1 |
1275 |
phoenix |
/*
|
2 |
|
|
* Common Flash Interface support:
|
3 |
|
|
* ST Advanced Architecture Command Set (ID 0x0020)
|
4 |
|
|
*
|
5 |
|
|
* (C) 2000 Red Hat. GPL'd
|
6 |
|
|
*
|
7 |
|
|
*
|
8 |
|
|
* 10/10/2000 Nicolas Pitre <nico@cam.org>
|
9 |
|
|
* - completely revamped method functions so they are aware and
|
10 |
|
|
* independent of the flash geometry (buswidth, interleave, etc.)
|
11 |
|
|
* - scalability vs code size is completely set at compile-time
|
12 |
|
|
* (see include/linux/mtd/cfi.h for selection)
|
13 |
|
|
* - optimized write buffer method
|
14 |
|
|
* 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
|
15 |
|
|
* - modified Intel Command Set 0x0001 to support ST Advanced Architecture
|
16 |
|
|
* (command set 0x0020)
|
17 |
|
|
* - added a writev function
|
18 |
|
|
*/
|
19 |
|
|
|
20 |
|
|
#include <linux/module.h>
|
21 |
|
|
#include <linux/types.h>
|
22 |
|
|
#include <linux/kernel.h>
|
23 |
|
|
#include <linux/sched.h>
|
24 |
|
|
#include <asm/io.h>
|
25 |
|
|
#include <asm/byteorder.h>
|
26 |
|
|
|
27 |
|
|
#include <linux/errno.h>
|
28 |
|
|
#include <linux/slab.h>
|
29 |
|
|
#include <linux/delay.h>
|
30 |
|
|
#include <linux/interrupt.h>
|
31 |
|
|
#include <linux/mtd/map.h>
|
32 |
|
|
#include <linux/mtd/cfi.h>
|
33 |
|
|
#include <linux/mtd/compatmac.h>
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
37 |
|
|
static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
38 |
|
|
static int cfi_staa_writev(struct mtd_info *mtd, const struct iovec *vecs,
|
39 |
|
|
unsigned long count, loff_t to, size_t *retlen);
|
40 |
|
|
static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
|
41 |
|
|
static void cfi_staa_sync (struct mtd_info *);
|
42 |
|
|
static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
|
43 |
|
|
static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
|
44 |
|
|
static int cfi_staa_suspend (struct mtd_info *);
|
45 |
|
|
static void cfi_staa_resume (struct mtd_info *);
|
46 |
|
|
|
47 |
|
|
static void cfi_staa_destroy(struct mtd_info *);
|
48 |
|
|
|
49 |
|
|
struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
|
50 |
|
|
|
51 |
|
|
static struct mtd_info *cfi_staa_setup (struct map_info *);
|
52 |
|
|
|
53 |
|
|
static struct mtd_chip_driver cfi_staa_chipdrv = {
|
54 |
|
|
probe: NULL, /* Not usable directly */
|
55 |
|
|
destroy: cfi_staa_destroy,
|
56 |
|
|
name: "cfi_cmdset_0020",
|
57 |
|
|
module: THIS_MODULE
|
58 |
|
|
};
|
59 |
|
|
|
60 |
|
|
/* #define DEBUG_LOCK_BITS */
|
61 |
|
|
//#define DEBUG_CFI_FEATURES
|
62 |
|
|
|
63 |
|
|
#ifdef DEBUG_CFI_FEATURES
|
64 |
|
|
static void cfi_tell_features(struct cfi_pri_intelext *extp)
|
65 |
|
|
{
|
66 |
|
|
int i;
|
67 |
|
|
printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
|
68 |
|
|
printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
|
69 |
|
|
printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
|
70 |
|
|
printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
|
71 |
|
|
printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
|
72 |
|
|
printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
|
73 |
|
|
printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
|
74 |
|
|
printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
|
75 |
|
|
printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
|
76 |
|
|
printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
|
77 |
|
|
for (i=9; i<32; i++) {
|
78 |
|
|
if (extp->FeatureSupport & (1<<i))
|
79 |
|
|
printk(" - Unknown Bit %X: supported\n", i);
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
|
83 |
|
|
printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
|
84 |
|
|
for (i=1; i<8; i++) {
|
85 |
|
|
if (extp->SuspendCmdSupport & (1<<i))
|
86 |
|
|
printk(" - Unknown Bit %X: supported\n", i);
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
|
90 |
|
|
printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
|
91 |
|
|
printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
|
92 |
|
|
for (i=2; i<16; i++) {
|
93 |
|
|
if (extp->BlkStatusRegMask & (1<<i))
|
94 |
|
|
printk(" - Unknown Bit %X Active: yes\n",i);
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
98 |
|
|
extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
|
99 |
|
|
if (extp->VppOptimal)
|
100 |
|
|
printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
101 |
|
|
extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
|
102 |
|
|
}
|
103 |
|
|
#endif
|
104 |
|
|
|
105 |
|
|
/* This routine is made available to other mtd code via
|
106 |
|
|
* inter_module_register. It must only be accessed through
|
107 |
|
|
* inter_module_get which will bump the use count of this module. The
|
108 |
|
|
* addresses passed back in cfi are valid as long as the use count of
|
109 |
|
|
* this module is non-zero, i.e. between inter_module_get and
|
110 |
|
|
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
|
111 |
|
|
*/
|
112 |
|
|
struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
|
113 |
|
|
{
|
114 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
115 |
|
|
int i;
|
116 |
|
|
__u32 base = cfi->chips[0].start;
|
117 |
|
|
|
118 |
|
|
if (cfi->cfi_mode) {
|
119 |
|
|
/*
|
120 |
|
|
* It's a real CFI chip, not one for which the probe
|
121 |
|
|
* routine faked a CFI structure. So we read the feature
|
122 |
|
|
* table from it.
|
123 |
|
|
*/
|
124 |
|
|
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
|
125 |
|
|
struct cfi_pri_intelext *extp;
|
126 |
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
127 |
|
|
|
128 |
|
|
printk(" ST Microelectronics Extended Query Table at 0x%4.4X\n", adr);
|
129 |
|
|
if (!adr)
|
130 |
|
|
return NULL;
|
131 |
|
|
|
132 |
|
|
/* Switch it into Query Mode */
|
133 |
|
|
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
|
134 |
|
|
|
135 |
|
|
extp = kmalloc(sizeof(*extp), GFP_KERNEL);
|
136 |
|
|
if (!extp) {
|
137 |
|
|
printk(KERN_ERR "Failed to allocate memory\n");
|
138 |
|
|
return NULL;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/* Read in the Extended Query Table */
|
142 |
|
|
for (i=0; i<sizeof(*extp); i++) {
|
143 |
|
|
((unsigned char *)extp)[i] =
|
144 |
|
|
cfi_read_query(map, (base+((adr+i)*ofs_factor)));
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
if (extp->MajorVersion != '1' ||
|
148 |
|
|
(extp->MinorVersion < '0' || extp->MinorVersion > '2')) {
|
149 |
|
|
printk(KERN_WARNING " Unknown staa Extended Query "
|
150 |
|
|
"version %c.%c.\n", extp->MajorVersion,
|
151 |
|
|
extp->MinorVersion);
|
152 |
|
|
kfree(extp);
|
153 |
|
|
return NULL;
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
/* Do some byteswapping if necessary */
|
157 |
|
|
extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
|
158 |
|
|
extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
|
159 |
|
|
|
160 |
|
|
#ifdef DEBUG_CFI_FEATURES
|
161 |
|
|
/* Tell the user about it in lots of lovely detail */
|
162 |
|
|
cfi_tell_features(extp);
|
163 |
|
|
#endif
|
164 |
|
|
|
165 |
|
|
/* Install our own private info structure */
|
166 |
|
|
cfi->cmdset_priv = extp;
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
for (i=0; i< cfi->numchips; i++) {
|
170 |
|
|
cfi->chips[i].word_write_time = 128;
|
171 |
|
|
cfi->chips[i].buffer_write_time = 128;
|
172 |
|
|
cfi->chips[i].erase_time = 1024;
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
map->fldrv = &cfi_staa_chipdrv;
|
176 |
|
|
MOD_INC_USE_COUNT;
|
177 |
|
|
|
178 |
|
|
/* Make sure it's in read mode */
|
179 |
|
|
cfi_send_gen_cmd(0xff, 0x55, base, map, cfi, cfi->device_type, NULL);
|
180 |
|
|
return cfi_staa_setup(map);
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
