1 |
1275 |
phoenix |
/* Copyright(c) 2000, Compaq Computer Corporation
|
2 |
|
|
* Fibre Channel Host Bus Adapter
|
3 |
|
|
* 64-bit, 66MHz PCI
|
4 |
|
|
* Originally developed and tested on:
|
5 |
|
|
* (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ...
|
6 |
|
|
* SP# P225CXCBFIEL6T, Rev XC
|
7 |
|
|
* SP# 161290-001, Rev XD
|
8 |
|
|
* (back): Board No. 010008-001 A/W Rev X5, FAB REV X5
|
9 |
|
|
*
|
10 |
|
|
* This program is free software; you can redistribute it and/or modify it
|
11 |
|
|
* under the terms of the GNU General Public License as published by the
|
12 |
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
13 |
|
|
* later version.
|
14 |
|
|
*
|
15 |
|
|
* This program is distributed in the hope that it will be useful, but
|
16 |
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
18 |
|
|
* General Public License for more details.
|
19 |
|
|
* Written by Don Zimmerman
|
20 |
|
|
* IOCTL and procfs added by Jouke Numan
|
21 |
|
|
* SMP testing by Chel Van Gennip
|
22 |
|
|
*
|
23 |
|
|
* portions copied from:
|
24 |
|
|
* QLogic CPQFCTS SCSI-FCP
|
25 |
|
|
* Written by Erik H. Moe, ehm@cris.com
|
26 |
|
|
* Copyright 1995, Erik H. Moe
|
27 |
|
|
* Renamed and updated to 1.3.x by Michael Griffith <grif@cs.ucr.edu>
|
28 |
|
|
* Chris Loveland <cwl@iol.unh.edu> to support the isp2100 and isp2200
|
29 |
|
|
*/
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
#include <linux/blk.h>
|
33 |
|
|
#include <linux/kernel.h>
|
34 |
|
|
#include <linux/string.h>
|
35 |
|
|
#include <linux/sched.h>
|
36 |
|
|
#include <linux/types.h>
|
37 |
|
|
#include <linux/pci.h>
|
38 |
|
|
#include <linux/delay.h>
|
39 |
|
|
#include <linux/timer.h>
|
40 |
|
|
#include <linux/ioport.h> // request_region() prototype
|
41 |
|
|
#include <linux/slab.h>
|
42 |
|
|
#include <linux/vmalloc.h> // ioremap()
|
43 |
|
|
#include <linux/completion.h>
|
44 |
|
|
#include <linux/init.h>
|
45 |
|
|
#ifdef __alpha__
|
46 |
|
|
#define __KERNEL_SYSCALLS__
|
47 |
|
|
#endif
|
48 |
|
|
#include <asm/unistd.h>
|
49 |
|
|
#include <asm/io.h>
|
50 |
|
|
#include <asm/uaccess.h> // ioctl related
|
51 |
|
|
#include <asm/irq.h>
|
52 |
|
|
#include <linux/spinlock.h>
|
53 |
|
|
#include "sd.h"
|
54 |
|
|
#include <scsi/scsi_ioctl.h>
|
55 |
|
|
#include "hosts.h"
|
56 |
|
|
#include "cpqfcTSchip.h"
|
57 |
|
|
#include "cpqfcTSstructs.h"
|
58 |
|
|
#include "cpqfcTStrigger.h"
|
59 |
|
|
|
60 |
|
|
#include "cpqfcTS.h"
|
61 |
|
|
|
62 |
|
|
#include <linux/config.h>
|
63 |
|
|
#include <linux/module.h>
|
64 |
|
|
#include <linux/version.h>
|
65 |
|
|
|
66 |
|
|
/* Embedded module documentation macros - see module.h */
|
67 |
|
|
MODULE_AUTHOR("Compaq Computer Corporation");
|
68 |
|
|
MODULE_DESCRIPTION("Driver for Compaq 64-bit/66Mhz PCI Fibre Channel HBA v. 2.1.2");
|
69 |
|
|
MODULE_LICENSE("GPL");
|
70 |
|
|
|
71 |
|
|
int cpqfcTS_TargetDeviceReset(Scsi_Device * ScsiDev, unsigned int reset_flags);
|
72 |
|
|
|
73 |
|
|
#define CPQFC_DECLARE_COMPLETION(x) DECLARE_COMPLETION(x)
|
74 |
|
|
#define CPQFC_WAITING waiting
|
75 |
|
|
#define CPQFC_COMPLETE(x) complete(x)
|
76 |
|
|
#define CPQFC_WAIT_FOR_COMPLETION(x) wait_for_completion(x);
|
77 |
|
|
|
78 |
|
|
/* local function to load our per-HBA (local) data for chip
|
79 |
|
|
registers, FC link state, all FC exchanges, etc.
