OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [strip.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * Copyright 1996 The Board of Trustees of The Leland Stanford
3
 * Junior University. All Rights Reserved.
4
 *
5
 * Permission to use, copy, modify, and distribute this
6
 * software and its documentation for any purpose and without
7
 * fee is hereby granted, provided that the above copyright
8
 * notice appear in all copies.  Stanford University
9
 * makes no representations about the suitability of this
10
 * software for any purpose.  It is provided "as is" without
11
 * express or implied warranty.
12
 *
13
 * strip.c      This module implements Starmode Radio IP (STRIP)
14
 *              for kernel-based devices like TTY.  It interfaces between a
15
 *              raw TTY, and the kernel's INET protocol layers (via DDI).
16
 *
17
 * Version:     @(#)strip.c     1.3     July 1997
18
 *
19
 * Author:      Stuart Cheshire <cheshire@cs.stanford.edu>
20
 *
21
 * Fixes:       v0.9 12th Feb 1996 (SC)
22
 *              New byte stuffing (2+6 run-length encoding)
23
 *              New watchdog timer task
24
 *              New Protocol key (SIP0)
25
 *
26
 *              v0.9.1 3rd March 1996 (SC)
27
 *              Changed to dynamic device allocation -- no more compile
28
 *              time (or boot time) limit on the number of STRIP devices.
29
 *
30
 *              v0.9.2 13th March 1996 (SC)
31
 *              Uses arp cache lookups (but doesn't send arp packets yet)
32
 *
33
 *              v0.9.3 17th April 1996 (SC)
34
 *              Fixed bug where STR_ERROR flag was getting set unneccessarily
35
 *              (causing otherwise good packets to be unneccessarily dropped)
36
 *
37
 *              v0.9.4 27th April 1996 (SC)
38
 *              First attempt at using "&COMMAND" Starmode AT commands
39
 *
40
 *              v0.9.5 29th May 1996 (SC)
41
 *              First attempt at sending (unicast) ARP packets
42
 *
43
 *              v0.9.6 5th June 1996 (Elliot)
44
 *              Put "message level" tags in every "printk" statement
45
 *
46
 *              v0.9.7 13th June 1996 (laik)
47
 *              Added support for the /proc fs
48
 *
49
 *              v0.9.8 July 1996 (Mema)
50
 *              Added packet logging
51
 *
52
 *              v1.0 November 1996 (SC)
53
 *              Fixed (severe) memory leaks in the /proc fs code
54
 *              Fixed race conditions in the logging code
55
 *
56
 *              v1.1 January 1997 (SC)
57
 *              Deleted packet logging (use tcpdump instead)
58
 *              Added support for Metricom Firmware v204 features
59
 *              (like message checksums)
60
 *
61
 *              v1.2 January 1997 (SC)
62
 *              Put portables list back in
63
 *
64
 *              v1.3 July 1997 (SC)
65
 *              Made STRIP driver set the radio's baud rate automatically.
66
 *              It is no longer necessarily to manually set the radio's
67
 *              rate permanently to 115200 -- the driver handles setting
68
 *              the rate automatically.
69
 */
70
 
71
#ifdef MODULE
72
static const char StripVersion[] = "1.3-STUART.CHESHIRE-MODULAR";
73
#else
74
static const char StripVersion[] = "1.3-STUART.CHESHIRE";
75
#endif
76
 
77
#define TICKLE_TIMERS 0
78
#define EXT_COUNTERS 1
79
 
80
 
81
/************************************************************************/
82
/* Header files                                                         */
83
 
84
#include <linux/config.h>
85
#include <linux/module.h>
86
#include <linux/version.h>
87
#include <linux/init.h>
88
#include <asm/system.h>
89
#include <asm/uaccess.h>
90
#include <asm/segment.h>
91
#include <asm/bitops.h>
92
 
93
/*
94
 * isdigit() and isspace() use the ctype[] array, which is not available
95
 * to kernel modules.  If compiling as a module,  use  a local definition
96
 * of isdigit() and isspace() until  _ctype is added to ksyms.
97
 */
98
#ifdef MODULE
99
# define isdigit(c) ('0' <= (c) && (c)  <= '9')
100
# define isspace(c) ((c) == ' ' || (c)  == '\t')
101
#else
102
# include <linux/ctype.h>
103
#endif
104
 
105
#include <linux/string.h>
106
#include <linux/mm.h>
107
#include <linux/interrupt.h>
108
#include <linux/in.h>
109
#include <linux/tty.h>
110
#include <linux/errno.h>
111
#include <linux/netdevice.h>
112
#include <linux/inetdevice.h>
113
#include <linux/etherdevice.h>
114
#include <linux/skbuff.h>
115
#include <linux/if_arp.h>
116
#include <linux/if_strip.h>
117
#include <linux/proc_fs.h>
118
#include <linux/serial.h>
119
#include <linux/serialP.h>
120
#include <net/arp.h>
121
 
122
#include <linux/ip.h>
123
#include <linux/tcp.h>
124
#include <linux/time.h>
125
 
126
 
127
/************************************************************************/
128
/* Useful structures and definitions                                    */
129
 
130
/*
131
 * A MetricomKey identifies the protocol being carried inside a Metricom
132
 * Starmode packet.
133
 */
134
 
135
typedef union
136
{
137
    __u8 c[4];
138
    __u32 l;
139
} MetricomKey;
140
 
141
/*
142
 * An IP address can be viewed as four bytes in memory (which is what it is) or as
143
 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
144
 */
145
 
146
typedef union
147
{
148
    __u8 b[4];
149
    __u32 l;
150
} IPaddr;
151
 
152
/*
153
 * A MetricomAddressString is used to hold a printable representation of
154
 * a Metricom address.
155
 */
156
 
157
typedef struct
158
{
159
    __u8 c[24];
160
} MetricomAddressString;
161
 
162
/* Encapsulation can expand packet of size x to 65/64x + 1
163
 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
164
 *                           1 1   1-18  1  4         ?         1
165
 * eg.                     <CR>*0000-1234*SIP0<encaps payload><CR>
166
 * We allow 31 bytes for the stars, the key, the address and the <CR>s
167
 */
168
#define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
169
 
170
/*
171
 * A STRIP_Header is never really sent over the radio, but making a dummy
172
 * header for internal use within the kernel that looks like an Ethernet
173
 * header makes certain other software happier. For example, tcpdump
174
 * already understands Ethernet headers.
175
 */
176
 
177
typedef struct
178
{
179
    MetricomAddress dst_addr;           /* Destination address, e.g. "0000-1234"   */
180
    MetricomAddress src_addr;           /* Source address, e.g. "0000-5678"        */
181
    unsigned short  protocol;           /* The protocol type, using Ethernet codes */
182
} STRIP_Header;
183
 
184
typedef struct
185
{
186
    char c[60];
187
} MetricomNode;
188
 
189
#define NODE_TABLE_SIZE 32
190
typedef struct
191
{
192
    struct timeval timestamp;
193
    int            num_nodes;
194
    MetricomNode   node[NODE_TABLE_SIZE];
195
} MetricomNodeTable;
196
 
197
enum { FALSE = 0, TRUE = 1 };
198
 
199
/*
200
 * Holds the radio's firmware version.
201
 */
202
typedef struct
203
{
204
    char c[50];
205
} FirmwareVersion;
206
 
207
/*
208
 * Holds the radio's serial number.
209
 */
210
typedef struct
211
{
212
    char c[18];
213
} SerialNumber;
214
 
215
/*
216
 * Holds the radio's battery voltage.
217
 */
218
typedef struct
219
{
220
    char c[11];
221
} BatteryVoltage;
222
 
223
typedef struct
224
{
225
    char c[8];
226
} char8;
227
 
228
enum
229
{
230
    NoStructure = 0,             /* Really old firmware */
231
    StructuredMessages = 1,     /* Parsable AT response msgs */
232
    ChecksummedMessages = 2     /* Parsable AT response msgs with checksums */
233
} FirmwareLevel;
234
 
235
struct strip
236
{
237
    int magic;
238
    /*
239
     * These are pointers to the malloc()ed frame buffers.
240
     */
241
 
242
    unsigned char     *rx_buff;                 /* buffer for received IP packet*/
243
    unsigned char     *sx_buff;                 /* buffer for received serial data*/
244
    int                sx_count;                /* received serial data counter */
245
    int                sx_size;                 /* Serial buffer size           */
246
    unsigned char     *tx_buff;                 /* transmitter buffer           */
247
    unsigned char     *tx_head;                 /* pointer to next byte to XMIT */
248
    int                tx_left;                 /* bytes left in XMIT queue     */
249
    int                tx_size;                 /* Serial buffer size           */
250
 
251
    /*
252
     * STRIP interface statistics.
253
     */
254
 
255
    unsigned long      rx_packets;              /* inbound frames counter       */
256
    unsigned long      tx_packets;              /* outbound frames counter      */
257
    unsigned long      rx_errors;               /* Parity, etc. errors          */
258
    unsigned long      tx_errors;               /* Planned stuff                */
259
    unsigned long      rx_dropped;              /* No memory for skb            */
260
    unsigned long      tx_dropped;              /* When MTU change              */
261
    unsigned long      rx_over_errors;          /* Frame bigger then STRIP buf. */
262
 
263
    unsigned long      pps_timer;               /* Timer to determine pps       */
264
    unsigned long      rx_pps_count;            /* Counter to determine pps     */
265
    unsigned long      tx_pps_count;            /* Counter to determine pps     */
266
    unsigned long      sx_pps_count;            /* Counter to determine pps     */
267
    unsigned long      rx_average_pps;          /* rx packets per second * 8    */
268
    unsigned long      tx_average_pps;          /* tx packets per second * 8    */
269
    unsigned long      sx_average_pps;          /* sent packets per second * 8  */
270
 
271
#ifdef EXT_COUNTERS
272
    unsigned long      rx_bytes;                /* total received bytes */
273
    unsigned long      tx_bytes;                /* total received bytes */
274
    unsigned long      rx_rbytes;               /* bytes thru radio i/f */
275
    unsigned long      tx_rbytes;               /* bytes thru radio i/f */
276
    unsigned long      rx_sbytes;               /* tot bytes thru serial i/f */
277
    unsigned long      tx_sbytes;               /* tot bytes thru serial i/f */
278
    unsigned long      rx_ebytes;               /* tot stat/err bytes */
279
    unsigned long      tx_ebytes;               /* tot stat/err bytes */
280
#endif
281
 
282
    /*
283
     * Internal variables.
284
     */
285
 
286
    struct strip      *next;                    /* The next struct in the list  */
287
    struct strip     **referrer;                /* The pointer that points to us*/
288
    int                discard;                 /* Set if serial error          */
289
    int                working;                 /* Is radio working correctly?  */
290
    int                firmware_level;          /* Message structuring level    */
291
    int                next_command;            /* Next periodic command        */
292
    unsigned int       user_baud;               /* The user-selected baud rate  */
293
    int                mtu;                     /* Our mtu (to spot changes!)   */
294
    long               watchdog_doprobe;        /* Next time to test the radio  */
295
    long               watchdog_doreset;        /* Time to do next reset        */
296
    long               gratuitous_arp;          /* Time to send next ARP refresh*/
297
    long               arp_interval;            /* Next ARP interval            */
298
    struct timer_list  idle_timer;              /* For periodic wakeup calls    */
299
    MetricomAddress    true_dev_addr;           /* True address of radio        */
300
    int                manual_dev_addr;         /* Hack: See note below         */
301
 
302
    FirmwareVersion    firmware_version;        /* The radio's firmware version */
303
    SerialNumber       serial_number;           /* The radio's serial number    */
304
    BatteryVoltage     battery_voltage;         /* The radio's battery voltage  */
305
 
306
    /*
307
     * Other useful structures.
308
     */
309
 
310
    struct tty_struct *tty;                     /* ptr to TTY structure         */
311
    struct net_device      dev;                 /* Our device structure         */
312
 
313
    /*
314
     * Neighbour radio records
315
     */
316
 
317
    MetricomNodeTable  portables;
318
    MetricomNodeTable  poletops;
319
};
320
 
321
/*
322
 * Note: manual_dev_addr hack
323
 *
324
 * It is not possible to change the hardware address of a Metricom radio,
325
 * or to send packets with a user-specified hardware source address, thus
326
 * trying to manually set a hardware source address is a questionable
327
 * thing to do.  However, if the user *does* manually set the hardware
328
 * source address of a STRIP interface, then the kernel will believe it,
329
 * and use it in certain places. For example, the hardware address listed
330
 * by ifconfig will be the manual address, not the true one.
331
 * (Both addresses are listed in /proc/net/strip.)
332
 * Also, ARP packets will be sent out giving the user-specified address as
333
 * the source address, not the real address. This is dangerous, because
334
 * it means you won't receive any replies -- the ARP replies will go to
335
 * the specified address, which will be some other radio. The case where
336
 * this is useful is when that other radio is also connected to the same
337
 * machine. This allows you to connect a pair of radios to one machine,
338
 * and to use one exclusively for inbound traffic, and the other
339
 * exclusively for outbound traffic. Pretty neat, huh?
340
 *
341
 * Here's the full procedure to set this up:
342
 *
343
 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
344
 *    and st1 for incoming packets
345
 *
346
 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
347
 *    which is the real hardware address of st1 (inbound radio).
348
 *    Now when it sends out packets, it will masquerade as st1, and
349
 *    replies will be sent to that radio, which is exactly what we want.
350
 *
351
 * 3. Set the route table entry ("route add default ..." or
352
 *    "route add -net ...", as appropriate) to send packets via the st0
353
 *    interface (outbound radio). Do not add any route which sends packets
354
 *    out via the st1 interface -- that radio is for inbound traffic only.
355
 *
356
 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
357
 *    This tells the STRIP driver to "shut down" that interface and not
358
 *    send any packets through it. In particular, it stops sending the
359
 *    periodic gratuitous ARP packets that a STRIP interface normally sends.
360
 *    Also, when packets arrive on that interface, it will search the
361
 *    interface list to see if there is another interface who's manual
362
 *    hardware address matches its own real address (i.e. st0 in this
363
 *    example) and if so it will transfer ownership of the skbuff to
364
 *    that interface, so that it looks to the kernel as if the packet
365
 *    arrived on that interface. This is necessary because when the
366
 *    kernel sends an ARP packet on st0, it expects to get a reply on
367
 *    st0, and if it sees the reply come from st1 then it will ignore
368
 *    it (to be accurate, it puts the entry in the ARP table, but
369
 *    labelled in such a way that st0 can't use it).
370
 *
371
 * Thanks to Petros Maniatis for coming up with the idea of splitting
372
 * inbound and outbound traffic between two interfaces, which turned
373
 * out to be really easy to implement, even if it is a bit of a hack.
374
 *
375
 * Having set a manual address on an interface, you can restore it
376
 * to automatic operation (where the address is automatically kept
377
 * consistent with the real address of the radio) by setting a manual
378
 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
379
 * This 'turns off' manual override mode for the device address.
380
 *
381
 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
382
 * radio addresses the packets were sent and received from, so that you
383
 * can see what is really going on with packets, and which interfaces
384
 * they are really going through.
385
 */
386
 
