1 |
1275 |
phoenix |
|
2 |
|
|
/* JEDEC Flash Interface.
|
3 |
|
|
* This is an older type of interface for self programming flash. It is
|
4 |
|
|
* commonly use in older AMD chips and is obsolete compared with CFI.
|
5 |
|
|
* It is called JEDEC because the JEDEC association distributes the ID codes
|
6 |
|
|
* for the chips.
|
7 |
|
|
*
|
8 |
|
|
* See the AMD flash databook for information on how to operate the interface.
|
9 |
|
|
*
|
10 |
|
|
* This code does not support anything wider than 8 bit flash chips, I am
|
11 |
|
|
* not going to guess how to send commands to them, plus I expect they will
|
12 |
|
|
* all speak CFI..
|
13 |
|
|
*
|
14 |
|
|
* $Id: jedec.c,v 1.1.1.1 2004-04-15 01:52:11 phoenix Exp $
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
#include <linux/mtd/jedec.h>
|
18 |
|
|
|
19 |
|
|
static struct mtd_info *jedec_probe(struct map_info *);
|
20 |
|
|
static int jedec_probe8(struct map_info *map,unsigned long base,
|
21 |
|
|
struct jedec_private *priv);
|
22 |
|
|
static int jedec_probe16(struct map_info *map,unsigned long base,
|
23 |
|
|
struct jedec_private *priv);
|
24 |
|
|
static int jedec_probe32(struct map_info *map,unsigned long base,
|
25 |
|
|
struct jedec_private *priv);
|
26 |
|
|
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
27 |
|
|
unsigned long len);
|
28 |
|
|
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
|
29 |
|
|
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
30 |
|
|
size_t *retlen, const u_char *buf);
|
31 |
|
|
|
32 |
|
|
static unsigned long my_bank_size;
|
33 |
|
|
|
34 |
|
|
/* Listing of parts and sizes. We need this table to learn the sector
|
35 |
|
|
size of the chip and the total length */
|
36 |
|
|
static const struct JEDECTable JEDEC_table[] =
|
37 |
|
|
{{0x013D,"AMD Am29F017D",2*1024*1024,64*1024,MTD_CAP_NORFLASH},
|
38 |
|
|
{0x01AD,"AMD Am29F016",2*1024*1024,64*1024,MTD_CAP_NORFLASH},
|
39 |
|
|
{0x01D5,"AMD Am29F080",1*1024*1024,64*1024,MTD_CAP_NORFLASH},
|
40 |
|
|
{0x01A4,"AMD Am29F040",512*1024,64*1024,MTD_CAP_NORFLASH},
|
41 |
|
|
{0x20E3,"AMD Am29W040B",512*1024,64*1024,MTD_CAP_NORFLASH},
|
42 |
|
|
{0xC2AD,"Macronix MX29F016",2*1024*1024,64*1024,MTD_CAP_NORFLASH},
|
43 |
|
|
{}};
|
44 |
|
|
|
45 |
|
|
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
|
46 |
|
|
static void jedec_sync(struct mtd_info *mtd) {};
|
47 |
|
|
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
48 |
|
|
size_t *retlen, u_char *buf);
|
49 |
|
|
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
50 |
|
|
size_t *retlen, u_char *buf);
|
51 |
|
|
|
52 |
|
|
static struct mtd_info *jedec_probe(struct map_info *map);
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
|
56 |
|
|
static struct mtd_chip_driver jedec_chipdrv = {
|
57 |
|
|
probe: jedec_probe,
|
58 |
|
|
name: "jedec",
|
59 |
|
|
module: THIS_MODULE
|
60 |
|
|
};
|
61 |
|
|
|
62 |
|
|
/* Probe entry point */
|
63 |
|
|
|
64 |
|
|
static struct mtd_info *jedec_probe(struct map_info *map)
|
65 |
|
|
{
|
66 |
|
|
struct mtd_info *MTD;
|
67 |
|
|
struct jedec_private *priv;
|
68 |
|
|
unsigned long Base;
|
69 |
|
|
unsigned long SectorSize;
|
70 |
|
|
unsigned count;
|
71 |
|
|
unsigned I,Uniq;
|
72 |
|
|
char Part[200];
|
73 |
|
|
memset(&priv,0,sizeof(priv));
|
74 |
|
|
|
75 |
|
|
MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
|
76 |
|
|
if (!MTD)
|
77 |
|
|
return NULL;
|
78 |
|
|
|
79 |
|
|
memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private));
|
80 |
|
|
priv = (struct jedec_private *)&MTD[1];
|
81 |
|
|
|
82 |
|
|
my_bank_size = map->size;
|
83 |
|
|
|
84 |
|
|
if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
|
85 |
|
|
{
|
86 |
|
|
printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
|
87 |
|
|
kfree(MTD);
|
88 |
|
|
return 0;
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
for (Base = 0; Base < map->size; Base += my_bank_size)
|
92 |
|
|
{
|
93 |
|
|
// Perhaps zero could designate all tests?