|
80 |
|
|
|
81 |
|
|
We allocate space and compute address offsets for the
|
82 |
|
|
most frequently accessed addresses; others (like World Wide
|
83 |
|
|
Name) are not necessary.
|
84 |
|
|
|
85 |
|
|
*/
|
86 |
|
|
static void Cpqfc_initHBAdata(CPQFCHBA * cpqfcHBAdata, struct pci_dev *PciDev)
|
87 |
|
|
{
|
88 |
|
|
|
89 |
|
|
cpqfcHBAdata->PciDev = PciDev; // copy PCI info ptr
|
90 |
|
|
|
91 |
|
|
// since x86 port space is 64k, we only need the lower 16 bits
|
92 |
|
|
cpqfcHBAdata->fcChip.Registers.IOBaseL = PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK;
|
93 |
|
|
cpqfcHBAdata->fcChip.Registers.IOBaseU = PciDev->resource[2].start & PCI_BASE_ADDRESS_IO_MASK;
|
94 |
|
|
|
95 |
|
|
// 32-bit memory addresses
|
96 |
|
|
cpqfcHBAdata->fcChip.Registers.MemBase = PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK;
|
97 |
|
|
cpqfcHBAdata->fcChip.Registers.ReMapMemBase = ioremap(PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK, 0x200);
|
98 |
|
|
cpqfcHBAdata->fcChip.Registers.RAMBase = PciDev->resource[4].start;
|
99 |
|
|
cpqfcHBAdata->fcChip.Registers.SROMBase = PciDev->resource[5].start; // NULL for HP TS adapter
|
100 |
|
|
|
101 |
|
|
// now the Tachlite chip registers
|
102 |
|
|
// the REGISTER struct holds both the physical address & last
|
103 |
|
|
// written value (some TL registers are WRITE ONLY)
|
104 |
|
|
|
105 |
|
|
cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_SFQ_CONSUMER_INDEX;
|
106 |
|
|
|
107 |
|
|
cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX;
|
108 |
|
|
|
109 |
|
|
// TL Frame Manager
|
110 |
|
|
cpqfcHBAdata->fcChip.Registers.FMconfig.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONFIG;
|
111 |
|
|
cpqfcHBAdata->fcChip.Registers.FMcontrol.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONTROL;
|
112 |
|
|
cpqfcHBAdata->fcChip.Registers.FMstatus.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_STATUS;
|
113 |
|
|
cpqfcHBAdata->fcChip.Registers.FMLinkStatus1.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT1;
|
114 |
|
|
cpqfcHBAdata->fcChip.Registers.FMLinkStatus2.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT2;
|
115 |
|
|
cpqfcHBAdata->fcChip.Registers.FMBB_CreditZero.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_BB_CREDIT0;
|
116 |
|
|
|
117 |
|
|
// TL Control Regs
|
118 |
|
|
cpqfcHBAdata->fcChip.Registers.TYconfig.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONFIG;
|
119 |
|
|
cpqfcHBAdata->fcChip.Registers.TYcontrol.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONTROL;
|
120 |
|
|
cpqfcHBAdata->fcChip.Registers.TYstatus.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_STATUS;
|
121 |
|
|
cpqfcHBAdata->fcChip.Registers.rcv_al_pa.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_RCV_AL_PA;
|
122 |
|
|
cpqfcHBAdata->fcChip.Registers.ed_tov.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_ED_TOV;
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
cpqfcHBAdata->fcChip.Registers.INTEN.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTEN;
