1 |
1275 |
phoenix |
|
2 |
|
|
/*
|
3 |
|
|
* Linux driver for Disk-On-Chip 2000 and Millennium
|
4 |
|
|
* (c) 1999 Machine Vision Holdings, Inc.
|
5 |
|
|
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
|
6 |
|
|
*
|
7 |
|
|
* $Id: doc2000.c,v 1.1.1.1 2004-04-15 01:52:02 phoenix Exp $
|
8 |
|
|
*/
|
9 |
|
|
|
10 |
|
|
#include <linux/kernel.h>
|
11 |
|
|
#include <linux/module.h>
|
12 |
|
|
#include <asm/errno.h>
|
13 |
|
|
#include <asm/io.h>
|
14 |
|
|
#include <asm/uaccess.h>
|
15 |
|
|
#include <linux/miscdevice.h>
|
16 |
|
|
#include <linux/pci.h>
|
17 |
|
|
#include <linux/delay.h>
|
18 |
|
|
#include <linux/slab.h>
|
19 |
|
|
#include <linux/sched.h>
|
20 |
|
|
#include <linux/init.h>
|
21 |
|
|
#include <linux/types.h>
|
22 |
|
|
|
23 |
|
|
#include <linux/mtd/mtd.h>
|
24 |
|
|
#include <linux/mtd/nand.h>
|
25 |
|
|
#include <linux/mtd/doc2000.h>
|
26 |
|
|
|
27 |
|
|
#define DOC_SUPPORT_2000
|
28 |
|
|
#define DOC_SUPPORT_MILLENNIUM
|
29 |
|
|
|
30 |
|
|
#ifdef DOC_SUPPORT_2000
|
31 |
|
|
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
|
32 |
|
|
#else
|
33 |
|
|
#define DoC_is_2000(doc) (0)
|
34 |
|
|
#endif
|
35 |
|
|
|
36 |
|
|
#ifdef DOC_SUPPORT_MILLENNIUM
|
37 |
|
|
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
|
38 |
|
|
#else
|
39 |
|
|
#define DoC_is_Millennium(doc) (0)
|
40 |
|
|
#endif
|
41 |
|
|
|
42 |
|
|
/* #define ECC_DEBUG */
|
43 |
|
|
|
44 |
|
|
/* I have no idea why some DoC chips can not use memcpy_from|to_io().
|
45 |
|
|
* This may be due to the different revisions of the ASIC controller built-in or
|
46 |
|
|
* simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
|
47 |
|
|
* this:
|
48 |
|
|
#undef USE_MEMCPY
|
49 |
|
|
*/
|
50 |
|
|
|
51 |
|
|
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
|
52 |
|
|
size_t *retlen, u_char *buf);
|
53 |
|
|
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
|
54 |
|
|
size_t *retlen, const u_char *buf);
|
55 |
|
|
static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
|
56 |
|
|
size_t *retlen, u_char *buf, u_char *eccbuf, int oobsel);
|
57 |
|
|
static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
|
58 |
|
|
size_t *retlen, const u_char *buf, u_char *eccbuf, int oobsel);
|
59 |
|
|
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
|
60 |
|
|
size_t *retlen, u_char *buf);
|
61 |
|
|
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
|
62 |
|
|
size_t *retlen, const u_char *buf);
|
63 |
|
|
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
|
64 |
|
|
size_t *retlen, const u_char *buf);
|
65 |
|
|
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
|
66 |
|
|
|
67 |
|
|
static struct mtd_info *doc2klist = NULL;
|
68 |
|
|
|
69 |
|
|
/* Perform the required delay cycles by reading from the appropriate register */
|
70 |
|
|
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
|
71 |
|
|
{
|
72 |
|
|
volatile char dummy;
|
73 |
|
|
int i;
|
74 |
|
|
|
75 |
|
|
for (i = 0; i < cycles; i++) {
|
76 |
|
|
if (DoC_is_Millennium(doc))
|
77 |
|
|
dummy = ReadDOC(doc->virtadr, NOP);
|
78 |
|
|
else
|
79 |
|
|
dummy = ReadDOC(doc->virtadr, DOCStatus);
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
|
85 |
|
|
static int _DoC_WaitReady(struct DiskOnChip *doc)
|
86 |
|
|
{
|
87 |
|
|
unsigned long docptr = doc->virtadr;
|
88 |
|
|
unsigned long timeo = jiffies + (HZ * 10);
|
89 |
|
|
|
90 |
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
91 |
|
|
"_DoC_WaitReady called for out-of-line wait\n");
|
92 |
|
|
|
93 |
|
|
/* Out-of-line routine to wait for chip response */
|
94 |
|
|
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
|
95 |
|
|
if (time_after(jiffies, timeo)) {
|
96 |
|
|
DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
|
97 |
|
|
return -EIO;
|
98 |
|
|
}
|
99 |
|
|
udelay(1);
|
100 |
|
|
cond_resched();
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
return 0;
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
static inline int DoC_WaitReady(struct DiskOnChip *doc)
|
107 |
|
|
{
|
108 |
|
|
unsigned long docptr = doc->virtadr;
|
109 |
|
|
/* This is inline, to optimise the common case, where it's ready instantly */
|
110 |
|
|
int ret = 0;
|
111 |
|
|
|
112 |
|
|
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
|
113 |
|
|
see Software Requirement 11.4 item 2. */
|
114 |
|
|
DoC_Delay(doc, 4);
|
115 |
|
|
|
116 |
|
|
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
|
117 |
|
|
/* Call the out-of-line routine to wait */
|
118 |
|
|
ret = _DoC_WaitReady(doc);
|
119 |
|
|
|
120 |
|
|
/* issue 2 read from NOP register after reading from CDSNControl register
|
121 |
|
|
see Software Requirement 11.4 item 2. */
|
122 |
|
|
DoC_Delay(doc, 2);
|
123 |
|
|
|
124 |
|
|
return ret;
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
|
128 |
|
|
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
129 |
|
|
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
130 |
|
|
|
131 |
|
|
static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
|
132 |
|
|
unsigned char xtraflags)
|
133 |
|
|
{
|
134 |
|
|
unsigned long docptr = doc->virtadr;
|
135 |
|
|
|
136 |
|
|
if (DoC_is_2000(doc))
|
137 |
|
|
xtraflags |= CDSN_CTRL_FLASH_IO;
|
138 |
|
|
|
139 |
|
|
/* Assert the CLE (Command Latch Enable) line to the flash chip */
|
140 |
|
|
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
|
141 |
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
142 |
|
|
|
143 |
|
|
if (DoC_is_Millennium(doc))
|
144 |
|
|
WriteDOC(command, docptr, CDSNSlowIO);
|
145 |
|
|
|
146 |
|
|
/* Send the command */
|
147 |
|
|
WriteDOC_(command, docptr, doc->ioreg);
|
148 |
|
|
|
149 |
|
|
/* Lower the CLE line */
|
150 |
|
|
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
|
151 |
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
152 |
|
|
|
153 |
|
|
/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
|
154 |
|
|
return DoC_WaitReady(doc);
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
|
158 |
|
|
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
159 |
|
|
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
160 |
|
|
|
161 |
|
|
static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
|
162 |
|
|
unsigned char xtraflags1, unsigned char xtraflags2)
|
163 |
|
|
{
|
164 |
|
|
unsigned long docptr;
|
165 |
|
|
int i;
|
166 |
|
|
|
167 |
|
|
docptr = doc->virtadr;
|
168 |
|
|
|
169 |
|
|
if (DoC_is_2000(doc))
|
170 |
|
|
xtraflags1 |= CDSN_CTRL_FLASH_IO;
|
171 |
|
|
|
172 |
|
|
/* Assert the ALE (Address Latch Enable) line to the flash chip */
|
173 |
|
|
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
|
174 |
|
|
|
175 |
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
176 |
|
|
|
177 |
|
|
/* Send the address */
|
178 |
|
|
/* Devices with 256-byte page are addressed as:
|
179 |
|
|
Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
|
180 |
|
|
* there is no device on the market with page256
|
181 |
|
|
and more than 24 bits.