387
 
388
/************************************************************************/
389
/* Constants                                                            */
390
 
391
/*
392
 * CommandString1 works on all radios
393
 * Other CommandStrings are only used with firmware that provides structured responses.
394
 *
395
 * ats319=1 Enables Info message for node additions and deletions
396
 * ats319=2 Enables Info message for a new best node
397
 * ats319=4 Enables checksums
398
 * ats319=8 Enables ACK messages
399
 */
400
 
401
static const int MaxCommandStringLength = 32;
402
static const int CompatibilityCommand = 1;
403
 
404
static const char CommandString0[] = "*&COMMAND*ATS319=7";      /* Turn on checksums & info messages */
405
static const char CommandString1[] = "*&COMMAND*ATS305?";       /* Query radio name */
406
static const char CommandString2[] = "*&COMMAND*ATS325?";       /* Query battery voltage */
407
static const char CommandString3[] = "*&COMMAND*ATS300?";       /* Query version information */
408
static const char CommandString4[] = "*&COMMAND*ATS311?";       /* Query poletop list */
409
static const char CommandString5[] = "*&COMMAND*AT~LA";         /* Query portables list */
410
typedef struct { const char *string; long length; } StringDescriptor;
411
 
412
static const StringDescriptor CommandString[] =
413
    {
414
    { CommandString0, sizeof(CommandString0)-1 },
415
    { CommandString1, sizeof(CommandString1)-1 },
416
    { CommandString2, sizeof(CommandString2)-1 },
417
    { CommandString3, sizeof(CommandString3)-1 },
418
    { CommandString4, sizeof(CommandString4)-1 },
419
    { CommandString5, sizeof(CommandString5)-1 }
420
    };
421
 
422
#define GOT_ALL_RADIO_INFO(S)      \
423
    ((S)->firmware_version.c[0] && \
424
     (S)->battery_voltage.c[0]  && \
425
     memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
426
 
427
static const char            hextable[16]      = "0123456789ABCDEF";
428
 
429
static const MetricomAddress zero_address;
430
static const MetricomAddress broadcast_address = { { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF } };
431
 
432
static const MetricomKey     SIP0Key           = { { "SIP0" } };
433
static const MetricomKey     ARP0Key           = { { "ARP0" } };
434
static const MetricomKey     ATR_Key           = { { "ATR " } };
435
static const MetricomKey     ACK_Key           = { { "ACK_" } };
436
static const MetricomKey     INF_Key           = { { "INF_" } };
437
static const MetricomKey     ERR_Key           = { { "ERR_" } };
438
 
439
static const long            MaxARPInterval    = 60 * HZ;          /* One minute */
440
 
441
/*
442
 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
443
 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
444
 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
445
 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
446
 * long, including IP header, UDP header, and NFS header. Setting the STRIP
447
 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
448
 */
449
static const unsigned short  MAX_SEND_MTU          = 1152;
450
static const unsigned short  MAX_RECV_MTU          = 1500; /* Hoping for Ethernet sized packets in the future! */
451
static const unsigned short  DEFAULT_STRIP_MTU      = 1152;
452
static const int             STRIP_MAGIC            = 0x5303;
453
static const long            LongTime               = 0x7FFFFFFF;
454
 
455
 
456
/************************************************************************/
457
/* Global variables                                                     */
458
 
459
static struct strip *struct_strip_list;
460
 
461
 
462
/************************************************************************/
463
/* Macros                                                               */
464
 
465
/* Returns TRUE if text T begins with prefix P */
466
#define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
467
 
468
/* Returns TRUE if text T of length L is equal to string S */
469
#define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
470
 
471
#define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' :      \
472
                    (X)>='a' && (X)<='f' ? (X)-'a'+10 :   \
473
                    (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
474
 
475
#define READHEX16(X) ((__u16)(READHEX(X)))
476
 
477
#define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
478
 
479
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
480
#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
481
#define ELEMENTS_OF(X) (sizeof(X) / sizeof((X)[0]))
482
#define ARRAY_END(X) (&((X)[ELEMENTS_OF(X)]))
483
 
484
#define JIFFIE_TO_SEC(X) ((X) / HZ)
485
 
486
 
487
/************************************************************************/
488
/* Utility routines                                                     */
489
 
490
typedef unsigned long InterruptStatus;
491
 
492
static inline InterruptStatus DisableInterrupts(void)
493
{
494
    InterruptStatus x;
495
    save_flags(x);
496
    cli();
497
    return(x);
498
}
499
 
500
static inline void RestoreInterrupts(InterruptStatus x)
501
{
502
    restore_flags(x);
503
}
504
 
505
static int arp_query(unsigned char *haddr, u32 paddr, struct net_device * dev)
506
{
507
    struct neighbour *neighbor_entry;
508
 
509
    neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
510
 
511
    if (neighbor_entry != NULL)
512
    {
513
        neighbor_entry->used = jiffies;
514
        if (neighbor_entry->nud_state & NUD_VALID)
515
        {
516
            memcpy(haddr, neighbor_entry->ha, dev->addr_len);
517
            return 1;
518
        }
519
    }
520
    return 0;
521
}
522
 
523
static void DumpData(char *msg, struct strip *strip_info, __u8 *ptr, __u8 *end)
524
{
525
    static const int MAX_DumpData = 80;
526
    __u8 pkt_text[MAX_DumpData], *p = pkt_text;
527
 
528
    *p++ = '\"';
529
 
530
    while (ptr<end && p < &pkt_text[MAX_DumpData-4])
531
    {
532
        if (*ptr == '\\')
533
        {
534
            *p++ = '\\';
535
            *p++ = '\\';
536
        }
537
        else
538
        {
539
            if (*ptr >= 32 && *ptr <= 126)
540
            {
541
                *p++ = *ptr;
542
            }
543
            else
544
            {
545
                sprintf(p, "\\%02X", *ptr);
546
                p+= 3;
547
            }
548
        }
549
        ptr++;
550
    }
551
 
552
    if (ptr == end)
553
    {
554
        *p++ = '\"';
555
    }
556
 
557
    *p++ = 0;
558
 
559
    printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev.name, msg, pkt_text);
560
}
561
 
562
#if 0
563
static void HexDump(char *msg, struct strip *strip_info, __u8 *start, __u8 *end)
564
{
565
    __u8 *ptr = start;
566
    printk(KERN_INFO "%s: %s: %d bytes\n", strip_info->dev.name, msg, end-ptr);
567
 
568
    while (ptr < end)
569
    {
570
        long offset = ptr - start;
571
        __u8 text[80], *p = text;
572
        while (ptr < end && p < &text[16*3])
573
        {
574
            *p++ = hextable[*ptr >> 4];
575
            *p++ = hextable[*ptr++ & 0xF];
576
            *p++ = ' ';
577
        }
578
        p[-1] = 0;
579
        printk(KERN_INFO "%s: %4lX %s\n", strip_info->dev.name, offset, text);
580
    }
581
}
582
#endif
583
 
584
 
585
/************************************************************************/
586
/* Byte stuffing/unstuffing routines                                    */
587
 
588
/* Stuffing scheme:
589
 * 00    Unused (reserved character)
590
 * 01-3F Run of 2-64 different characters
591
 * 40-7F Run of 1-64 different characters plus a single zero at the end
592
 * 80-BF Run of 1-64 of the same character
593
 * C0-FF Run of 1-64 zeroes (ASCII 0)
594
 */
595
 
596
typedef enum
597
{
598
    Stuff_Diff      = 0x00,
599
    Stuff_DiffZero  = 0x40,
600
    Stuff_Same      = 0x80,
601
    Stuff_Zero      = 0xC0,
602
    Stuff_NoCode    = 0xFF,     /* Special code, meaning no code selected */
603
 
604
    Stuff_CodeMask  = 0xC0,
605
    Stuff_CountMask = 0x3F,
606
    Stuff_MaxCount  = 0x3F,
607
    Stuff_Magic     = 0x0D      /* The value we are eliminating */
608
} StuffingCode;
609
 
610
/* StuffData encodes the data starting at "src" for "length" bytes.
611
 * It writes it to the buffer pointed to by "dst" (which must be at least
612
 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
613
 * larger than the input for pathological input, but will usually be smaller.
614
 * StuffData returns the new value of the dst pointer as its result.
615
 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
616
 * between calls, allowing an encoded packet to be incrementally built up
617
 * from small parts. On the first call, the "__u8 *" pointed to should be
618
 * initialized to NULL; between subsequent calls the calling routine should
619
 * leave the value alone and simply pass it back unchanged so that the
620
 * encoder can recover its current state.
621
 */
622
 
623
#define StuffData_FinishBlock(X) \
624
(*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
625
 
626
static __u8 *StuffData(__u8 *src, __u32 length, __u8 *dst, __u8 **code_ptr_ptr)
627
{
628
    __u8 *end = src + length;
629
    __u8 *code_ptr = *code_ptr_ptr;
630
     __u8 code = Stuff_NoCode, count = 0;
631
 
632
    if (!length)
633
        return(dst);
634
 
635
    if (code_ptr)
636
    {
637
        /*
638
         * Recover state from last call, if applicable
639
         */
640
        code  = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
641
        count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
642
    }
643
 
644
    while (src < end)
645
    {
646
        switch (code)
647
        {
648
            /* Stuff_NoCode: If no current code, select one */
649
            case Stuff_NoCode:
650
                /* Record where we're going to put this code */
651
                code_ptr = dst++;
652
                count = 0;    /* Reset the count (zero means one instance) */
653
                /* Tentatively start a new block */
654
                if (*src == 0)
655
                {
656
                    code = Stuff_Zero;
657
                    src++;
658
                }
659
                else
660
                {
661
                    code = Stuff_Same;
662
                    *dst++ = *src++ ^ Stuff_Magic;
663
                }
664
                /* Note: We optimistically assume run of same -- */
665
                /* which will be fixed later in Stuff_Same */
666
                /* if it turns out not to be true. */
667
                break;
668
 
669
            /* Stuff_Zero: We already have at least one zero encoded */
670
            case Stuff_Zero:
671
                /* If another zero, count it, else finish this code block */
672
                if (*src == 0)
673
                {
674
                    count++;
675
                    src++;
676
                }
677
                else
678
                {
679
                    StuffData_FinishBlock(Stuff_Zero + count);
680
                }
681
                break;
682
 
683
            /* Stuff_Same: We already have at least one byte encoded */
684
            case Stuff_Same:
685
                /* If another one the same, count it */
686
                if ((*src ^ Stuff_Magic) == code_ptr[1])
687
                {
688
                    count++;
689
                    src++;
690
                    break;
691
                }
692
                /* else, this byte does not match this block. */
693
                /* If we already have two or more bytes encoded, finish this code block */
694
                if (count)
695
                {
696
                    StuffData_FinishBlock(Stuff_Same + count);
697
                    break;
698
                }
699
                /* else, we only have one so far, so switch to Stuff_Diff code */
700
                code = Stuff_Diff;
701
                /* and fall through to Stuff_Diff case below
702
                 * Note cunning cleverness here: case Stuff_Diff compares
703
                 * the current character with the previous two to see if it
704
                 * has a run of three the same. Won't this be an error if
705
                 * there aren't two previous characters stored to compare with?
706
                 * No. Because we know the current character is *not* the same
707
                 * as the previous one, the first test below will necessarily
708
                 * fail and the send half of the "if" won't be executed.
709
                 */
710
 
711
            /* Stuff_Diff: We have at least two *different* bytes encoded */
712
            case Stuff_Diff:
713
                /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
714
                if (*src == 0)
715
                {
716
                    StuffData_FinishBlock(Stuff_DiffZero + count);
717
                }
718
                /* else, if we have three in a row, it is worth starting a Stuff_Same block */
719
                else if ((*src ^ Stuff_Magic)==dst[-1] && dst[-1]==dst[-2])
720
                {
721
                    /* Back off the last two characters we encoded */
722
                    code += count-2;
723
                    /* Note: "Stuff_Diff + 0" is an illegal code */
724
                    if (code == Stuff_Diff + 0)
725
                    {
726
                        code = Stuff_Same + 0;
727
                    }
728
                    StuffData_FinishBlock(code);
729
                    code_ptr = dst-2;
730
                    /* dst[-1] already holds the correct value */
731
                    count = 2;        /* 2 means three bytes encoded */
732
                    code = Stuff_Same;
733
                }
734
                /* else, another different byte, so add it to the block */
735
                else
736
                {
737
                    *dst++ = *src ^ Stuff_Magic;
738
                    count++;
739
                }
740
                src++;    /* Consume the byte */
741
                break;
742
        }
743
        if (count == Stuff_MaxCount)
744
        {
745
            StuffData_FinishBlock(code + count);
746
        }
747
    }
748
    if (code == Stuff_NoCode)
749
    {
750
        *code_ptr_ptr = NULL;
751
    }
752
    else
753
    {
754
        *code_ptr_ptr = code_ptr;
755
        StuffData_FinishBlock(code + count);
756
    }
757
    return(dst);
758
}
759
 