static struct mtd_info *cfi_staa_setup(struct map_info *map)
|
184 |
|
|
{
|
185 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
186 |
|
|
struct mtd_info *mtd;
|
187 |
|
|
unsigned long offset = 0;
|
188 |
|
|
int i,j;
|
189 |
|
|
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
|
190 |
|
|
|
191 |
|
|
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
192 |
|
|
//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
|
193 |
|
|
|
194 |
|
|
if (!mtd) {
|
195 |
|
|
printk(KERN_ERR "Failed to allocate memory for MTD device\n");
|
196 |
|
|
kfree(cfi->cmdset_priv);
|
197 |
|
|
return NULL;
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
memset(mtd, 0, sizeof(*mtd));
|
201 |
|
|
mtd->priv = map;
|
202 |
|
|
mtd->type = MTD_NORFLASH;
|
203 |
|
|
mtd->size = devsize * cfi->numchips;
|
204 |
|
|
|
205 |
|
|
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
|
206 |
|
|
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
|
207 |
|
|
* mtd->numeraseregions, GFP_KERNEL);
|
208 |
|
|
if (!mtd->eraseregions) {
|
209 |
|
|
printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
|
210 |
|
|
kfree(cfi->cmdset_priv);
|
211 |
|
|
return NULL;
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
215 |
|
|
unsigned long ernum, ersize;
|
216 |
|
|
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
|
217 |
|
|
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
|
218 |
|
|
|
219 |
|
|
if (mtd->erasesize < ersize) {
|
220 |
|
|
mtd->erasesize = ersize;
|
221 |
|
|
}
|
222 |
|
|
for (j=0; j<cfi->numchips; j++) {
|
223 |
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
|
224 |
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
|
225 |
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
|
226 |
|
|
}
|
227 |
|
|
offset += (ersize * ernum);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
if (offset != devsize) {
|
231 |
|
|
/* Argh */
|
232 |
|
|
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
|
233 |
|
|
kfree(mtd->eraseregions);
|
234 |
|
|
kfree(cfi->cmdset_priv);
|
235 |
|
|
return NULL;
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
for (i=0; i<mtd->numeraseregions;i++){
|
239 |
|
|
printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
|
240 |
|
|
i,mtd->eraseregions[i].offset,
|
241 |
|
|
mtd->eraseregions[i].erasesize,
|
242 |
|
|
mtd->eraseregions[i].numblocks);
|
243 |
|
|
}
|
244 |
|
|
|
245 |
|
|
/* Also select the correct geometry setup too */
|
246 |
|
|
mtd->erase = cfi_staa_erase_varsize;
|
247 |
|
|
mtd->read = cfi_staa_read;
|
248 |
|
|
mtd->write = cfi_staa_write_buffers;
|
249 |
|
|
mtd->writev = cfi_staa_writev;
|
250 |
|
|
mtd->sync = cfi_staa_sync;
|
251 |
|
|
mtd->lock = cfi_staa_lock;
|
252 |
|
|
mtd->unlock = cfi_staa_unlock;
|
253 |
|
|
mtd->suspend = cfi_staa_suspend;
|
254 |
|
|
mtd->resume = cfi_staa_resume;
|
255 |
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
256 |
|
|
mtd->flags |= MTD_ECC; /* FIXME: Not all STMicro flashes have this */
|
257 |
|
|
mtd->eccsize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
|
258 |
|
|
map->fldrv = &cfi_staa_chipdrv;
|
259 |
|
|
MOD_INC_USE_COUNT;
|
260 |
|
|
mtd->name = map->name;
|
261 |
|
|
return mtd;
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
|
265 |
|
|
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
266 |
|
|
{
|
267 |
|
|
__u32 status, status_OK;
|
268 |
|
|
unsigned long timeo;
|
269 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
270 |
|
|
int suspended = 0;
|
271 |
|
|
unsigned long cmd_addr;
|
272 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
273 |
|
|
|
274 |
|
|
adr += chip->start;
|
275 |
|
|
|
276 |
|
|
/* Ensure cmd read/writes are aligned. */
|
277 |
|
|
cmd_addr = adr & ~(CFIDEV_BUSWIDTH-1);
|
278 |
|
|
|
279 |
|
|
/* Let's determine this according to the interleave only once */
|
280 |
|
|
status_OK = CMD(0x80);
|
281 |
|
|
|
282 |
|
|
timeo = jiffies + HZ;
|
283 |
|
|
retry:
|
284 |
|
|
spin_lock_bh(chip->mutex);
|
285 |
|
|
|
286 |
|
|
/* Check that the chip's ready to talk to us.
|
287 |
|
|
* If it's in FL_ERASING state, suspend it and make it talk now.
|
288 |
|
|
*/
|
289 |
|
|
switch (chip->state) {
|
290 |
|
|
case FL_ERASING:
|
291 |
|
|
if (!((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)
|
292 |
|
|
goto sleep; /* We don't support erase suspend */
|
293 |
|
|
|
294 |
|
|
cfi_write (map, CMD(0xb0), cmd_addr);
|
295 |
|
|
/* If the flash has finished erasing, then 'erase suspend'
|
296 |
|
|
* appears to make some (28F320) flash devices switch to
|
297 |
|
|
* 'read' mode. Make sure that we switch to 'read status'
|
298 |
|
|
* mode so we get the right data. --rmk
|
299 |
|
|
*/
|
300 |
|
|
cfi_write(map, CMD(0x70), cmd_addr);
|
301 |
|
|
chip->oldstate = FL_ERASING;
|
302 |
|
|
chip->state = FL_ERASE_SUSPENDING;
|
303 |
|
|
// printk("Erase suspending at 0x%lx\n", cmd_addr);
|
304 |
|
|
for (;;) {
|
305 |
|
|
status = cfi_read(map, cmd_addr);
|
306 |
|
|
if ((status & status_OK) == status_OK)
|
307 |
|
|
break;
|
308 |
|
|
|
309 |
|
|
if (time_after(jiffies, timeo)) {
|
310 |
|
|
/* Urgh */
|
311 |
|
|
cfi_write(map, CMD(0xd0), cmd_addr);
|
312 |
|
|
/* make sure we're in 'read status' mode */
|
313 |
|
|
cfi_write(map, CMD(0x70), cmd_addr);
|
314 |
|
|
chip->state = FL_ERASING;
|
315 |
|
|
spin_unlock_bh(chip->mutex);
|
316 |
|
|
printk(KERN_ERR "Chip not ready after erase "
|
317 |
|
|
"suspended: status = 0x%x\n", status);
|
318 |
|
|
return -EIO;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
spin_unlock_bh(chip->mutex);
|
322 |
|
|
cfi_udelay(1);
|
323 |
|
|
spin_lock_bh(chip->mutex);
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
suspended = 1;
|
327 |
|
|
cfi_write(map, CMD(0xff), cmd_addr);
|
328 |
|
|
chip->state = FL_READY;
|
329 |
|
|
break;
|
330 |
|
|
|
331 |
|
|
#if 0
|
332 |
|
|
case FL_WRITING:
|
333 |
|
|
/* Not quite yet */
|
334 |
|
|
#endif
|
335 |
|
|
|
336 |
|
|
case FL_READY:
|
337 |
|
|
break;
|
338 |
|
|
|
339 |
|
|
case FL_CFI_QUERY:
|
340 |
|
|
case FL_JEDEC_QUERY:
|
341 |
|
|
cfi_write(map, CMD(0x70), cmd_addr);
|
342 |
|
|
chip->state = FL_STATUS;
|
343 |
|
|
|
344 |
|
|
case FL_STATUS:
|
345 |
|
|
status = cfi_read(map, cmd_addr);
|
346 |
|
|
if ((status & status_OK) == status_OK) {
|
347 |
|
|
cfi_write(map, CMD(0xff), cmd_addr);
|
348 |
|
|
chip->state = FL_READY;
|
349 |
|
|
break;
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
353 |
|
|
if (time_after(jiffies, timeo)) {
|
354 |
|
|
spin_unlock_bh(chip->mutex);
|
355 |
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %x\n", status);
|
356 |
|
|
return -EIO;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
360 |
|
|
spin_unlock_bh(chip->mutex);
|
361 |
|
|
cfi_udelay(1);
|
362 |
|
|
goto retry;
|
363 |
|
|
|
364 |
|
|
default:
|
365 |
|
|
sleep:
|
366 |
|
|
/* Stick ourselves on a wait queue to be woken when
|
367 |
|
|
someone changes the status */
|
368 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
369 |
|
|
add_wait_queue(&chip->wq, &wait);
|
370 |
|
|
spin_unlock_bh(chip->mutex);
|
371 |
|
|
schedule();
|
372 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
373 |
|
|
timeo = jiffies + HZ;
|
374 |
|
|
goto retry;
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
map->copy_from(map, buf, adr, len);
|
378 |
|
|
|
379 |
|
|
if (suspended) {
|
380 |
|
|
chip->state = chip->oldstate;
|
381 |
|
|
/* What if one interleaved chip has finished and the
|
382 |
|
|
other hasn't? The old code would leave the finished
|
383 |
|
|
one in READY mode. That's bad, and caused -EROFS
|
384 |
|
|
errors to be returned from do_erase_oneblock because
|
385 |
|
|
that's the only bit it checked for at the time.
