OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [mtd/] [devices/] [doc2000.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
 
2
/*
3
 * Linux driver for Disk-On-Chip 2000 and Millennium
4
 * (c) 1999 Machine Vision Holdings, Inc.
5
 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
6
 *
7
 * $Id: doc2000.c,v 1.1.1.1 2004-04-15 01:52:02 phoenix Exp $
8
 */
9
 
10
#include <linux/kernel.h>
11
#include <linux/module.h>
12
#include <asm/errno.h>
13
#include <asm/io.h>
14
#include <asm/uaccess.h>
15
#include <linux/miscdevice.h>
16
#include <linux/pci.h>
17
#include <linux/delay.h>
18
#include <linux/slab.h>
19
#include <linux/sched.h>
20
#include <linux/init.h>
21
#include <linux/types.h>
22
 
23
#include <linux/mtd/mtd.h>
24
#include <linux/mtd/nand.h>
25
#include <linux/mtd/doc2000.h>
26
 
27
#define DOC_SUPPORT_2000
28
#define DOC_SUPPORT_MILLENNIUM
29
 
30
#ifdef DOC_SUPPORT_2000
31
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
32
#else
33
#define DoC_is_2000(doc) (0)
34
#endif
35
 
36
#ifdef DOC_SUPPORT_MILLENNIUM
37
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
38
#else
39
#define DoC_is_Millennium(doc) (0)
40
#endif
41
 
42
/* #define ECC_DEBUG */
43
 
44
/* I have no idea why some DoC chips can not use memcpy_from|to_io().
45
 * This may be due to the different revisions of the ASIC controller built-in or
46
 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
47
 * this:
48
 #undef USE_MEMCPY
49
*/
50
 
51
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
52
                    size_t *retlen, u_char *buf);
53
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
54
                     size_t *retlen, const u_char *buf);
55
static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
56
                        size_t *retlen, u_char *buf, u_char *eccbuf, int oobsel);
57
static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
58
                         size_t *retlen, const u_char *buf, u_char *eccbuf, int oobsel);
59
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
60
                        size_t *retlen, u_char *buf);
61
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
62
                         size_t *retlen, const u_char *buf);
63
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
64
                         size_t *retlen, const u_char *buf);
65
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
66
 
67
static struct mtd_info *doc2klist = NULL;
68
 
69
/* Perform the required delay cycles by reading from the appropriate register */
70
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
71
{
72
        volatile char dummy;
73
        int i;
74
 
75
        for (i = 0; i < cycles; i++) {
76
                if (DoC_is_Millennium(doc))
77
                        dummy = ReadDOC(doc->virtadr, NOP);
78
                else
79
                        dummy = ReadDOC(doc->virtadr, DOCStatus);
80
        }
81
 
82
}
83
 
84
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
85
static int _DoC_WaitReady(struct DiskOnChip *doc)
86
{
87
        unsigned long docptr = doc->virtadr;
88
        unsigned long timeo = jiffies + (HZ * 10);
89
 
90
        DEBUG(MTD_DEBUG_LEVEL3,
91
              "_DoC_WaitReady called for out-of-line wait\n");
92
 
93
        /* Out-of-line routine to wait for chip response */
94
        while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
95
                if (time_after(jiffies, timeo)) {
96
                        DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
97
                        return -EIO;
98
                }
99
                udelay(1);
100
                cond_resched();
101
        }
102
 
103
        return 0;
104
}
105
 
106
static inline int DoC_WaitReady(struct DiskOnChip *doc)
107
{
108
        unsigned long docptr = doc->virtadr;
109
        /* This is inline, to optimise the common case, where it's ready instantly */
110
        int ret = 0;
111
 
112
        /* 4 read form NOP register should be issued in prior to the read from CDSNControl
113
           see Software Requirement 11.4 item 2. */
114
        DoC_Delay(doc, 4);
115
 
116
        if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
117
                /* Call the out-of-line routine to wait */
118
                ret = _DoC_WaitReady(doc);
119
 
120
        /* issue 2 read from NOP register after reading from CDSNControl register
121
           see Software Requirement 11.4 item 2. */
122
        DoC_Delay(doc, 2);
123
 
124
        return ret;
125
}
126
 
127
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
128
   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
129
   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
130
 
131
static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
132
                              unsigned char xtraflags)
133
{
134
        unsigned long docptr = doc->virtadr;
135
 
136
        if (DoC_is_2000(doc))
137
                xtraflags |= CDSN_CTRL_FLASH_IO;
138
 
139
        /* Assert the CLE (Command Latch Enable) line to the flash chip */
140
        WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
141
        DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */
142
 
143
        if (DoC_is_Millennium(doc))
144
                WriteDOC(command, docptr, CDSNSlowIO);
145
 
146
        /* Send the command */
147
        WriteDOC_(command, docptr, doc->ioreg);
148
 