|
94 |
|
|
if (map->buswidth == 0)
|
95 |
|
|
map->buswidth = 1;
|
96 |
|
|
|
97 |
|
|
if (map->buswidth == 1){
|
98 |
|
|
if (jedec_probe8(map,Base,priv) == 0) {
|
99 |
|
|
printk("did recognize jedec chip\n");
|
100 |
|
|
kfree(MTD);
|
101 |
|
|
return 0;
|
102 |
|
|
}
|
103 |
|
|
}
|
104 |
|
|
if (map->buswidth == 2)
|
105 |
|
|
jedec_probe16(map,Base,priv);
|
106 |
|
|
if (map->buswidth == 4)
|
107 |
|
|
jedec_probe32(map,Base,priv);
|
108 |
|
|
}
|
109 |
|
|
|
110 |
|
|
// Get the biggest sector size
|
111 |
|
|
SectorSize = 0;
|
112 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
113 |
|
|
{
|
114 |
|
|
// printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
|
115 |
|
|
// printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
|
116 |
|
|
if (priv->chips[I].sectorsize > SectorSize)
|
117 |
|
|
SectorSize = priv->chips[I].sectorsize;
|
118 |
|
|
}
|
119 |
|
|
|
120 |
|
|
// Quickly ensure that the other sector sizes are factors of the largest
|
121 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
122 |
|
|
{
|
123 |
|
|
if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
|
124 |
|
|
{
|
125 |
|
|
printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
|
126 |
|
|
kfree(MTD);
|
127 |
|
|
return 0;
|
128 |
|
|
}
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Generate a part name that includes the number of different chips and
|
132 |
|
|
other configuration information */
|
133 |
|
|
count = 1;
|
134 |
|
|
strncpy(Part,map->name,sizeof(Part)-10);
|
135 |
|
|
Part[sizeof(Part)-11] = 0;
|
136 |
|
|
strcat(Part," ");
|
137 |
|
|
Uniq = 0;
|
138 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
139 |
|
|
{
|
140 |
|
|
const struct JEDECTable *JEDEC;
|
141 |
|
|
|
142 |
|
|
if (priv->chips[I+1].jedec == priv->chips[I].jedec)
|
143 |
|
|
{
|
144 |
|
|
count++;
|
145 |
|
|
continue;
|
146 |
|
|
}
|
147 |
|
|
|
148 |
|
|
// Locate the chip in the jedec table
|
149 |
|
|
JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
|
150 |
|
|
if (JEDEC == 0)
|
151 |
|
|
{
|
152 |
|
|
printk("mtd: Internal Error, JEDEC not set\n");
|
153 |
|
|
kfree(MTD);
|
154 |
|
|
return 0;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
if (Uniq != 0)
|
158 |
|
|
strcat(Part,",");
|
159 |
|
|
Uniq++;
|
160 |
|
|
|
161 |
|
|
if (count != 1)
|
162 |
|
|
sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
|
163 |
|
|
else
|
164 |
|
|
sprintf(Part+strlen(Part),"%s",JEDEC->name);
|
165 |
|
|
if (strlen(Part) > sizeof(Part)*2/3)
|
166 |
|
|
break;
|
167 |
|
|
count = 1;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/* Determine if the chips are organized in a linear fashion, or if there
|
171 |
|
|
are empty banks. Note, the last bank does not count here, only the
|
172 |
|
|
first banks are important. Holes on non-bank boundaries can not exist
|
173 |
|
|
due to the way the detection algorithm works. */
|
174 |
|
|
if (priv->size < my_bank_size)
|
175 |
|
|
my_bank_size = priv->size;
|
176 |
|
|
priv->is_banked = 0;
|
177 |
|
|
//printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
|
178 |
|
|
//printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
|
179 |
|
|
if (!priv->size) {
|
180 |
|
|
printk("priv->size is zero\n");
|
181 |
|
|
kfree(MTD);
|
182 |
|
|
return 0;
|
183 |
|
|
}
|
184 |
|
|
if (priv->size/my_bank_size) {
|
185 |
|
|
if (priv->size/my_bank_size == 1) {
|
186 |
|
|
priv->size = my_bank_size;
|
187 |
|
|
}
|
188 |
|
|
else {
|
189 |
|
|
for (I = 0; I != priv->size/my_bank_size - 1; I++)
|
190 |
|
|
{
|
191 |
|
|
if (priv->bank_fill[I] != my_bank_size)
|
192 |
|
|
priv->is_banked = 1;
|
193 |
|
|
|
194 |
|
|
/* This even could be eliminated, but new de-optimized read/write
|
195 |
|
|
functions have to be written */
|
196 |
|
|
printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
|
197 |
|
|
if (priv->bank_fill[I] != priv->bank_fill[0])
|
198 |
|
|
{
|
199 |
|
|
printk("mtd: Failed. Cannot handle unsymmetric banking\n");
|
200 |
|
|
kfree(MTD);
|
201 |
|
|
return 0;
|
202 |
|
|
}
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
}
|
206 |
|
|
if (priv->is_banked == 1)
|
207 |
|
|
strcat(Part,", banked");
|
208 |
|
|
|
209 |
|