|
182 |
|
|
Devices with 512-byte page are addressed as:
|
183 |
|
|
Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
|
184 |
|
|
* 25-31 is sent only if the chip support it.
|
185 |
|
|
* bit 8 changes the read command to be sent
|
186 |
|
|
(NAND_CMD_READ0 or NAND_CMD_READ1).
|
187 |
|
|
*/
|
188 |
|
|
|
189 |
|
|
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
|
190 |
|
|
if (DoC_is_Millennium(doc))
|
191 |
|
|
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
|
192 |
|
|
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
if (doc->page256) {
|
196 |
|
|
ofs = ofs >> 8;
|
197 |
|
|
} else {
|
198 |
|
|
ofs = ofs >> 9;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
|
202 |
|
|
for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
|
203 |
|
|
if (DoC_is_Millennium(doc))
|
204 |
|
|
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
|
205 |
|
|
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
|
206 |
|
|
}
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
|
210 |
|
|
|
211 |
|
|
/* FIXME: The SlowIO's for millennium could be replaced by
|
212 |
|
|
a single WritePipeTerm here. mf. */
|
213 |
|
|
|
214 |
|
|
/* Lower the ALE line */
|
215 |
|
|
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
|
216 |
|
|
CDSNControl);
|
217 |
|
|
|
218 |
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
219 |
|
|
|
220 |
|
|
/* Wait for the chip to respond - Software requirement 11.4.1 */
|
221 |
|
|
return DoC_WaitReady(doc);
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
/* Read a buffer from DoC, taking care of Millennium odditys */
|
225 |
|
|
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
|
226 |
|
|
{
|
227 |
|
|
volatile int dummy;
|
228 |
|
|
int modulus = 0xffff;
|
229 |
|
|
unsigned long docptr;
|
230 |
|
|
int i;
|
231 |
|
|
|
232 |
|
|
docptr = doc->virtadr;
|
233 |
|
|
|
234 |
|
|
if (len <= 0)
|
235 |
|
|
return;
|
236 |
|
|
|
237 |
|
|
if (DoC_is_Millennium(doc)) {
|
238 |
|
|
/* Read the data via the internal pipeline through CDSN IO register,
|
239 |
|
|
see Pipelined Read Operations 11.3 */
|
240 |
|
|
dummy = ReadDOC(docptr, ReadPipeInit);
|
241 |
|
|
|
242 |
|
|
/* Millennium should use the LastDataRead register - Pipeline Reads */
|
243 |
|
|
len--;
|
244 |
|
|
|
245 |
|
|
/* This is needed for correctly ECC calculation */
|
246 |
|
|
modulus = 0xff;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
for (i = 0; i < len; i++)
|
250 |
|
|
buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
|
251 |
|
|
|
252 |
|
|
if (DoC_is_Millennium(doc)) {
|
253 |
|
|
buf[i] = ReadDOC(docptr, LastDataRead);
|
254 |
|
|
}
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
/* Write a buffer to DoC, taking care of Millennium odditys */
|
258 |
|
|
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
|
259 |
|
|
{
|
260 |
|
|
unsigned long docptr;
|
261 |
|
|
int i;
|
262 |
|
|
|
263 |
|
|
docptr = doc->virtadr;
|
264 |
|
|
|
265 |
|
|
if (len <= 0)
|
266 |
|
|
return;
|
267 |
|
|
|
268 |
|
|
for (i = 0; i < len; i++)
|
269 |
|
|
WriteDOC_(buf[i], docptr, doc->ioreg + i);
|
270 |
|
|
|
271 |
|
|
if (DoC_is_Millennium(doc)) {
|
272 |
|
|
WriteDOC(0x00, docptr, WritePipeTerm);
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
|
277 |
|
|
/* DoC_SelectChip: Select a given flash chip within the current floor */
|
278 |
|
|
|
279 |
|
|
static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
|
280 |
|
|
{
|
281 |
|
|
unsigned long docptr = doc->virtadr;
|
282 |
|
|
|
283 |
|
|
/* Software requirement 11.4.4 before writing DeviceSelect */
|
284 |
|
|
/* Deassert the CE line to eliminate glitches on the FCE# outputs */
|
285 |
|
|
WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
|
286 |
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
287 |
|
|
|
288 |
|
|
/* Select the individual flash chip requested */
|
289 |
|
|
WriteDOC(chip, docptr, CDSNDeviceSelect);
|
290 |
|
|
DoC_Delay(doc, 4);
|
291 |
|
|
|
292 |
|
|
/* Reassert the CE line */
|
293 |
|
|
WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
|
294 |
|
|
CDSNControl);
|
295 |
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
296 |
|
|
|
297 |
|
|
/* Wait for it to be ready */
|
298 |
|
|
return DoC_WaitReady(doc);
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
|
302 |
|
|
|
303 |
|
|
static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
|
304 |
|
|
{
|
305 |
|
|
unsigned long docptr = doc->virtadr;
|
306 |
|
|
|
307 |
|
|
/* Select the floor (bank) of chips required */
|
308 |
|
|
WriteDOC(floor, docptr, FloorSelect);
|
309 |
|
|
|
310 |
|
|
/* Wait for the chip to be ready */
|
311 |
|
|
return DoC_WaitReady(doc);
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
|
315 |
|
|
|
316 |
|
|
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
|
317 |
|
|
{
|