760
/*
761
 * UnStuffData decodes the data at "src", up to (but not including) "end".
762
 * It writes the decoded data into the buffer pointed to by "dst", up to a
763
 * maximum of "dst_length", and returns the new value of "src" so that a
764
 * follow-on call can read more data, continuing from where the first left off.
765
 *
766
 * There are three types of results:
767
 * 1. The source data runs out before extracting "dst_length" bytes:
768
 *    UnStuffData returns NULL to indicate failure.
769
 * 2. The source data produces exactly "dst_length" bytes:
770
 *    UnStuffData returns new_src = end to indicate that all bytes were consumed.
771
 * 3. "dst_length" bytes are extracted, with more remaining.
772
 *    UnStuffData returns new_src < end to indicate that there are more bytes
773
 *    to be read.
774
 *
775
 * Note: The decoding may be destructive, in that it may alter the source
776
 * data in the process of decoding it (this is necessary to allow a follow-on
777
 * call to resume correctly).
778
 */
779
 
780
static __u8 *UnStuffData(__u8 *src, __u8 *end, __u8 *dst, __u32 dst_length)
781
{
782
    __u8 *dst_end = dst + dst_length;
783
    /* Sanity check */
784
    if (!src || !end || !dst || !dst_length)
785
        return(NULL);
786
    while (src < end && dst < dst_end)
787
    {
788
        int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
789
        switch ((*src ^ Stuff_Magic) & Stuff_CodeMask)
790
        {
791
            case Stuff_Diff:
792
                if (src+1+count >= end)
793
                    return(NULL);
794
                do
795
                {
796
                    *dst++ = *++src ^ Stuff_Magic;
797
                }
798
                while(--count >= 0 && dst < dst_end);
799
                if (count < 0)
800
                    src += 1;
801
                else
802
                {
803
                    if (count == 0)
804
                        *src = Stuff_Same ^ Stuff_Magic;
805
                    else
806
                        *src = (Stuff_Diff + count) ^ Stuff_Magic;
807
                }
808
                break;
809
            case Stuff_DiffZero:
810
                if (src+1+count >= end)
811
                    return(NULL);
812
                do
813
                {
814
                    *dst++ = *++src ^ Stuff_Magic;
815
                }
816
                while(--count >= 0 && dst < dst_end);
817
                if (count < 0)
818
                    *src = Stuff_Zero ^ Stuff_Magic;
819
                else
820
                    *src = (Stuff_DiffZero + count) ^ Stuff_Magic;
821
                break;
822
            case Stuff_Same:
823
                if (src+1 >= end)
824
                    return(NULL);
825
                do
826
                {
827
                    *dst++ = src[1] ^ Stuff_Magic;
828
                }
829
                while(--count >= 0 && dst < dst_end);
830
                if (count < 0)
831
                    src += 2;
832
                else
833
                    *src = (Stuff_Same + count) ^ Stuff_Magic;
834
                break;
835
            case Stuff_Zero:
836
                do
837
                {
838
                    *dst++ = 0;
839
                }
840
                while(--count >= 0 && dst < dst_end);
841
                if (count < 0)
842
                    src += 1;
843
                else
844
                    *src = (Stuff_Zero + count) ^ Stuff_Magic;
845
                break;
846
        }
847
    }
848
    if (dst < dst_end)
849
        return(NULL);
850
    else
851
        return(src);
852
}
853
 
854
 
855
/************************************************************************/
856
/* General routines for STRIP                                           */
857
 
858
/*
859
 * get_baud returns the current baud rate, as one of the constants defined in
860
 * termbits.h
861
 * If the user has issued a baud rate override using the 'setserial' command
862
 * and the logical current rate is set to 38.4, then the true baud rate
863
 * currently in effect (57.6 or 115.2) is returned.
864
 */
865
static unsigned int get_baud(struct tty_struct *tty)
866
    {
867
    if (!tty || !tty->termios) return(0);
868
    if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data)
869
        {
870
        struct async_struct *info = (struct async_struct *)tty->driver_data;
871
        if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI ) return(B57600);
872
        if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) return(B115200);
873
        }
874
    return(tty->termios->c_cflag & CBAUD);
875
    }
876
 
877
/*
878
 * set_baud sets the baud rate to the rate defined by baudcode
879
 * Note: The rate B38400 should be avoided, because the user may have
880
 * issued a 'setserial' speed override to map that to a different speed.
881
 * We could achieve a true rate of 38400 if we needed to by cancelling
882
 * any user speed override that is in place, but that might annoy the
883
 * user, so it is simplest to just avoid using 38400.
884
 */
885
static void set_baud(struct tty_struct *tty, unsigned int baudcode)
886
    {
887
    struct termios old_termios = *(tty->termios);
888
    tty->termios->c_cflag &= ~CBAUD; /* Clear the old baud setting */
889
    tty->termios->c_cflag |= baudcode; /* Set the new baud setting */
890
    tty->driver.set_termios(tty, &old_termios);
891
    }
892
 
893
/*
894
 * Convert a string to a Metricom Address.
895
 */
896
 
897
#define IS_RADIO_ADDRESS(p) (                                                 \
898
  isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
899
  (p)[4] == '-' &&                                                            \
900
  isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8])    )
901
 
902
static int string_to_radio_address(MetricomAddress *addr, __u8 *p)
903
{
904
    if (!IS_RADIO_ADDRESS(p)) return(1);
905
    addr->c[0] = 0;
906
    addr->c[1] = 0;
907
    addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
908
    addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
909
    addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
910
    addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
911
    return(0);
912
}
913
 
914
/*
915
 * Convert a Metricom Address to a string.
916
 */
917
 
918
static __u8 *radio_address_to_string(const MetricomAddress *addr, MetricomAddressString *p)
919
{
920
    sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], addr->c[4], addr->c[5]);
921
    return(p->c);
922
}
923
 
924
/*
925
 * Note: Must make sure sx_size is big enough to receive a stuffed
926
 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
927
 * big enough to receive a large radio neighbour list (currently 4K).
928
 */
929
 
930
static int allocate_buffers(struct strip *strip_info)
931
{
932
    struct net_device *dev = &strip_info->dev;
933
    int sx_size    = MAX(STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
934
    int tx_size    = STRIP_ENCAP_SIZE(dev->mtu) + MaxCommandStringLength;
935
    __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
936
    __u8 *s = kmalloc(sx_size,      GFP_ATOMIC);
937
    __u8 *t = kmalloc(tx_size,      GFP_ATOMIC);
938
    if (r && s && t)
939
    {
940
        strip_info->rx_buff = r;
941
        strip_info->sx_buff = s;
942
        strip_info->tx_buff = t;
943
        strip_info->sx_size = sx_size;
944
        strip_info->tx_size = tx_size;
945
        strip_info->mtu     = dev->mtu;
946
        return(1);
947
    }
948
    if (r) kfree(r);
949
    if (s) kfree(s);
950
    if (t) kfree(t);
951
    return(0);
952
}
953
 
954
/*
955
 * MTU has been changed by the IP layer. Unfortunately we are not told
956
 * about this, but we spot it ourselves and fix things up. We could be in
957
 * an upcall from the tty driver, or in an ip packet queue.
958
 */
959
 
960
static void strip_changedmtu(struct strip *strip_info)
961
{
962
    int old_mtu           = strip_info->mtu;
963
    struct net_device *dev    = &strip_info->dev;
964
    unsigned char *orbuff = strip_info->rx_buff;
965
    unsigned char *osbuff = strip_info->sx_buff;
966
    unsigned char *otbuff = strip_info->tx_buff;
967
    InterruptStatus intstat;
968
 
969
    if (dev->mtu > MAX_SEND_MTU)
970
    {
971
        printk(KERN_ERR "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
972
            strip_info->dev.name, MAX_SEND_MTU);
973
        dev->mtu = old_mtu;
974
        return;
975
    }
976
 
977
    /*
978
     * Have to disable interrupts here because we're reallocating and resizing
979
     * the serial buffers, and we can't have data arriving in them while we're
980
     * moving them around in memory. This may cause data to be lost on the serial
981
     * port, but hopefully people won't change MTU that often.
982
     * Also note, this may not work on a symmetric multi-processor system.
983
     */
984
    intstat = DisableInterrupts();
985
 
986
    if (!allocate_buffers(strip_info))
987
    {
988
        RestoreInterrupts(intstat);
989
        printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
990
            strip_info->dev.name);
991
        dev->mtu = old_mtu;
992
        return;
993
    }
994
 
995
    if (strip_info->sx_count)
996
    {
997
        if (strip_info->sx_count <= strip_info->sx_size)
998
            memcpy(strip_info->sx_buff, osbuff, strip_info->sx_count);
999
        else
1000
        {
1001
            strip_info->discard = strip_info->sx_count;
1002
            strip_info->rx_over_errors++;
1003
        }
1004
    }
1005
 
1006
    if (strip_info->tx_left)
1007
    {
1008
        if (strip_info->tx_left <= strip_info->tx_size)
1009
            memcpy(strip_info->tx_buff, strip_info->tx_head, strip_info->tx_left);
1010
        else
1011
        {
1012
            strip_info->tx_left = 0;
1013
            strip_info->tx_dropped++;
1014
        }
1015
    }
1016
    strip_info->tx_head = strip_info->tx_buff;
1017
 
1018
    RestoreInterrupts(intstat);
1019
 
1020
    printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
1021
        strip_info->dev.name, old_mtu, strip_info->mtu);
1022
 
1023
    if (orbuff) kfree(orbuff);
1024
    if (osbuff) kfree(osbuff);
1025
    if (otbuff) kfree(otbuff);
1026
}
1027
 
1028
static void strip_unlock(struct strip *strip_info)
1029
{
1030
    /*
1031
     * Set the timer to go off in one second.
1032
     */
1033
    strip_info->idle_timer.expires = jiffies + 1*HZ;
1034
    add_timer(&strip_info->idle_timer);
1035
    netif_wake_queue(&strip_info->dev);
1036
}
1037
 
1038
 
1039
/************************************************************************/
1040
/* Callback routines for exporting information through /proc            */
1041
 
1042
/*
1043
 * This function updates the total amount of data printed so far. It then
1044
 * determines if the amount of data printed into a buffer  has reached the
1045
 * offset requested. If it hasn't, then the buffer is shifted over so that
1046
 * the next bit of data can be printed over the old bit. If the total
1047
 * amount printed so far exceeds the total amount requested, then this
1048
 * function returns 1, otherwise 0.
1049
 */
1050
static int
1051
shift_buffer(char *buffer, int requested_offset, int requested_len,
1052
             int *total, int *slop, char **buf)
1053
{
1054
    int printed;
1055
 
1056
    /* printk(KERN_DEBUG "shift: buffer: %d o: %d l: %d t: %d buf: %d\n",
1057
           (int) buffer, requested_offset, requested_len, *total,
1058
           (int) *buf); */
1059
    printed = *buf - buffer;
1060
    if (*total + printed <= requested_offset) {
1061
        *total += printed;
1062
        *buf = buffer;
1063
    }
1064
    else {
1065
        if (*total < requested_offset) {
1066
            *slop = requested_offset - *total;
1067
        }
1068
        *total = requested_offset + printed - *slop;
1069
    }
1070
    if (*total > requested_offset + requested_len) {
1071
        return 1;
1072
    }
1073
    else {
1074
        return 0;
1075
    }
1076
}
1077
 
1078
/*
1079
 * This function calculates the actual start of the requested data
1080
 * in the buffer. It also calculates actual length of data returned,
1081
 * which could be less that the amount of data requested.
1082
 */
1083
static int
1084
calc_start_len(char *buffer, char **start, int requested_offset,
1085
               int requested_len, int total, char *buf)
1086
{
1087
    int return_len, buffer_len;
1088
 
1089
    buffer_len = buf - buffer;
1090
    if (buffer_len >= 4095) {
1091
        printk(KERN_ERR "STRIP: exceeded /proc buffer size\n");
1092
    }
1093
 
1094
    /*
1095
     * There may be bytes before and after the
1096
     * chunk that was actually requested.
1097
     */
1098
    return_len = total - requested_offset;
1099
    if (return_len < 0) {
1100
        return_len = 0;
1101
    }
1102
    *start = buf - return_len;
1103
    if (return_len > requested_len) {
1104
        return_len = requested_len;
1105
    }
1106
    /* printk(KERN_DEBUG "return_len: %d\n", return_len); */
1107
    return return_len;
1108
}
1109
 
1110
/*
1111
 * If the time is in the near future, time_delta prints the number of
1112
 * seconds to go into the buffer and returns the address of the buffer.
1113
 * If the time is not in the near future, it returns the address of the
1114
 * string "Not scheduled" The buffer must be long enough to contain the
1115
 * ascii representation of the number plus 9 charactes for the " seconds"
1116
 * and the null character.
1117
 */
1118
static char *time_delta(char buffer[], long time)
1119
{
1120
    time -= jiffies;
1121
    if (time > LongTime / 2) return("Not scheduled");
1122
    if(time < 0) time = 0;  /* Don't print negative times */
1123
    sprintf(buffer, "%ld seconds", time / HZ);
1124
    return(buffer);
1125
}
1126
 
1127
static int sprintf_neighbours(char *buffer, MetricomNodeTable *table, char *title)
1128
{
1129
    /* We wrap this in a do/while loop, so if the table changes */
1130
    /* while we're reading it, we just go around and try again. */
1131
    struct timeval t;
1132
    char *ptr;
1133
    do
1134
        {
1135
        int i;
1136
        t = table->timestamp;
1137
        ptr = buffer;
1138
        if (table->num_nodes) ptr += sprintf(ptr, "\n %s\n", title);
1139
        for (i=0; i<table->num_nodes; i++)
1140
            {
1141
            InterruptStatus intstat = DisableInterrupts();
1142
            MetricomNode node = table->node[i];
1143
            RestoreInterrupts(intstat);
1144
            ptr += sprintf(ptr, "  %s\n", node.c);
1145
            }
1146
        } while (table->timestamp.tv_sec != t.tv_sec || table->timestamp.tv_usec != t.tv_usec);
1147
    return ptr - buffer;
1148
}
1149
 