|
// printk("Part: '%s'\n",Part);
|
210 |
|
|
|
211 |
|
|
memset(MTD,0,sizeof(*MTD));
|
212 |
|
|
// strncpy(MTD->name,Part,sizeof(MTD->name));
|
213 |
|
|
// MTD->name[sizeof(MTD->name)-1] = 0;
|
214 |
|
|
MTD->name = map->name;
|
215 |
|
|
MTD->type = MTD_NORFLASH;
|
216 |
|
|
MTD->flags = MTD_CAP_NORFLASH;
|
217 |
|
|
MTD->erasesize = SectorSize*(map->buswidth);
|
218 |
|
|
// printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
|
219 |
|
|
MTD->size = priv->size;
|
220 |
|
|
// printk("MTD->size is %x\n",(unsigned int)MTD->size);
|
221 |
|
|
//MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
|
222 |
|
|
MTD->erase = flash_erase;
|
223 |
|
|
if (priv->is_banked == 1)
|
224 |
|
|
MTD->read = jedec_read_banked;
|
225 |
|
|
else
|
226 |
|
|
MTD->read = jedec_read;
|
227 |
|
|
MTD->write = flash_write;
|
228 |
|
|
MTD->sync = jedec_sync;
|
229 |
|
|
MTD->priv = map;
|
230 |
|
|
map->fldrv_priv = priv;
|
231 |
|
|
map->fldrv = &jedec_chipdrv;
|
232 |
|
|
MOD_INC_USE_COUNT;
|
233 |
|
|
return MTD;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
|
237 |
|
|
static int checkparity(u_char C)
|
238 |
|
|
{
|
239 |
|
|
u_char parity = 0;
|
240 |
|
|
while (C != 0)
|
241 |
|
|
{
|
242 |
|
|
parity ^= C & 1;
|
243 |
|
|
C >>= 1;
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
return parity == 1;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
/* Take an array of JEDEC numbers that represent interleved flash chips
|
251 |
|
|
and process them. Check to make sure they are good JEDEC numbers, look
|
252 |
|
|
them up and then add them to the chip list */
|
253 |
|
|
static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
|
254 |
|
|
unsigned long base,struct jedec_private *priv)
|
255 |
|
|
{
|
256 |
|
|
unsigned I,J;
|
257 |
|
|
unsigned long Size;
|
258 |
|
|
unsigned long SectorSize;
|
259 |
|
|
const struct JEDECTable *JEDEC;
|
260 |
|
|
|
261 |
|
|
// Test #2 JEDEC numbers exhibit odd parity
|
262 |
|
|
for (I = 0; I != Count; I++)
|
263 |
|
|
{
|
264 |
|
|
if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
|
265 |
|
|
return 0;
|
266 |
|
|
}
|
267 |
|
|
|
268 |
|
|
// Finally, just make sure all the chip sizes are the same
|
269 |
|
|
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
270 |
|
|
|
271 |
|
|
if (JEDEC == 0)
|
272 |
|
|
{
|
273 |
|
|
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
274 |
|
|
return 0;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
Size = JEDEC->size;
|
278 |
|
|
SectorSize = JEDEC->sectorsize;
|
279 |
|
|
for (I = 0; I != Count; I++)
|
280 |
|
|
{
|
281 |
|
|
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
282 |
|
|
if (JEDEC == 0)
|
283 |
|
|
{
|
284 |
|
|
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
285 |
|
|
return 0;
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
|
289 |
|
|
{
|
290 |
|
|
printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
|
291 |
|
|
return 0;
|
292 |
|
|
}
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
// Load the Chips
|
296 |
|
|
for (I = 0; I != MAX_JEDEC_CHIPS; I++)
|
297 |
|
|
{
|
298 |
|
|
if (priv->chips[I].jedec == 0)
|
299 |
|
|
break;
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
if (I + Count > MAX_JEDEC_CHIPS)
|
303 |
|
|
{
|
304 |
|
|
printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
|
305 |
|
|
return 0;
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
// Add them to the table
|
309 |
|
|
for (J = 0; J != Count; J++)
|
310 |
|
|
{
|
311 |
|
|
unsigned long Bank;
|
312 |
|
|
|
313 |
|
|
JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
|
314 |
|
|
priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
|
315 |
|
|
priv->chips[I].size = JEDEC->size;
|
316 |
|
|
priv->chips[I].sectorsize = JEDEC->sectorsize;
|
317 |
|
|
priv->chips[I].base = base + J;
|
318 |
|
|
priv->chips[I].datashift = J*8;
|
319 |
|
|
priv->chips[I].capabilities = JEDEC->capabilities;
|
320 |
|
|
priv->chips[I].offset = priv->size + J;
|
321 |
|
|
|
322 |
|
|
// log2 n :|
|
323 |
|
|
priv->chips[I].addrshift = 0;
|
324 |
|
|
for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
|
325 |
|
|
|
326 |
|
|
// Determine how filled this bank is.