|
386 |
|
|
As the state machine appears to explicitly allow
|
387 |
|
|
sending the 0x70 (Read Status) command to an erasing
|
388 |
|
|
chip and expecting it to be ignored, that's what we
|
389 |
|
|
do. */
|
390 |
|
|
cfi_write(map, CMD(0xd0), cmd_addr);
|
391 |
|
|
cfi_write(map, CMD(0x70), cmd_addr);
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
wake_up(&chip->wq);
|
395 |
|
|
spin_unlock_bh(chip->mutex);
|
396 |
|
|
return 0;
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
400 |
|
|
{
|
401 |
|
|
struct map_info *map = mtd->priv;
|
402 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
403 |
|
|
unsigned long ofs;
|
404 |
|
|
int chipnum;
|
405 |
|
|
int ret = 0;
|
406 |
|
|
|
407 |
|
|
/* ofs: offset within the first chip that the first read should start */
|
408 |
|
|
chipnum = (from >> cfi->chipshift);
|
409 |
|
|
ofs = from - (chipnum << cfi->chipshift);
|
410 |
|
|
|
411 |
|
|
*retlen = 0;
|
412 |
|
|
|
413 |
|
|
while (len) {
|
414 |
|
|
unsigned long thislen;
|
415 |
|
|
|
416 |
|
|
if (chipnum >= cfi->numchips)
|
417 |
|
|
break;
|
418 |
|
|
|
419 |
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
420 |
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
421 |
|
|
else
|
422 |
|
|
thislen = len;
|
423 |
|
|
|
424 |
|
|
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
425 |
|
|
if (ret)
|
426 |
|
|
break;
|
427 |
|
|
|
428 |
|
|
*retlen += thislen;
|
429 |
|
|
len -= thislen;
|
430 |
|
|
buf += thislen;
|
431 |
|
|
|
432 |
|
|
ofs = 0;
|
433 |
|
|
chipnum++;
|
434 |
|
|
}
|
435 |
|
|
return ret;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
|
439 |
|
|
unsigned long adr, const u_char *buf, int len)
|
440 |
|
|
{
|
441 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
442 |
|
|
__u32 status, status_OK;
|
443 |
|
|
unsigned long cmd_adr, timeo;
|
444 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
445 |
|
|
int wbufsize, z;
|
446 |
|
|
|
447 |
|
|
/* M58LW064A requires bus alignment for buffer wriets -- saw */
|
448 |
|
|
if (adr & (CFIDEV_BUSWIDTH-1))
|
449 |
|
|
return -EINVAL;
|
450 |
|
|
|
451 |
|
|
wbufsize = CFIDEV_INTERLEAVE << cfi->cfiq->MaxBufWriteSize;
|
452 |
|
|
adr += chip->start;
|
453 |
|
|
cmd_adr = adr & ~(wbufsize-1);
|
454 |
|
|
|
455 |
|
|
/* Let's determine this according to the interleave only once */
|
456 |
|
|
status_OK = CMD(0x80);
|
457 |
|
|
|
458 |
|
|
timeo = jiffies + HZ;
|
459 |
|
|
retry:
|
460 |
|
|
|
461 |
|
|
#ifdef DEBUG_CFI_FEATURES
|
462 |
|
|
printk("%s: chip->state[%d]\n", __FUNCTION__, chip->state);
|
463 |
|
|
#endif
|
464 |
|
|
spin_lock_bh(chip->mutex);
|
465 |
|
|
|
466 |
|
|
/* Check that the chip's ready to talk to us.
|
467 |
|
|
* Later, we can actually think about interrupting it
|
468 |
|
|
* if it's in FL_ERASING state.
|
469 |
|
|
* Not just yet, though.
|
470 |
|
|
*/
|
471 |
|
|
switch (chip->state) {
|
472 |
|
|
case FL_READY:
|
473 |
|
|
break;
|
474 |
|
|
|
475 |
|
|
case FL_CFI_QUERY:
|
476 |
|
|
case FL_JEDEC_QUERY:
|
477 |
|
|
cfi_write(map, CMD(0x70), cmd_adr);
|
478 |
|
|
chip->state = FL_STATUS;
|
479 |
|
|
#ifdef DEBUG_CFI_FEATURES
|
480 |
|
|
printk("%s: 1 status[%x]\n", __FUNCTION__, cfi_read(map, cmd_adr));
|
481 |
|
|
#endif
|
482 |
|
|
|
483 |
|
|
case FL_STATUS:
|
484 |
|
|
status = cfi_read(map, cmd_adr);
|
485 |
|
|
if ((status & status_OK) == status_OK)
|
486 |
|
|
break;
|
487 |
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
488 |
|
|
if (time_after(jiffies, timeo)) {
|
489 |
|
|
spin_unlock_bh(chip->mutex);
|
490 |
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %x, status = %x\n",
|
491 |
|
|
status, cfi_read(map, cmd_adr));
|
492 |
|
|
return -EIO;
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
496 |
|
|
spin_unlock_bh(chip->mutex);
|
497 |
|
|
cfi_udelay(1);
|
498 |
|
|
goto retry;
|
499 |
|
|
|
500 |
|
|
default:
|
501 |
|
|
/* Stick ourselves on a wait queue to be woken when
|
502 |
|
|
someone changes the status */
|
503 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
504 |
|
|
add_wait_queue(&chip->wq, &wait);
|
505 |
|
|
spin_unlock_bh(chip->mutex);
|
506 |
|
|
schedule();
|
507 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
508 |
|
|
timeo = jiffies + HZ;
|
509 |
|
|
goto retry;
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
ENABLE_VPP(map);
|
513 |
|
|
cfi_write(map, CMD(0xe8), cmd_adr);
|
514 |
|
|
chip->state = FL_WRITING_TO_BUFFER;
|
515 |
|
|
|
516 |
|
|
z = 0;
|
517 |
|
|
for (;;) {
|
518 |
|
|
status = cfi_read(map, cmd_adr);
|
519 |
|
|
if ((status & status_OK) == status_OK)
|
520 |
|
|
break;
|
521 |
|
|
|
522 |
|
|
spin_unlock_bh(chip->mutex);
|
523 |
|
|
cfi_udelay(1);
|
524 |
|
|
spin_lock_bh(chip->mutex);
|
525 |
|
|
|
526 |
|
|
if (++z > 100) {
|
527 |
|
|
/* Argh. Not ready for write to buffer */
|
528 |
|
|
DISABLE_VPP(map);
|
529 |
|
|
cfi_write(map, CMD(0x70), cmd_adr);
|
530 |
|
|
chip->state = FL_STATUS;
|
531 |
|
|
spin_unlock_bh(chip->mutex);
|
532 |
|
|
printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %x\n", status);
|
533 |
|
|
return -EIO;
|
534 |
|
|
}
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/* Write length of data to come */
|
538 |
|
|
cfi_write(map, CMD(len/CFIDEV_BUSWIDTH-1), cmd_adr );
|
539 |
|
|
|
540 |
|
|
/* Write data */
|
541 |
|
|
for (z = 0; z < len; z += CFIDEV_BUSWIDTH) {
|
542 |
|
|
if (cfi_buswidth_is_1()) {
|
543 |
|
|
map->write8 (map, *((__u8*)buf)++, adr+z);
|
544 |
|
|
} else if (cfi_buswidth_is_2()) {
|
545 |
|
|
map->write16 (map, *((__u16*)buf)++, adr+z);
|
546 |
|
|