318 |
|
|
int mfr, id, i, j;
|
319 |
|
|
volatile char dummy;
|
320 |
|
|
|
321 |
|
|
/* Page in the required floor/chip */
|
322 |
|
|
DoC_SelectFloor(doc, floor);
|
323 |
|
|
DoC_SelectChip(doc, chip);
|
324 |
|
|
|
325 |
|
|
/* Reset the chip */
|
326 |
|
|
if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
|
327 |
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
328 |
|
|
"DoC_Command (reset) for %d,%d returned true\n",
|
329 |
|
|
floor, chip);
|
330 |
|
|
return 0;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
/* Read the NAND chip ID: 1. Send ReadID command */
|
335 |
|
|
if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
|
336 |
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
337 |
|
|
"DoC_Command (ReadID) for %d,%d returned true\n",
|
338 |
|
|
floor, chip);
|
339 |
|
|
return 0;
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
/* Read the NAND chip ID: 2. Send address byte zero */
|
343 |
|
|
DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
|
344 |
|
|
|
345 |
|
|
/* Read the manufacturer and device id codes from the device */
|
346 |
|
|
|
347 |
|
|
/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
|
348 |
|
|
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
|
349 |
|
|
DoC_Delay(doc, 2);
|
350 |
|
|
mfr = ReadDOC_(doc->virtadr, doc->ioreg);
|
351 |
|
|
|
352 |
|
|
/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
|
353 |
|
|
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
|
354 |
|
|
DoC_Delay(doc, 2);
|
355 |
|
|
id = ReadDOC_(doc->virtadr, doc->ioreg);
|
356 |
|
|
|
357 |
|
|
/* No response - return failure */
|
358 |
|
|
if (mfr == 0xff || mfr == 0)
|
359 |
|
|
return 0;
|
360 |
|
|
|
361 |
|
|
/* Check it's the same as the first chip we identified.
|
362 |
|
|
* M-Systems say that any given DiskOnChip device should only
|
363 |
|
|
* contain _one_ type of flash part, although that's not a
|
364 |
|
|
* hardware restriction. */
|
365 |
|
|
if (doc->mfr) {
|
366 |
|
|
if (doc->mfr == mfr && doc->id == id)
|
367 |
|
|
return 1; /* This is another the same the first */
|
368 |
|
|
else
|
369 |
|
|
printk(KERN_WARNING
|
370 |
|
|
"Flash chip at floor %d, chip %d is different:\n",
|
371 |
|
|
floor, chip);
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/* Print and store the manufacturer and ID codes. */
|
375 |
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
376 |
|
|
if (id == nand_flash_ids[i].id) {
|
377 |
|
|
/* Try to identify manufacturer */
|
378 |
|
|
for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
|
379 |
|
|
if (nand_manuf_ids[j].id == mfr)
|
380 |
|
|
break;
|
381 |
|
|
}
|
382 |
|
|
printk(KERN_INFO
|
383 |
|
|
"Flash chip found: Manufacturer ID: %2.2X, "
|
384 |
|
|
"Chip ID: %2.2X (%s:%s)\n", mfr, id,
|
385 |
|
|
nand_manuf_ids[j].name, nand_flash_ids[i].name);
|
386 |
|
|
if (!doc->mfr) {
|
387 |
|
|
doc->mfr = mfr;
|
388 |
|
|
doc->id = id;
|
389 |
|
|
doc->chipshift =
|
390 |
|
|
nand_flash_ids[i].chipshift;
|
391 |
|
|
doc->page256 = nand_flash_ids[i].page256;
|
392 |
|
|
doc->pageadrlen =
|
393 |
|
|
nand_flash_ids[i].chipshift > 25 ? 3 : 2;
|
394 |
|
|
doc->erasesize =
|
395 |
|
|
nand_flash_ids[i].erasesize;
|
396 |
|
|
return 1;
|
397 |
|
|
}
|
398 |
|
|
return 0;
|
399 |
|
|
}
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
|
403 |
|
|
/* We haven't fully identified the chip. Print as much as we know. */
|
404 |
|
|
printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
|
405 |
|
|
id, mfr);
|
406 |
|
|
|
407 |
|
|
printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
|
408 |
|
|
return 0;
|
409 |
|
|
}
|
410 |
|
|
|
411 |
|
|
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
|
412 |
|
|
|
413 |
|
|
static void DoC_ScanChips(struct DiskOnChip *this)
|
414 |
|
|
{
|
415 |
|
|
int floor, chip;
|
416 |
|
|
int numchips[MAX_FLOORS];
|
417 |
|
|
int maxchips = MAX_CHIPS;
|
418 |
|
|
int ret = 1;
|
419 |
|
|
|
420 |
|
|
this->numchips = 0;
|
421 |
|
|
this->mfr = 0;
|
422 |
|
|
this->id = 0;
|
423 |
|
|
|
424 |
|
|
if (DoC_is_Millennium(this))
|
425 |
|
|
maxchips = MAX_CHIPS_MIL;
|
426 |
|
|
|
427 |
|
|
/* For each floor, find the number of valid chips it contains */
|
428 |
|
|
for (floor = 0; floor < MAX_FLOORS; floor++) {
|
429 |
|
|
ret = 1;
|
430 |
|
|
numchips[floor] = 0;
|
431 |
|
|
for (chip = 0; chip < maxchips && ret != 0; chip++) {
|
432 |
|
|
|
433 |
|
|
ret = DoC_IdentChip(this, floor, chip);
|
434 |
|
|
if (ret) {
|
435 |
|
|
numchips[floor]++;
|
436 |
|
|
this->numchips++;
|
437 |
|
|
}
|
438 |
|
|
}
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/* If there are none at all that we recognise, bail */
|
442 |
|
|
if (!this->numchips) {
|
443 |
|
|
printk(KERN_NOTICE "No flash chips recognised.\n");
|
444 |
|
|
return;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