149
        /* Lower the CLE line */
150
        WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
151
        DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */
152
 
153
        /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
154
        return DoC_WaitReady(doc);
155
}
156
 
157
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
158
   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
159
   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
160
 
161
static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
162
                       unsigned char xtraflags1, unsigned char xtraflags2)
163
{
164
        unsigned long docptr;
165
        int i;
166
 
167
        docptr = doc->virtadr;
168
 
169
        if (DoC_is_2000(doc))
170
                xtraflags1 |= CDSN_CTRL_FLASH_IO;
171
 
172
        /* Assert the ALE (Address Latch Enable) line to the flash chip */
173
        WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
174
 
175
        DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */
176
 
177
        /* Send the address */
178
        /* Devices with 256-byte page are addressed as:
179
           Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
180
           * there is no device on the market with page256
181
           and more than 24 bits.
182
           Devices with 512-byte page are addressed as:
183
           Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
184
           * 25-31 is sent only if the chip support it.
185
           * bit 8 changes the read command to be sent
186
           (NAND_CMD_READ0 or NAND_CMD_READ1).
187
         */
188
 
189
        if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
190
                if (DoC_is_Millennium(doc))
191
                        WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
192
                WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
193
        }
194
 
195
        if (doc->page256) {
196
                ofs = ofs >> 8;
197
        } else {
198
                ofs = ofs >> 9;
199
        }
200
 
201
        if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
202
                for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
203
                        if (DoC_is_Millennium(doc))
204
                                WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
205
                        WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
206
                }
207
        }
208
 
209
        DoC_Delay(doc, 2);      /* Needed for some slow flash chips. mf. */
210
 
211
        /* FIXME: The SlowIO's for millennium could be replaced by
212
           a single WritePipeTerm here. mf. */
213
 
214
        /* Lower the ALE line */
215
        WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
216
                 CDSNControl);
217
 
218
        DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */
219
 
220
        /* Wait for the chip to respond - Software requirement 11.4.1 */
221
        return DoC_WaitReady(doc);
222
}
223
 
224
/* Read a buffer from DoC, taking care of Millennium odditys */
225
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
226
{
227
        volatile int dummy;
228
        int modulus = 0xffff;
229
        unsigned long docptr;
230
        int i;
231
 
232
        docptr = doc->virtadr;
233
 
234
        if (len <= 0)
235
                return;
236
 
237
        if (DoC_is_Millennium(doc)) {
238
                /* Read the data via the internal pipeline through CDSN IO register,
239
                   see Pipelined Read Operations 11.3 */
240
                dummy = ReadDOC(docptr, ReadPipeInit);
241
 
242
                /* Millennium should use the LastDataRead register - Pipeline Reads */
243
                len--;
244
 
245
                /* This is needed for correctly ECC calculation */
246
                modulus = 0xff;
247
        }
248
 
249
        for (i = 0; i < len; i++)
250
                buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
251
 
252
        if (DoC_is_Millennium(doc)) {
253
                buf[i] = ReadDOC(docptr, LastDataRead);
254
        }
255
}
256
 
257
/* Write a buffer to DoC, taking care of Millennium odditys */
258
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
259
{
260
        unsigned long docptr;
261
        int i;
262
 
263
        docptr = doc->virtadr;
264
 
265
        if (len <= 0)
266
                return;
267
 
268
        for (i = 0; i < len; i++)
269
                WriteDOC_(buf[i], docptr, doc->ioreg + i);
270
 
271
        if (DoC_is_Millennium(doc)) {
272
                WriteDOC(0x00, docptr, WritePipeTerm);
273
        }
274
}
275
 
276
 
277
/* DoC_SelectChip: Select a given flash chip within the current floor */
278
 
279
static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
280
{
281
        unsigned long docptr = doc->virtadr;
282
 
283
        /* Software requirement 11.4.4 before writing DeviceSelect */
284
        /* Deassert the CE line to eliminate glitches on the FCE# outputs */
285
        WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
286
        DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */
287
 
288
        /* Select the individual flash chip requested */
289
        WriteDOC(chip, docptr, CDSNDeviceSelect);
290
        DoC_Delay(doc, 4);
291
 
292
        /* Reassert the CE line */
293
        WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
294
                 CDSNControl);
295
        DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */
296
 
297
        /* Wait for it to be ready */
298
        return DoC_WaitReady(doc);
299
}
300
 
301
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
302
 
303
static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
304
{
305
        unsigned long docptr = doc->virtadr;
306
 
307
        /* Select the floor (bank) of chips required */
308
        WriteDOC(floor, docptr, FloorSelect);
309
 
310
        /* Wait for the chip to be ready */
311
        return DoC_WaitReady(doc);
312
}
313
 
314
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
315
 
316
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
317
{
318
        int mfr, id, i, j;
319
        volatile char dummy;
320
 