1150
/*
1151
 * This function prints radio status information into the specified buffer.
1152
 * I think the buffer size is 4K, so this routine should never print more
1153
 * than 4K of data into it. With the maximum of 32 portables and 32 poletops
1154
 * reported, the routine outputs 3107 bytes into the buffer.
1155
 */
1156
static int
1157
sprintf_status_info(char *buffer, struct strip *strip_info)
1158
{
1159
    char temp[32];
1160
    char *p = buffer;
1161
    MetricomAddressString addr_string;
1162
 
1163
    /* First, we must copy all of our data to a safe place, */
1164
    /* in case a serial interrupt comes in and changes it.  */
1165
    InterruptStatus intstat = DisableInterrupts();
1166
    int                tx_left             = strip_info->tx_left;
1167
    unsigned long      rx_average_pps      = strip_info->rx_average_pps;
1168
    unsigned long      tx_average_pps      = strip_info->tx_average_pps;
1169
    unsigned long      sx_average_pps      = strip_info->sx_average_pps;
1170
    int                working             = strip_info->working;
1171
    int                firmware_level      = strip_info->firmware_level;
1172
    long               watchdog_doprobe    = strip_info->watchdog_doprobe;
1173
    long               watchdog_doreset    = strip_info->watchdog_doreset;
1174
    long               gratuitous_arp      = strip_info->gratuitous_arp;
1175
    long               arp_interval        = strip_info->arp_interval;
1176
    FirmwareVersion    firmware_version    = strip_info->firmware_version;
1177
    SerialNumber       serial_number       = strip_info->serial_number;
1178
    BatteryVoltage     battery_voltage     = strip_info->battery_voltage;
1179
    char*              if_name             = strip_info->dev.name;
1180
    MetricomAddress    true_dev_addr       = strip_info->true_dev_addr;
1181
    MetricomAddress    dev_dev_addr        = *(MetricomAddress*)strip_info->dev.dev_addr;
1182
    int                manual_dev_addr     = strip_info->manual_dev_addr;
1183
#ifdef EXT_COUNTERS
1184
    unsigned long      rx_bytes            = strip_info->rx_bytes;
1185
    unsigned long      tx_bytes            = strip_info->tx_bytes;
1186
    unsigned long      rx_rbytes           = strip_info->rx_rbytes;
1187
    unsigned long      tx_rbytes           = strip_info->tx_rbytes;
1188
    unsigned long      rx_sbytes           = strip_info->rx_sbytes;
1189
    unsigned long      tx_sbytes           = strip_info->tx_sbytes;
1190
    unsigned long      rx_ebytes           = strip_info->rx_ebytes;
1191
    unsigned long      tx_ebytes           = strip_info->tx_ebytes;
1192
#endif
1193
    RestoreInterrupts(intstat);
1194
 
1195
    p += sprintf(p, "\nInterface name\t\t%s\n", if_name);
1196
    p += sprintf(p, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1197
    radio_address_to_string(&true_dev_addr, &addr_string);
1198
    p += sprintf(p, " Radio address:\t\t%s\n", addr_string.c);
1199
    if (manual_dev_addr)
1200
    {
1201
        radio_address_to_string(&dev_dev_addr, &addr_string);
1202
        p += sprintf(p, " Device address:\t%s\n", addr_string.c);
1203
    }
1204
    p += sprintf(p, " Firmware version:\t%s", !working        ? "Unknown" :
1205
                                              !firmware_level ? "Should be upgraded" :
1206
                                              firmware_version.c);
1207
    if (firmware_level >= ChecksummedMessages) p += sprintf(p, " (Checksums Enabled)");
1208
    p += sprintf(p, "\n");
1209
    p += sprintf(p, " Serial number:\t\t%s\n", serial_number.c);
1210
    p += sprintf(p, " Battery voltage:\t%s\n", battery_voltage.c);
1211
    p += sprintf(p, " Transmit queue (bytes):%d\n", tx_left);
1212
    p += sprintf(p, " Receive packet rate:   %ld packets per second\n", rx_average_pps / 8);
1213
    p += sprintf(p, " Transmit packet rate:  %ld packets per second\n", tx_average_pps / 8);
1214
    p += sprintf(p, " Sent packet rate:      %ld packets per second\n", sx_average_pps / 8);
1215
    p += sprintf(p, " Next watchdog probe:\t%s\n", time_delta(temp, watchdog_doprobe));
1216
    p += sprintf(p, " Next watchdog reset:\t%s\n", time_delta(temp, watchdog_doreset));
1217
    p += sprintf(p, " Next gratuitous ARP:\t");
1218
 
1219
    if (!memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)))
1220
        p += sprintf(p, "Disabled\n");
1221
    else
1222
    {
1223
        p += sprintf(p, "%s\n", time_delta(temp, gratuitous_arp));
1224
        p += sprintf(p, " Next ARP interval:\t%ld seconds\n", JIFFIE_TO_SEC(arp_interval));
1225
    }
1226
 
1227
    if (working)
1228
        {
1229
#ifdef EXT_COUNTERS
1230
          p += sprintf(p, "\n");
1231
          p += sprintf(p, " Total bytes:         \trx:\t%lu\ttx:\t%lu\n", rx_bytes, tx_bytes);
1232
          p += sprintf(p, "  thru radio:         \trx:\t%lu\ttx:\t%lu\n", rx_rbytes, tx_rbytes);
1233
          p += sprintf(p, "  thru serial port:   \trx:\t%lu\ttx:\t%lu\n", rx_sbytes, tx_sbytes);
1234
          p += sprintf(p, " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", rx_ebytes, tx_ebytes);
1235
#endif
1236
        p += sprintf_neighbours(p, &strip_info->poletops, "Poletops:");
1237
        p += sprintf_neighbours(p, &strip_info->portables, "Portables:");
1238
        }
1239
 
1240
    return p - buffer;
1241
}
1242
 
1243
/*
1244
 * This function is exports status information from the STRIP driver through
1245
 * the /proc file system.
1246
 */
1247
 
1248
static int get_status_info(char *buffer, char **start, off_t req_offset, int req_len)
1249
{
1250
    int           total = 0, slop = 0;
1251
    struct strip *strip_info = struct_strip_list;
1252
    char         *buf = buffer;
1253
 
1254
    buf += sprintf(buf, "strip_version: %s\n", StripVersion);
1255
    if (shift_buffer(buffer, req_offset, req_len, &total, &slop, &buf)) goto exit;
1256
 
1257
    while (strip_info != NULL)
1258
        {
1259
        buf += sprintf_status_info(buf, strip_info);
1260
        if (shift_buffer(buffer, req_offset, req_len, &total, &slop, &buf)) break;
1261
        strip_info = strip_info->next;
1262
        }
1263
    exit:
1264
    return(calc_start_len(buffer, start, req_offset, req_len, total, buf));
1265
}
1266
 
1267
/************************************************************************/
1268
/* Sending routines                                                     */
1269
 
1270
static void ResetRadio(struct strip *strip_info)
1271
{
1272
    struct tty_struct *tty = strip_info->tty;
1273
    static const char init[] = "ate0q1dt**starmode\r**";
1274
    StringDescriptor s = { init, sizeof(init)-1 };
1275
 
1276
    /*
1277
     * If the radio isn't working anymore,
1278
     * we should clear the old status information.
1279
     */
1280
    if (strip_info->working)
1281
    {
1282
        printk(KERN_INFO "%s: No response: Resetting radio.\n", strip_info->dev.name);
1283
        strip_info->firmware_version.c[0] = '\0';
1284
        strip_info->serial_number.c[0] = '\0';
1285
        strip_info->battery_voltage.c[0] = '\0';
1286
        strip_info->portables.num_nodes = 0;
1287
        do_gettimeofday(&strip_info->portables.timestamp);
1288
        strip_info->poletops.num_nodes = 0;
1289
        do_gettimeofday(&strip_info->poletops.timestamp);
1290
    }
1291
 
1292
    strip_info->pps_timer      = jiffies;
1293
    strip_info->rx_pps_count   = 0;
1294
    strip_info->tx_pps_count   = 0;
1295
    strip_info->sx_pps_count   = 0;
1296
    strip_info->rx_average_pps = 0;
1297
    strip_info->tx_average_pps = 0;
1298
    strip_info->sx_average_pps = 0;
1299
 
1300
    /* Mark radio address as unknown */
1301
    *(MetricomAddress*)&strip_info->true_dev_addr = zero_address;
1302
    if (!strip_info->manual_dev_addr)
1303
        *(MetricomAddress*)strip_info->dev.dev_addr = zero_address;
1304
    strip_info->working = FALSE;
1305
    strip_info->firmware_level = NoStructure;
1306
    strip_info->next_command   = CompatibilityCommand;
1307
    strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1308
    strip_info->watchdog_doreset = jiffies + 1 * HZ;
1309
 
1310
    /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1311
    if (strip_info->user_baud > B38400)
1312
        {
1313
        /*
1314
         * Subtle stuff: Pay attention :-)
1315
         * If the serial port is currently at the user's selected (>38.4) rate,
1316
         * then we temporarily switch to 19.2 and issue the ATS304 command
1317
         * to tell the radio to switch to the user's selected rate.
1318
         * If the serial port is not currently at that rate, that means we just
1319
         * issued the ATS304 command last time through, so this time we restore
1320
         * the user's selected rate and issue the normal starmode reset string.
1321
         */
1322
        if (strip_info->user_baud == get_baud(tty))
1323
            {
1324
            static const char b0[] = "ate0q1s304=57600\r";
1325
            static const char b1[] = "ate0q1s304=115200\r";
1326
            static const StringDescriptor baudstring[2] =
1327
                { { b0, sizeof(b0)-1 }, { b1, sizeof(b1)-1 } };
1328
            set_baud(tty, B19200);
1329
            if      (strip_info->user_baud == B57600 ) s = baudstring[0];
1330
            else if (strip_info->user_baud == B115200) s = baudstring[1];
1331
            else s = baudstring[1]; /* For now */
1332
            }
1333
        else set_baud(tty, strip_info->user_baud);
1334
        }
1335
 
1336
    tty->driver.write(tty, 0, s.string, s.length);
1337
#ifdef EXT_COUNTERS
1338
    strip_info->tx_ebytes += s.length;
1339
#endif
1340
}
1341
 
1342
/*
1343
 * Called by the driver when there's room for more data.  If we have
1344
 * more packets to send, we send them here.
1345
 */
1346
 
1347
static void strip_write_some_more(struct tty_struct *tty)
1348
{
1349
    struct strip *strip_info = (struct strip *) tty->disc_data;
1350
 
1351
    /* First make sure we're connected. */
1352
    if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1353
        !netif_running(&strip_info->dev))
1354
        return;
1355
 
1356
    if (strip_info->tx_left > 0)
1357
    {
1358
        /*
1359
         * If some data left, send it
1360
         * Note: There's a kernel design bug here. The write_wakeup routine has to
1361
         * know how many bytes were written in the previous call, but the number of
1362
         * bytes written is returned as the result of the tty->driver.write call,
1363
         * and there's no guarantee that the tty->driver.write routine will have
1364
         * returned before the write_wakeup routine is invoked. If the PC has fast
1365
         * Serial DMA hardware, then it's quite possible that the write could complete
1366
         * almost instantaneously, meaning that my write_wakeup routine could be
1367
         * called immediately, before tty->driver.write has had a chance to return
1368
         * the number of bytes that it wrote. In an attempt to guard against this,
1369
         * I disable interrupts around the call to tty->driver.write, although even
1370
         * this might not work on a symmetric multi-processor system.
1371
         */
1372
        InterruptStatus intstat = DisableInterrupts();
1373
        int num_written = tty->driver.write(tty, 0, strip_info->tx_head, strip_info->tx_left);
1374
        strip_info->tx_left -= num_written;
1375
        strip_info->tx_head += num_written;
1376
#ifdef EXT_COUNTERS
1377
        strip_info->tx_sbytes += num_written;
1378
#endif
1379
        RestoreInterrupts(intstat);
1380
    }
1381
    else            /* Else start transmission of another packet */
1382
    {
1383
        tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
1384
        strip_unlock(strip_info);
1385
    }
1386
}
1387
 
1388
static __u8 *add_checksum(__u8 *buffer, __u8 *end)
1389
{
1390
    __u16 sum = 0;
1391
    __u8 *p = buffer;
1392
    while (p < end) sum += *p++;
1393
    end[3] = hextable[sum & 0xF]; sum >>= 4;
1394
    end[2] = hextable[sum & 0xF]; sum >>= 4;
1395
    end[1] = hextable[sum & 0xF]; sum >>= 4;
1396
    end[0] = hextable[sum & 0xF];
1397
    return(end+4);
1398
}
1399
 
1400
static unsigned char *strip_make_packet(unsigned char *buffer, struct strip *strip_info, struct sk_buff *skb)
1401
{
1402
    __u8           *ptr = buffer;
1403
    __u8           *stuffstate = NULL;
1404
    STRIP_Header   *header     = (STRIP_Header *)skb->data;
1405
    MetricomAddress haddr      = header->dst_addr;
1406
    int             len        = skb->len - sizeof(STRIP_Header);
1407
    MetricomKey     key;
1408
 
1409
    /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len);*/
1410
 
1411
    if      (header->protocol == htons(ETH_P_IP))  key = SIP0Key;
1412
    else if (header->protocol == htons(ETH_P_ARP)) key = ARP0Key;
1413
    else
1414
    {
1415
        printk(KERN_ERR "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1416
            strip_info->dev.name, ntohs(header->protocol));
1417
        return(NULL);
1418
    }
1419
 
1420
    if (len > strip_info->mtu)
1421
    {
1422
        printk(KERN_ERR "%s: Dropping oversized transmit packet: %d bytes\n",
1423
            strip_info->dev.name, len);
1424
        return(NULL);
1425
    }
1426
 
1427
    /*
1428
     * If we're sending to ourselves, discard the packet.
1429
     * (Metricom radios choke if they try to send a packet to their own address.)
1430
     */
1431
    if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1432
    {
1433
        printk(KERN_ERR "%s: Dropping packet addressed to self\n", strip_info->dev.name);
1434
        return(NULL);
1435
    }
1436
 
