OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [mtd/] [devices/] [docecc.c] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3
 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4
 * GNU GPL License. The rest is simply to convert the disk on chip
5
 * syndrom into a standard syndom.
6
 *
7
 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8
 * Copyright (C) 2000 Netgem S.A.
9
 *
10
 * $Id: docecc.c,v 1.1.1.1 2004-04-15 01:52:06 phoenix Exp $
11
 *
12
 * This program is free software; you can redistribute it and/or modify
13
 * it under the terms of the GNU General Public License as published by
14
 * the Free Software Foundation; either version 2 of the License, or
15
 * (at your option) any later version.
16
 *
17
 * This program is distributed in the hope that it will be useful,
18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20
 * GNU General Public License for more details.
21
 *
22
 * You should have received a copy of the GNU General Public License
23
 * along with this program; if not, write to the Free Software
24
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25
 */
26
#include <linux/kernel.h>
27
#include <linux/module.h>
28
#include <asm/errno.h>
29
#include <asm/io.h>
30
#include <asm/uaccess.h>
31
#include <linux/miscdevice.h>
32
#include <linux/pci.h>
33
#include <linux/delay.h>
34
#include <linux/slab.h>
35
#include <linux/sched.h>
36
#include <linux/init.h>
37
#include <linux/types.h>
38
 
39
#include <linux/mtd/compatmac.h> /* for min() in older kernels */
40
#include <linux/mtd/mtd.h>
41
#include <linux/mtd/doc2000.h>
42
 
43
/* need to undef it (from asm/termbits.h) */
44
#undef B0
45
 
46
#define MM 10 /* Symbol size in bits */
47
#define KK (1023-4) /* Number of data symbols per block */
48
#define B0 510 /* First root of generator polynomial, alpha form */
49
#define PRIM 1 /* power of alpha used to generate roots of generator poly */
50
#define NN ((1 << MM) - 1)
51
 
52
typedef unsigned short dtype;
53
 
54
/* 1+x^3+x^10 */
55
static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
56
 
57
/* This defines the type used to store an element of the Galois Field
58
 * used by the code. Make sure this is something larger than a char if
59
 * if anything larger than GF(256) is used.
60
 *
61
 * Note: unsigned char will work up to GF(256) but int seems to run
62
 * faster on the Pentium.
63
 */
64
typedef int gf;
65
 
66
/* No legal value in index form represents zero, so
67
 * we need a special value for this purpose
68
 */
69
#define A0      (NN)
70
 
71
/* Compute x % NN, where NN is 2**MM - 1,
72
 * without a slow divide
73
 */
74
static inline gf
75
modnn(int x)
76
{
77
  while (x >= NN) {
78
    x -= NN;
79
    x = (x >> MM) + (x & NN);
80
  }
81
  return x;
82
}
83
 
84
#define CLEAR(a,n) {\
85
int ci;\
86
for(ci=(n)-1;ci >=0;ci--)\
87
(a)[ci] = 0;\
88
}
89
 
90
#define COPY(a,b,n) {\
91
int ci;\
92
for(ci=(n)-1;ci >=0;ci--)\
93
(a)[ci] = (b)[ci];\
94
}
95
 
96
#define COPYDOWN(a,b,n) {\
97
int ci;\
98
for(ci=(n)-1;ci >=0;ci--)\
99
(a)[ci] = (b)[ci];\
100
}
101
 
102
#define Ldec 1
103
 
104
/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
105
   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
106
                   polynomial form -> index form  index_of[j=alpha**i] = i
107
   alpha=2 is the primitive element of GF(2**m)
108
   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
109
        Let @ represent the primitive element commonly called "alpha" that
110
   is the root of the primitive polynomial p(x). Then in GF(2^m), for any
111
 
112
        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
113
   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
114
   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
115
   example the polynomial representation of @^5 would be given by the binary
116
   representation of the integer "alpha_to[5]".
117
                   Similarily, index_of[] can be used as follows:
118
        As above, let @ represent the primitive element of GF(2^m) that is
119
   the root of the primitive polynomial p(x). In order to find the power
120
   of @ (alpha) that has the polynomial representation
121
        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
122
   we consider the integer "i" whose binary representation with a(0) being LSB
123
   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
124
   "index_of[i]". Now, @^index_of[i] is that element whose polynomial
125
    representation is (a(0),a(1),a(2),...,a(m-1)).
126
   NOTE:
127
        The element alpha_to[2^m-1] = 0 always signifying that the
128
   representation of "@^infinity" = 0 is (0,0,0,...,0).
129
        Similarily, the element index_of[0] = A0 always signifying
130
   that the power of alpha which has the polynomial representation
131
   (0,0,...,0) is "infinity".
132
 