|
327 |
|
|
Bank = base & (~(my_bank_size-1));
|
328 |
|
|
if (priv->bank_fill[Bank/my_bank_size] < base +
|
329 |
|
|
(JEDEC->size << priv->chips[I].addrshift) - Bank)
|
330 |
|
|
priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
|
331 |
|
|
I++;
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
priv->size += priv->chips[I-1].size*Count;
|
335 |
|
|
|
336 |
|
|
return priv->chips[I-1].size;
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
/* Lookup the chip information from the JEDEC ID table. */
|
340 |
|
|
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
|
341 |
|
|
{
|
342 |
|
|
__u16 Id = (mfr << 8) | id;
|
343 |
|
|
unsigned long I = 0;
|
344 |
|
|
for (I = 0; JEDEC_table[I].jedec != 0; I++)
|
345 |
|
|
if (JEDEC_table[I].jedec == Id)
|
346 |
|
|
return JEDEC_table + I;
|
347 |
|
|
return 0;
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
// Look for flash using an 8 bit bus interface
|
351 |
|
|
static int jedec_probe8(struct map_info *map,unsigned long base,
|
352 |
|
|
struct jedec_private *priv)
|
353 |
|
|
{
|
354 |
|
|
#define flread(x) map->read8(map,base+x)
|
355 |
|
|
#define flwrite(v,x) map->write8(map,v,base+x)
|
356 |
|
|
|
357 |
|
|
const unsigned long AutoSel1 = 0xAA;
|
358 |
|
|
const unsigned long AutoSel2 = 0x55;
|
359 |
|
|
const unsigned long AutoSel3 = 0x90;
|
360 |
|
|
const unsigned long Reset = 0xF0;
|
361 |
|
|
__u32 OldVal;
|
362 |
|
|
__u8 Mfg[1];
|
363 |
|
|
__u8 Id[1];
|
364 |
|
|
unsigned I;
|
365 |
|
|
unsigned long Size;
|
366 |
|
|
|
367 |
|
|
// Wait for any write/erase operation to settle
|
368 |
|
|
OldVal = flread(base);
|
369 |
|
|
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
370 |
|
|
OldVal = flread(base);
|
371 |
|
|
|
372 |
|
|
// Reset the chip
|
373 |
|
|
flwrite(Reset,0x555);
|
374 |
|
|
|
375 |
|
|
// Send the sequence
|
376 |
|
|
flwrite(AutoSel1,0x555);
|
377 |
|
|
flwrite(AutoSel2,0x2AA);
|
378 |
|
|
flwrite(AutoSel3,0x555);
|
379 |
|
|
|
380 |
|
|
// Get the JEDEC numbers
|
381 |
|
|
Mfg[0] = flread(0);
|
382 |
|
|
Id[0] = flread(1);
|
383 |
|
|
// printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
|
384 |
|
|
|
385 |
|
|
Size = handle_jedecs(map,Mfg,Id,1,base,priv);
|
386 |
|
|
// printk("handle_jedecs Size is %x\n",(unsigned int)Size);
|
387 |
|
|
if (Size == 0)
|
388 |
|
|
{
|
389 |
|
|
flwrite(Reset,0x555);
|
390 |
|
|
return 0;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
|
394 |
|
|
// Reset.
|
395 |
|
|
flwrite(Reset,0x555);
|
396 |
|
|
|
397 |
|
|
return 1;
|
398 |
|
|
|
399 |
|
|
#undef flread
|
400 |
|
|
#undef flwrite
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
|
404 |
|
|
static int jedec_probe16(struct map_info *map,unsigned long base,
|
405 |
|
|
struct jedec_private *priv)
|
406 |
|
|
{
|
407 |
|
|
return 0;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
|
411 |
|
|
static int jedec_probe32(struct map_info *map,unsigned long base,
|
412 |
|
|
struct jedec_private *priv)
|
413 |
|
|
{
|
414 |
|
|
#define flread(x) map->read32(map,base+((x)<<2))
|
415 |
|
|
#define flwrite(v,x) map->write32(map,v,base+((x)<<2))
|
416 |
|
|
|
417 |
|
|
const unsigned long AutoSel1 = 0xAAAAAAAA;
|
418 |
|
|
const unsigned long AutoSel2 = 0x55555555;
|
419 |
|
|
const unsigned long AutoSel3 = 0x90909090;
|
420 |
|
|
const unsigned long Reset = 0xF0F0F0F0;
|
421 |
|
|
__u32 OldVal;
|
422 |
|
|
__u8 Mfg[4];
|
423 |
|
|
__u8 Id[4];
|
424 |
|
|
unsigned I;
|
425 |
|
|
unsigned long Size;
|
426 |
|
|
|
427 |
|
|
// Wait for any write/erase operation to settle
|
428 |
|
|
OldVal = flread(base);
|
429 |
|
|
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
430 |
|
|
OldVal = flread(base);
|
431 |
|
|
|
432 |
|
|
// Reset the chip
|
433 |
|
|
flwrite(Reset,0x555);
|
434 |
|
|
|
435 |
|
|
// Send the sequence
|
436 |
|
|
flwrite(AutoSel1,0x555);
|
437 |
|
|
flwrite(AutoSel2,0x2AA);
|
438 |
|
|
flwrite(AutoSel3,0x555);
|
439 |
|
|
|
440 |
|
|
// Test #1, JEDEC numbers are readable from 0x??00/0x??01
|
441 |
|
|
if (flread(0) != flread(0x100) ||
|
442 |
|
|
flread(1) != flread(0x101))
|
443 |
|
|
{
|
444 |
|
|
flwrite(Reset,0x555);
|
445 |
|
|
return 0;
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
// Split up the JEDEC numbers
|
449 |
|
|
OldVal = flread(0);
|
450 |
|
|
for (I = 0; I != 4; I++)
|
451 |
|
|
Mfg[I] = (OldVal >> (I*8));
|