321
        /* Page in the required floor/chip */
322
        DoC_SelectFloor(doc, floor);
323
        DoC_SelectChip(doc, chip);
324
 
325
        /* Reset the chip */
326
        if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
327
                DEBUG(MTD_DEBUG_LEVEL2,
328
                      "DoC_Command (reset) for %d,%d returned true\n",
329
                      floor, chip);
330
                return 0;
331
        }
332
 
333
 
334
        /* Read the NAND chip ID: 1. Send ReadID command */
335
        if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
336
                DEBUG(MTD_DEBUG_LEVEL2,
337
                      "DoC_Command (ReadID) for %d,%d returned true\n",
338
                      floor, chip);
339
                return 0;
340
        }
341
 
342
        /* Read the NAND chip ID: 2. Send address byte zero */
343
        DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
344
 
345
        /* Read the manufacturer and device id codes from the device */
346
 
347
        /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
348
        dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
349
        DoC_Delay(doc, 2);
350
        mfr = ReadDOC_(doc->virtadr, doc->ioreg);
351
 
352
        /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
353
        dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
354
        DoC_Delay(doc, 2);
355
        id = ReadDOC_(doc->virtadr, doc->ioreg);
356
 
357
        /* No response - return failure */
358
        if (mfr == 0xff || mfr == 0)
359
                return 0;
360
 
361
        /* Check it's the same as the first chip we identified.
362
         * M-Systems say that any given DiskOnChip device should only
363
         * contain _one_ type of flash part, although that's not a
364
         * hardware restriction. */
365
        if (doc->mfr) {
366
                if (doc->mfr == mfr && doc->id == id)
367
                        return 1;       /* This is another the same the first */
368
                else
369
                        printk(KERN_WARNING
370
                               "Flash chip at floor %d, chip %d is different:\n",
371
                               floor, chip);
372
        }
373
 
374
        /* Print and store the manufacturer and ID codes. */
375
        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
376
                if (id == nand_flash_ids[i].id) {
377
                        /* Try to identify manufacturer */
378
                        for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
379
                                if (nand_manuf_ids[j].id == mfr)
380
                                        break;
381
                        }
382
                        printk(KERN_INFO
383
                               "Flash chip found: Manufacturer ID: %2.2X, "
384
                               "Chip ID: %2.2X (%s:%s)\n", mfr, id,
385
                               nand_manuf_ids[j].name, nand_flash_ids[i].name);
386
                        if (!doc->mfr) {
387
                                doc->mfr = mfr;
388
                                doc->id = id;
389
                                doc->chipshift =
390
                                    nand_flash_ids[i].chipshift;
391
                                doc->page256 = nand_flash_ids[i].page256;
392
                                doc->pageadrlen =
393
                                    nand_flash_ids[i].chipshift > 25 ? 3 : 2;
394
                                doc->erasesize =
395
                                    nand_flash_ids[i].erasesize;
396
                                return 1;
397
                        }
398
                        return 0;
399
                }
400
        }
401
 
402
 
403
        /* We haven't fully identified the chip. Print as much as we know. */
404
        printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
405
               id, mfr);
406
 
407
        printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
408
        return 0;
409
}
410
 
411
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
412
 
413
static void DoC_ScanChips(struct DiskOnChip *this)
414
{
415
        int floor, chip;
416
        int numchips[MAX_FLOORS];
417
        int maxchips = MAX_CHIPS;
418
        int ret = 1;
419
 
420
        this->numchips = 0;
421
        this->mfr = 0;
422
        this->id = 0;
423
 
424
        if (DoC_is_Millennium(this))
425
                maxchips = MAX_CHIPS_MIL;
426
 
427
        /* For each floor, find the number of valid chips it contains */
428
        for (floor = 0; floor < MAX_FLOORS; floor++) {
429
                ret = 1;
430
                numchips[floor] = 0;
431
                for (chip = 0; chip < maxchips && ret != 0; chip++) {
432
 
433
                        ret = DoC_IdentChip(this, floor, chip);
434
                        if (ret) {
435
                                numchips[floor]++;
436
                                this->numchips++;
437
                        }
438
                }
439
        }
440
 
441
        /* If there are none at all that we recognise, bail */
442
        if (!this->numchips) {
443
                printk(KERN_NOTICE "No flash chips recognised.\n");
444
                return;
445
        }
446
 
447
        /* Allocate an array to hold the information for each chip */
448
        this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
449
        if (!this->chips) {
450
                printk(KERN_NOTICE "No memory for allocating chip info structures\n");
451
                return;
452
        }
453
 