1437
    /*
1438
     * If this is a broadcast packet, send it to our designated Metricom
1439
     * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1440
     */
1441
    if (haddr.c[0] == 0xFF)
1442
    {
1443
        u32 brd = 0;
1444
        struct in_device *in_dev = in_dev_get(&strip_info->dev);
1445
        if (in_dev == NULL)
1446
                return NULL;
1447
        read_lock(&in_dev->lock);
1448
        if (in_dev->ifa_list)
1449
                brd = in_dev->ifa_list->ifa_broadcast;
1450
        read_unlock(&in_dev->lock);
1451
        in_dev_put(in_dev);
1452
 
1453
        /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1454
        if (!arp_query(haddr.c, brd, &strip_info->dev))
1455
        {
1456
            printk(KERN_ERR "%s: Unable to send packet (no broadcast hub configured)\n",
1457
                strip_info->dev.name);
1458
            return(NULL);
1459
        }
1460
        /*
1461
         * If we are the broadcast hub, don't bother sending to ourselves.
1462
         * (Metricom radios choke if they try to send a packet to their own address.)
1463
         */
1464
        if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) return(NULL);
1465
    }
1466
 
1467
    *ptr++ = 0x0D;
1468
    *ptr++ = '*';
1469
    *ptr++ = hextable[haddr.c[2] >> 4];
1470
    *ptr++ = hextable[haddr.c[2] & 0xF];
1471
    *ptr++ = hextable[haddr.c[3] >> 4];
1472
    *ptr++ = hextable[haddr.c[3] & 0xF];
1473
    *ptr++ = '-';
1474
    *ptr++ = hextable[haddr.c[4] >> 4];
1475
    *ptr++ = hextable[haddr.c[4] & 0xF];
1476
    *ptr++ = hextable[haddr.c[5] >> 4];
1477
    *ptr++ = hextable[haddr.c[5] & 0xF];
1478
    *ptr++ = '*';
1479
    *ptr++ = key.c[0];
1480
    *ptr++ = key.c[1];
1481
    *ptr++ = key.c[2];
1482
    *ptr++ = key.c[3];
1483
 
1484
    ptr = StuffData(skb->data + sizeof(STRIP_Header), len, ptr, &stuffstate);
1485
 
1486
    if (strip_info->firmware_level >= ChecksummedMessages) ptr = add_checksum(buffer+1, ptr);
1487
 
1488
    *ptr++ = 0x0D;
1489
    return(ptr);
1490
}
1491
 
1492
static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1493
{
1494
    MetricomAddress haddr;
1495
    unsigned char *ptr = strip_info->tx_buff;
1496
    int doreset = (long)jiffies - strip_info->watchdog_doreset >= 0;
1497
    int doprobe = (long)jiffies - strip_info->watchdog_doprobe >= 0 && !doreset;
1498
    u32 addr, brd;
1499
 
1500
    /*
1501
     * 1. If we have a packet, encapsulate it and put it in the buffer
1502
     */
1503
    if (skb)
1504
    {
1505
        char *newptr = strip_make_packet(ptr, strip_info, skb);
1506
        strip_info->tx_pps_count++;
1507
        if (!newptr) strip_info->tx_dropped++;
1508
        else
1509
        {
1510
            ptr = newptr;
1511
            strip_info->sx_pps_count++;
1512
            strip_info->tx_packets++;        /* Count another successful packet */
1513
#ifdef EXT_COUNTERS
1514
            strip_info->tx_bytes += skb->len;
1515
            strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1516
#endif
1517
            /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr);*/
1518
            /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr);*/
1519
        }
1520
    }
1521
 
1522
    /*
1523
     * 2. If it is time for another tickle, tack it on, after the packet
1524
     */
1525
    if (doprobe)
1526
    {
1527
        StringDescriptor ts = CommandString[strip_info->next_command];
1528
#if TICKLE_TIMERS
1529
        {
1530
        struct timeval tv;
1531
        do_gettimeofday(&tv);
1532
        printk(KERN_INFO "**** Sending tickle string %d      at %02d.%06d\n",
1533
            strip_info->next_command, tv.tv_sec % 100, tv.tv_usec);
1534
        }
1535
#endif
1536
        if (ptr == strip_info->tx_buff) *ptr++ = 0x0D;
1537
 
1538
        *ptr++ = '*'; /* First send "**" to provoke an error message */
1539
        *ptr++ = '*';
1540
 
1541
        /* Then add the command */
1542
        memcpy(ptr, ts.string, ts.length);
1543
 
1544
        /* Add a checksum ? */
1545
        if (strip_info->firmware_level < ChecksummedMessages) ptr += ts.length;
1546
        else ptr = add_checksum(ptr, ptr + ts.length);
1547
 
1548
        *ptr++ = 0x0D; /* Terminate the command with a <CR> */
1549
 
1550
        /* Cycle to next periodic command? */
1551
        if (strip_info->firmware_level >= StructuredMessages)
1552
                if (++strip_info->next_command >= ELEMENTS_OF(CommandString))
1553
                        strip_info->next_command = 0;
1554
#ifdef EXT_COUNTERS
1555
        strip_info->tx_ebytes += ts.length;
1556
#endif
1557
        strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1558
        strip_info->watchdog_doreset = jiffies + 1 * HZ;
1559
        /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev.name);*/
1560
    }
1561
 
1562
    /*
1563
     * 3. Set up the strip_info ready to send the data (if any).
1564
     */
1565
    strip_info->tx_head = strip_info->tx_buff;
1566
    strip_info->tx_left = ptr - strip_info->tx_buff;
1567
    strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
1568
 
1569
    /*
1570
     * 4. Debugging check to make sure we're not overflowing the buffer.
1571
     */
1572
    if (strip_info->tx_size - strip_info->tx_left < 20)
1573
        printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", strip_info->dev.name,
1574
            strip_info->tx_left, strip_info->tx_size - strip_info->tx_left);
1575
 
1576
    /*
1577
     * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1578
     * the buffer, strip_write_some_more will send it after the reset has finished
1579
     */
1580
    if (doreset) { ResetRadio(strip_info); return; }
1581
 
1582
    if (1) {
1583
            struct in_device *in_dev = in_dev_get(&strip_info->dev);
1584
            brd = addr = 0;
1585
            if (in_dev) {
1586
                    read_lock(&in_dev->lock);
1587
                    if (in_dev->ifa_list) {
1588
                            brd = in_dev->ifa_list->ifa_broadcast;
1589
                            addr = in_dev->ifa_list->ifa_local;
1590
                    }
1591
                    read_unlock(&in_dev->lock);
1592
                    in_dev_put(in_dev);
1593
            }
1594
    }
1595
 
1596
 
1597
    /*
1598
     * 6. If it is time for a periodic ARP, queue one up to be sent.
1599
     * We only do this if:
1600
     *  1. The radio is working
1601
     *  2. It's time to send another periodic ARP
1602
     *  3. We really know what our address is (and it is not manually set to zero)
1603
     *  4. We have a designated broadcast address configured
1604
     * If we queue up an ARP packet when we don't have a designated broadcast
1605
     * address configured, then the packet will just have to be discarded in
1606
     * strip_make_packet. This is not fatal, but it causes misleading information
1607
     * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1608
     * being sent, when in fact they are not, because they are all being dropped
1609
     * in the strip_make_packet routine.
1610
     */
1611
    if (strip_info->working && (long)jiffies - strip_info->gratuitous_arp >= 0 &&
1612
        memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)) &&
1613
        arp_query(haddr.c, brd, &strip_info->dev))
1614
    {
1615
        /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1616
            strip_info->dev.name, strip_info->arp_interval / HZ);*/
1617
        strip_info->gratuitous_arp = jiffies + strip_info->arp_interval;
1618
        strip_info->arp_interval *= 2;
1619
        if (strip_info->arp_interval > MaxARPInterval)
1620
            strip_info->arp_interval = MaxARPInterval;
1621
        if (addr)
1622
            arp_send(
1623
                ARPOP_REPLY, ETH_P_ARP,
1624
                addr, /* Target address of ARP packet is our address */
1625
                &strip_info->dev,              /* Device to send packet on */
1626
                addr, /* Source IP address this ARP packet comes from */
1627
                NULL,                          /* Destination HW address is NULL (broadcast it) */
1628
                strip_info->dev.dev_addr,      /* Source HW address is our HW address */
1629
                strip_info->dev.dev_addr);     /* Target HW address is our HW address (redundant) */
1630
    }
1631
 
1632
    /*
1633
     * 7. All ready. Start the transmission
1634
     */
1635
    strip_write_some_more(strip_info->tty);
1636
}
1637
 
1638
/* Encapsulate a datagram and kick it into a TTY queue. */
1639
static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
1640
{
1641
    struct strip *strip_info = (struct strip *)(dev->priv);
1642
 
1643
    if (!netif_running(dev))
1644
    {
1645
        printk(KERN_ERR "%s: xmit call when iface is down\n", dev->name);
1646
        return(1);
1647
    }
1648
 
1649
    netif_stop_queue(dev);
1650
 
1651
    del_timer(&strip_info->idle_timer);
1652
 
1653
    /* See if someone has been ifconfigging */
1654
    if (strip_info->mtu != strip_info->dev.mtu)
1655
        strip_changedmtu(strip_info);
1656
 
1657
    if (jiffies - strip_info->pps_timer > HZ)
1658
    {
1659
        unsigned long t = jiffies - strip_info->pps_timer;
1660
        unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t/2) / t;
1661
        unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t/2) / t;
1662
        unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t/2) / t;
1663
 
1664
        strip_info->pps_timer = jiffies;
1665
        strip_info->rx_pps_count = 0;
1666
        strip_info->tx_pps_count = 0;
1667
        strip_info->sx_pps_count = 0;
1668
 
1669
        strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1670
        strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1671
        strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1672
 
1673
        if (rx_pps_count / 8 >= 10)
1674
            printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1675
                strip_info->dev.name, rx_pps_count / 8);
1676
        if (tx_pps_count / 8 >= 10)
1677
            printk(KERN_INFO "%s: WARNING: Tx        %ld packets per second.\n",
1678
                strip_info->dev.name, tx_pps_count / 8);
1679
        if (sx_pps_count / 8 >= 10)
1680
            printk(KERN_INFO "%s: WARNING: Sending   %ld packets per second.\n",
1681
                strip_info->dev.name, sx_pps_count / 8);
1682
    }
1683
 
1684
    strip_send(strip_info, skb);
1685
 
1686
    if (skb)
1687
        dev_kfree_skb(skb);
1688
    return(0);
1689
}
1690
 
1691
/*
1692
 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1693
 * to send for an extended period of time, the watchdog processing still gets
1694
 * done to ensure that the radio stays in Starmode
1695
 */
1696
 
1697
static void strip_IdleTask(unsigned long parameter)
1698
{
1699
    strip_xmit(NULL, (struct net_device *)parameter);
1700
}
1701
 
1702
/*
1703
 * Create the MAC header for an arbitrary protocol layer
1704
 *
1705
 * saddr!=NULL        means use this specific address (n/a for Metricom)
1706
 * saddr==NULL        means use default device source address
1707
 * daddr!=NULL        means use this destination address
1708
 * daddr==NULL        means leave destination address alone
1709
 *                 (e.g. unresolved arp -- kernel will call
1710
 *                 rebuild_header later to fill in the address)
1711
 */
1712
 
1713
static int strip_header(struct sk_buff *skb, struct net_device *dev,
1714
        unsigned short type, void *daddr, void *saddr, unsigned len)
1715
{
1716
    struct strip *strip_info = (struct strip *)(dev->priv);
1717
    STRIP_Header *header = (STRIP_Header *)skb_push(skb, sizeof(STRIP_Header));
1718
 
1719
    /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1720
        type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : "");*/
1721
 
1722
    header->src_addr = strip_info->true_dev_addr;
1723
    header->protocol = htons(type);
1724
 
1725
    /*HexDump("strip_header", (struct strip *)(dev->priv), skb->data, skb->data + skb->len);*/
1726
 
1727
    if (!daddr) return(-dev->hard_header_len);
1728
 
1729
    header->dst_addr = *(MetricomAddress*)daddr;
1730
    return(dev->hard_header_len);
1731
}
1732
 
1733
/*
1734
 * Rebuild the MAC header. This is called after an ARP
1735
 * (or in future other address resolution) has completed on this
1736
 * sk_buff. We now let ARP fill in the other fields.
1737
 * I think this should return zero if packet is ready to send,
1738
 * or non-zero if it needs more time to do an address lookup
1739
 */
1740
 
1741
static int strip_rebuild_header(struct sk_buff *skb)
1742
{
1743
#ifdef CONFIG_INET
1744
    STRIP_Header *header = (STRIP_Header *) skb->data;
1745
 
1746
    /* Arp find returns zero if if knows the address, */
1747
    /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1748
    return arp_find(header->dst_addr.c, skb)? 1 : 0;
1749
#else
1750
    return 0;
1751
#endif
1752
}
1753
 
1754
 
1755
/************************************************************************/
1756
/* Receiving routines                                                   */
1757
 
1758
static int strip_receive_room(struct tty_struct *tty)
1759
{
1760
    return 0x10000;  /* We can handle an infinite amount of data. :-) */
1761
}
1762
 
1763
/*
1764
 * This function parses the response to the ATS300? command,
1765
 * extracting the radio version and serial number.
1766
 */
1767
static void get_radio_version(struct strip *strip_info, __u8 *ptr, __u8 *end)
1768
{
1769
    __u8 *p, *value_begin, *value_end;
1770
    int len;
1771
 
1772
    /* Determine the beginning of the second line of the payload */
1773
    p = ptr;
1774
    while (p < end && *p != 10) p++;
1775
    if (p >= end) return;
1776
    p++;
1777
    value_begin = p;
1778
 
1779
    /* Determine the end of line */
1780
    while (p < end && *p != 10) p++;
1781
    if (p >= end) return;
1782
    value_end = p;
1783
    p++;
1784
 
1785
    len = value_end - value_begin;
1786
    len = MIN(len, sizeof(FirmwareVersion) - 1);
1787
    if (strip_info->firmware_version.c[0] == 0)
1788
        printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1789
            strip_info->dev.name, len, value_begin);
1790
    sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1791
 