452 |
|
|
OldVal = flread(1);
|
453 |
|
|
for (I = 0; I != 4; I++)
|
454 |
|
|
Id[I] = (OldVal >> (I*8));
|
455 |
|
|
|
456 |
|
|
Size = handle_jedecs(map,Mfg,Id,4,base,priv);
|
457 |
|
|
if (Size == 0)
|
458 |
|
|
{
|
459 |
|
|
flwrite(Reset,0x555);
|
460 |
|
|
return 0;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* Check if there is address wrap around within a single bank, if this
|
464 |
|
|
returns JEDEC numbers then we assume that it is wrap around. Notice
|
465 |
|
|
we call this routine with the JEDEC return still enabled, if two or
|
466 |
|
|
more flashes have a truncated address space the probe test will still
|
467 |
|
|
work */
|
468 |
|
|
if (base + (Size<<2)+0x555 < map->size &&
|
469 |
|
|
base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
|
470 |
|
|
{
|
471 |
|
|
if (flread(base+Size) != flread(base+Size + 0x100) ||
|
472 |
|
|
flread(base+Size + 1) != flread(base+Size + 0x101))
|
473 |
|
|
{
|
474 |
|
|
jedec_probe32(map,base+Size,priv);
|
475 |
|
|
}
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
// Reset.
|
479 |
|
|
flwrite(0xF0F0F0F0,0x555);
|
480 |
|
|
|
481 |
|
|
return 1;
|
482 |
|
|
|
483 |
|
|
#undef flread
|
484 |
|
|
#undef flwrite
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
/* Linear read. */
|
488 |
|
|
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
489 |
|
|
size_t *retlen, u_char *buf)
|
490 |
|
|
{
|
491 |
|
|
struct map_info *map = (struct map_info *)mtd->priv;
|
492 |
|
|
|
493 |
|
|
map->copy_from(map, buf, from, len);
|
494 |
|
|
*retlen = len;
|
495 |
|
|
return 0;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Banked read. Take special care to jump past the holes in the bank
|
499 |
|
|
mapping. This version assumes symetry in the holes.. */
|
500 |
|
|
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
501 |
|
|
size_t *retlen, u_char *buf)
|
502 |
|
|
{
|
503 |
|
|
struct map_info *map = (struct map_info *)mtd->priv;
|
504 |
|
|
struct jedec_private *priv = (struct jedec_private *)map->fldrv_priv;
|
505 |
|
|
|
506 |
|
|
*retlen = 0;
|
507 |
|
|
while (len > 0)
|
508 |
|
|
{
|
509 |
|
|
// Determine what bank and offset into that bank the first byte is
|
510 |
|
|
unsigned long bank = from & (~(priv->bank_fill[0]-1));
|
511 |
|
|
unsigned long offset = from & (priv->bank_fill[0]-1);
|
512 |
|
|
unsigned long get = len;
|
513 |
|
|
if (priv->bank_fill[0] - offset < len)
|
514 |
|
|
get = priv->bank_fill[0] - offset;
|
515 |
|
|
|
516 |
|
|
bank /= priv->bank_fill[0];
|
517 |
|
|
map->copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
|
518 |
|
|
|
519 |
|
|
len -= get;
|
520 |
|
|
*retlen += get;
|
521 |
|
|
from += get;
|
522 |
|
|
}
|
523 |
|
|
return 0;
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
/* Pass the flags value that the flash return before it re-entered read
|
527 |
|
|
mode. */
|
528 |
|
|
static void jedec_flash_failed(unsigned char code)
|
529 |
|
|
{
|
530 |
|
|
/* Bit 5 being high indicates that there was an internal device
|
531 |
|
|
failure, erasure time limits exceeded or something */
|
532 |
|
|
if ((code & (1 << 5)) != 0)
|
533 |
|
|
{
|
534 |
|
|
printk("mtd: Internal Flash failure\n");
|
535 |
|
|
return;
|
536 |
|
|
}
|
537 |
|
|
printk("mtd: Programming didn't take\n");
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* This uses the erasure function described in the AMD Flash Handbook,
|
541 |
|
|
it will work for flashes with a fixed sector size only. Flashes with
|
542 |
|
|
a selection of sector sizes (ie the AMD Am29F800B) will need a different
|
543 |
|
|
routine. This routine tries to parallize erasing multiple chips/sectors
|
544 |
|
|
where possible */
|
545 |
|
|
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
|
546 |
|
|
{
|
547 |
|
|
// Does IO to the currently selected chip
|
548 |
|
|
#define flread(x) map->read8(map,chip->base+((x)<<chip->addrshift))
|
549 |
|
|
#define flwrite(v,x) map->write8(map,v,chip->base+((x)<<chip->addrshift))
|
550 |
|
|
|
551 |
|
|
unsigned long Time = 0;
|
552 |
|
|
unsigned long NoTime = 0;
|
553 |
|
|
unsigned long start = instr->addr, len = instr->len;
|
554 |
|
|
unsigned int I;
|
555 |
|
|
struct map_info *map = (struct map_info *)mtd->priv;
|
556 |
|
|
struct jedec_private *priv = (struct jedec_private *)map->fldrv_priv;
|
557 |
|
|
|
558 |
|
|
// Verify the arguments..