/* Allocate an array to hold the information for each chip */
|
448 |
|
|
this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
|
449 |
|
|
if (!this->chips) {
|
450 |
|
|
printk(KERN_NOTICE "No memory for allocating chip info structures\n");
|
451 |
|
|
return;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
ret = 0;
|
455 |
|
|
|
456 |
|
|
/* Fill out the chip array with {floor, chipno} for each
|
457 |
|
|
* detected chip in the device. */
|
458 |
|
|
for (floor = 0; floor < MAX_FLOORS; floor++) {
|
459 |
|
|
for (chip = 0; chip < numchips[floor]; chip++) {
|
460 |
|
|
this->chips[ret].floor = floor;
|
461 |
|
|
this->chips[ret].chip = chip;
|
462 |
|
|
this->chips[ret].curadr = 0;
|
463 |
|
|
this->chips[ret].curmode = 0x50;
|
464 |
|
|
ret++;
|
465 |
|
|
}
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
/* Calculate and print the total size of the device */
|
469 |
|
|
this->totlen = this->numchips * (1 << this->chipshift);
|
470 |
|
|
|
471 |
|
|
printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
|
472 |
|
|
this->numchips, this->totlen >> 20);
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
|
476 |
|
|
{
|
477 |
|
|
int tmp1, tmp2, retval;
|
478 |
|
|
if (doc1->physadr == doc2->physadr)
|
479 |
|
|
return 1;
|
480 |
|
|
|
481 |
|
|
/* Use the alias resolution register which was set aside for this
|
482 |
|
|
* purpose. If it's value is the same on both chips, they might
|
483 |
|
|
* be the same chip, and we write to one and check for a change in
|
484 |
|
|
* the other. It's unclear if this register is usuable in the
|
485 |
|
|
* DoC 2000 (it's in the Millennium docs), but it seems to work. */
|
486 |
|
|
tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
|
487 |
|
|
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
|
488 |
|
|
if (tmp1 != tmp2)
|
489 |
|
|
return 0;
|
490 |
|
|
|
491 |
|
|
WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
|
492 |
|
|
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
|
493 |
|
|
if (tmp2 == (tmp1 + 1) % 0xff)
|
494 |
|
|
retval = 1;
|
495 |
|
|
else
|
496 |
|
|
retval = 0;
|
497 |
|
|
|
498 |
|
|
/* Restore register contents. May not be necessary, but do it just to
|
499 |
|
|
* be safe. */
|
500 |
|
|
WriteDOC(tmp1, doc1->virtadr, AliasResolution);
|
501 |
|
|
|
502 |
|
|
return retval;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
static const char im_name[] = "DoC2k_init";
|
506 |
|
|
|
507 |
|
|
/* This routine is made available to other mtd code via
|
508 |
|
|
* inter_module_register. It must only be accessed through
|
509 |
|
|
* inter_module_get which will bump the use count of this module. The
|
510 |
|
|
* addresses passed back in mtd are valid as long as the use count of
|
511 |
|
|
* this module is non-zero, i.e. between inter_module_get and
|
512 |
|
|
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
|
513 |
|
|
*/
|
514 |
|
|
static void DoC2k_init(struct mtd_info *mtd)
|
515 |
|
|
{
|
516 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
517 |
|
|
struct DiskOnChip *old = NULL;
|
518 |
|
|
|
519 |
|
|
/* We must avoid being called twice for the same device. */
|
520 |
|
|
|
521 |
|
|
if (doc2klist)
|
522 |
|
|
old = (struct DiskOnChip *) doc2klist->priv;
|
523 |
|
|
|
524 |
|
|
while (old) {
|
525 |
|
|
if (DoC2k_is_alias(old, this)) {
|
526 |
|
|
printk(KERN_NOTICE
|
527 |
|
|
"Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
|
528 |
|
|
this->physadr);
|
529 |
|
|
iounmap((void *) this->virtadr);
|
530 |
|
|
kfree(mtd);
|
531 |
|
|
return;
|
532 |
|
|
}
|
533 |
|
|
if (old->nextdoc)
|
534 |
|
|
old = (struct DiskOnChip *) old->nextdoc->priv;
|
535 |
|
|
else
|
536 |
|
|
old = NULL;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
|
540 |
|
|
switch (this->ChipID) {
|
541 |
|
|
case DOC_ChipID_Doc2k:
|
542 |
|
|
mtd->name = "DiskOnChip 2000";
|
543 |
|
|
this->ioreg = DoC_2k_CDSN_IO;
|
544 |
|
|
break;
|
545 |
|
|
case DOC_ChipID_DocMil:
|
546 |
|
|
mtd->name = "DiskOnChip Millennium";
|
547 |
|
|
this->ioreg = DoC_Mil_CDSN_IO;
|
548 |
|
|
break;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
|
552 |
|
|
this->physadr);
|
553 |
|
|
|
554 |
|
|
mtd->type = MTD_NANDFLASH;
|
555 |
|
|
mtd->flags = MTD_CAP_NANDFLASH;
|
556 |
|
|
mtd->size = 0;
|
557 |
|
|
mtd->erasesize = 0;
|
558 |
|
|
mtd->oobblock = 512;
|
559 |
|
|
mtd->oobsize = 16;
|
560 |
|
|
mtd->module = THIS_MODULE;
|
561 |
|
|
mtd->erase = doc_erase;
|
562 |
|
|
mtd->point = NULL;
|
563 |
|
|
mtd->unpoint = NULL;
|
564 |
|
|
mtd->read = doc_read;
|
565 |
|
|
mtd->write = doc_write;
|
566 |
|
|
mtd->read_ecc = doc_read_ecc;
|
567 |
|
|
mtd->write_ecc = doc_write_ecc;
|
568 |
|
|
mtd->read_oob = doc_read_oob;
|
569 |
|
|
mtd->write_oob = doc_write_oob;
|
570 |
|
|
mtd->sync = NULL;
|
571 |
|
|
|
572 |
|
|