454
        ret = 0;
455
 
456
        /* Fill out the chip array with {floor, chipno} for each
457
         * detected chip in the device. */
458
        for (floor = 0; floor < MAX_FLOORS; floor++) {
459
                for (chip = 0; chip < numchips[floor]; chip++) {
460
                        this->chips[ret].floor = floor;
461
                        this->chips[ret].chip = chip;
462
                        this->chips[ret].curadr = 0;
463
                        this->chips[ret].curmode = 0x50;
464
                        ret++;
465
                }
466
        }
467
 
468
        /* Calculate and print the total size of the device */
469
        this->totlen = this->numchips * (1 << this->chipshift);
470
 
471
        printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
472
               this->numchips, this->totlen >> 20);
473
}
474
 
475
static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
476
{
477
        int tmp1, tmp2, retval;
478
        if (doc1->physadr == doc2->physadr)
479
                return 1;
480
 
481
        /* Use the alias resolution register which was set aside for this
482
         * purpose. If it's value is the same on both chips, they might
483
         * be the same chip, and we write to one and check for a change in
484
         * the other. It's unclear if this register is usuable in the
485
         * DoC 2000 (it's in the Millennium docs), but it seems to work. */
486
        tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
487
        tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
488
        if (tmp1 != tmp2)
489
                return 0;
490
 
491
        WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
492
        tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
493
        if (tmp2 == (tmp1 + 1) % 0xff)
494
                retval = 1;
495
        else
496
                retval = 0;
497
 
498
        /* Restore register contents.  May not be necessary, but do it just to
499
         * be safe. */
500
        WriteDOC(tmp1, doc1->virtadr, AliasResolution);
501
 
502
        return retval;
503
}
504
 
505
static const char im_name[] = "DoC2k_init";
506
 
507
/* This routine is made available to other mtd code via
508
 * inter_module_register.  It must only be accessed through
509
 * inter_module_get which will bump the use count of this module.  The
510
 * addresses passed back in mtd are valid as long as the use count of
511
 * this module is non-zero, i.e. between inter_module_get and
512
 * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
513
 */
514
static void DoC2k_init(struct mtd_info *mtd)
515
{
516
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
517
        struct DiskOnChip *old = NULL;
518
 
519
        /* We must avoid being called twice for the same device. */
520
 
521
        if (doc2klist)
522
                old = (struct DiskOnChip *) doc2klist->priv;
523
 
524
        while (old) {
525
                if (DoC2k_is_alias(old, this)) {
526
                        printk(KERN_NOTICE
527
                               "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
528
                               this->physadr);
529
                        iounmap((void *) this->virtadr);
530
                        kfree(mtd);
531
                        return;
532
                }
533
                if (old->nextdoc)
534
                        old = (struct DiskOnChip *) old->nextdoc->priv;
535
                else
536
                        old = NULL;
537
        }
538
 
539
 
540
        switch (this->ChipID) {
541
        case DOC_ChipID_Doc2k:
542
                mtd->name = "DiskOnChip 2000";
543
                this->ioreg = DoC_2k_CDSN_IO;
544
                break;
545
        case DOC_ChipID_DocMil:
546
                mtd->name = "DiskOnChip Millennium";
547
                this->ioreg = DoC_Mil_CDSN_IO;
548
                break;
549
        }
550
 
551
        printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
552
               this->physadr);
553
 
554
        mtd->type = MTD_NANDFLASH;
555
        mtd->flags = MTD_CAP_NANDFLASH;
556
        mtd->size = 0;
557
        mtd->erasesize = 0;
558
        mtd->oobblock = 512;
559
        mtd->oobsize = 16;
560
        mtd->module = THIS_MODULE;
561
        mtd->erase = doc_erase;
562
        mtd->point = NULL;
563
        mtd->unpoint = NULL;
564
        mtd->read = doc_read;
565
        mtd->write = doc_write;
566
        mtd->read_ecc = doc_read_ecc;
567
        mtd->write_ecc = doc_write_ecc;
568
        mtd->read_oob = doc_read_oob;
569
        mtd->write_oob = doc_write_oob;
570
        mtd->sync = NULL;
571
 
572
        this->totlen = 0;
573
        this->numchips = 0;
574
 
575
        this->curfloor = -1;
576
        this->curchip = -1;
577
        init_MUTEX(&this->lock);
578
 
579
        /* Ident all the chips present. */
580
        DoC_ScanChips(this);
581
 
582
        if (!this->totlen) {
583
                kfree(mtd);
584
                iounmap((void *) this->virtadr);
585
        } else {
586
                this->nextdoc = doc2klist;
587
                doc2klist = mtd;
588
                mtd->size = this->totlen;
589
                mtd->erasesize = this->erasesize;
590
                add_mtd_device(mtd);
591
                return;
592
        }
593
}
594
 
595
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
596
                    size_t * retlen, u_char * buf)
597
{
598
        /* Just a special case of doc_read_ecc */
599
        return doc_read_ecc(mtd, from, len, retlen, buf, NULL, 0);
600
}
601
 