|
559 |
|
|
if (start + len > mtd->size ||
|
560 |
|
|
(start % mtd->erasesize) != 0 ||
|
561 |
|
|
(len % mtd->erasesize) != 0 ||
|
562 |
|
|
(len/mtd->erasesize) == 0)
|
563 |
|
|
return -EINVAL;
|
564 |
|
|
|
565 |
|
|
jedec_flash_chip_scan(priv,start,len);
|
566 |
|
|
|
567 |
|
|
// Start the erase sequence on each chip
|
568 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
569 |
|
|
{
|
570 |
|
|
unsigned long off;
|
571 |
|
|
struct jedec_flash_chip *chip = priv->chips + I;
|
572 |
|
|
|
573 |
|
|
if (chip->length == 0)
|
574 |
|
|
continue;
|
575 |
|
|
|
576 |
|
|
if (chip->start + chip->length > chip->size)
|
577 |
|
|
{
|
578 |
|
|
printk("DIE\n");
|
579 |
|
|
return -EIO;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
flwrite(0xF0,chip->start + 0x555);
|
583 |
|
|
flwrite(0xAA,chip->start + 0x555);
|
584 |
|
|
flwrite(0x55,chip->start + 0x2AA);
|
585 |
|
|
flwrite(0x80,chip->start + 0x555);
|
586 |
|
|
flwrite(0xAA,chip->start + 0x555);
|
587 |
|
|
flwrite(0x55,chip->start + 0x2AA);
|
588 |
|
|
|
589 |
|
|
/* Once we start selecting the erase sectors the delay between each
|
590 |
|
|
command must not exceed 50us or it will immediately start erasing
|
591 |
|
|
and ignore the other sectors */
|
592 |
|
|
for (off = 0; off < len; off += chip->sectorsize)
|
593 |
|
|
{
|
594 |
|
|
// Check to make sure we didn't timeout
|
595 |
|
|
flwrite(0x30,chip->start + off);
|
596 |
|
|
if (off == 0)
|
597 |
|
|
continue;
|
598 |
|
|
if ((flread(chip->start + off) & (1 << 3)) != 0)
|
599 |
|
|
{
|
600 |
|
|
printk("mtd: Ack! We timed out the erase timer!\n");
|
601 |
|
|
return -EIO;
|
602 |
|
|
}
|
603 |
|
|
}
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* We could split this into a timer routine and return early, performing
|
607 |
|
|
background erasure.. Maybe later if the need warrents */
|
608 |
|
|
|
609 |
|
|
/* Poll the flash for erasure completion, specs say this can take as long
|
610 |
|
|
as 480 seconds to do all the sectors (for a 2 meg flash).
|
611 |
|
|
Erasure time is dependant on chip age, temp and wear.. */
|
612 |
|
|
|
613 |
|
|
/* This being a generic routine assumes a 32 bit bus. It does read32s
|
614 |
|
|
and bundles interleved chips into the same grouping. This will work
|
615 |
|
|
for all bus widths */
|
616 |
|
|
Time = 0;
|
617 |
|
|
NoTime = 0;
|
618 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
619 |
|
|
{
|
620 |
|
|
struct jedec_flash_chip *chip = priv->chips + I;
|
621 |
|
|
unsigned long off = 0;
|
622 |
|
|
unsigned todo[4] = {0,0,0,0};
|
623 |
|
|
unsigned todo_left = 0;
|
624 |
|
|
unsigned J;
|
625 |
|
|
|
626 |
|
|
if (chip->length == 0)
|
627 |
|
|
continue;
|
628 |
|
|
|
629 |
|
|
/* Find all chips in this data line, realistically this is all
|
630 |
|
|
or nothing up to the interleve count */
|
631 |
|
|
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
632 |
|
|
{
|
633 |
|
|
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
634 |
|
|
(chip->base & (~((1<<chip->addrshift)-1))))
|
635 |
|
|
{
|
636 |
|
|
todo_left++;
|
637 |
|
|
todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
|
638 |
|
|
}
|
639 |
|
|
}
|
640 |
|
|
|
641 |
|
|
/* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
|
642 |
|
|
(short)todo[2],(short)todo[3]);
|
643 |
|
|
*/
|
644 |
|
|
while (1)
|
645 |
|
|
{
|
646 |
|
|
__u32 Last[4];
|
647 |
|
|
unsigned long Count = 0;
|
648 |
|
|
|
649 |
|
|
/* During erase bit 7 is held low and bit 6 toggles, we watch this,
|
650 |
|
|
should it stop toggling or go high then the erase is completed,
|
651 |
|
|
or this is not really flash ;> */
|
652 |
|
|
switch (map->buswidth) {
|
653 |
|
|
case 1:
|
654 |
|
|
Last[0] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
655 |
|
|
Last[1] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
656 |
|
|
Last[2] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
657 |
|
|
break;
|
658 |
|
|
case 2:
|
659 |
|
|
Last[0] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
660 |
|
|
Last[1] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
661 |
|
|
Last[2] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
662 |
|
|
break;
|
663 |
|
|
case 3:
|
664 |
|
|
Last[0] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