1792
    /* Look for the first colon */
1793
    while (p < end && *p != ':') p++;
1794
    if (p >= end) return;
1795
    /* Skip over the space */
1796
    p += 2;
1797
    len = sizeof(SerialNumber) - 1;
1798
    if (p + len <= end) {
1799
        sprintf(strip_info->serial_number.c, "%.*s", len, p);
1800
    }
1801
    else {
1802
        printk(KERN_DEBUG "STRIP: radio serial number shorter (%d) than expected (%d)\n",
1803
               end - p, len);
1804
    }
1805
}
1806
 
1807
/*
1808
 * This function parses the response to the ATS325? command,
1809
 * extracting the radio battery voltage.
1810
 */
1811
static void get_radio_voltage(struct strip *strip_info, __u8 *ptr, __u8 *end)
1812
{
1813
    int len;
1814
 
1815
    len = sizeof(BatteryVoltage) - 1;
1816
    if (ptr + len <= end) {
1817
        sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1818
    }
1819
    else {
1820
        printk(KERN_DEBUG "STRIP: radio voltage string shorter (%d) than expected (%d)\n",
1821
               end - ptr, len);
1822
    }
1823
}
1824
 
1825
/*
1826
 * This function parses the responses to the AT~LA and ATS311 commands,
1827
 * which list the radio's neighbours.
1828
 */
1829
static void get_radio_neighbours(MetricomNodeTable *table, __u8 *ptr, __u8 *end)
1830
{
1831
    table->num_nodes = 0;
1832
    while (ptr < end && table->num_nodes < NODE_TABLE_SIZE)
1833
        {
1834
        MetricomNode *node = &table->node[table->num_nodes++];
1835
        char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1836
        while (ptr < end && *ptr <= 32) ptr++;
1837
        while (ptr < end && dst < limit && *ptr != 10) *dst++ = *ptr++;
1838
        *dst++ = 0;
1839
        while (ptr < end && ptr[-1] != 10) ptr++;
1840
        }
1841
    do_gettimeofday(&table->timestamp);
1842
}
1843
 
1844
static int get_radio_address(struct strip *strip_info, __u8 *p)
1845
{
1846
    MetricomAddress addr;
1847
 
1848
    if (string_to_radio_address(&addr, p)) return(1);
1849
 
1850
    /* See if our radio address has changed */
1851
    if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr)))
1852
    {
1853
        MetricomAddressString addr_string;
1854
        radio_address_to_string(&addr, &addr_string);
1855
        printk(KERN_INFO "%s: Radio address = %s\n", strip_info->dev.name, addr_string.c);
1856
        strip_info->true_dev_addr = addr;
1857
        if (!strip_info->manual_dev_addr) *(MetricomAddress*)strip_info->dev.dev_addr = addr;
1858
        /* Give the radio a few seconds to get its head straight, then send an arp */
1859
        strip_info->gratuitous_arp = jiffies + 15 * HZ;
1860
        strip_info->arp_interval = 1 * HZ;
1861
    }
1862
    return(0);
1863
}
1864
 
1865
static int verify_checksum(struct strip *strip_info)
1866
{
1867
    __u8 *p = strip_info->sx_buff;
1868
    __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1869
    u_short sum = (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1870
                  (READHEX16(end[2]) <<  4) | (READHEX16(end[3]));
1871
    while (p < end) sum -= *p++;
1872
    if (sum == 0 && strip_info->firmware_level == StructuredMessages)
1873
    {
1874
        strip_info->firmware_level = ChecksummedMessages;
1875
        printk(KERN_INFO "%s: Radio provides message checksums\n", strip_info->dev.name);
1876
    }
1877
    return(sum == 0);
1878
}
1879
 
1880
static void RecvErr(char *msg, struct strip *strip_info)
1881
{
1882
    __u8 *ptr = strip_info->sx_buff;
1883
    __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1884
    DumpData(msg, strip_info, ptr, end);
1885
    strip_info->rx_errors++;
1886
}
1887
 
1888
static void RecvErr_Message(struct strip *strip_info, __u8 *sendername, const __u8 *msg, u_long len)
1889
{
1890
    if (has_prefix(msg, len, "001")) /* Not in StarMode! */
1891
    {
1892
        RecvErr("Error Msg:", strip_info);
1893
        printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1894
            strip_info->dev.name, sendername);
1895
    }
1896
 
1897
    else if (has_prefix(msg, len, "002")) /* Remap handle */
1898
    {
1899
        /* We ignore "Remap handle" messages for now */
1900
    }
1901
 
1902
    else if (has_prefix(msg, len, "003")) /* Can't resolve name */
1903
    {
1904
        RecvErr("Error Msg:", strip_info);
1905
        printk(KERN_INFO "%s: Destination radio name is unknown\n",
1906
            strip_info->dev.name);
1907
    }
1908
 
1909
    else if (has_prefix(msg, len, "004")) /* Name too small or missing */
1910
    {
1911
        strip_info->watchdog_doreset = jiffies + LongTime;
1912
#if TICKLE_TIMERS
1913
        {
1914
        struct timeval tv;
1915
        do_gettimeofday(&tv);
1916
        printk(KERN_INFO "**** Got ERR_004 response         at %02d.%06d\n",
1917
            tv.tv_sec % 100, tv.tv_usec);
1918
        }
1919
#endif
1920
        if (!strip_info->working)
1921
        {
1922
            strip_info->working = TRUE;
1923
            printk(KERN_INFO "%s: Radio now in starmode\n", strip_info->dev.name);
1924
            /*
1925
             * If the radio has just entered a working state, we should do our first
1926
             * probe ASAP, so that we find out our radio address etc. without delay.
1927
             */
1928
            strip_info->watchdog_doprobe = jiffies;
1929
        }
1930
        if (strip_info->firmware_level == NoStructure && sendername)
1931
        {
1932
            strip_info->firmware_level = StructuredMessages;
1933
            strip_info->next_command   = 0; /* Try to enable checksums ASAP */
1934
            printk(KERN_INFO "%s: Radio provides structured messages\n", strip_info->dev.name);
1935
        }
1936
        if (strip_info->firmware_level >= StructuredMessages)
1937
        {
1938
            /*
1939
             * If this message has a valid checksum on the end, then the call to verify_checksum
1940
             * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1941
             * code from verify_checksum is ignored here.)
1942
             */
1943
            verify_checksum(strip_info);
1944
            /*
1945
             * If the radio has structured messages but we don't yet have all our information about it,
1946
             * we should do probes without delay, until we have gathered all the information
1947
             */
1948
            if (!GOT_ALL_RADIO_INFO(strip_info)) strip_info->watchdog_doprobe = jiffies;
1949
        }
1950
    }
1951
 
1952
    else if (has_prefix(msg, len, "005")) /* Bad count specification */
1953
        RecvErr("Error Msg:", strip_info);
1954
 
1955
    else if (has_prefix(msg, len, "006")) /* Header too big */
1956
        RecvErr("Error Msg:", strip_info);
1957
 
1958
    else if (has_prefix(msg, len, "007")) /* Body too big */
1959
    {
1960
        RecvErr("Error Msg:", strip_info);
1961
        printk(KERN_ERR "%s: Error! Packet size too big for radio.\n",
1962
            strip_info->dev.name);
1963
    }
1964
 
1965
    else if (has_prefix(msg, len, "008")) /* Bad character in name */
1966
    {
1967
        RecvErr("Error Msg:", strip_info);
1968
        printk(KERN_ERR "%s: Radio name contains illegal character\n",
1969
            strip_info->dev.name);
1970
    }
1971
 
1972
    else if (has_prefix(msg, len, "009")) /* No count or line terminator */
1973
        RecvErr("Error Msg:", strip_info);
1974
 
1975
    else if (has_prefix(msg, len, "010")) /* Invalid checksum */
1976
        RecvErr("Error Msg:", strip_info);
1977
 
1978
    else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
1979
        RecvErr("Error Msg:", strip_info);
1980
 
1981
    else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
1982
        RecvErr("Error Msg:", strip_info);
1983
 
1984
    else
1985
        RecvErr("Error Msg:", strip_info);
1986
}
1987
 
1988
static void process_AT_response(struct strip *strip_info, __u8 *ptr, __u8 *end)
1989
{
1990
    u_long len;
1991
    __u8 *p = ptr;
1992
    while (p < end && p[-1] != 10) p++; /* Skip past first newline character */
1993
    /* Now ptr points to the AT command, and p points to the text of the response. */
1994
    len = p-ptr;
1995
 
1996
#if TICKLE_TIMERS
1997
    {
1998
    struct timeval tv;
1999
    do_gettimeofday(&tv);
2000
    printk(KERN_INFO "**** Got AT response %.7s      at %02d.%06d\n",
2001
        ptr, tv.tv_sec % 100, tv.tv_usec);
2002
    }
2003
#endif
2004
 
2005
    if      (has_prefix(ptr, len, "ATS300?" )) get_radio_version(strip_info, p, end);
2006
    else if (has_prefix(ptr, len, "ATS305?" )) get_radio_address(strip_info, p);
2007
    else if (has_prefix(ptr, len, "ATS311?" )) get_radio_neighbours(&strip_info->poletops, p, end);
2008
    else if (has_prefix(ptr, len, "ATS319=7")) verify_checksum(strip_info);
2009
    else if (has_prefix(ptr, len, "ATS325?" )) get_radio_voltage(strip_info, p, end);
2010
    else if (has_prefix(ptr, len, "AT~LA"   )) get_radio_neighbours(&strip_info->portables, p, end);
2011
    else                                       RecvErr("Unknown AT Response:", strip_info);
2012
}
2013
 
2014
static void process_ACK(struct strip *strip_info, __u8 *ptr, __u8 *end)
2015
{
2016
    /* Currently we don't do anything with ACKs from the radio */
2017
}
2018
 
2019
static void process_Info(struct strip *strip_info, __u8 *ptr, __u8 *end)
2020
{
2021
    if (ptr+16 > end) RecvErr("Bad Info Msg:", strip_info);
2022
}
2023
 
2024
static struct net_device *get_strip_dev(struct strip *strip_info)
2025
{
2026
    /* If our hardware address is *manually set* to zero, and we know our */
2027
    /* real radio hardware address, try to find another strip device that has been */
2028
    /* manually set to that address that we can 'transfer ownership' of this packet to  */
2029
    if (strip_info->manual_dev_addr &&
2030
        !memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)) &&
2031
        memcmp(&strip_info->true_dev_addr, zero_address.c, sizeof(zero_address)))
2032
    {
2033
        struct net_device *dev;
2034
        read_lock_bh(&dev_base_lock);
2035
        dev = dev_base;
2036
        while (dev)
2037
        {
2038
            if (dev->type == strip_info->dev.type &&
2039
                !memcmp(dev->dev_addr, &strip_info->true_dev_addr, sizeof(MetricomAddress)))
2040
            {
2041
                printk(KERN_INFO "%s: Transferred packet ownership to %s.\n",
2042
                    strip_info->dev.name, dev->name);
2043
                read_unlock_bh(&dev_base_lock);
2044
                return(dev);
2045
            }
2046
            dev = dev->next;
2047
        }
2048
        read_unlock_bh(&dev_base_lock);
2049
    }
2050
    return(&strip_info->dev);
2051
}
2052
 
2053
/*
2054
 * Send one completely decapsulated datagram to the next layer.
2055
 */
2056
 
2057
static void deliver_packet(struct strip *strip_info, STRIP_Header *header, __u16 packetlen)
2058
{
2059
    struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
2060
    if (!skb)
2061
    {
2062
        printk(KERN_ERR "%s: memory squeeze, dropping packet.\n", strip_info->dev.name);
2063
        strip_info->rx_dropped++;
2064
    }
2065
    else
2066
    {
2067
        memcpy(skb_put(skb, sizeof(STRIP_Header)), header, sizeof(STRIP_Header));
2068
        memcpy(skb_put(skb, packetlen), strip_info->rx_buff, packetlen);
2069
        skb->dev      = get_strip_dev(strip_info);
2070
        skb->protocol = header->protocol;
2071
        skb->mac.raw  = skb->data;
2072
 
2073
        /* Having put a fake header on the front of the sk_buff for the */
2074
        /* benefit of tools like tcpdump, skb_pull now 'consumes' that  */
2075
        /* fake header before we hand the packet up to the next layer.  */
2076
        skb_pull(skb, sizeof(STRIP_Header));
2077
 
2078
        /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2079
        strip_info->rx_packets++;
2080
        strip_info->rx_pps_count++;
2081
#ifdef EXT_COUNTERS
2082
        strip_info->rx_bytes += packetlen;
2083
#endif
2084
        netif_rx(skb);
2085
    }
2086
}
2087
 
2088
static void process_IP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end)
2089
{
2090
    __u16 packetlen;
2091
 
2092
    /* Decode start of the IP packet header */
2093
    ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2094
    if (!ptr)
2095
    {
2096
        RecvErr("IP Packet too short", strip_info);
2097
        return;
2098
    }
2099
 
2100
    packetlen = ((__u16)strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2101
 
2102
    if (packetlen > MAX_RECV_MTU)
2103
    {
2104
        printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2105
            strip_info->dev.name, packetlen);
2106
        strip_info->rx_dropped++;
2107
        return;
2108
    }
2109
 
2110
    /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev.name, packetlen);*/
2111
 
2112
    /* Decode remainder of the IP packet */
2113
    ptr = UnStuffData(ptr, end, strip_info->rx_buff+4, packetlen-4);
2114
    if (!ptr)
2115
    {
2116
        RecvErr("IP Packet too short", strip_info);
2117
        return;
2118
    }
2119
 
2120
    if (ptr < end)
2121
    {
2122
        RecvErr("IP Packet too long", strip_info);
2123
        return;
2124
    }
2125
 
2126
    header->protocol = htons(ETH_P_IP);
2127
 
2128
    deliver_packet(strip_info, header, packetlen);
2129
}
2130
 
2131
static void process_ARP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end)
2132
{
2133
    __u16 packetlen;
2134
    struct arphdr *arphdr = (struct arphdr *)strip_info->rx_buff;
2135
 
2136
    /* Decode start of the ARP packet */
2137
    ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2138
    if (!ptr)
2139
    {
2140
        RecvErr("ARP Packet too short", strip_info);
2141
        return;
2142
    }
2143
 