} else if (cfi_buswidth_is_4()) {
|
547 |
|
|
map->write32 (map, *((__u32*)buf)++, adr+z);
|
548 |
|
|
} else {
|
549 |
|
|
DISABLE_VPP(map);
|
550 |
|
|
return -EINVAL;
|
551 |
|
|
}
|
552 |
|
|
}
|
553 |
|
|
/* GO GO GO */
|
554 |
|
|
cfi_write(map, CMD(0xd0), cmd_adr);
|
555 |
|
|
chip->state = FL_WRITING;
|
556 |
|
|
|
557 |
|
|
spin_unlock_bh(chip->mutex);
|
558 |
|
|
cfi_udelay(chip->buffer_write_time);
|
559 |
|
|
spin_lock_bh(chip->mutex);
|
560 |
|
|
|
561 |
|
|
timeo = jiffies + (HZ/2);
|
562 |
|
|
z = 0;
|
563 |
|
|
for (;;) {
|
564 |
|
|
if (chip->state != FL_WRITING) {
|
565 |
|
|
/* Someone's suspended the write. Sleep */
|
566 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
567 |
|
|
add_wait_queue(&chip->wq, &wait);
|
568 |
|
|
spin_unlock_bh(chip->mutex);
|
569 |
|
|
schedule();
|
570 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
571 |
|
|
timeo = jiffies + (HZ / 2); /* FIXME */
|
572 |
|
|
spin_lock_bh(chip->mutex);
|
573 |
|
|
continue;
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
status = cfi_read(map, cmd_adr);
|
577 |
|
|
if ((status & status_OK) == status_OK)
|
578 |
|
|
break;
|
579 |
|
|
|
580 |
|
|
/* OK Still waiting */
|
581 |
|
|
if (time_after(jiffies, timeo)) {
|
582 |
|
|
/* clear status */
|
583 |
|
|
cfi_write(map, CMD(0x50), cmd_adr);
|
584 |
|
|
/* put back into read status register mode */
|
585 |
|
|
cfi_write(map, CMD(0x70), adr);
|
586 |
|
|
chip->state = FL_STATUS;
|
587 |
|
|
DISABLE_VPP(map);
|
588 |
|
|
spin_unlock_bh(chip->mutex);
|
589 |
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
|
590 |
|
|
return -EIO;
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
594 |
|
|
spin_unlock_bh(chip->mutex);
|
595 |
|
|
cfi_udelay(1);
|
596 |
|
|
z++;
|
597 |
|
|
spin_lock_bh(chip->mutex);
|
598 |
|
|
}
|
599 |
|
|
if (!z) {
|
600 |
|
|
chip->buffer_write_time--;
|
601 |
|
|
if (!chip->buffer_write_time)
|
602 |
|
|
chip->buffer_write_time++;
|
603 |
|
|
}
|
604 |
|
|
if (z > 1)
|
605 |
|
|
chip->buffer_write_time++;
|
606 |
|
|
|
607 |
|
|
/* Done and happy. */
|
608 |
|
|
DISABLE_VPP(map);
|
609 |
|
|
chip->state = FL_STATUS;
|
610 |
|
|
|
611 |
|
|
/* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
|
612 |
|
|
if ((status & CMD(0x02)) || (status & CMD(0x08)) ||
|
613 |
|
|
(status & CMD(0x10)) || (status & CMD(0x20))) {
|
614 |
|
|
#ifdef DEBUG_CFI_FEATURES
|
615 |
|
|
printk("%s: 2 status[%x]\n", __FUNCTION__, status);
|
616 |
|
|
#endif
|
617 |
|
|
/* clear status */
|
618 |
|
|
cfi_write(map, CMD(0x50), cmd_adr);
|
619 |
|
|
/* put back into read status register mode */
|
620 |
|
|
cfi_write(map, CMD(0x70), adr);
|
621 |
|
|
wake_up(&chip->wq);
|
622 |
|
|
spin_unlock_bh(chip->mutex);
|
623 |
|
|
return (status & CMD(0x02)) ? -EROFS : -EIO;
|
624 |
|
|
}
|
625 |
|
|
wake_up(&chip->wq);
|
626 |
|
|
spin_unlock_bh(chip->mutex);
|
627 |
|
|
|
628 |
|
|
return 0;
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
|
632 |
|
|
size_t len, size_t *retlen, const u_char *buf)
|
633 |
|
|
{
|
634 |
|
|
struct map_info *map = mtd->priv;
|
635 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
636 |
|
|
int wbufsize = CFIDEV_INTERLEAVE << cfi->cfiq->MaxBufWriteSize;
|
637 |
|
|
int ret = 0;
|
638 |
|
|
int chipnum;
|
639 |
|
|
unsigned long ofs;
|
640 |
|
|
|
641 |
|
|
*retlen = 0;
|
642 |
|
|
if (!len)
|
643 |
|
|
return 0;
|
644 |
|
|
|
645 |
|
|
chipnum = to >> cfi->chipshift;
|
646 |
|
|
ofs = to - (chipnum << cfi->chipshift);
|
647 |
|
|
|
648 |
|
|
#ifdef DEBUG_CFI_FEATURES
|
649 |
|
|
printk("%s: CFIDEV_BUSWIDTH[%x]\n", __FUNCTION__, CFIDEV_BUSWIDTH);
|
650 |
|
|
printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__, chipnum, wbufsize);
|
651 |
|
|
printk("%s: ofs[%x] len[%x]\n", __FUNCTION__, ofs, len);
|
652 |
|
|
#endif
|
653 |
|
|
|
654 |
|
|
/* Write buffer is worth it only if more than one word to write... */
|
655 |
|
|
while (len > 0) {
|
656 |
|
|
/* We must not cross write block boundaries */
|
657 |
|
|
int size = wbufsize - (ofs & (wbufsize-1));
|
658 |
|
|
|
659 |
|
|
if (size > len)
|
660 |
|
|
size = len;
|
661 |
|
|
|
662 |
|
|
ret = do_write_buffer(map, &cfi->chips[chipnum],
|
663 |
|
|
ofs, buf, size);
|
664 |
|
|
if (ret)
|
665 |
|
|
return ret;
|
666 |
|
|
|
667 |
|
|
ofs += size;
|
668 |
|
|
buf += size;
|
669 |
|
|
(*retlen) += size;
|
670 |
|
|
len -= size;
|
671 |
|
|
|
672 |
|
|
if (ofs >> cfi->chipshift) {
|
673 |
|
|
chipnum ++;
|
674 |
|
|
ofs = 0;
|
675 |
|
|
if (chipnum == cfi->numchips)
|
676 |
|
|
return 0;
|
677 |
|
|
}
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
return 0;
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
/*
|
684 |
|
|
* Writev for ECC-Flashes is a little more complicated. We need to maintain
|
685 |
|
|
* a small buffer for this.
|
686 |
|
|
* XXX: If the buffer size is not a multiple of 2, this will break
|
687 |
|
|
*/
|
688 |
|
|
#define ECCBUF_SIZE (mtd->eccsize)
|
689 |
|
|
#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
|
690 |
|
|
#define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
|
691 |
|
|
static int
|
692 |
|
|
cfi_staa_writev(struct mtd_info *mtd, const struct iovec *vecs,
|
693 |
|
|
unsigned long count, loff_t to, size_t *retlen)
|
694 |
|
|
{
|
695 |
|
|
unsigned long i;
|
696 |
|
|
size_t totlen = 0, thislen;
|
697 |
|
|
int ret = 0;
|
698 |
|
|
size_t buflen = 0;
|
699 |
|
|
static char *buffer;
|
700 |
|
|
|
701 |
|
|
if (!ECCBUF_SIZE) {
|
702 |
|
|
/* We should fall back to a general writev implementation.
|
703 |
|
|
* Until that is written, just break.