665 |
|
|
Last[1] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
666 |
|
|
Last[2] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
667 |
|
|
break;
|
668 |
|
|
}
|
669 |
|
|
Count = 3;
|
670 |
|
|
while (todo_left != 0)
|
671 |
|
|
{
|
672 |
|
|
for (J = 0; J != 4; J++)
|
673 |
|
|
{
|
674 |
|
|
__u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
|
675 |
|
|
__u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
|
676 |
|
|
__u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
|
677 |
|
|
if (todo[J] == 0)
|
678 |
|
|
continue;
|
679 |
|
|
|
680 |
|
|
if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
|
681 |
|
|
{
|
682 |
|
|
// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
|
683 |
|
|
continue;
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
if (Byte1 == Byte2)
|
687 |
|
|
{
|
688 |
|
|
jedec_flash_failed(Byte3);
|
689 |
|
|
return -EIO;
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
todo[J] = 0;
|
693 |
|
|
todo_left--;
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* if (NoTime == 0)
|
697 |
|
|
Time += HZ/10 - schedule_timeout(HZ/10);*/
|
698 |
|
|
NoTime = 0;
|
699 |
|
|
|
700 |
|
|
switch (map->buswidth) {
|
701 |
|
|
case 1:
|
702 |
|
|
Last[Count % 4] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
703 |
|
|
break;
|
704 |
|
|
case 2:
|
705 |
|
|
Last[Count % 4] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
706 |
|
|
break;
|
707 |
|
|
case 4:
|
708 |
|
|
Last[Count % 4] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
709 |
|
|
break;
|
710 |
|
|
}
|
711 |
|
|
Count++;
|
712 |
|
|
|
713 |
|
|
/* // Count time, max of 15s per sector (according to AMD)
|
714 |
|
|
if (Time > 15*len/mtd->erasesize*HZ)
|
715 |
|
|
{
|
716 |
|
|
printk("mtd: Flash Erase Timed out\n");
|
717 |
|
|
return -EIO;
|
718 |
|
|
} */
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
// Skip to the next chip if we used chip erase
|
722 |
|
|
if (chip->length == chip->size)
|
723 |
|
|
off = chip->size;
|
724 |
|
|
else
|
725 |
|
|
off += chip->sectorsize;
|
726 |
|
|
|
727 |
|
|
if (off >= chip->length)
|
728 |
|
|
break;
|
729 |
|
|
NoTime = 1;
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
733 |
|
|
{
|
734 |
|
|
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
735 |
|
|
(chip->base & (~((1<<chip->addrshift)-1))))
|
736 |
|
|
priv->chips[J].length = 0;
|
737 |
|
|
}
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
//printk("done\n");
|
741 |
|
|
instr->state = MTD_ERASE_DONE;
|
742 |
|
|
if (instr->callback)
|
743 |
|
|
instr->callback(instr);
|
744 |
|
|
return 0;
|
745 |
|
|
|
746 |
|
|
#undef flread
|
747 |
|
|
#undef flwrite
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
/* This is the simple flash writing function. It writes to every byte, in
|
751 |
|
|
sequence. It takes care of how to properly address the flash if
|
752 |
|
|
the flash is interleved. It can only be used if all the chips in the
|
753 |
|
|
array are identical!*/
|
754 |
|
|
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
755 |
|
|
size_t *retlen, const u_char *buf)
|
756 |
|
|
{
|
757 |
|
|
/* Does IO to the currently selected chip. It takes the bank addressing
|
758 |
|
|
base (which is divisable by the chip size) adds the necesary lower bits
|
759 |
|
|
of addrshift (interleve index) and then adds the control register index. */
|
760 |
|
|
#define flread(x) map->read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
761 |
|
|
#define flwrite(v,x) map->write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
762 |
|
|
|
763 |
|
|
struct map_info *map = (struct map_info *)mtd->priv;
|
764 |
|
|
struct jedec_private *priv = (struct jedec_private *)map->fldrv_priv;
|
765 |
|
|
unsigned long base;
|
766 |
|
|
unsigned long off;
|
767 |
|
|
size_t save_len = len;
|
768 |
|
|
|
769 |
|
|
if (start + len > mtd->size)
|
770 |
|
|
return -EIO;
|
771 |
|
|
|
772 |
|
|
//printk("Here");
|
773 |
|
|
|
774 |
|
|
//printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
|
775 |
|
|
while (len != 0)
|
776 |
|
|
{
|
777 |
|
|
struct jedec_flash_chip *chip = priv->chips;
|
778 |
|
|
unsigned long bank;
|
779 |
|
|
unsigned long boffset;
|
780 |
|
|
|
781 |
|
|
// Compute the base of the flash.