133
*/
134
 
135
static void
136
generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
137
{
138
  register int i, mask;
139
 
140
  mask = 1;
141
  Alpha_to[MM] = 0;
142
  for (i = 0; i < MM; i++) {
143
    Alpha_to[i] = mask;
144
    Index_of[Alpha_to[i]] = i;
145
    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
146
    if (Pp[i] != 0)
147
      Alpha_to[MM] ^= mask;     /* Bit-wise EXOR operation */
148
    mask <<= 1; /* single left-shift */
149
  }
150
  Index_of[Alpha_to[MM]] = MM;
151
  /*
152
   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
153
   * poly-repr of @^i shifted left one-bit and accounting for any @^MM
154
   * term that may occur when poly-repr of @^i is shifted.
155
   */
156
  mask >>= 1;
157
  for (i = MM + 1; i < NN; i++) {
158
    if (Alpha_to[i - 1] >= mask)
159
      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
160
    else
161
      Alpha_to[i] = Alpha_to[i - 1] << 1;
162
    Index_of[Alpha_to[i]] = i;
163
  }
164
  Index_of[0] = A0;
165
  Alpha_to[NN] = 0;
166
}
167
 
168
/*
169
 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
170
 * of the feedback shift register after having processed the data and
171
 * the ECC.
172
 *
173
 * Return number of symbols corrected, or -1 if codeword is illegal
174
 * or uncorrectable. If eras_pos is non-null, the detected error locations
175
 * are written back. NOTE! This array must be at least NN-KK elements long.
176
 * The corrected data are written in eras_val[]. They must be xor with the data
177
 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
178
 *
179
 * First "no_eras" erasures are declared by the calling program. Then, the
180
 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
181
 * If the number of channel errors is not greater than "t_after_eras" the
182
 * transmitted codeword will be recovered. Details of algorithm can be found
183
 * in R. Blahut's "Theory ... of Error-Correcting Codes".
184
 
185
 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
186
 * will result. The decoder *could* check for this condition, but it would involve
187
 * extra time on every decoding operation.
188
 * */
189
static int
190
eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
191
            gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
192
            int no_eras)
193
{
194
  int deg_lambda, el, deg_omega;
195
  int i, j, r,k;
196
  gf u,q,tmp,num1,num2,den,discr_r;
197
  gf lambda[NN-KK + 1], s[NN-KK + 1];   /* Err+Eras Locator poly
198
                                         * and syndrome poly */
199
  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
200
  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
201
  int syn_error, count;
202
 
203
  syn_error = 0;
204
  for(i=0;i<NN-KK;i++)
205
      syn_error |= bb[i];
206
 
207
  if (!syn_error) {
208
    /* if remainder is zero, data[] is a codeword and there are no
209
     * errors to correct. So return data[] unmodified
210
     */
211
    count = 0;
212
    goto finish;
213
  }
214
 
215
  for(i=1;i<=NN-KK;i++){
216
    s[i] = bb[0];
217
  }
218
  for(j=1;j<NN-KK;j++){
219
    if(bb[j] == 0)
220
      continue;
221
    tmp = Index_of[bb[j]];
222
 
223
    for(i=1;i<=NN-KK;i++)
224
      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
225
  }
226
 
227
  /* undo the feedback register implicit multiplication and convert
228
     syndromes to index form */
229
 
230
  for(i=1;i<=NN-KK;i++) {
231
      tmp = Index_of[s[i]];
232
      if (tmp != A0)
233
          tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
234
      s[i] = tmp;
235
  }
236
 
237
  CLEAR(&lambda[1],NN-KK);
238
  lambda[0] = 1;
239
 
240
  if (no_eras > 0) {
241
    /* Init lambda to be the erasure locator polynomial */
242
    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
243
    for (i = 1; i < no_eras; i++) {
244
      u = modnn(PRIM*eras_pos[i]);
245
      for (j = i+1; j > 0; j--) {
246
        tmp = Index_of[lambda[j - 1]];
247
        if(tmp != A0)
248
          lambda[j] ^= Alpha_to[modnn(u + tmp)];
249
      }
250
    }
251
#if DEBUG >= 1
252
    /* Test code that verifies the erasure locator polynomial just constructed
253
       Needed only for decoder debugging. */
254
 