this->totlen = 0;
|
573 |
|
|
this->numchips = 0;
|
574 |
|
|
|
575 |
|
|
this->curfloor = -1;
|
576 |
|
|
this->curchip = -1;
|
577 |
|
|
init_MUTEX(&this->lock);
|
578 |
|
|
|
579 |
|
|
/* Ident all the chips present. */
|
580 |
|
|
DoC_ScanChips(this);
|
581 |
|
|
|
582 |
|
|
if (!this->totlen) {
|
583 |
|
|
kfree(mtd);
|
584 |
|
|
iounmap((void *) this->virtadr);
|
585 |
|
|
} else {
|
586 |
|
|
this->nextdoc = doc2klist;
|
587 |
|
|
doc2klist = mtd;
|
588 |
|
|
mtd->size = this->totlen;
|
589 |
|
|
mtd->erasesize = this->erasesize;
|
590 |
|
|
add_mtd_device(mtd);
|
591 |
|
|
return;
|
592 |
|
|
}
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
|
596 |
|
|
size_t * retlen, u_char * buf)
|
597 |
|
|
{
|
598 |
|
|
/* Just a special case of doc_read_ecc */
|
599 |
|
|
return doc_read_ecc(mtd, from, len, retlen, buf, NULL, 0);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
|
603 |
|
|
size_t * retlen, u_char * buf, u_char * eccbuf, int oobsel)
|
604 |
|
|
{
|
605 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
606 |
|
|
unsigned long docptr;
|
607 |
|
|
struct Nand *mychip;
|
608 |
|
|
unsigned char syndrome[6];
|
609 |
|
|
volatile char dummy;
|
610 |
|
|
int i, len256 = 0, ret=0;
|
611 |
|
|
|
612 |
|
|
docptr = this->virtadr;
|
613 |
|
|
|
614 |
|
|
/* Don't allow read past end of device */
|
615 |
|
|
if (from >= this->totlen)
|
616 |
|
|
return -EINVAL;
|
617 |
|
|
|
618 |
|
|
down(&this->lock);
|
619 |
|
|
|
620 |
|
|
/* Don't allow a single read to cross a 512-byte block boundary */
|
621 |
|
|
if (from + len > ((from | 0x1ff) + 1))
|
622 |
|
|
len = ((from | 0x1ff) + 1) - from;
|
623 |
|
|
|
624 |
|
|
/* The ECC will not be calculated correctly if less than 512 is read */
|
625 |
|
|
if (len != 0x200 && eccbuf)
|
626 |
|
|
printk(KERN_WARNING
|
627 |
|
|
"ECC needs a full sector read (adr: %lx size %lx)\n",
|
628 |
|
|
(long) from, (long) len);
|
629 |
|
|
|
630 |
|
|
/* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
|
631 |
|
|
|
632 |
|
|
|
633 |
|
|
/* Find the chip which is to be used and select it */
|
634 |
|
|
mychip = &this->chips[from >> (this->chipshift)];
|
635 |
|
|
|
636 |
|
|
if (this->curfloor != mychip->floor) {
|
637 |
|
|
DoC_SelectFloor(this, mychip->floor);
|
638 |
|
|
DoC_SelectChip(this, mychip->chip);
|
639 |
|
|
} else if (this->curchip != mychip->chip) {
|
640 |
|
|
DoC_SelectChip(this, mychip->chip);
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
this->curfloor = mychip->floor;
|
644 |
|
|
this->curchip = mychip->chip;
|
645 |
|
|
|
646 |
|
|
DoC_Command(this,
|
647 |
|
|
(!this->page256
|
648 |
|
|
&& (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
|
649 |
|
|
CDSN_CTRL_WP);
|
650 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
|
651 |
|
|
CDSN_CTRL_ECC_IO);
|
652 |
|
|
|
653 |
|
|
if (eccbuf) {
|
654 |
|
|
/* Prime the ECC engine */
|
655 |
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
656 |
|
|
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
|
657 |
|
|
} else {
|
658 |
|
|
/* disable the ECC engine */
|
659 |
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
660 |
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
/* treat crossing 256-byte sector for 2M x 8bits devices */
|
664 |
|
|
if (this->page256 && from + len > (from | 0xff) + 1) {
|
665 |
|
|
len256 = (from | 0xff) + 1 - from;
|
666 |
|
|
DoC_ReadBuf(this, buf, len256);
|
667 |
|
|
|
668 |
|
|
DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
|
669 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
|
670 |
|
|
CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
DoC_ReadBuf(this, &buf[len256], len - len256);
|
674 |
|
|
|
675 |
|
|
/* Let the caller know we completed it */
|
676 |
|
|
*retlen = len;
|
677 |
|
|
|
678 |
|
|
if (eccbuf) {
|
679 |
|
|
/* Read the ECC data through the DiskOnChip ECC logic */
|
680 |
|
|
/* Note: this will work even with 2M x 8bit devices as */
|
681 |
|
|
/* they have 8 bytes of OOB per 256 page. mf. */
|
682 |
|
|
DoC_ReadBuf(this, eccbuf, 6);
|
683 |
|
|
|
684 |
|
|
/* Flush the pipeline */
|
685 |
|
|
if (DoC_is_Millennium(this)) {
|
686 |
|
|
dummy = ReadDOC(docptr, ECCConf);
|
687 |
|
|
dummy = ReadDOC(docptr, ECCConf);
|
688 |
|
|
i = ReadDOC(docptr, ECCConf);
|
689 |
|
|
} else {
|
690 |
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
691 |
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
692 |
|
|
i = ReadDOC(docptr, 2k_ECCStatus);
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/* Check the ECC Status */
|
696 |
|
|
if (i & 0x80) {
|
697 |
|
|
int nb_errors;
|
698 |
|
|
/* There was an ECC error */
|
699 |
|
|
#ifdef ECC_DEBUG
|
700 |
|
|
printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
|
701 |
|
|
#endif
|
702 |
|
|
/* Read the ECC syndrom through the DiskOnChip ECC logic.