|
782 |
|
|
off = ((unsigned long)start) % (chip->size << chip->addrshift);
|
783 |
|
|
base = start - off;
|
784 |
|
|
|
785 |
|
|
// Perform banked addressing translation.
|
786 |
|
|
bank = base & (~(priv->bank_fill[0]-1));
|
787 |
|
|
boffset = base & (priv->bank_fill[0]-1);
|
788 |
|
|
bank = (bank/priv->bank_fill[0])*my_bank_size;
|
789 |
|
|
base = bank + boffset;
|
790 |
|
|
|
791 |
|
|
// printk("Flasing %X %X %X\n",base,chip->size,len);
|
792 |
|
|
// printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
|
793 |
|
|
|
794 |
|
|
// Loop over this page
|
795 |
|
|
for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
|
796 |
|
|
{
|
797 |
|
|
unsigned char oldbyte = map->read8(map,base+off);
|
798 |
|
|
unsigned char Last[4];
|
799 |
|
|
unsigned long Count = 0;
|
800 |
|
|
|
801 |
|
|
if (oldbyte == *buf) {
|
802 |
|
|
// printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
|
803 |
|
|
continue;
|
804 |
|
|
}
|
805 |
|
|
if (((~oldbyte) & *buf) != 0)
|
806 |
|
|
printk("mtd: warn: Trying to set a 0 to a 1\n");
|
807 |
|
|
|
808 |
|
|
// Write
|
809 |
|
|
flwrite(0xAA,0x555);
|
810 |
|
|
flwrite(0x55,0x2AA);
|
811 |
|
|
flwrite(0xA0,0x555);
|
812 |
|
|
map->write8(map,*buf,base + off);
|
813 |
|
|
Last[0] = map->read8(map,base + off);
|
814 |
|
|
Last[1] = map->read8(map,base + off);
|
815 |
|
|
Last[2] = map->read8(map,base + off);
|
816 |
|
|
|
817 |
|
|
/* Wait for the flash to finish the operation. We store the last 4
|
818 |
|
|
status bytes that have been retrieved so we can determine why
|
819 |
|
|
it failed. The toggle bits keep toggling when there is a
|
820 |
|
|
failure */
|
821 |
|
|
for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
|
822 |
|
|
Count < 10000; Count++)
|
823 |
|
|
Last[Count % 4] = map->read8(map,base + off);
|
824 |
|
|
if (Last[(Count - 1) % 4] != *buf)
|
825 |
|
|
{
|
826 |
|
|
jedec_flash_failed(Last[(Count - 3) % 4]);
|
827 |
|
|
return -EIO;
|
828 |
|
|
}
|
829 |
|
|
}
|
830 |
|
|
}
|
831 |
|
|
*retlen = save_len;
|
832 |
|
|
return 0;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
/* This is used to enhance the speed of the erase routine,
|
836 |
|
|
when things are being done to multiple chips it is possible to
|
837 |
|
|
parallize the operations, particularly full memory erases of multi
|
838 |
|
|
chip memories benifit */
|
839 |
|
|
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
840 |
|
|
unsigned long len)
|
841 |
|
|
{
|
842 |
|
|
unsigned int I;
|
843 |
|
|
|
844 |
|
|
// Zero the records
|
845 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
846 |
|
|
priv->chips[I].start = priv->chips[I].length = 0;
|
847 |
|
|
|
848 |
|
|
// Intersect the region with each chip
|
849 |
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
850 |
|
|
{
|
851 |
|
|
struct jedec_flash_chip *chip = priv->chips + I;
|
852 |
|
|
unsigned long ByteStart;
|
853 |
|
|
unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
|
854 |
|
|
|
855 |
|
|
// End is before this chip or the start is after it
|
856 |
|
|
if (start+len < chip->offset ||
|
857 |
|
|
ChipEndByte - (1 << chip->addrshift) < start)
|
858 |
|
|
continue;
|
859 |
|
|
|
860 |
|
|
if (start < chip->offset)
|
861 |
|
|
{
|
862 |
|
|
ByteStart = chip->offset;
|
863 |
|
|
chip->start = 0;
|
864 |
|
|
}
|
865 |
|
|
else
|
866 |
|
|
{
|
867 |
|
|
chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
|
868 |
|
|
ByteStart = start;
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
if (start + len >= ChipEndByte)
|
872 |
|
|
chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
|
873 |
|
|
else
|
874 |
|
|
chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
|
875 |
|
|
}
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
int __init jedec_init(void)
|
879 |
|
|
{
|
880 |
|
|
register_mtd_chip_driver(&jedec_chipdrv);
|
881 |
|
|
return 0;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
static void __exit jedec_exit(void)
|
885 |
|
|
{
|
886 |
|
|
unregister_mtd_chip_driver(&jedec_chipdrv);
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
module_init(jedec_init);
|
890 |
|
|
module_exit(jedec_exit);
|
891 |
|
|
|
892 |
|
|
MODULE_LICENSE("GPL");
|
893 |
|
|
MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
|
894 |
|
|
MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");
|