset, int origin)
391
{
392
        return -ESPIPE;
393
}
394
 
395
static ssize_t hp_sdc_rtc_read(struct file *file, char *buf,
396
                               size_t count, loff_t *ppos) {
397
        ssize_t retval;
398
 
399
        if (count < sizeof(unsigned long))
400
                return -EINVAL;
401
 
402
        retval = put_user(68, (unsigned long *)buf);
403
        return retval;
404
}
405
 
406
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
407
{
408
        unsigned long l;
409
 
410
        l = 0;
411
        if (l != 0)
412
                return POLLIN | POLLRDNORM;
413
        return 0;
414
}
415
 
416
static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
417
{
418
        MOD_INC_USE_COUNT;
419
        return 0;
420
}
421
 
422
static int hp_sdc_rtc_release(struct inode *inode, struct file *file)
423
{
424
        /* Turn off interrupts? */
425
 
426
        if (file->f_flags & FASYNC) {
427
                hp_sdc_rtc_fasync (-1, file, 0);
428
        }
429
 
430
        MOD_DEC_USE_COUNT;
431
        return 0;
432
}
433
 
434
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
435
{
436
        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
437
}
438
 
439
static int hp_sdc_rtc_proc_output (char *buf)
440
{
441
#define YN(bit) ("no")
442
#define NY(bit) ("yes")
443
        char *p;
444
        struct rtc_time tm;
445
        struct timeval tv;
446
 
447
        memset(&tm, 0, sizeof(struct rtc_time));
448
 
449
        p = buf;
450
 
451
        if (hp_sdc_rtc_read_bbrtc(&tm)) {
452
                p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
453
        } else {
454
                p += sprintf(p,
455
                             "rtc_time\t: %02d:%02d:%02d\n"
456
                             "rtc_date\t: %04d-%02d-%02d\n"
457
                             "rtc_epoch\t: %04lu\n",
458
                             tm.tm_hour, tm.tm_min, tm.tm_sec,
459
                             tm.tm_year + 1900, tm.tm_mon + 1,
460
                             tm.tm_mday, epoch);
461
        }
462
 
463
        if (hp_sdc_rtc_read_rt(&tv)) {
464
                p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
465
        } else {
466
                p += sprintf(p, "i8042 rtc\t: %d.%02d seconds\n",
467
                             tv.tv_sec, tv.tv_usec/1000);
468
        }
469
 
470
        if (hp_sdc_rtc_read_fhs(&tv)) {
471
                p += sprintf(p, "handshake\t: READ FAILED!\n");
472
        } else {
473
                p += sprintf(p, "handshake\t: %d.%02d seconds\n",
474
                             tv.tv_sec, tv.tv_usec/1000);
475
        }
476
 
477
        if (hp_sdc_rtc_read_mt(&tv)) {
478
                p += sprintf(p, "alarm\t\t: READ FAILED!\n");
479
        } else {
480
                p += sprintf(p, "alarm\t\t: %d.%02d seconds\n",
481
                             tv.tv_sec, tv.tv_usec/1000);
482
        }
483
 
484
        if (hp_sdc_rtc_read_dt(&tv)) {
485
                p += sprintf(p, "delay\t\t: READ FAILED!\n");
486
        } else {
487
                p += sprintf(p, "delay\t\t: %d.%02d seconds\n",
488
                             tv.tv_sec, tv.tv_usec/1000);
489
        }
490
 
491
        if (hp_sdc_rtc_read_ct(&tv)) {
492
                p += sprintf(p, "periodic\t: READ FAILED!\n");
493
        } else {
494
                p += sprintf(p, "periodic\t: %d.%02d seconds\n",
495
                             tv.tv_sec, tv.tv_usec/1000);
496
        }
497
 
498
        p += sprintf(p,
499
                     "DST_enable\t: %s\n"
500
                     "BCD\t\t: %s\n"
501
                     "24hr\t\t: %s\n"
502
                     "square_wave\t: %s\n"
503
                     "alarm_IRQ\t: %s\n"
504
                     "update_IRQ\t: %s\n"
505
                     "periodic_IRQ\t: %s\n"
506
                     "periodic_freq\t: %ld\n"
507
                     "batt_status\t: %s\n",
508
                     YN(RTC_DST_EN),
509
                     NY(RTC_DM_BINARY),
510
                     YN(RTC_24H),
511
                     YN(RTC_SQWE),
512
                     YN(RTC_AIE),
513
                     YN(RTC_UIE),
514
                     YN(RTC_PIE),
515
                     1UL,
516
                     1 ? "okay" : "dead");
517
 
518
        return  p - buf;
519
#undef YN
520
#undef NY
521
}
522
 
523
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
524
                         int count, int *eof, void *data)
525
{
526
        int len = hp_sdc_rtc_proc_output (page);
527
        if (len <= off+count) *eof = 1;
528
        *start = page + off;
529
        len -= off;
530
        if (len>count) len = count;
531
        if (len<0) len = 0;
532
        return len;
533
}
534
 
535
static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
536
                            unsigned int cmd, unsigned long arg)
537
{
538
#if 1
539
        return -EINVAL;
540
#else
541
 
542
        struct rtc_time wtime;
543
        struct timeval ttime;
544
        int use_wtime = 0;
545
 