2144
    packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2145
 
2146
    if (packetlen > MAX_RECV_MTU)
2147
    {
2148
        printk(KERN_INFO "%s: Dropping oversized received ARP packet: %d bytes\n",
2149
            strip_info->dev.name, packetlen);
2150
        strip_info->rx_dropped++;
2151
        return;
2152
    }
2153
 
2154
    /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2155
        strip_info->dev.name, packetlen,
2156
        ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply");*/
2157
 
2158
    /* Decode remainder of the ARP packet */
2159
    ptr = UnStuffData(ptr, end, strip_info->rx_buff+8, packetlen-8);
2160
    if (!ptr)
2161
    {
2162
        RecvErr("ARP Packet too short", strip_info);
2163
        return;
2164
    }
2165
 
2166
    if (ptr < end)
2167
    {
2168
        RecvErr("ARP Packet too long", strip_info);
2169
        return;
2170
    }
2171
 
2172
    header->protocol = htons(ETH_P_ARP);
2173
 
2174
    deliver_packet(strip_info, header, packetlen);
2175
}
2176
 
2177
/*
2178
 * process_text_message processes a <CR>-terminated block of data received
2179
 * from the radio that doesn't begin with a '*' character. All normal
2180
 * Starmode communication messages with the radio begin with a '*',
2181
 * so any text that does not indicates a serial port error, a radio that
2182
 * is in Hayes command mode instead of Starmode, or a radio with really
2183
 * old firmware that doesn't frame its Starmode responses properly.
2184
 */
2185
static void process_text_message(struct strip *strip_info)
2186
{
2187
    __u8 *msg = strip_info->sx_buff;
2188
    int len   = strip_info->sx_count;
2189
 
2190
    /* Check for anything that looks like it might be our radio name */
2191
    /* (This is here for backwards compatibility with old firmware)  */
2192
    if (len == 9 && get_radio_address(strip_info, msg) == 0) return;
2193
 
2194
    if (text_equal(msg, len, "OK"      )) return; /* Ignore 'OK' responses from prior commands */
2195
    if (text_equal(msg, len, "ERROR"   )) return; /* Ignore 'ERROR' messages */
2196
    if (has_prefix(msg, len, "ate0q1"  )) return; /* Ignore character echo back from the radio */
2197
 
2198
    /* Catch other error messages */
2199
    /* (This is here for backwards compatibility with old firmware) */
2200
    if (has_prefix(msg, len, "ERR_")) { RecvErr_Message(strip_info, NULL, &msg[4], len-4); return; }
2201
 
2202
    RecvErr("No initial *", strip_info);
2203
}
2204
 
2205
/*
2206
 * process_message processes a <CR>-terminated block of data received
2207
 * from the radio. If the radio is not in Starmode or has old firmware,
2208
 * it may be a line of text in response to an AT command. Ideally, with
2209
 * a current radio that's properly in Starmode, all data received should
2210
 * be properly framed and checksummed radio message blocks, containing
2211
 * either a starmode packet, or a other communication from the radio
2212
 * firmware, like "INF_" Info messages and &COMMAND responses.
2213
 */
2214
static void process_message(struct strip *strip_info)
2215
{
2216
    STRIP_Header header = { zero_address, zero_address, 0 };
2217
    __u8 *ptr = strip_info->sx_buff;
2218
    __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2219
    __u8 sendername[32], *sptr = sendername;
2220
    MetricomKey key;
2221
 
2222
    /*HexDump("Receiving", strip_info, ptr, end);*/
2223
 
2224
    /* Check for start of address marker, and then skip over it */
2225
    if (*ptr == '*') ptr++;
2226
    else { process_text_message(strip_info); return; }
2227
 
2228
    /* Copy out the return address */
2229
    while (ptr < end && *ptr != '*' && sptr < ARRAY_END(sendername)-1) *sptr++ = *ptr++;
2230
    *sptr = 0;                /* Null terminate the sender name */
2231
 
2232
    /* Check for end of address marker, and skip over it */
2233
    if (ptr >= end || *ptr != '*')
2234
    {
2235
        RecvErr("No second *", strip_info);
2236
        return;
2237
    }
2238
    ptr++; /* Skip the second '*' */
2239
 
2240
    /* If the sender name is "&COMMAND", ignore this 'packet'       */
2241
    /* (This is here for backwards compatibility with old firmware) */
2242
    if (!strcmp(sendername, "&COMMAND"))
2243
    {
2244
        strip_info->firmware_level = NoStructure;
2245
        strip_info->next_command   = CompatibilityCommand;
2246
        return;
2247
    }
2248
 
2249
    if (ptr+4 > end)
2250
    {
2251
        RecvErr("No proto key", strip_info);
2252
        return;
2253
    }
2254
 
2255
    /* Get the protocol key out of the buffer */
2256
    key.c[0] = *ptr++;
2257
    key.c[1] = *ptr++;
2258
    key.c[2] = *ptr++;
2259
    key.c[3] = *ptr++;
2260
 
2261
    /* If we're using checksums, verify the checksum at the end of the packet */
2262
    if (strip_info->firmware_level >= ChecksummedMessages)
2263
    {
2264
        end -= 4;       /* Chop the last four bytes off the packet (they're the checksum) */
2265
        if (ptr > end)
2266
        {
2267
            RecvErr("Missing Checksum", strip_info);
2268
            return;
2269
        }
2270
        if (!verify_checksum(strip_info))
2271
        {
2272
            RecvErr("Bad Checksum", strip_info);
2273
            return;
2274
        }
2275
    }
2276
 
2277
    /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev.name, sendername);*/
2278
 
2279
    /*
2280
     * Fill in (pseudo) source and destination addresses in the packet.
2281
     * We assume that the destination address was our address (the radio does not
2282
     * tell us this). If the radio supplies a source address, then we use it.
2283
     */
2284
    header.dst_addr = strip_info->true_dev_addr;
2285
    string_to_radio_address(&header.src_addr, sendername);
2286
 
2287
#ifdef EXT_COUNTERS
2288
    if      (key.l == SIP0Key.l) {
2289
      strip_info->rx_rbytes += (end - ptr);
2290
      process_IP_packet(strip_info, &header, ptr, end);
2291
    } else if (key.l == ARP0Key.l) {
2292
      strip_info->rx_rbytes += (end - ptr);
2293
      process_ARP_packet(strip_info, &header, ptr, end);
2294
    } else if (key.l == ATR_Key.l) {
2295
      strip_info->rx_ebytes += (end - ptr);
2296
      process_AT_response(strip_info, ptr, end);
2297
    } else if (key.l == ACK_Key.l) {
2298
      strip_info->rx_ebytes += (end - ptr);
2299
      process_ACK(strip_info, ptr, end);
2300
    } else if (key.l == INF_Key.l) {
2301
      strip_info->rx_ebytes += (end - ptr);
2302
      process_Info(strip_info, ptr, end);
2303
    } else if (key.l == ERR_Key.l) {
2304
      strip_info->rx_ebytes += (end - ptr);
2305
      RecvErr_Message(strip_info, sendername, ptr, end-ptr);
2306
    } else RecvErr("Unrecognized protocol key", strip_info);
2307
#else
2308
    if      (key.l == SIP0Key.l) process_IP_packet  (strip_info, &header, ptr, end);
2309
    else if (key.l == ARP0Key.l) process_ARP_packet (strip_info, &header, ptr, end);
2310
    else if (key.l == ATR_Key.l) process_AT_response(strip_info, ptr, end);
2311
    else if (key.l == ACK_Key.l) process_ACK        (strip_info, ptr, end);
2312
    else if (key.l == INF_Key.l) process_Info       (strip_info, ptr, end);
2313
    else if (key.l == ERR_Key.l) RecvErr_Message    (strip_info, sendername, ptr, end-ptr);
2314
    else                         RecvErr("Unrecognized protocol key", strip_info);
2315
#endif
2316
}
2317
 
2318
#define TTYERROR(X) ((X) == TTY_BREAK   ? "Break"            : \
2319
                     (X) == TTY_FRAME   ? "Framing Error"    : \
2320
                     (X) == TTY_PARITY  ? "Parity Error"     : \
2321
                     (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2322
 
2323
/*
2324
 * Handle the 'receiver data ready' interrupt.
2325
 * This function is called by the 'tty_io' module in the kernel when
2326
 * a block of STRIP data has been received, which can now be decapsulated
2327
 * and sent on to some IP layer for further processing.
2328
 */
2329
 
2330
static void
2331
strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count)
2332
{
2333
    struct strip *strip_info = (struct strip *) tty->disc_data;
2334
    const unsigned char *end = cp + count;
2335
 
2336
    if (!strip_info || strip_info->magic != STRIP_MAGIC
2337
        || !netif_running(&strip_info->dev))
2338
        return;
2339
 
2340
    /* Argh! mtu change time! - costs us the packet part received at the change */
2341
    if (strip_info->mtu != strip_info->dev.mtu)
2342
        strip_changedmtu(strip_info);
2343
 
2344
#if 0
2345
    {
2346
    struct timeval tv;
2347
    do_gettimeofday(&tv);
2348
    printk(KERN_INFO "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2349
        count, tv.tv_sec % 100, tv.tv_usec);
2350
    }
2351
#endif
2352
 
2353
#ifdef EXT_COUNTERS
2354
    strip_info->rx_sbytes += count;
2355
#endif
2356
 
2357
    /* Read the characters out of the buffer */
2358
    while (cp < end)
2359
    {
2360
        if (fp && *fp) printk(KERN_INFO "%s: %s on serial port\n", strip_info->dev.name, TTYERROR(*fp));
2361
        if (fp && *fp++ && !strip_info->discard) /* If there's a serial error, record it */
2362
        {
2363
            /* If we have some characters in the buffer, discard them */
2364
            strip_info->discard = strip_info->sx_count;
2365
            strip_info->rx_errors++;
2366
        }
2367
 
2368
        /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2369
        if (strip_info->sx_count > 0 || *cp >= ' ')
2370
        {
2371
            if (*cp == 0x0D)                /* If end of packet, decide what to do with it */
2372
            {
2373
                if (strip_info->sx_count > 3000)
2374
                    printk(KERN_INFO "%s: Cut a %d byte packet (%d bytes remaining)%s\n",
2375
                        strip_info->dev.name, strip_info->sx_count, end-cp-1,
2376
                        strip_info->discard ? " (discarded)" : "");
2377
                if (strip_info->sx_count > strip_info->sx_size)
2378
                {
2379
                    strip_info->rx_over_errors++;
2380
                    printk(KERN_INFO "%s: sx_buff overflow (%d bytes total)\n",
2381
                           strip_info->dev.name, strip_info->sx_count);
2382
                }
2383
                else if (strip_info->discard)
2384
                    printk(KERN_INFO "%s: Discarding bad packet (%d/%d)\n",
2385
                        strip_info->dev.name, strip_info->discard, strip_info->sx_count);
2386
                else process_message(strip_info);
2387
                strip_info->discard = 0;
2388
                strip_info->sx_count = 0;
2389
            }
2390
            else
2391
            {
2392
                /* Make sure we have space in the buffer */
2393
                if (strip_info->sx_count < strip_info->sx_size)
2394
                    strip_info->sx_buff[strip_info->sx_count] = *cp;
2395
                strip_info->sx_count++;
2396
            }
2397
        }
2398
        cp++;
2399
    }
2400
}
2401
 
2402
 
2403
/************************************************************************/
2404
/* General control routines                                             */
2405
 
2406
static int set_mac_address(struct strip *strip_info, MetricomAddress *addr)
2407
{
2408
    /*
2409
     * We're using a manually specified address if the address is set
2410
     * to anything other than all ones. Setting the address to all ones
2411
     * disables manual mode and goes back to automatic address determination
2412
     * (tracking the true address that the radio has).
2413
     */
2414
    strip_info->manual_dev_addr = memcmp(addr->c, broadcast_address.c, sizeof(broadcast_address));
2415
    if (strip_info->manual_dev_addr)
2416
         *(MetricomAddress*)strip_info->dev.dev_addr = *addr;
2417
    else *(MetricomAddress*)strip_info->dev.dev_addr = strip_info->true_dev_addr;
2418
    return 0;
2419
}
2420
 
2421
static int dev_set_mac_address(struct net_device *dev, void *addr)
2422
{
2423
    struct strip *strip_info = (struct strip *)(dev->priv);
2424
    struct sockaddr *sa = addr;
2425
    printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2426
    set_mac_address(strip_info, (MetricomAddress *)sa->sa_data);
2427
    return 0;
2428
}
2429
 
2430
static struct net_device_stats *strip_get_stats(struct net_device *dev)
2431
{
2432
    static struct net_device_stats stats;
2433
    struct strip *strip_info = (struct strip *)(dev->priv);
2434
 
2435
    memset(&stats, 0, sizeof(struct net_device_stats));
2436
 
2437
    stats.rx_packets     = strip_info->rx_packets;
2438
    stats.tx_packets     = strip_info->tx_packets;
2439
    stats.rx_dropped     = strip_info->rx_dropped;
2440
    stats.tx_dropped     = strip_info->tx_dropped;
2441
    stats.tx_errors      = strip_info->tx_errors;
2442
    stats.rx_errors      = strip_info->rx_errors;
2443
    stats.rx_over_errors = strip_info->rx_over_errors;
2444
    return(&stats);
2445
}
2446
 
2447
 
2448
/************************************************************************/
2449
/* Opening and closing                                                  */
2450
 
2451
/*
2452
 * Here's the order things happen:
2453
 * When the user runs "slattach -p strip ..."
2454
 *  1. The TTY module calls strip_open
2455
 *  2. strip_open calls strip_alloc
2456
 *  3.                  strip_alloc calls register_netdev
2457
 *  4.                  register_netdev calls strip_dev_init
2458
 *  5. then strip_open finishes setting up the strip_info
2459
 *
2460
 * When the user runs "ifconfig st<x> up address netmask ..."
2461
 *  6. strip_open_low gets called
2462
 *
2463
 * When the user runs "ifconfig st<x> down"
2464
 *  7. strip_close_low gets called
2465
 *
2466
 * When the user kills the slattach process
2467
 *  8. strip_close gets called
2468
 *  9. strip_close calls dev_close
2469
 * 10. if the device is still up, then dev_close calls strip_close_low
2470
 * 11. strip_close calls strip_free
2471
 */
2472
 