|
703 |
|
|
These syndrome will be all ZERO when there is no error */
|
704 |
|
|
for (i = 0; i < 6; i++) {
|
705 |
|
|
syndrome[i] =
|
706 |
|
|
ReadDOC(docptr, ECCSyndrome0 + i);
|
707 |
|
|
}
|
708 |
|
|
nb_errors = doc_decode_ecc(buf, syndrome);
|
709 |
|
|
|
710 |
|
|
#ifdef ECC_DEBUG
|
711 |
|
|
printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
|
712 |
|
|
#endif
|
713 |
|
|
if (nb_errors < 0) {
|
714 |
|
|
/* We return error, but have actually done the read. Not that
|
715 |
|
|
this can be told to user-space, via sys_read(), but at least
|
716 |
|
|
MTD-aware stuff can know about it by checking *retlen */
|
717 |
|
|
ret = -EIO;
|
718 |
|
|
}
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
#ifdef PSYCHO_DEBUG
|
722 |
|
|
printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
723 |
|
|
(long)from, eccbuf[0], eccbuf[1], eccbuf[2],
|
724 |
|
|
eccbuf[3], eccbuf[4], eccbuf[5]);
|
725 |
|
|
#endif
|
726 |
|
|
|
727 |
|
|
/* disable the ECC engine */
|
728 |
|
|
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* according to 11.4.1, we need to wait for the busy line
|
732 |
|
|
* drop if we read to the end of the page. */
|
733 |
|
|
if(0 == ((from + *retlen) & 0x1ff))
|
734 |
|
|
{
|
735 |
|
|
DoC_WaitReady(this);
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
up(&this->lock);
|
739 |
|
|
|
740 |
|
|
return ret;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
|
744 |
|
|
size_t * retlen, const u_char * buf)
|
745 |
|
|
{
|
746 |
|
|
char eccbuf[6];
|
747 |
|
|
return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, 0);
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
|
751 |
|
|
size_t * retlen, const u_char * buf,
|
752 |
|
|
u_char * eccbuf, int oobsel)
|
753 |
|
|
{
|
754 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
755 |
|
|
int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
|
756 |
|
|
unsigned long docptr;
|
757 |
|
|
volatile char dummy;
|
758 |
|
|
int len256 = 0;
|
759 |
|
|
struct Nand *mychip;
|
760 |
|
|
|
761 |
|
|
docptr = this->virtadr;
|
762 |
|
|
|
763 |
|
|
/* Don't allow write past end of device */
|
764 |
|
|
if (to >= this->totlen)
|
765 |
|
|
return -EINVAL;
|
766 |
|
|
|
767 |
|
|
down(&this->lock);
|
768 |
|
|
|
769 |
|
|
/* Don't allow a single write to cross a 512-byte block boundary */
|
770 |
|
|
if (to + len > ((to | 0x1ff) + 1))
|
771 |
|
|
len = ((to | 0x1ff) + 1) - to;
|
772 |
|
|
|
773 |
|
|
/* The ECC will not be calculated correctly if less than 512 is written */
|
774 |
|
|
if (len != 0x200 && eccbuf)
|
775 |
|
|
printk(KERN_WARNING
|
776 |
|
|
"ECC needs a full sector write (adr: %lx size %lx)\n",
|
777 |
|
|
(long) to, (long) len);
|
778 |
|
|
|
779 |
|
|
/* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
|
780 |
|
|
|
781 |
|
|
/* Find the chip which is to be used and select it */
|
782 |
|
|
mychip = &this->chips[to >> (this->chipshift)];
|
783 |
|
|
|
784 |
|
|
if (this->curfloor != mychip->floor) {
|
785 |
|
|
DoC_SelectFloor(this, mychip->floor);
|
786 |
|
|
DoC_SelectChip(this, mychip->chip);
|
787 |
|
|
} else if (this->curchip != mychip->chip) {
|
788 |
|
|
DoC_SelectChip(this, mychip->chip);
|
789 |
|
|
}
|
790 |
|
|
|
791 |
|
|
this->curfloor = mychip->floor;
|
792 |
|
|
this->curchip = mychip->chip;
|
793 |
|
|
|
794 |
|
|
/* Set device to main plane of flash */
|
795 |
|
|
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
|
796 |
|
|
DoC_Command(this,
|
797 |
|
|
(!this->page256
|
798 |
|
|
&& (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
|
799 |
|
|
CDSN_CTRL_WP);
|
800 |
|
|
|
801 |
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
802 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
|
803 |
|
|
|
804 |
|
|
if (eccbuf) {
|
805 |
|
|
/* Prime the ECC engine */
|
806 |
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
807 |
|
|
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
|
808 |
|
|
} else {
|
809 |
|
|
/* disable the ECC engine */
|
810 |
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
811 |
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
/* treat crossing 256-byte sector for 2M x 8bits devices */
|
815 |
|
|
if (this->page256 && to + len > (to | 0xff) + 1) {
|
816 |
|
|
len256 = (to | 0xff) + 1 - to;
|
817 |
|
|
DoC_WriteBuf(this, buf, len256);
|
818 |
|
|
|
819 |
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
820 |
|
|
|
821 |
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
822 |
|
|
/* There's an implicit DoC_WaitReady() in DoC_Command */
|
823 |
|
|
|
824 |
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
825 |
|
|
DoC_Delay(this, 2);
|
826 |
|
|
|
827 |
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
828 |
|
|
printk(KERN_ERR "Error programming flash\n");
|
829 |
|
|
/* Error in programming */
|
830 |
|
|
*retlen = 0;
|
831 |
|
|
up(&this->lock);
|
832 |
|
|
return -EIO;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
836 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
|
837 |
|
|
CDSN_CTRL_ECC_IO);
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
DoC_WriteBuf(this, &buf[len256], len - len256);
|
841 |
|
|
|
842 |
|
|
if (eccbuf) {
|
843 |
|
|
WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
|
844 |
|
|
CDSNControl);
|
845 |
|
|
|
846 |
|
|
if (DoC_is_Millennium(this)) {
|
847 |
|
|
WriteDOC(0, docptr, NOP);
|
848 |
|
|
WriteDOC(0, docptr, NOP);
|
849 |
|
|
WriteDOC(0, docptr, NOP);
|
850 |
|
|
} else {
|
851 |
|
|
WriteDOC_(0, docptr, this->ioreg);
|
852 |
|
|
WriteDOC_(0, docptr, this->ioreg);
|
853 |
|
|
WriteDOC_(0, docptr, this->ioreg);
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
/* Read the ECC data through the DiskOnChip ECC logic */
|
857 |
|
|