|
704 |
|
|
*/
|
705 |
|
|
return -EIO;
|
706 |
|
|
}
|
707 |
|
|
buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
|
708 |
|
|
if (!buffer)
|
709 |
|
|
return -ENOMEM;
|
710 |
|
|
|
711 |
|
|
for (i=0; i<count; i++) {
|
712 |
|
|
size_t elem_len = vecs[i].iov_len;
|
713 |
|
|
void *elem_base = vecs[i].iov_base;
|
714 |
|
|
if (!elem_len) /* FIXME: Might be unnecessary. Check that */
|
715 |
|
|
continue;
|
716 |
|
|
if (buflen) { /* cut off head */
|
717 |
|
|
if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
|
718 |
|
|
memcpy(buffer+buflen, elem_base, elem_len);
|
719 |
|
|
buflen += elem_len;
|
720 |
|
|
continue;
|
721 |
|
|
}
|
722 |
|
|
memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
|
723 |
|
|
ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
|
724 |
|
|
totlen += thislen;
|
725 |
|
|
if (ret || thislen != ECCBUF_SIZE)
|
726 |
|
|
goto write_error;
|
727 |
|
|
elem_len -= thislen-buflen;
|
728 |
|
|
elem_base += thislen-buflen;
|
729 |
|
|
to += ECCBUF_SIZE;
|
730 |
|
|
}
|
731 |
|
|
if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
|
732 |
|
|
ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
|
733 |
|
|
totlen += thislen;
|
734 |
|
|
if (ret || thislen != ECCBUF_DIV(elem_len))
|
735 |
|
|
goto write_error;
|
736 |
|
|
to += thislen;
|
737 |
|
|
}
|
738 |
|
|
buflen = ECCBUF_MOD(elem_len); /* cut off tail */
|
739 |
|
|
if (buflen) {
|
740 |
|
|
memset(buffer, 0xff, ECCBUF_SIZE);
|
741 |
|
|
memcpy(buffer, elem_base + thislen, buflen);
|
742 |
|
|
}
|
743 |
|
|
}
|
744 |
|
|
if (buflen) { /* flush last page, even if not full */
|
745 |
|
|
/* This is sometimes intended behaviour, really */
|
746 |
|
|
ret = mtd->write(mtd, to, buflen, &thislen, buffer);
|
747 |
|
|
totlen += thislen;
|
748 |
|
|
if (ret || thislen != ECCBUF_SIZE)
|
749 |
|
|
goto write_error;
|
750 |
|
|
}
|
751 |
|
|
write_error:
|
752 |
|
|
if (retlen)
|
753 |
|
|
*retlen = totlen;
|
754 |
|
|
return ret;
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
|
758 |
|
|
static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
|
759 |
|
|
{
|
760 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
761 |
|
|
__u32 status, status_OK;
|
762 |
|
|
unsigned long timeo;
|
763 |
|
|
int retries = 3;
|
764 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
765 |
|
|
int ret = 0;
|
766 |
|
|
|
767 |
|
|
adr += chip->start;
|
768 |
|
|
|
769 |
|
|
/* Let's determine this according to the interleave only once */
|
770 |
|
|
status_OK = CMD(0x80);
|
771 |
|
|
|
772 |
|
|
timeo = jiffies + HZ;
|
773 |
|
|
retry:
|
774 |
|
|
spin_lock_bh(chip->mutex);
|
775 |
|
|
|
776 |
|
|
/* Check that the chip's ready to talk to us. */
|
777 |
|
|
switch (chip->state) {
|
778 |
|
|
case FL_CFI_QUERY:
|
779 |
|
|
case FL_JEDEC_QUERY:
|
780 |
|
|
case FL_READY:
|
781 |
|
|
cfi_write(map, CMD(0x70), adr);
|
782 |
|
|
chip->state = FL_STATUS;
|
783 |
|
|
|
784 |
|
|
case FL_STATUS:
|
785 |
|
|
status = cfi_read(map, adr);
|
786 |
|
|
if ((status & status_OK) == status_OK)
|
787 |
|
|
break;
|
788 |
|
|
|
789 |
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
790 |
|
|
if (time_after(jiffies, timeo)) {
|
791 |
|
|
spin_unlock_bh(chip->mutex);
|
792 |
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
|
793 |
|
|
return -EIO;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
797 |
|
|
spin_unlock_bh(chip->mutex);
|
798 |
|
|
cfi_udelay(1);
|
799 |
|
|
goto retry;
|
800 |
|
|
|
801 |
|
|
default:
|
802 |
|
|
/* Stick ourselves on a wait queue to be woken when
|
803 |
|
|
someone changes the status */
|
804 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
805 |
|
|
add_wait_queue(&chip->wq, &wait);
|
806 |
|
|
spin_unlock_bh(chip->mutex);
|
807 |
|
|
schedule();
|
808 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
809 |
|
|
timeo = jiffies + HZ;
|
810 |
|
|
goto retry;
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
ENABLE_VPP(map);
|
814 |
|
|
/* Clear the status register first */
|
815 |
|
|
cfi_write(map, CMD(0x50), adr);
|
816 |
|
|
|
817 |
|
|
/* Now erase */
|
818 |
|
|
cfi_write(map, CMD(0x20), adr);
|
819 |
|
|
cfi_write(map, CMD(0xD0), adr);
|
820 |
|
|
chip->state = FL_ERASING;
|
821 |
|
|
|
822 |
|
|
spin_unlock_bh(chip->mutex);
|
823 |
|
|
schedule_timeout(HZ);
|
824 |
|
|
spin_lock_bh(chip->mutex);
|
825 |
|
|
|
826 |
|
|
/* FIXME. Use a timer to check this, and return immediately. */
|
827 |
|
|
/* Once the state machine's known to be working I'll do that */
|
828 |
|
|
|
829 |
|
|
timeo = jiffies + (HZ*20);
|
830 |
|
|
for (;;) {
|
831 |
|
|
if (chip->state != FL_ERASING) {
|
832 |
|
|
/* Someone's suspended the erase. Sleep */
|
833 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
834 |
|
|
add_wait_queue(&chip->wq, &wait);
|
835 |
|
|
spin_unlock_bh(chip->mutex);
|
836 |
|
|
schedule();
|
837 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
838 |
|
|
timeo = jiffies + (HZ*20); /* FIXME */
|
839 |
|
|
spin_lock_bh(chip->mutex);
|
840 |
|
|
continue;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
status = cfi_read(map, adr);
|
844 |
|
|
if ((status & status_OK) == status_OK)
|
845 |
|
|
break;
|
846 |
|
|
|
847 |
|
|
/* OK Still waiting */
|
848 |
|
|
if (time_after(jiffies, timeo)) {
|
849 |
|
|
cfi_write(map, CMD(0x70), adr);
|
850 |
|
|
chip->state = FL_STATUS;
|
851 |
|
|
printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %x, status = %x.\n", status, cfi_read(map, adr));
|
852 |
|
|
DISABLE_VPP(map);
|
853 |
|
|
spin_unlock_bh(chip->mutex);
|
854 |
|
|
return -EIO;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
858 |
|
|
spin_unlock_bh(chip->mutex);
|
859 |
|
|
cfi_udelay(1);
|
860 |
|
|
spin_lock_bh(chip->mutex);
|
861 |
|
|
}
|
862 |
|
|
|
863 |
|
|
DISABLE_VPP(map);
|
864 |
|
|
ret = 0;
|
865 |
|
|
|
866 |
|
|
/* We've broken this before. It doesn't hurt to be safe */
|
867 |
|
|
cfi_write(map, CMD(0x70), adr);
|
868 |
|
|
chip->state = FL_STATUS;
|
869 |
|
|
status = cfi_read(map, adr);
|
870 |
|
|
|
871 |
|
|
/* check for lock bit */
|
872 |
|
|
if (status & CMD(0x3a)) {
|
873 |
|
|
unsigned char chipstatus = status;
|
874 |
|
|
if (status != CMD(status & 0xff)) {
|
875 |
|
|
int i;
|
876 |
|
|
for (i = 1; i<CFIDEV_INTERLEAVE; i++) {
|
877 |
|
|
chipstatus |= status >> (cfi->device_type * 8);
|
878 |
|
|
}
|
879 |
|
|
printk(KERN_WARNING "Status is not identical for all chips: 0x%x. Merging to give 0x%02x\n", status, chipstatus);
|
880 |
|
|
}
|
881 |
|
|
/* Reset the error bits */
|
882 |
|
|
cfi_write(map, CMD(0x50), adr);
|
883 |
|
|
cfi_write(map, CMD(0x70), adr);
|
884 |
|
|
|
885 |
|
|
if ((chipstatus & 0x30) == 0x30) {
|
886 |
|
|
printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", status);
|
887 |
|
|
ret = -EIO;
|
888 |
|
|
} else if (chipstatus & 0x02) {
|
889 |
|
|
/* Protection bit set */
|
890 |
|
|
ret = -EROFS;
|
891 |
|
|
} else if (chipstatus & 0x8) {
|
892 |
|
|
/* Voltage */
|
893 |
|
|
printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", status);
|
894 |
|
|
ret = -EIO;
|
895 |
|
|
} else if (chipstatus & 0x20) {
|
896 |
|
|
if (retries--) {
|
897 |
|
|
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, status);
|
898 |
|
|
timeo = jiffies + HZ;
|
899 |
|
|
chip->state = FL_STATUS;
|
900 |
|
|
spin_unlock_bh(chip->mutex);
|
901 |
|
|
goto retry;
|
902 |
|
|
}
|
903 |
|
|
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, status);
|
904 |
|
|
ret = -EIO;
|
905 |
|
|
}
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
wake_up(&chip->wq);
|
909 |
|
|
spin_unlock_bh(chip->mutex);
|
910 |
|
|
return ret;
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
int cfi_staa_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
|
914 |
|
|
{ struct map_info *map = mtd->priv;
|
915 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
916 |
|
|
unsigned long adr, len;
|
917 |
|
|
int chipnum, ret = 0;
|
918 |
|
|
int i, first;
|
919 |
|
|
struct mtd_erase_region_info *regions = mtd->eraseregions;
|
920 |
|
|
|
921 |
|
|
if (instr->addr > mtd->size)
|
922 |
|
|
return -EINVAL;
|
923 |
|
|
|
924 |
|
|
if ((instr->len + instr->addr) > mtd->size)
|
925 |
|
|
return -EINVAL;
|
926 |
|
|
|
927 |
|
|
/* Check that both start and end of the requested erase are
|
928 |
|
|
* aligned with the erasesize at the appropriate addresses.