2473
/* Open the low-level part of the STRIP channel. Easy! */
2474
 
2475
static int strip_open_low(struct net_device *dev)
2476
{
2477
    struct strip *strip_info = (struct strip *)(dev->priv);
2478
#if 0
2479
    struct in_device *in_dev = dev->ip_ptr;
2480
#endif
2481
 
2482
    if (strip_info->tty == NULL)
2483
        return(-ENODEV);
2484
 
2485
    if (!allocate_buffers(strip_info))
2486
        return(-ENOMEM);
2487
 
2488
    strip_info->sx_count = 0;
2489
    strip_info->tx_left  = 0;
2490
 
2491
    strip_info->discard  = 0;
2492
    strip_info->working  = FALSE;
2493
    strip_info->firmware_level = NoStructure;
2494
    strip_info->next_command   = CompatibilityCommand;
2495
    strip_info->user_baud      = get_baud(strip_info->tty);
2496
 
2497
#if 0
2498
    /*
2499
     * Needed because address '0' is special
2500
     *
2501
     * --ANK Needed it or not needed, it does not matter at all.
2502
     *       Make it at user level, guys.
2503
     */
2504
 
2505
    if (in_dev->ifa_list->ifa_address == 0)
2506
        in_dev->ifa_list->ifa_address = ntohl(0xC0A80001);
2507
#endif
2508
    printk(KERN_INFO "%s: Initializing Radio.\n", strip_info->dev.name);
2509
    ResetRadio(strip_info);
2510
    strip_info->idle_timer.expires = jiffies + 1*HZ;
2511
    add_timer(&strip_info->idle_timer);
2512
    netif_wake_queue(dev);
2513
    return(0);
2514
}
2515
 
2516
 
2517
/*
2518
 * Close the low-level part of the STRIP channel. Easy!
2519
 */
2520
 
2521
static int strip_close_low(struct net_device *dev)
2522
{
2523
    struct strip *strip_info = (struct strip *)(dev->priv);
2524
 
2525
    if (strip_info->tty == NULL)
2526
        return -EBUSY;
2527
    strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
2528
 
2529
    netif_stop_queue(dev);
2530
 
2531
    /*
2532
     * Free all STRIP frame buffers.
2533
     */
2534
    if (strip_info->rx_buff)
2535
    {
2536
        kfree(strip_info->rx_buff);
2537
        strip_info->rx_buff = NULL;
2538
    }
2539
    if (strip_info->sx_buff)
2540
    {
2541
        kfree(strip_info->sx_buff);
2542
        strip_info->sx_buff = NULL;
2543
    }
2544
    if (strip_info->tx_buff)
2545
    {
2546
        kfree(strip_info->tx_buff);
2547
        strip_info->tx_buff = NULL;
2548
    }
2549
    del_timer(&strip_info->idle_timer);
2550
    return 0;
2551
}
2552
 
2553
/*
2554
 * This routine is called by DDI when the
2555
 * (dynamically assigned) device is registered
2556
 */
2557
 
2558
static int strip_dev_init(struct net_device *dev)
2559
{
2560
    /*
2561
     * Finish setting up the DEVICE info.
2562
     */
2563
 
2564
    dev->trans_start        = 0;
2565
    dev->last_rx            = 0;
2566
    dev->tx_queue_len       = 30;         /* Drop after 30 frames queued */
2567
 
2568
    dev->flags              = 0;
2569
    dev->mtu                = DEFAULT_STRIP_MTU;
2570
    dev->type               = ARPHRD_METRICOM;        /* dtang */
2571
    dev->hard_header_len    = sizeof(STRIP_Header);
2572
    /*
2573
     *  dev->priv             Already holds a pointer to our struct strip
2574
     */
2575
 
2576
    *(MetricomAddress*)&dev->broadcast = broadcast_address;
2577
    dev->dev_addr[0]        = 0;
2578
    dev->addr_len           = sizeof(MetricomAddress);
2579
 
2580
    /*
2581
     * Pointers to interface service routines.
2582
     */
2583
 
2584
    dev->open               = strip_open_low;
2585
    dev->stop               = strip_close_low;
2586
    dev->hard_start_xmit    = strip_xmit;
2587
    dev->hard_header        = strip_header;
2588
    dev->rebuild_header     = strip_rebuild_header;
2589
    dev->set_mac_address    = dev_set_mac_address;
2590
    dev->get_stats          = strip_get_stats;
2591
    return 0;
2592
}
2593
 
2594
/*
2595
 * Free a STRIP channel.
2596
 */
2597
 
2598
static void strip_free(struct strip *strip_info)
2599
{
2600
    *(strip_info->referrer) = strip_info->next;
2601
    if (strip_info->next)
2602
        strip_info->next->referrer = strip_info->referrer;
2603
    strip_info->magic = 0;
2604
    kfree(strip_info);
2605
}
2606
 
2607
/*
2608
 * Allocate a new free STRIP channel
2609
 */
2610
 
2611
static struct strip *strip_alloc(void)
2612
{
2613
    int channel_id = 0;
2614
    struct strip **s = &struct_strip_list;
2615
    struct strip *strip_info = (struct strip *)
2616
        kmalloc(sizeof(struct strip), GFP_KERNEL);
2617
 
2618
    if (!strip_info)
2619
        return(NULL);        /* If no more memory, return */
2620
 
2621
    /*
2622
     * Clear the allocated memory
2623
     */
2624
 
2625
    memset(strip_info, 0, sizeof(struct strip));
2626
 
2627
    /*
2628
     * Search the list to find where to put our new entry
2629
     * (and in the process decide what channel number it is
2630
     * going to be)
2631
     */
2632
 
2633
    while (*s && (*s)->dev.base_addr == channel_id)
2634
    {
2635
        channel_id++;
2636
        s = &(*s)->next;
2637
    }
2638
 
2639
    /*
2640
     * Fill in the link pointers
2641
     */
2642
 
2643
    strip_info->next = *s;
2644
    if (*s)
2645
        (*s)->referrer = &strip_info->next;
2646
    strip_info->referrer = s;
2647
    *s = strip_info;
2648
 
2649
    strip_info->magic = STRIP_MAGIC;
2650
    strip_info->tty   = NULL;
2651
 
2652
    strip_info->gratuitous_arp   = jiffies + LongTime;
2653
    strip_info->arp_interval     = 0;
2654
    init_timer(&strip_info->idle_timer);
2655
    strip_info->idle_timer.data     = (long)&strip_info->dev;
2656
    strip_info->idle_timer.function = strip_IdleTask;
2657
 
2658
    /* Note: strip_info->if_name is currently 8 characters long */
2659
    sprintf(strip_info->dev.name, "st%d", channel_id);
2660
    strip_info->dev.base_addr    = channel_id;
2661
    strip_info->dev.priv         = (void*)strip_info;
2662
    strip_info->dev.next         = NULL;
2663
    strip_info->dev.init         = strip_dev_init;
2664
 
2665
    return(strip_info);
2666
}
2667
 
2668
/*
2669
 * Open the high-level part of the STRIP channel.
2670
 * This function is called by the TTY module when the
2671
 * STRIP line discipline is called for.  Because we are
2672
 * sure the tty line exists, we only have to link it to
2673
 * a free STRIP channel...
2674
 */
2675
 
2676
static int strip_open(struct tty_struct *tty)
2677
{
2678
    struct strip *strip_info = (struct strip *) tty->disc_data;
2679
 
2680
    /*
2681
     * First make sure we're not already connected.
2682
     */
2683
 
2684
    if (strip_info && strip_info->magic == STRIP_MAGIC)
2685
        return -EEXIST;
2686
 
2687
    /*
2688
     * OK.  Find a free STRIP channel to use.
2689
     */
2690
    if ((strip_info = strip_alloc()) == NULL)
2691
        return -ENFILE;
2692
 
2693
    /*
2694
     * Register our newly created device so it can be ifconfig'd
2695
     * strip_dev_init() will be called as a side-effect
2696
     */
2697
 
2698
    if (register_netdev(&strip_info->dev) != 0)
2699
    {
2700
        printk(KERN_ERR "strip: register_netdev() failed.\n");
2701
        strip_free(strip_info);
2702
        return -ENFILE;
2703
    }
2704
 
2705
    strip_info->tty = tty;
2706
    tty->disc_data = strip_info;
2707
    if (tty->driver.flush_buffer)
2708
        tty->driver.flush_buffer(tty);
2709
    if (tty->ldisc.flush_buffer)
2710
        tty->ldisc.flush_buffer(tty);
2711
 
2712
    /*
2713
     * Restore default settings
2714
     */
2715
 
2716
    strip_info->dev.type = ARPHRD_METRICOM;    /* dtang */
2717
 
2718
    /*
2719
     * Set tty options
2720
     */
2721
 
2722
    tty->termios->c_iflag |= IGNBRK |IGNPAR;/* Ignore breaks and parity errors. */
2723
    tty->termios->c_cflag |= CLOCAL;    /* Ignore modem control signals. */
2724
    tty->termios->c_cflag &= ~HUPCL;    /* Don't close on hup */
2725
 
2726
    MOD_INC_USE_COUNT;
2727
 
2728
    printk(KERN_INFO "STRIP: device \"%s\" activated\n", strip_info->dev.name);
2729
 
2730
    /*
2731
     * Done.  We have linked the TTY line to a channel.
2732
     */
2733
    return(strip_info->dev.base_addr);
2734
}
2735
 
2736
/*
2737
 * Close down a STRIP channel.
2738
 * This means flushing out any pending queues, and then restoring the
2739
 * TTY line discipline to what it was before it got hooked to STRIP
2740
 * (which usually is TTY again).
2741
 */
2742
 
2743
static void strip_close(struct tty_struct *tty)
2744
{
2745
    struct strip *strip_info = (struct strip *) tty->disc_data;
2746
 
2747
    /*
2748
     * First make sure we're connected.
2749
     */
2750
 
2751
    if (!strip_info || strip_info->magic != STRIP_MAGIC)
2752
        return;
2753
 
2754
    unregister_netdev(&strip_info->dev);
2755
 
2756
    tty->disc_data = 0;
2757
    strip_info->tty = NULL;
2758
    printk(KERN_INFO "STRIP: device \"%s\" closed down\n", strip_info->dev.name);
2759
    strip_free(strip_info);
2760
    tty->disc_data = NULL;
2761
    MOD_DEC_USE_COUNT;
2762
}
2763
 
2764
 
2765
/************************************************************************/
2766
/* Perform I/O control calls on an active STRIP channel.                */
2767
 
2768
static int strip_ioctl(struct tty_struct *tty, struct file *file,
2769
    unsigned int cmd, unsigned long arg)
2770
{
2771
    struct strip *strip_info = (struct strip *) tty->disc_data;
2772
 
2773
    /*
2774
     * First make sure we're connected.
2775
     */
2776
 
2777
    if (!strip_info || strip_info->magic != STRIP_MAGIC)
2778
        return -EINVAL;
2779
 
2780
    switch(cmd)
2781
    {
2782
        case SIOCGIFNAME:
2783
            return copy_to_user((void*)arg, strip_info->dev.name,
2784
                                strlen(strip_info->dev.name) + 1) ?
2785
                -EFAULT : 0;
2786
            break;
2787
        case SIOCSIFHWADDR:
2788
            {
2789
            MetricomAddress addr;
2790
            printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev.name);
2791
            return copy_from_user(&addr, (void*)arg, sizeof(MetricomAddress)) ?
2792
                -EFAULT : set_mac_address(strip_info, &addr);
2793
            break;
2794
            }
2795
        /*
2796
         * Allow stty to read, but not set, the serial port
2797
         */
2798
 
2799
        case TCGETS:
2800
        case TCGETA:
2801
            return n_tty_ioctl(tty, (struct file *) file, cmd,
2802
                (unsigned long) arg);
2803
            break;
2804
        default:
2805
            return -ENOIOCTLCMD;
2806
            break;
2807
    }
2808
}
2809
 
2810
 
2811
/************************************************************************/
2812
/* Initialization                                                       */
2813
 
2814
static struct tty_ldisc strip_ldisc = {
2815
        magic:          TTY_LDISC_MAGIC,
2816
        name:           "strip",
2817
        open:           strip_open,
2818
        close:          strip_close,
2819
        ioctl:          strip_ioctl,
2820
        receive_buf:    strip_receive_buf,
2821
        receive_room:   strip_receive_room,
2822
        write_wakeup:   strip_write_some_more,
2823
};
2824
 
2825
/*
2826
 * Initialize the STRIP driver.
2827
 * This routine is called at boot time, to bootstrap the multi-channel
2828
 * STRIP driver
2829
 */
2830
 
2831
static char signon[] __initdata = KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2832
 
2833
static int __init strip_init_driver(void)
2834
{
2835
    int status;
2836
 
2837
    printk(signon, StripVersion);
2838
 
2839
    /*
2840
     * Fill in our line protocol discipline, and register it
2841
     */
2842
    if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2843
        printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", status);
2844
 
2845
    /*
2846
     * Register the status file with /proc
2847
     */
2848
    proc_net_create("strip", S_IFREG | S_IRUGO, get_status_info);
2849
 
2850
    return status;
2851
}
2852
module_init(strip_init_driver);
2853
 
2854
static const char signoff[] __exitdata = KERN_INFO "STRIP: Module Unloaded\n";
2855
 
2856
static void __exit strip_exit_driver(void)
2857
{
2858
    int i;
2859
    while (struct_strip_list)
2860
        strip_free(struct_strip_list);
2861
 
2862
    /* Unregister with the /proc/net file here. */
2863
    proc_net_remove("strip");
2864
 
2865
    if ((i = tty_register_ldisc(N_STRIP, NULL)))
2866
        printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2867
 
2868
    printk(signoff);
2869
}
2870
module_exit(strip_exit_driver);
2871
 
2872
MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2873
MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2874
MODULE_LICENSE("Dual BSD/GPL");
2875
 
2876
MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");
2877
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.