602
static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
603
                        size_t * retlen, u_char * buf, u_char * eccbuf, int oobsel)
604
{
605
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
606
        unsigned long docptr;
607
        struct Nand *mychip;
608
        unsigned char syndrome[6];
609
        volatile char dummy;
610
        int i, len256 = 0, ret=0;
611
 
612
        docptr = this->virtadr;
613
 
614
        /* Don't allow read past end of device */
615
        if (from >= this->totlen)
616
                return -EINVAL;
617
 
618
        down(&this->lock);
619
 
620
        /* Don't allow a single read to cross a 512-byte block boundary */
621
        if (from + len > ((from | 0x1ff) + 1))
622
                len = ((from | 0x1ff) + 1) - from;
623
 
624
        /* The ECC will not be calculated correctly if less than 512 is read */
625
        if (len != 0x200 && eccbuf)
626
                printk(KERN_WARNING
627
                       "ECC needs a full sector read (adr: %lx size %lx)\n",
628
                       (long) from, (long) len);
629
 
630
        /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
631
 
632
 
633
        /* Find the chip which is to be used and select it */
634
        mychip = &this->chips[from >> (this->chipshift)];
635
 
636
        if (this->curfloor != mychip->floor) {
637
                DoC_SelectFloor(this, mychip->floor);
638
                DoC_SelectChip(this, mychip->chip);
639
        } else if (this->curchip != mychip->chip) {
640
                DoC_SelectChip(this, mychip->chip);
641
        }
642
 
643
        this->curfloor = mychip->floor;
644
        this->curchip = mychip->chip;
645
 
646
        DoC_Command(this,
647
                    (!this->page256
648
                     && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
649
                    CDSN_CTRL_WP);
650
        DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
651
                    CDSN_CTRL_ECC_IO);
652
 
653
        if (eccbuf) {
654
                /* Prime the ECC engine */
655
                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
656
                WriteDOC(DOC_ECC_EN, docptr, ECCConf);
657
        } else {
658
                /* disable the ECC engine */
659
                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
660
                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
661
        }
662
 
663
        /* treat crossing 256-byte sector for 2M x 8bits devices */
664
        if (this->page256 && from + len > (from | 0xff) + 1) {
665
                len256 = (from | 0xff) + 1 - from;
666
                DoC_ReadBuf(this, buf, len256);
667
 
668
                DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
669
                DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
670
                            CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
671
        }
672
 
673
        DoC_ReadBuf(this, &buf[len256], len - len256);
674
 
675
        /* Let the caller know we completed it */
676
        *retlen = len;
677
 
678
        if (eccbuf) {
679
                /* Read the ECC data through the DiskOnChip ECC logic */
680
                /* Note: this will work even with 2M x 8bit devices as   */
681
                /*       they have 8 bytes of OOB per 256 page. mf.      */
682
                DoC_ReadBuf(this, eccbuf, 6);
683
 
684
                /* Flush the pipeline */
685
                if (DoC_is_Millennium(this)) {
686
                        dummy = ReadDOC(docptr, ECCConf);
687
                        dummy = ReadDOC(docptr, ECCConf);
688
                        i = ReadDOC(docptr, ECCConf);
689
                } else {
690
                        dummy = ReadDOC(docptr, 2k_ECCStatus);
691
                        dummy = ReadDOC(docptr, 2k_ECCStatus);
692
                        i = ReadDOC(docptr, 2k_ECCStatus);
693
                }
694
 
695
                /* Check the ECC Status */
696
                if (i & 0x80) {
697
                        int nb_errors;
698
                        /* There was an ECC error */
699
#ifdef ECC_DEBUG
700
                        printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
701
#endif
702
                        /* Read the ECC syndrom through the DiskOnChip ECC logic.
703
                           These syndrome will be all ZERO when there is no error */
704
                        for (i = 0; i < 6; i++) {
705
                                syndrome[i] =
706
                                    ReadDOC(docptr, ECCSyndrome0 + i);
707
                        }
708
                        nb_errors = doc_decode_ecc(buf, syndrome);
709
 
710
#ifdef ECC_DEBUG
711
                        printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
712
#endif
713
                        if (nb_errors < 0) {
714
                                /* We return error, but have actually done the read. Not that
715
                                   this can be told to user-space, via sys_read(), but at least
716
                                   MTD-aware stuff can know about it by checking *retlen */
717
                                ret = -EIO;
718
                        }
719
                }
720
 
721
#ifdef PSYCHO_DEBUG
722
                printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
723
                             (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
724
                             eccbuf[3], eccbuf[4], eccbuf[5]);
725
#endif
726
 
727
                /* disable the ECC engine */
728
                WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
729
        }
730
 