for (di = 0; di < 6; di++) {
|
858 |
|
|
eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
/* Reset the ECC engine */
|
862 |
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
863 |
|
|
|
864 |
|
|
#ifdef PSYCHO_DEBUG
|
865 |
|
|
printk
|
866 |
|
|
("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
867 |
|
|
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
|
868 |
|
|
eccbuf[4], eccbuf[5]);
|
869 |
|
|
#endif
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
873 |
|
|
|
874 |
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
875 |
|
|
/* There's an implicit DoC_WaitReady() in DoC_Command */
|
876 |
|
|
|
877 |
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
878 |
|
|
DoC_Delay(this, 2);
|
879 |
|
|
|
880 |
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
881 |
|
|
printk(KERN_ERR "Error programming flash\n");
|
882 |
|
|
/* Error in programming */
|
883 |
|
|
*retlen = 0;
|
884 |
|
|
up(&this->lock);
|
885 |
|
|
return -EIO;
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/* Let the caller know we completed it */
|
889 |
|
|
*retlen = len;
|
890 |
|
|
|
891 |
|
|
if (eccbuf) {
|
892 |
|
|
unsigned char x[8];
|
893 |
|
|
size_t dummy;
|
894 |
|
|
int ret;
|
895 |
|
|
|
896 |
|
|
/* Write the ECC data to flash */
|
897 |
|
|
for (di=0; di<6; di++)
|
898 |
|
|
x[di] = eccbuf[di];
|
899 |
|
|
|
900 |
|
|
x[6]=0x55;
|
901 |
|
|
x[7]=0x55;
|
902 |
|
|
|
903 |
|
|
ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
|
904 |
|
|
up(&this->lock);
|
905 |
|
|
return ret;
|
906 |
|
|
}
|
907 |
|
|
up(&this->lock);
|
908 |
|
|
return 0;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
|
912 |
|
|
size_t * retlen, u_char * buf)
|
913 |
|
|
{
|
914 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
915 |
|
|
int len256 = 0, ret;
|
916 |
|
|
unsigned long docptr;
|
917 |
|
|
struct Nand *mychip;
|
918 |
|
|
|
919 |
|
|
down(&this->lock);
|
920 |
|
|
|
921 |
|
|
docptr = this->virtadr;
|
922 |
|
|
|
923 |
|
|
mychip = &this->chips[ofs >> this->chipshift];
|
924 |
|
|
|
925 |
|
|
if (this->curfloor != mychip->floor) {
|
926 |
|
|
DoC_SelectFloor(this, mychip->floor);
|
927 |
|
|
DoC_SelectChip(this, mychip->chip);
|
928 |
|
|
} else if (this->curchip != mychip->chip) {
|
929 |
|
|
DoC_SelectChip(this, mychip->chip);
|
930 |
|
|
}
|
931 |
|
|
this->curfloor = mychip->floor;
|
932 |
|
|
this->curchip = mychip->chip;
|
933 |
|
|
|
934 |
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
935 |
|
|
/* page to maintain compatibility with doc_read_ecc. */
|
936 |
|
|
if (this->page256) {
|
937 |
|
|
if (!(ofs & 0x8))
|
938 |
|
|
ofs += 0x100;
|
939 |
|
|
else
|
940 |
|
|
ofs -= 0x8;
|
941 |
|
|
}
|
942 |
|
|
|
943 |
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
944 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
|
945 |
|
|
|
946 |
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
947 |
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
948 |
|
|
/* next OOB block, but it didn't work here. mf. */
|
949 |
|
|
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
|
950 |
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
951 |
|
|
DoC_ReadBuf(this, buf, len256);
|
952 |
|
|
|
953 |
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
954 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
|
955 |
|
|
CDSN_CTRL_WP, 0);
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
DoC_ReadBuf(this, &buf[len256], len - len256);
|
959 |
|
|
|
960 |
|
|
*retlen = len;
|
961 |
|
|
/* Reading the full OOB data drops us off of the end of the page,
|
962 |
|
|
* causing the flash device to go into busy mode, so we need
|
963 |
|
|
* to wait until ready 11.4.1 and Toshiba TC58256FT docs */
|
964 |
|
|
|
965 |
|
|
ret = DoC_WaitReady(this);
|
966 |
|
|
|
967 |
|
|
up(&this->lock);
|
968 |
|
|
return ret;
|
969 |
|
|
|
970 |
|
|
}
|
971 |
|
|
|
972 |
|
|
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
|
973 |
|
|
size_t * retlen, const u_char * buf)
|
974 |
|
|
{
|
975 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
976 |
|
|
int len256 = 0;
|
977 |
|
|
unsigned long docptr = this->virtadr;
|
978 |
|
|
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
|
979 |
|
|
volatile int dummy;
|
980 |
|
|
|
981 |
|
|
// printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
|
982 |
|
|
// buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
|
983 |
|
|
|
984 |
|
|
/* Find the chip which is to be used and select it */
|
985 |
|
|
if (this->curfloor != mychip->floor) {
|
986 |
|
|
DoC_SelectFloor(this, mychip->floor);
|
987 |
|
|
DoC_SelectChip(this, mychip->chip);
|
988 |
|
|
} else if (this->curchip != mychip->chip) {
|
989 |
|
|
DoC_SelectChip(this, mychip->chip);
|
990 |
|
|
}
|
991 |
|
|
this->curfloor = mychip->floor;
|
992 |
|
|
this->curchip = mychip->chip;
|
993 |
|
|
|
994 |
|
|
/* disable the ECC engine */
|
995 |
|
|
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
996 |
|
|
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
|
997 |
|
|
|
998 |
|
|
/* Reset the chip, see Software Requirement 11.4 item 1. */
|
999 |
|
|
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
|
1000 |
|
|
|
1001 |
|
|
/* issue the Read2 command to set the pointer to the Spare Data Area. */
|
1002 |
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
1003 |
|
|
|
1004 |
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
1005 |
|
|
/* page to maintain compatibility with doc_read_ecc. */
|
1006 |
|
|
if (this->page256) {
|
1007 |
|
|
if (!(ofs & 0x8))
|
1008 |
|
|
ofs += 0x100;
|
1009 |
|
|
else
|
1010 |
|
|
ofs -= 0x8;
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
/* issue the Serial Data In command to initial the Page Program process */
|