255
    /* find roots of the erasure location polynomial */
256
    for(i=1;i<=no_eras;i++)
257
      reg[i] = Index_of[lambda[i]];
258
    count = 0;
259
    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
260
      q = 1;
261
      for (j = 1; j <= no_eras; j++)
262
        if (reg[j] != A0) {
263
          reg[j] = modnn(reg[j] + j);
264
          q ^= Alpha_to[reg[j]];
265
        }
266
      if (q != 0)
267
        continue;
268
      /* store root and error location number indices */
269
      root[count] = i;
270
      loc[count] = k;
271
      count++;
272
    }
273
    if (count != no_eras) {
274
      printf("\n lambda(x) is WRONG\n");
275
      count = -1;
276
      goto finish;
277
    }
278
#if DEBUG >= 2
279
    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
280
    for (i = 0; i < count; i++)
281
      printf("%d ", loc[i]);
282
    printf("\n");
283
#endif
284
#endif
285
  }
286
  for(i=0;i<NN-KK+1;i++)
287
    b[i] = Index_of[lambda[i]];
288
 
289
  /*
290
   * Begin Berlekamp-Massey algorithm to determine error+erasure
291
   * locator polynomial
292
   */
293
  r = no_eras;
294
  el = no_eras;
295
  while (++r <= NN-KK) {        /* r is the step number */
296
    /* Compute discrepancy at the r-th step in poly-form */
297
    discr_r = 0;
298
    for (i = 0; i < r; i++){
299
      if ((lambda[i] != 0) && (s[r - i] != A0)) {
300
        discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
301
      }
302
    }
303
    discr_r = Index_of[discr_r];        /* Index form */
304
    if (discr_r == A0) {
305
      /* 2 lines below: B(x) <-- x*B(x) */
306
      COPYDOWN(&b[1],b,NN-KK);
307
      b[0] = A0;
308
    } else {
309
      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
310
      t[0] = lambda[0];
311
      for (i = 0 ; i < NN-KK; i++) {
312
        if(b[i] != A0)
313
          t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
314
        else
315
          t[i+1] = lambda[i+1];
316
      }
317
      if (2 * el <= r + no_eras - 1) {
318
        el = r + no_eras - el;
319
        /*
320
         * 2 lines below: B(x) <-- inv(discr_r) *
321
         * lambda(x)
322
         */
323
        for (i = 0; i <= NN-KK; i++)
324
          b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
325
      } else {
326
        /* 2 lines below: B(x) <-- x*B(x) */
327
        COPYDOWN(&b[1],b,NN-KK);
328
        b[0] = A0;
329
      }
330
      COPY(lambda,t,NN-KK+1);
331
    }
332
  }
333
 
334
  /* Convert lambda to index form and compute deg(lambda(x)) */
335
  deg_lambda = 0;
336
  for(i=0;i<NN-KK+1;i++){
337
    lambda[i] = Index_of[lambda[i]];
338
    if(lambda[i] != A0)
339
      deg_lambda = i;
340
  }
341
  /*
342
   * Find roots of the error+erasure locator polynomial by Chien
343
   * Search
344
   */
345
  COPY(&reg[1],&lambda[1],NN-KK);
346
  count = 0;             /* Number of roots of lambda(x) */
347
  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
348
    q = 1;
349
    for (j = deg_lambda; j > 0; j--){
350
      if (reg[j] != A0) {
351
        reg[j] = modnn(reg[j] + j);
352
        q ^= Alpha_to[reg[j]];
353
      }
354
    }
355
    if (q != 0)
356
      continue;
357
    /* store root (index-form) and error location number */
358
    root[count] = i;
359
    loc[count] = k;
360
    /* If we've already found max possible roots,
361
     * abort the search to save time
362
     */
363
    if(++count == deg_lambda)
364
      break;
365
  }
366
  if (deg_lambda != count) {
367
    /*
368
     * deg(lambda) unequal to number of roots => uncorrectable
369
     * error detected
370
     */
371
    count = -1;
372
    goto finish;
373
  }
374
  /*
375
   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
376
   * x**(NN-KK)). in index form. Also find deg(omega).
377
   */
378
  deg_omega = 0;
379
  for (i = 0; i < NN-KK;i++){
380
    tmp = 0;
381
    j = (deg_lambda < i) ? deg_lambda : i;
382
    for(;j >= 0; j--){
383
      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
384
        tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
385
    }
386
    if(tmp != 0)
387
      deg_omega = i;
388
    omega[i] = Index_of[tmp];
389
  }
390
  omega[NN-KK] = A0;
391
 