731
        /* according to 11.4.1, we need to wait for the busy line
732
         * drop if we read to the end of the page.  */
733
        if(0 == ((from + *retlen) & 0x1ff))
734
        {
735
            DoC_WaitReady(this);
736
        }
737
 
738
        up(&this->lock);
739
 
740
        return ret;
741
}
742
 
743
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
744
                     size_t * retlen, const u_char * buf)
745
{
746
        char eccbuf[6];
747
        return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, 0);
748
}
749
 
750
static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
751
                         size_t * retlen, const u_char * buf,
752
                         u_char * eccbuf, int oobsel)
753
{
754
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
755
        int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
756
        unsigned long docptr;
757
        volatile char dummy;
758
        int len256 = 0;
759
        struct Nand *mychip;
760
 
761
        docptr = this->virtadr;
762
 
763
        /* Don't allow write past end of device */
764
        if (to >= this->totlen)
765
                return -EINVAL;
766
 
767
        down(&this->lock);
768
 
769
        /* Don't allow a single write to cross a 512-byte block boundary */
770
        if (to + len > ((to | 0x1ff) + 1))
771
                len = ((to | 0x1ff) + 1) - to;
772
 
773
        /* The ECC will not be calculated correctly if less than 512 is written */
774
        if (len != 0x200 && eccbuf)
775
                printk(KERN_WARNING
776
                       "ECC needs a full sector write (adr: %lx size %lx)\n",
777
                       (long) to, (long) len);
778
 
779
        /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
780
 
781
        /* Find the chip which is to be used and select it */
782
        mychip = &this->chips[to >> (this->chipshift)];
783
 
784
        if (this->curfloor != mychip->floor) {
785
                DoC_SelectFloor(this, mychip->floor);
786
                DoC_SelectChip(this, mychip->chip);
787
        } else if (this->curchip != mychip->chip) {
788
                DoC_SelectChip(this, mychip->chip);
789
        }
790
 
791
        this->curfloor = mychip->floor;
792
        this->curchip = mychip->chip;
793
 
794
        /* Set device to main plane of flash */
795
        DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
796
        DoC_Command(this,
797
                    (!this->page256
798
                     && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
799
                    CDSN_CTRL_WP);
800
 
801
        DoC_Command(this, NAND_CMD_SEQIN, 0);
802
        DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
803
 
804
        if (eccbuf) {
805
                /* Prime the ECC engine */
806
                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
807
                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
808
        } else {
809
                /* disable the ECC engine */
810
                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
811
                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
812
        }
813
 
814
        /* treat crossing 256-byte sector for 2M x 8bits devices */
815
        if (this->page256 && to + len > (to | 0xff) + 1) {
816
                len256 = (to | 0xff) + 1 - to;
817
                DoC_WriteBuf(this, buf, len256);
818
 
819
                DoC_Command(this, NAND_CMD_PAGEPROG, 0);
820
 
821
                DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
822
                /* There's an implicit DoC_WaitReady() in DoC_Command */
823
 
824
                dummy = ReadDOC(docptr, CDSNSlowIO);
825
                DoC_Delay(this, 2);
826
 
827
                if (ReadDOC_(docptr, this->ioreg) & 1) {
828
                        printk(KERN_ERR "Error programming flash\n");
829
                        /* Error in programming */
830
                        *retlen = 0;
831
                        up(&this->lock);
832
                        return -EIO;
833
                }
834
 
835
                DoC_Command(this, NAND_CMD_SEQIN, 0);
836
                DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
837
                            CDSN_CTRL_ECC_IO);
838
        }
839
 
840
        DoC_WriteBuf(this, &buf[len256], len - len256);
841
 
842
        if (eccbuf) {
843
                WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
844
                         CDSNControl);
845
 
846
                if (DoC_is_Millennium(this)) {
847
                        WriteDOC(0, docptr, NOP);
848
                        WriteDOC(0, docptr, NOP);
849
                        WriteDOC(0, docptr, NOP);
850
                } else {
851
                        WriteDOC_(0, docptr, this->ioreg);
852
                        WriteDOC_(0, docptr, this->ioreg);
853
                        WriteDOC_(0, docptr, this->ioreg);
854
                }
855
 
856
                /* Read the ECC data through the DiskOnChip ECC logic */
857
                for (di = 0; di < 6; di++) {
858
                        eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
859
                }
860
 
861
                /* Reset the ECC engine */
862
                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
863
 
864
#ifdef PSYCHO_DEBUG
865
                printk
866
                    ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
867
                     (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
868
                     eccbuf[4], eccbuf[5]);
869
#endif
870
        }
871
 
872
        DoC_Command(this, NAND_CMD_PAGEPROG, 0);
873
 
874
        DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
875
        /* There's an implicit DoC_WaitReady() in DoC_Command */
876
 
877
        dummy = ReadDOC(docptr, CDSNSlowIO);
878
        DoC_Delay(this, 2);
879
 