|
929 |
|
|
*/
|
930 |
|
|
|
931 |
|
|
i = 0;
|
932 |
|
|
|
933 |
|
|
/* Skip all erase regions which are ended before the start of
|
934 |
|
|
the requested erase. Actually, to save on the calculations,
|
935 |
|
|
we skip to the first erase region which starts after the
|
936 |
|
|
start of the requested erase, and then go back one.
|
937 |
|
|
*/
|
938 |
|
|
|
939 |
|
|
while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
|
940 |
|
|
i++;
|
941 |
|
|
i--;
|
942 |
|
|
|
943 |
|
|
/* OK, now i is pointing at the erase region in which this
|
944 |
|
|
erase request starts. Check the start of the requested
|
945 |
|
|
erase range is aligned with the erase size which is in
|
946 |
|
|
effect here.
|
947 |
|
|
*/
|
948 |
|
|
|
949 |
|
|
if (instr->addr & (regions[i].erasesize-1))
|
950 |
|
|
return -EINVAL;
|
951 |
|
|
|
952 |
|
|
/* Remember the erase region we start on */
|
953 |
|
|
first = i;
|
954 |
|
|
|
955 |
|
|
/* Next, check that the end of the requested erase is aligned
|
956 |
|
|
* with the erase region at that address.
|
957 |
|
|
*/
|
958 |
|
|
|
959 |
|
|
while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
|
960 |
|
|
i++;
|
961 |
|
|
|
962 |
|
|
/* As before, drop back one to point at the region in which
|
963 |
|
|
the address actually falls
|
964 |
|
|
*/
|
965 |
|
|
i--;
|
966 |
|
|
|
967 |
|
|
if ((instr->addr + instr->len) & (regions[i].erasesize-1))
|
968 |
|
|
return -EINVAL;
|
969 |
|
|
|
970 |
|
|
chipnum = instr->addr >> cfi->chipshift;
|
971 |
|
|
adr = instr->addr - (chipnum << cfi->chipshift);
|
972 |
|
|
len = instr->len;
|
973 |
|
|
|
974 |
|
|
i=first;
|
975 |
|
|
|
976 |
|
|
while(len) {
|
977 |
|
|
ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
|
978 |
|
|
|
979 |
|
|
if (ret)
|
980 |
|
|
return ret;
|
981 |
|
|
|
982 |
|
|
adr += regions[i].erasesize;
|
983 |
|
|
len -= regions[i].erasesize;
|
984 |
|
|
|
985 |
|
|
if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
|
986 |
|
|
i++;
|
987 |
|
|
|
988 |
|
|
if (adr >> cfi->chipshift) {
|
989 |
|
|
adr = 0;
|
990 |
|
|
chipnum++;
|
991 |
|
|
|
992 |
|
|
if (chipnum >= cfi->numchips)
|
993 |
|
|
break;
|
994 |
|
|
}
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
instr->state = MTD_ERASE_DONE;
|
998 |
|
|
if (instr->callback)
|
999 |
|
|
instr->callback(instr);
|
1000 |
|
|
|
1001 |
|
|
return 0;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
static void cfi_staa_sync (struct mtd_info *mtd)
|
1005 |
|
|
{
|
1006 |
|
|
struct map_info *map = mtd->priv;
|
1007 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1008 |
|
|
int i;
|
1009 |
|
|
struct flchip *chip;
|
1010 |
|
|
int ret = 0;
|
1011 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
1012 |
|
|
|
1013 |
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
1014 |
|
|
chip = &cfi->chips[i];
|
1015 |
|
|
|
1016 |
|
|
retry:
|
1017 |
|
|
spin_lock_bh(chip->mutex);
|
1018 |
|
|
|
1019 |
|
|
switch(chip->state) {
|
1020 |
|
|
case FL_READY:
|
1021 |
|
|
case FL_STATUS:
|
1022 |
|
|
case FL_CFI_QUERY:
|
1023 |
|
|
case FL_JEDEC_QUERY:
|
1024 |
|
|
chip->oldstate = chip->state;
|
1025 |
|
|
chip->state = FL_SYNCING;
|
1026 |
|
|
/* No need to wake_up() on this state change -
|
1027 |
|
|
* as the whole point is that nobody can do anything
|
1028 |
|
|
* with the chip now anyway.