392
  /*
393
   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
394
   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
395
   */
396
  for (j = count-1; j >=0; j--) {
397
    num1 = 0;
398
    for (i = deg_omega; i >= 0; i--) {
399
      if (omega[i] != A0)
400
        num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
401
    }
402
    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
403
    den = 0;
404
 
405
    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
406
    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
407
      if(lambda[i+1] != A0)
408
        den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
409
    }
410
    if (den == 0) {
411
#if DEBUG >= 1
412
      printf("\n ERROR: denominator = 0\n");
413
#endif
414
      /* Convert to dual- basis */
415
      count = -1;
416
      goto finish;
417
    }
418
    /* Apply error to data */
419
    if (num1 != 0) {
420
        eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
421
    } else {
422
        eras_val[j] = 0;
423
    }
424
  }
425
 finish:
426
  for(i=0;i<count;i++)
427
      eras_pos[i] = loc[i];
428
  return count;
429
}
430
 
431
/***************************************************************************/
432
/* The DOC specific code begins here */
433
 
434
#define SECTOR_SIZE 512
435
/* The sector bytes are packed into NB_DATA MM bits words */
436
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
437
 
438
/*
439
 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
440
 * content of the feedback shift register applyied to the sector and
441
 * the ECC. Return the number of errors corrected (and correct them in
442
 * sector), or -1 if error
443
 */
444
int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
445
{
446
    int parity, i, nb_errors;
447
    gf bb[NN - KK + 1];
448
    gf error_val[NN-KK];
449
    int error_pos[NN-KK], pos, bitpos, index, val;
450
    dtype *Alpha_to, *Index_of;
451
 
452
    /* init log and exp tables here to save memory. However, it is slower */
453
    Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
454
    if (!Alpha_to)
455
        return -1;
456
 
457
    Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
458
    if (!Index_of) {
459
        kfree(Alpha_to);
460
        return -1;
461
    }
462
 
463
    generate_gf(Alpha_to, Index_of);
464
 
465
    parity = ecc1[1];
466
 
467
    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
468
    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
469
    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
470
    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
471
 
472
    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
473
                            error_val, error_pos, 0);
474
    if (nb_errors <= 0)
475
        goto the_end;
476
 
477
    /* correct the errors */
478
    for(i=0;i<nb_errors;i++) {
479
        pos = error_pos[i];
480
        if (pos >= NB_DATA && pos < KK) {
481
            nb_errors = -1;
482
            goto the_end;
483
        }
484
        if (pos < NB_DATA) {
485
            /* extract bit position (MSB first) */
486
            pos = 10 * (NB_DATA - 1 - pos) - 6;
487
            /* now correct the following 10 bits. At most two bytes
488
               can be modified since pos is even */
489
            index = (pos >> 3) ^ 1;
490
            bitpos = pos & 7;
491
            if ((index >= 0 && index < SECTOR_SIZE) ||
492
                index == (SECTOR_SIZE + 1)) {
493
                val = error_val[i] >> (2 + bitpos);
494
                parity ^= val;
495
                if (index < SECTOR_SIZE)
496
                    sector[index] ^= val;
497
            }
498
            index = ((pos >> 3) + 1) ^ 1;
499
            bitpos = (bitpos + 10) & 7;
500
            if (bitpos == 0)
501
                bitpos = 8;
502
            if ((index >= 0 && index < SECTOR_SIZE) ||
503
                index == (SECTOR_SIZE + 1)) {
504
                val = error_val[i] << (8 - bitpos);
505
                parity ^= val;
506
                if (index < SECTOR_SIZE)
507
                    sector[index] ^= val;
508
            }
509
        }
510
    }
511
 
512
    /* use parity to test extra errors */
513
    if ((parity & 0xff) != 0)
514
        nb_errors = -1;
515
 
516
 the_end:
517
    kfree(Alpha_to);
518
    kfree(Index_of);
519
    return nb_errors;
520
}
521
 
522
MODULE_LICENSE("GPL");
523
MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
524
MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.