880
        if (ReadDOC_(docptr, this->ioreg) & 1) {
881
                printk(KERN_ERR "Error programming flash\n");
882
                /* Error in programming */
883
                *retlen = 0;
884
                up(&this->lock);
885
                return -EIO;
886
        }
887
 
888
        /* Let the caller know we completed it */
889
        *retlen = len;
890
 
891
        if (eccbuf) {
892
                unsigned char x[8];
893
                size_t dummy;
894
                int ret;
895
 
896
                /* Write the ECC data to flash */
897
                for (di=0; di<6; di++)
898
                        x[di] = eccbuf[di];
899
 
900
                x[6]=0x55;
901
                x[7]=0x55;
902
 
903
                ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
904
                up(&this->lock);
905
                return ret;
906
        }
907
        up(&this->lock);
908
        return 0;
909
}
910
 
911
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
912
                        size_t * retlen, u_char * buf)
913
{
914
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
915
        int len256 = 0, ret;
916
        unsigned long docptr;
917
        struct Nand *mychip;
918
 
919
        down(&this->lock);
920
 
921
        docptr = this->virtadr;
922
 
923
        mychip = &this->chips[ofs >> this->chipshift];
924
 
925
        if (this->curfloor != mychip->floor) {
926
                DoC_SelectFloor(this, mychip->floor);
927
                DoC_SelectChip(this, mychip->chip);
928
        } else if (this->curchip != mychip->chip) {
929
                DoC_SelectChip(this, mychip->chip);
930
        }
931
        this->curfloor = mychip->floor;
932
        this->curchip = mychip->chip;
933
 
934
        /* update address for 2M x 8bit devices. OOB starts on the second */
935
        /* page to maintain compatibility with doc_read_ecc. */
936
        if (this->page256) {
937
                if (!(ofs & 0x8))
938
                        ofs += 0x100;
939
                else
940
                        ofs -= 0x8;
941
        }
942
 
943
        DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
944
        DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
945
 
946
        /* treat crossing 8-byte OOB data for 2M x 8bit devices */
947
        /* Note: datasheet says it should automaticaly wrap to the */
948
        /*       next OOB block, but it didn't work here. mf.      */
949
        if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
950
                len256 = (ofs | 0x7) + 1 - ofs;
951
                DoC_ReadBuf(this, buf, len256);
952
 
953
                DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
954
                DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
955
                            CDSN_CTRL_WP, 0);
956
        }
957
 
958
        DoC_ReadBuf(this, &buf[len256], len - len256);
959
 
960
        *retlen = len;
961
        /* Reading the full OOB data drops us off of the end of the page,
962
         * causing the flash device to go into busy mode, so we need
963
         * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
964
 
965
        ret = DoC_WaitReady(this);
966
 
967
        up(&this->lock);
968
        return ret;
969
 
970
}
971
 
972
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
973
                                size_t * retlen, const u_char * buf)
974
{
975
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
976
        int len256 = 0;
977
        unsigned long docptr = this->virtadr;
978
        struct Nand *mychip = &this->chips[ofs >> this->chipshift];
979
        volatile int dummy;
980
 
981
        //      printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
982
        //   buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
983
 
984
        /* Find the chip which is to be used and select it */
985
        if (this->curfloor != mychip->floor) {
986
                DoC_SelectFloor(this, mychip->floor);
987
                DoC_SelectChip(this, mychip->chip);
988
        } else if (this->curchip != mychip->chip) {
989
                DoC_SelectChip(this, mychip->chip);
990
        }
991
        this->curfloor = mychip->floor;
992
        this->curchip = mychip->chip;
993
 
994
        /* disable the ECC engine */
995
        WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
996
        WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
997
 
998
        /* Reset the chip, see Software Requirement 11.4 item 1. */
999
        DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1000
 
1001
        /* issue the Read2 command to set the pointer to the Spare Data Area. */
1002
        DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1003
 
1004
        /* update address for 2M x 8bit devices. OOB starts on the second */
1005
        /* page to maintain compatibility with doc_read_ecc. */
1006
        if (this->page256) {
1007
                if (!(ofs & 0x8))
1008
                        ofs += 0x100;
1009
                else
1010
                        ofs -= 0x8;
1011
        }
1012
 
1013
        /* issue the Serial Data In command to initial the Page Program process */
1014
        DoC_Command(this, NAND_CMD_SEQIN, 0);
1015
        DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1016
 
1017
        /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1018
        /* Note: datasheet says it should automaticaly wrap to the */
1019
        /*       next OOB block, but it didn't work here. mf.      */
1020
        if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1021
                len256 = (ofs | 0x7) + 1 - ofs;
1022
                DoC_WriteBuf(this, buf, len256);
1023
 