|
1029 |
|
|
*/
|
1030 |
|
|
case FL_SYNCING:
|
1031 |
|
|
spin_unlock_bh(chip->mutex);
|
1032 |
|
|
break;
|
1033 |
|
|
|
1034 |
|
|
default:
|
1035 |
|
|
/* Not an idle state */
|
1036 |
|
|
add_wait_queue(&chip->wq, &wait);
|
1037 |
|
|
|
1038 |
|
|
spin_unlock_bh(chip->mutex);
|
1039 |
|
|
schedule();
|
1040 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
1041 |
|
|
|
1042 |
|
|
goto retry;
|
1043 |
|
|
}
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/* Unlock the chips again */
|
1047 |
|
|
|
1048 |
|
|
for (i--; i >=0; i--) {
|
1049 |
|
|
chip = &cfi->chips[i];
|
1050 |
|
|
|
1051 |
|
|
spin_lock_bh(chip->mutex);
|
1052 |
|
|
|
1053 |
|
|
if (chip->state == FL_SYNCING) {
|
1054 |
|
|
chip->state = chip->oldstate;
|
1055 |
|
|
wake_up(&chip->wq);
|
1056 |
|
|
}
|
1057 |
|
|
spin_unlock_bh(chip->mutex);
|
1058 |
|
|
}
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
|
1062 |
|
|
{
|
1063 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1064 |
|
|
__u32 status, status_OK;
|
1065 |
|
|
unsigned long timeo = jiffies + HZ;
|
1066 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
1067 |
|
|
|
1068 |
|
|
adr += chip->start;
|
1069 |
|
|
|
1070 |
|
|
/* Let's determine this according to the interleave only once */
|
1071 |
|
|
status_OK = CMD(0x80);
|
1072 |
|
|
|
1073 |
|
|
timeo = jiffies + HZ;
|
1074 |
|
|
retry:
|
1075 |
|
|
spin_lock_bh(chip->mutex);
|
1076 |
|
|
|
1077 |
|
|
/* Check that the chip's ready to talk to us. */
|
1078 |
|
|
switch (chip->state) {
|
1079 |
|
|
case FL_CFI_QUERY:
|
1080 |
|
|
case FL_JEDEC_QUERY:
|
1081 |
|
|
case FL_READY:
|
1082 |
|
|
cfi_write(map, CMD(0x70), adr);
|
1083 |
|
|
chip->state = FL_STATUS;
|
1084 |
|
|
|
1085 |
|
|
case FL_STATUS:
|
1086 |
|
|
status = cfi_read(map, adr);
|
1087 |
|
|
if ((status & status_OK) == status_OK)
|
1088 |
|
|
break;
|
1089 |
|
|
|
1090 |
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
1091 |
|
|
if (time_after(jiffies, timeo)) {
|
1092 |
|
|
spin_unlock_bh(chip->mutex);
|
1093 |
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
|
1094 |
|
|
return -EIO;
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
1098 |
|
|
spin_unlock_bh(chip->mutex);
|
1099 |
|
|
cfi_udelay(1);
|
1100 |
|
|
goto retry;
|
1101 |
|
|
|
1102 |
|
|
default:
|
1103 |
|
|
/* Stick ourselves on a wait queue to be woken when
|
1104 |
|
|
someone changes the status */
|
1105 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
1106 |
|
|
add_wait_queue(&chip->wq, &wait);
|
1107 |
|
|
spin_unlock_bh(chip->mutex);
|
1108 |
|
|
schedule();
|
1109 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
1110 |
|
|
timeo = jiffies + HZ;
|
1111 |
|
|
goto retry;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
ENABLE_VPP(map);
|
1115 |
|
|
cfi_write(map, CMD(0x60), adr);
|
1116 |
|
|
cfi_write(map, CMD(0x01), adr);
|
1117 |
|
|
chip->state = FL_LOCKING;
|
1118 |
|
|
|
1119 |
|
|
spin_unlock_bh(chip->mutex);
|
1120 |
|
|
schedule_timeout(HZ);
|
1121 |
|
|
spin_lock_bh(chip->mutex);
|
1122 |
|
|
|
1123 |
|
|
/* FIXME. Use a timer to check this, and return immediately. */
|
1124 |
|
|
/* Once the state machine's known to be working I'll do that */
|
1125 |
|
|
|
1126 |
|
|
timeo = jiffies + (HZ*2);
|
1127 |
|
|
for (;;) {
|
1128 |
|
|
|
1129 |
|
|
status = cfi_read(map, adr);
|
1130 |
|
|
if ((status & status_OK) == status_OK)
|
1131 |
|
|
break;
|
1132 |
|
|
|
1133 |
|
|
/* OK Still waiting */
|
1134 |
|
|
if (time_after(jiffies, timeo)) {
|
1135 |
|
|
cfi_write(map, CMD(0x70), adr);
|
1136 |
|
|
chip->state = FL_STATUS;
|
1137 |
|
|
printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %x, status = %x.\n", status, cfi_read(map, adr));
|
1138 |
|
|
DISABLE_VPP(map);
|
1139 |
|
|
spin_unlock_bh(chip->mutex);
|
1140 |
|
|
return -EIO;
|
1141 |
|
|
}
|
1142 |
|
|
|
1143 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
1144 |
|
|
spin_unlock_bh(chip->mutex);
|
1145 |
|
|
cfi_udelay(1);
|
1146 |
|
|
spin_lock_bh(chip->mutex);
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
/* Done and happy. */
|
1150 |
|
|
chip->state = FL_STATUS;
|
1151 |
|
|
DISABLE_VPP(map);
|
1152 |
|
|
wake_up(&chip->wq);
|
1153 |
|
|
spin_unlock_bh(chip->mutex);
|
1154 |
|
|
return 0;
|
1155 |
|
|
}
|
1156 |
|
|
static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
|
1157 |
|
|
{
|
1158 |
|
|
struct map_info *map = mtd->priv;
|
1159 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1160 |
|
|
unsigned long adr;
|
1161 |
|
|
int chipnum, ret = 0;
|
1162 |
|
|
#ifdef DEBUG_LOCK_BITS
|
1163 |
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
1164 |
|
|
#endif
|
1165 |
|
|
|
1166 |
|
|
if (ofs & (mtd->erasesize - 1))
|
1167 |
|
|
return -EINVAL;
|
1168 |
|
|
|
1169 |
|
|
if (len & (mtd->erasesize -1))
|
1170 |
|
|
return -EINVAL;
|
1171 |
|
|
|
1172 |
|
|
if ((len + ofs) > mtd->size)
|
1173 |
|
|
return -EINVAL;
|
1174 |
|
|
|
1175 |
|
|
chipnum = ofs >> cfi->chipshift;
|
1176 |
|
|
adr = ofs - (chipnum << cfi->chipshift);
|
1177 |
|
|
|
1178 |
|
|
while(len) {
|
1179 |
|
|
|
1180 |
|
|
#ifdef DEBUG_LOCK_BITS
|
1181 |
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1182 |
|
|
printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
|
1183 |
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1184 |
|
|
#endif
|
1185 |
|
|
|
1186 |
|
|
ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
|
1187 |
|
|
|
1188 |
|
|
#ifdef DEBUG_LOCK_BITS
|
1189 |
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1190 |
|
|
printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
|
1191 |
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1192 |
|
|
#endif
|
1193 |
|
|
|
1194 |
|
|
if (ret)
|
1195 |
|
|
return ret;
|
1196 |
|
|
|
1197 |
|
|
adr += mtd->erasesize;
|
1198 |
|
|
len -= mtd->erasesize;
|
1199 |
|
|
|
1200 |
|
|
if (adr >> cfi->chipshift) {
|
1201 |
|
|
adr = 0;
|
1202 |
|
|
chipnum++;
|
1203 |
|
|
|
1204 |
|
|
if (chipnum >= cfi->numchips)
|
1205 |
|
|
break;
|
1206 |
|
|
}
|
1207 |
|
|
}
|
1208 |
|
|
return 0;
|
1209 |
|
|
}
|
1210 |
|
|
static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
|
1211 |
|
|
{
|
1212 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1213 |
|
|
__u32 status, status_OK;
|
1214 |
|
|
unsigned long timeo = jiffies + HZ;
|
1215 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
1216 |
|
|
|
1217 |
|
|
adr += chip->start;
|
1218 |
|
|
|
1219 |
|
|
/* Let's determine this according to the interleave only once */
|
1220 |
|
|
status_OK = CMD(0x80);
|
1221 |
|
|
|
1222 |
|
|
timeo = jiffies + HZ;
|
1223 |
|
|
retry:
|
1224 |
|
|
spin_lock_bh(chip->mutex);
|
1225 |
|
|
|
1226 |
|
|
/* Check that the chip's ready to talk to us. */
|
1227 |
|
|
switch (chip->state) {
|
1228 |
|
|
case FL_CFI_QUERY:
|
1229 |
|
|
case FL_JEDEC_QUERY:
|
1230 |
|
|
case FL_READY:
|
1231 |
|
|
cfi_write(map, CMD(0x70), adr);
|
1232 |
|
|
chip->state = FL_STATUS;
|
1233 |
|
|
|
1234 |
|
|
case FL_STATUS:
|
1235 |
|
|
status = cfi_read(map, adr);
|
1236 |
|
|
if ((status & status_OK) == status_OK)
|
1237 |
|
|
break;
|
1238 |
|
|
|
1239 |
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
1240 |
|
|
if (time_after(jiffies, timeo)) {
|
1241 |
|
|
spin_unlock_bh(chip->mutex);