546
        /* This needs major work. */
547
 
548
        switch (cmd) {
549
 
550
        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
551
        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
552
        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
553
        case RTC_PIE_ON:        /* Allow periodic ints          */
554
        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
555
        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
556
        {
557
                /* We cannot mask individual user timers and we
558
                   cannot tell them apart when they occur, so it
559
                   would be disingenuous to succeed these IOCTLs */
560
                return -EINVAL;
561
        }
562
        case RTC_ALM_READ:      /* Read the present alarm time */
563
        {
564
                memset(&ttime, 0, sizeof(struct timeval));
565
                if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
566
                break;
567
        }
568
        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
569
        {
570
                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
571
        }
572
        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
573
        {
574
                /*
575
                 * The max we can do is 100Hz.
576
                 */
577
 
578
                if ((arg < 1) || (arg > 100)) return -EINVAL;
579
                ttime.tv_sec = 0;
580
                ttime.tv_usec = 1000000 / arg;
581
                if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
582
                hp_sdc_rtc_freq = arg;
583
                return 0;
584
        }
585
        case RTC_ALM_SET:       /* Store a time into the alarm */
586
        {
587
                /*
588
                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
589
                 * "don't care" or "match all" for PC timers.  The HP SDC
590
                 * does not support that perk, but it could be emulated fairly
591
                 * easily.  Only the tm_hour, tm_min and tm_sec are used.
592
                 * We could do it with 10ms accuracy with the HP SDC, if the
593
                 * rtc interface left us a way to do that.
594
                 */
595
                struct hp_sdc_rtc_time alm_tm;
596
 
597
                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
598
                                   sizeof(struct hp_sdc_rtc_time)))
599
                       return -EFAULT;
600
 
601
                if (alm_tm.tm_hour > 23) return -EINVAL;
602
                if (alm_tm.tm_min  > 59) return -EINVAL;
603
                if (alm_tm.tm_sec  > 59) return -EINVAL;
604
 
605
                ttime.sec = alm_tm.tm_hour * 3600 +
606
                  alm_tm.tm_min * 60 + alm_tm.tm_sec;
607
                ttime.usec = 0;
608
                if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
609
                return 0;
610
        }
611
        case RTC_RD_TIME:       /* Read the time/date from RTC  */
612
        {
613
                memset(&wtime, 0, sizeof(struct rtc_time));
614
                if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
615
                break;
616
        }
617
        case RTC_SET_TIME:      /* Set the RTC */
618
        {
619
                struct rtc_time hp_sdc_rtc_tm;
620
                unsigned char mon, day, hrs, min, sec, leap_yr;
621
                unsigned int yrs;
622
 
623
                if (!capable(CAP_SYS_TIME))
624
                        return -EACCES;
625
                if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
626
                                   sizeof(struct rtc_time)))
627
                        return -EFAULT;
628
 
629
                yrs = hp_sdc_rtc_tm.tm_year + 1900;
630
                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
631
                day = hp_sdc_rtc_tm.tm_mday;
632
                hrs = hp_sdc_rtc_tm.tm_hour;
633
                min = hp_sdc_rtc_tm.tm_min;
634
                sec = hp_sdc_rtc_tm.tm_sec;
635
 
636
                if (yrs < 1970)
637
                        return -EINVAL;
638
 
639
                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
640
 
641
                if ((mon > 12) || (day == 0))
642
                        return -EINVAL;
643
                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
644
                        return -EINVAL;
645
                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
646
                        return -EINVAL;
647
 
648
                if ((yrs -= eH) > 255)    /* They are unsigned */
649
                        return -EINVAL;
650
 
651
 
652
                return 0;
653
        }
654
        case RTC_epoch_READ:    /* Read the epoch.      */
655
        {
656
                return put_user (epoch, (unsigned long *)arg);
657
        }
658
        case RTC_EPOCH_SET:     /* Set the epoch.       */
659
        {
660
                /*
661
                 * There were no RTC clocks before 1900.
662
                 */
663
                if (arg < 1900)
664
                  return -EINVAL;
665
                if (!capable(CAP_SYS_TIME))
666
                  return -EACCES;
667
 
668
                epoch = arg;
669
                return 0;
670
        }
671
        default:
672
                return -EINVAL;
673
        }
674
        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
675
#endif
676
}
677
 
678
static struct file_operations hp_sdc_rtc_fops = {
679
        .owner =        THIS_MODULE,
680
        .llseek =       hp_sdc_rtc_llseek,
681
        .read =         hp_sdc_rtc_read,
682
        .poll =         hp_sdc_rtc_poll,
683
        .ioctl =        hp_sdc_rtc_ioctl,
684
        .open =         hp_sdc_rtc_open,
685
        .release =      hp_sdc_rtc_release,
686
        .fasync =       hp_sdc_rtc_fasync,
687
};
688
 
689
static struct miscdevice hp_sdc_rtc_dev = {
690
        .minor =        RTC_MINOR,
691
        .name =         "rtc",
692
        .fops =         &hp_sdc_rtc_fops
693
};
694
 
695
static int __init hp_sdc_rtc_init(void)
696
{
697
        int ret;
698
 
699
        init_MUTEX(&i8042tregs);
700
 
701
        if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
702
                return ret;
703
        misc_register(&hp_sdc_rtc_dev);
704
        create_proc_read_entry ("driver/rtc", 0, 0,
705
                                hp_sdc_rtc_read_proc, NULL);
706
 
707
        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
708
                         "(RTC v " RTC_VERSION ")\n");
709
 
710
        return 0;
711
}
712
 
713
static void __exit hp_sdc_rtc_exit(void)
714
{
715
        remove_proc_entry ("driver/rtc", NULL);
716
        misc_deregister(&hp_sdc_rtc_dev);
717
        hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
718
        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
719
}
720
 
721
module_init(hp_sdc_rtc_init);
722
module_exit(hp_sdc_rtc_exit);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.