1024
                DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1025
                DoC_Command(this, NAND_CMD_STATUS, 0);
1026
                /* DoC_WaitReady() is implicit in DoC_Command */
1027
 
1028
                dummy = ReadDOC(docptr, CDSNSlowIO);
1029
                DoC_Delay(this, 2);
1030
 
1031
                if (ReadDOC_(docptr, this->ioreg) & 1) {
1032
                        printk(KERN_ERR "Error programming oob data\n");
1033
                        /* There was an error */
1034
                        *retlen = 0;
1035
                        return -EIO;
1036
                }
1037
                DoC_Command(this, NAND_CMD_SEQIN, 0);
1038
                DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1039
        }
1040
 
1041
        DoC_WriteBuf(this, &buf[len256], len - len256);
1042
 
1043
        DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1044
        DoC_Command(this, NAND_CMD_STATUS, 0);
1045
        /* DoC_WaitReady() is implicit in DoC_Command */
1046
 
1047
        dummy = ReadDOC(docptr, CDSNSlowIO);
1048
        DoC_Delay(this, 2);
1049
 
1050
        if (ReadDOC_(docptr, this->ioreg) & 1) {
1051
                printk(KERN_ERR "Error programming oob data\n");
1052
                /* There was an error */
1053
                *retlen = 0;
1054
                return -EIO;
1055
        }
1056
 
1057
        *retlen = len;
1058
        return 0;
1059
 
1060
}
1061
 
1062
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
1063
                         size_t * retlen, const u_char * buf)
1064
{
1065
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
1066
        int ret;
1067
 
1068
        down(&this->lock);
1069
        ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf);
1070
 
1071
        up(&this->lock);
1072
        return ret;
1073
}
1074
 
1075
static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
1076
{
1077
        struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
1078
        __u32 ofs = instr->addr;
1079
        __u32 len = instr->len;
1080
        volatile int dummy;
1081
        unsigned long docptr;
1082
        struct Nand *mychip;
1083
 
1084
        down(&this->lock);
1085
 
1086
        if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
1087
                up(&this->lock);
1088
                return -EINVAL;
1089
        }
1090
 
1091
        instr->state = MTD_ERASING;
1092
 
1093
        docptr = this->virtadr;
1094
 
1095
        /* FIXME: Do this in the background. Use timers or schedule_task() */
1096
        while(len) {
1097
                mychip = &this->chips[ofs >> this->chipshift];
1098
 
1099
                if (this->curfloor != mychip->floor) {
1100
                        DoC_SelectFloor(this, mychip->floor);
1101
                        DoC_SelectChip(this, mychip->chip);
1102
                } else if (this->curchip != mychip->chip) {
1103
                        DoC_SelectChip(this, mychip->chip);
1104
                }
1105
                this->curfloor = mychip->floor;
1106
                this->curchip = mychip->chip;
1107
 
1108
                DoC_Command(this, NAND_CMD_ERASE1, 0);
1109
                DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1110
                DoC_Command(this, NAND_CMD_ERASE2, 0);
1111
 
1112
                DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1113
 
1114
                dummy = ReadDOC(docptr, CDSNSlowIO);
1115
                DoC_Delay(this, 2);
1116
 
1117
                if (ReadDOC_(docptr, this->ioreg) & 1) {
1118
                        printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
1119
                        /* There was an error */
1120
                        instr->state = MTD_ERASE_FAILED;
1121
                        goto callback;
1122
                }
1123
                ofs += mtd->erasesize;
1124
                len -= mtd->erasesize;
1125
        }
1126
        instr->state = MTD_ERASE_DONE;
1127
 
1128
 callback:
1129
        if (instr->callback)
1130
                instr->callback(instr);
1131
 
1132
        up(&this->lock);
1133
        return 0;
1134
}
1135
 
1136
 
1137
/****************************************************************************
1138
 *
1139
 * Module stuff
1140
 *
1141
 ****************************************************************************/
1142
 
1143
int __init init_doc2000(void)
1144
{
1145
       inter_module_register(im_name, THIS_MODULE, &DoC2k_init);
1146
       return 0;
1147
}
1148
 
1149
static void __exit cleanup_doc2000(void)
1150
{
1151
        struct mtd_info *mtd;
1152
        struct DiskOnChip *this;
1153
 
1154
        while ((mtd = doc2klist)) {
1155
                this = (struct DiskOnChip *) mtd->priv;
1156
                doc2klist = this->nextdoc;
1157
 
1158
                del_mtd_device(mtd);
1159
 
1160
                iounmap((void *) this->virtadr);
1161
                kfree(this->chips);
1162
                kfree(mtd);
1163
        }
1164
        inter_module_unregister(im_name);
1165
}
1166
 
1167
module_exit(cleanup_doc2000);
1168
module_init(init_doc2000);
1169
 
1170
MODULE_LICENSE("GPL");
1171
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
1172
MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
1173
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.