1014 |
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
1015 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
|
1016 |
|
|
|
1017 |
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
1018 |
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
1019 |
|
|
/* next OOB block, but it didn't work here. mf. */
|
1020 |
|
|
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
|
1021 |
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
1022 |
|
|
DoC_WriteBuf(this, buf, len256);
|
1023 |
|
|
|
1024 |
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
1025 |
|
|
DoC_Command(this, NAND_CMD_STATUS, 0);
|
1026 |
|
|
/* DoC_WaitReady() is implicit in DoC_Command */
|
1027 |
|
|
|
1028 |
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
1029 |
|
|
DoC_Delay(this, 2);
|
1030 |
|
|
|
1031 |
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
1032 |
|
|
printk(KERN_ERR "Error programming oob data\n");
|
1033 |
|
|
/* There was an error */
|
1034 |
|
|
*retlen = 0;
|
1035 |
|
|
return -EIO;
|
1036 |
|
|
}
|
1037 |
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
1038 |
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
DoC_WriteBuf(this, &buf[len256], len - len256);
|
1042 |
|
|
|
1043 |
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
1044 |
|
|
DoC_Command(this, NAND_CMD_STATUS, 0);
|
1045 |
|
|
/* DoC_WaitReady() is implicit in DoC_Command */
|
1046 |
|
|
|
1047 |
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
1048 |
|
|
DoC_Delay(this, 2);
|
1049 |
|
|
|
1050 |
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
1051 |
|
|
printk(KERN_ERR "Error programming oob data\n");
|
1052 |
|
|
/* There was an error */
|
1053 |
|
|
*retlen = 0;
|
1054 |
|
|
return -EIO;
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
*retlen = len;
|
1058 |
|
|
return 0;
|
1059 |
|
|
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
|
1063 |
|
|
size_t * retlen, const u_char * buf)
|
1064 |
|
|
{
|
1065 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
1066 |
|
|
int ret;
|
1067 |
|
|
|
1068 |
|
|
down(&this->lock);
|
1069 |
|
|
ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf);
|
1070 |
|
|
|
1071 |
|
|
up(&this->lock);
|
1072 |
|
|
return ret;
|
1073 |
|
|
}
|
1074 |
|
|
|
1075 |
|
|
static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
|
1076 |
|
|
{
|
1077 |
|
|
struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
|
1078 |
|
|
__u32 ofs = instr->addr;
|
1079 |
|
|
__u32 len = instr->len;
|
1080 |
|
|
volatile int dummy;
|
1081 |
|
|
unsigned long docptr;
|
1082 |
|
|
struct Nand *mychip;
|
1083 |
|
|
|
1084 |
|
|
down(&this->lock);
|
1085 |
|
|
|
1086 |
|
|
if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
|
1087 |
|
|
up(&this->lock);
|
1088 |
|
|
return -EINVAL;
|
1089 |
|
|
}
|
1090 |
|
|
|
1091 |
|
|
instr->state = MTD_ERASING;
|
1092 |
|
|
|
1093 |
|
|
docptr = this->virtadr;
|
1094 |
|
|
|
1095 |
|
|
/* FIXME: Do this in the background. Use timers or schedule_task() */
|
1096 |
|
|
while(len) {
|
1097 |
|
|
mychip = &this->chips[ofs >> this->chipshift];
|
1098 |
|
|
|
1099 |
|
|
if (this->curfloor != mychip->floor) {
|
1100 |
|
|
DoC_SelectFloor(this, mychip->floor);
|
1101 |
|
|
DoC_SelectChip(this, mychip->chip);
|
1102 |
|
|
} else if (this->curchip != mychip->chip) {
|
1103 |
|
|
DoC_SelectChip(this, mychip->chip);
|
1104 |
|
|
}
|
1105 |
|
|
this->curfloor = mychip->floor;
|
1106 |
|
|
this->curchip = mychip->chip;
|
1107 |
|
|
|
1108 |
|
|
DoC_Command(this, NAND_CMD_ERASE1, 0);
|
1109 |
|
|
DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
|
1110 |
|
|
DoC_Command(this, NAND_CMD_ERASE2, 0);
|
1111 |
|
|
|
1112 |
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
1113 |
|
|
|
1114 |
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
1115 |
|
|
DoC_Delay(this, 2);
|
1116 |
|
|
|
1117 |
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
1118 |
|
|
printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
|
1119 |
|
|
/* There was an error */
|
1120 |
|
|
instr->state = MTD_ERASE_FAILED;
|
1121 |
|
|
goto callback;
|
1122 |
|
|
}
|
1123 |
|
|
ofs += mtd->erasesize;
|
1124 |
|
|
len -= mtd->erasesize;
|
1125 |
|
|
}
|
1126 |
|
|
instr->state = MTD_ERASE_DONE;
|
1127 |
|
|
|
1128 |
|
|
callback:
|
1129 |
|
|
if (instr->callback)
|
1130 |
|
|
instr->callback(instr);
|
1131 |
|
|
|
1132 |
|
|
up(&this->lock);
|
1133 |
|
|
return 0;
|
1134 |
|
|
}
|
1135 |
|
|
|
1136 |
|
|
|
1137 |
|
|
/****************************************************************************
|
1138 |
|
|
*
|
1139 |
|
|
* Module stuff
|
1140 |
|
|
*
|
1141 |
|
|
****************************************************************************/
|
1142 |
|
|
|
1143 |
|
|
int __init init_doc2000(void)
|
1144 |
|
|
{
|
1145 |
|
|
inter_module_register(im_name, THIS_MODULE, &DoC2k_init);
|
1146 |
|
|
return 0;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
static void __exit cleanup_doc2000(void)
|
1150 |
|
|
{
|
1151 |
|
|
struct mtd_info *mtd;
|
1152 |
|
|
struct DiskOnChip *this;
|
1153 |
|
|
|
1154 |
|
|
while ((mtd = doc2klist)) {
|
1155 |
|
|
this = (struct DiskOnChip *) mtd->priv;
|
1156 |
|
|
doc2klist = this->nextdoc;
|
1157 |
|
|
|
1158 |
|
|
del_mtd_device(mtd);
|
1159 |
|
|
|
1160 |
|
|
iounmap((void *) this->virtadr);
|
1161 |
|
|
kfree(this->chips);
|
1162 |
|
|
kfree(mtd);
|
1163 |
|
|
}
|
1164 |
|
|
inter_module_unregister(im_name);
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
module_exit(cleanup_doc2000);
|
1168 |
|
|
module_init(init_doc2000);
|
1169 |
|
|
|
1170 |
|
|
MODULE_LICENSE("GPL");
|
1171 |
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
|
1172 |
|
|
MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
|
1173 |
|
|
|