|
1242 |
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
|
1243 |
|
|
return -EIO;
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
1247 |
|
|
spin_unlock_bh(chip->mutex);
|
1248 |
|
|
cfi_udelay(1);
|
1249 |
|
|
goto retry;
|
1250 |
|
|
|
1251 |
|
|
default:
|
1252 |
|
|
/* Stick ourselves on a wait queue to be woken when
|
1253 |
|
|
someone changes the status */
|
1254 |
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
1255 |
|
|
add_wait_queue(&chip->wq, &wait);
|
1256 |
|
|
spin_unlock_bh(chip->mutex);
|
1257 |
|
|
schedule();
|
1258 |
|
|
remove_wait_queue(&chip->wq, &wait);
|
1259 |
|
|
timeo = jiffies + HZ;
|
1260 |
|
|
goto retry;
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
ENABLE_VPP(map);
|
1264 |
|
|
cfi_write(map, CMD(0x60), adr);
|
1265 |
|
|
cfi_write(map, CMD(0xD0), adr);
|
1266 |
|
|
chip->state = FL_UNLOCKING;
|
1267 |
|
|
|
1268 |
|
|
spin_unlock_bh(chip->mutex);
|
1269 |
|
|
schedule_timeout(HZ);
|
1270 |
|
|
spin_lock_bh(chip->mutex);
|
1271 |
|
|
|
1272 |
|
|
/* FIXME. Use a timer to check this, and return immediately. */
|
1273 |
|
|
/* Once the state machine's known to be working I'll do that */
|
1274 |
|
|
|
1275 |
|
|
timeo = jiffies + (HZ*2);
|
1276 |
|
|
for (;;) {
|
1277 |
|
|
|
1278 |
|
|
status = cfi_read(map, adr);
|
1279 |
|
|
if ((status & status_OK) == status_OK)
|
1280 |
|
|
break;
|
1281 |
|
|
|
1282 |
|
|
/* OK Still waiting */
|
1283 |
|
|
if (time_after(jiffies, timeo)) {
|
1284 |
|
|
cfi_write(map, CMD(0x70), adr);
|
1285 |
|
|
chip->state = FL_STATUS;
|
1286 |
|
|
printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %x, status = %x.\n", status, cfi_read(map, adr));
|
1287 |
|
|
DISABLE_VPP(map);
|
1288 |
|
|
spin_unlock_bh(chip->mutex);
|
1289 |
|
|
return -EIO;
|
1290 |
|
|
}
|
1291 |
|
|
|
1292 |
|
|
/* Latency issues. Drop the unlock, wait a while and retry */
|
1293 |
|
|
spin_unlock_bh(chip->mutex);
|
1294 |
|
|
cfi_udelay(1);
|
1295 |
|
|
spin_lock_bh(chip->mutex);
|
1296 |
|
|
}
|
1297 |
|
|
|
1298 |
|
|
/* Done and happy. */
|
1299 |
|
|
chip->state = FL_STATUS;
|
1300 |
|
|
DISABLE_VPP(map);
|
1301 |
|
|
wake_up(&chip->wq);
|
1302 |
|
|
spin_unlock_bh(chip->mutex);
|
1303 |
|
|
return 0;
|
1304 |
|
|
}
|
1305 |
|
|
static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
|
1306 |
|
|
{
|
1307 |
|
|
struct map_info *map = mtd->priv;
|
1308 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1309 |
|
|
unsigned long adr;
|
1310 |
|
|
int chipnum, ret = 0;
|
1311 |
|
|
#ifdef DEBUG_LOCK_BITS
|
1312 |
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
1313 |
|
|
#endif
|
1314 |
|
|
|
1315 |
|
|
chipnum = ofs >> cfi->chipshift;
|
1316 |
|
|
adr = ofs - (chipnum << cfi->chipshift);
|
1317 |
|
|
|
1318 |
|
|
#ifdef DEBUG_LOCK_BITS
|
1319 |
|
|
{
|
1320 |
|
|
unsigned long temp_adr = adr;
|
1321 |
|
|
unsigned long temp_len = len;
|
1322 |
|
|
|
1323 |
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1324 |
|
|
while (temp_len) {
|
1325 |
|
|
printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
|
1326 |
|
|
temp_adr += mtd->erasesize;
|
1327 |
|
|
temp_len -= mtd->erasesize;
|
1328 |
|
|
}
|
1329 |
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1330 |
|
|
}
|
1331 |
|
|
#endif
|
1332 |
|
|
|
1333 |
|
|
ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
|
1334 |
|
|
|
1335 |
|
|
#ifdef DEBUG_LOCK_BITS
|
1336 |
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1337 |
|
|
printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
|
1338 |
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
1339 |
|
|
#endif
|
1340 |
|
|
|
1341 |
|
|
return ret;
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
static int cfi_staa_suspend(struct mtd_info *mtd)
|
1345 |
|
|
{
|
1346 |
|
|
struct map_info *map = mtd->priv;
|
1347 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1348 |
|
|
int i;
|
1349 |
|
|
struct flchip *chip;
|
1350 |
|
|
int ret = 0;
|
1351 |
|
|
|
1352 |
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
1353 |
|
|
chip = &cfi->chips[i];
|
1354 |
|
|
|
1355 |
|
|
spin_lock_bh(chip->mutex);
|
1356 |
|
|
|
1357 |
|
|
switch(chip->state) {
|
1358 |
|
|
case FL_READY:
|
1359 |
|
|
case FL_STATUS:
|
1360 |
|
|
case FL_CFI_QUERY:
|
1361 |
|
|
case FL_JEDEC_QUERY:
|
1362 |
|
|
chip->oldstate = chip->state;
|
1363 |
|
|
chip->state = FL_PM_SUSPENDED;
|
1364 |
|
|
/* No need to wake_up() on this state change -
|
1365 |
|
|
* as the whole point is that nobody can do anything
|
1366 |
|
|
* with the chip now anyway.
|
1367 |
|
|
*/
|
1368 |
|
|
case FL_PM_SUSPENDED:
|
1369 |
|
|
break;
|
1370 |
|
|
|
1371 |
|
|
default:
|
1372 |
|
|
ret = -EAGAIN;
|
1373 |
|
|
break;
|
1374 |
|
|
}
|
1375 |
|
|
spin_unlock_bh(chip->mutex);
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
/* Unlock the chips again */
|
1379 |
|
|
|
1380 |
|
|
if (ret) {
|
1381 |
|
|
for (i--; i >=0; i--) {
|
1382 |
|
|
chip = &cfi->chips[i];
|
1383 |
|
|
|
1384 |
|
|
spin_lock_bh(chip->mutex);
|
1385 |
|
|
|
1386 |
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
1387 |
|
|
/* No need to force it into a known state here,
|
1388 |
|
|
because we're returning failure, and it didn't
|
1389 |
|
|
get power cycled */
|
1390 |
|
|
chip->state = chip->oldstate;
|
1391 |
|
|
wake_up(&chip->wq);
|
1392 |
|
|
}
|
1393 |
|
|
spin_unlock_bh(chip->mutex);
|
1394 |
|
|
}
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
return ret;
|
1398 |
|
|
}
|
1399 |
|
|
|
1400 |
|
|
static void cfi_staa_resume(struct mtd_info *mtd)
|
1401 |
|
|
{
|
1402 |
|
|
struct map_info *map = mtd->priv;
|
1403 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1404 |
|
|
int i;
|
1405 |
|
|
struct flchip *chip;
|
1406 |
|
|
|
1407 |
|
|
for (i=0; i<cfi->numchips; i++) {
|
1408 |
|
|
|
1409 |
|
|
chip = &cfi->chips[i];
|
1410 |
|
|
|
1411 |
|
|
spin_lock_bh(chip->mutex);
|
1412 |
|
|
|
1413 |
|
|
/* Go to known state. Chip may have been power cycled */
|
1414 |
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
1415 |
|
|
cfi_write(map, CMD(0xFF), 0);
|
1416 |
|
|
chip->state = FL_READY;
|
1417 |
|
|
wake_up(&chip->wq);
|
1418 |
|
|
}
|
1419 |
|
|
|
1420 |
|
|
spin_unlock_bh(chip->mutex);
|
1421 |
|
|
}
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
static void cfi_staa_destroy(struct mtd_info *mtd)
|
1425 |
|
|
{
|
1426 |
|
|
struct map_info *map = mtd->priv;
|
1427 |
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
1428 |
|
|
kfree(cfi->cmdset_priv);
|
1429 |
|
|
kfree(cfi);
|
1430 |
|
|
}
|
1431 |
|
|
|
1432 |
|
|
#if LINUX_VERSION_CODE < 0x20212 && defined(MODULE)
|
1433 |
|
|
#define cfi_staa_init init_module
|
1434 |
|
|
#define cfi_staa_exit cleanup_module
|
1435 |
|
|
#endif
|
1436 |
|
|
|
1437 |
|
|
static char im_name[]="cfi_cmdset_0020";
|
1438 |
|
|
|
1439 |
|
|
mod_init_t cfi_staa_init(void)
|
1440 |
|
|
{
|
1441 |
|
|
inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0020);
|
1442 |
|
|
return 0;
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
mod_exit_t cfi_staa_exit(void)
|
1446 |
|
|
{
|
1447 |
|
|
inter_module_unregister(im_name);
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
module_init(cfi_staa_init);
|
1451 |
|
|
module_exit(cfi_staa_exit);
|