|
126 |
|
|
cpqfcHBAdata->fcChip.Registers.INTPEND.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTPEND;
|
127 |
|
|
cpqfcHBAdata->fcChip.Registers.INTSTAT.address = cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTSTAT;
|
128 |
|
|
|
129 |
|
|
DEBUG_PCI(printk(" cpqfcHBAdata->fcChip.Registers. :\n"));
|
130 |
|
|
DEBUG_PCI(printk(" IOBaseL = %x\n", cpqfcHBAdata->fcChip.Registers.IOBaseL));
|
131 |
|
|
DEBUG_PCI(printk(" IOBaseU = %x\n", cpqfcHBAdata->fcChip.Registers.IOBaseU));
|
132 |
|
|
|
133 |
|
|
printk(" ioremap'd Membase: %p\n", cpqfcHBAdata->fcChip.Registers.ReMapMemBase);
|
134 |
|
|
|
135 |
|
|
DEBUG_PCI(printk(" SFQconsumerIndex.address = %p\n", cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address));
|
136 |
|
|
DEBUG_PCI(printk(" ERQproducerIndex.address = %p\n", cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address));
|
137 |
|
|
DEBUG_PCI(printk(" TYconfig.address = %p\n", cpqfcHBAdata->fcChip.Registers.TYconfig.address));
|
138 |
|
|
DEBUG_PCI(printk(" FMconfig.address = %p\n", cpqfcHBAdata->fcChip.Registers.FMconfig.address));
|
139 |
|
|
DEBUG_PCI(printk(" FMcontrol.address = %p\n", cpqfcHBAdata->fcChip.Registers.FMcontrol.address));
|
140 |
|
|
|
141 |
|
|
// set default options for FC controller (chip)
|
142 |
|
|
cpqfcHBAdata->fcChip.Options.initiator = 1; // default: SCSI initiator
|
143 |
|
|
cpqfcHBAdata->fcChip.Options.target = 0; // default: SCSI target
|
144 |
|
|
cpqfcHBAdata->fcChip.Options.extLoopback = 0; // default: no loopback @GBIC
|
145 |
|
|
cpqfcHBAdata->fcChip.Options.intLoopback = 0; // default: no loopback inside chip
|
146 |
|
|
|
147 |
|
|
// set highest and lowest FC-PH version the adapter/driver supports
|
148 |
|
|
// (NOT strict compliance)
|
149 |
|
|
cpqfcHBAdata->fcChip.highest_FCPH_ver = FC_PH3;
|
150 |
|
|
cpqfcHBAdata->fcChip.lowest_FCPH_ver = FC_PH43;
|
151 |
|
|
|
152 |
|
|
// set function points for this controller / adapter
|
153 |
|
|
cpqfcHBAdata->fcChip.ResetTachyon = CpqTsResetTachLite;
|
154 |
|
|
cpqfcHBAdata->fcChip.FreezeTachyon = CpqTsFreezeTachlite;
|
155 |
|
|
cpqfcHBAdata->fcChip.UnFreezeTachyon = CpqTsUnFreezeTachlite;
|
156 |
|
|
cpqfcHBAdata->fcChip.CreateTachyonQues = CpqTsCreateTachLiteQues;
|
157 |
|
|
cpqfcHBAdata->fcChip.DestroyTachyonQues = CpqTsDestroyTachLiteQues;
|
158 |
|
|
cpqfcHBAdata->fcChip.InitializeTachyon = CpqTsInitializeTachLite;
|
159 |
|
|
cpqfcHBAdata->fcChip.LaserControl = CpqTsLaserControl;
|
160 |
|
|
cpqfcHBAdata->fcChip.ProcessIMQEntry = CpqTsProcessIMQEntry;
|
161 |
|
|
cpqfcHBAdata->fcChip.InitializeFrameManager = CpqTsInitializeFrameManager;;
|
162 |
|
|
cpqfcHBAdata->fcChip.ReadWriteWWN = CpqTsReadWriteWWN;
|
163 |
|
|
cpqfcHBAdata->fcChip.ReadWriteNVRAM = CpqTsReadWriteNVRAM;
|
164 |
|
|
|
165 |
|
|
|
166 |
|
|
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
|
170 |
|
|
/* (borrowed from linux/drivers/scsi/hosts.c) */
|
171 |
|
|
static void launch_FCworker_thread(struct Scsi_Host *HostAdapter)
|
172 |
|
|
{
|
173 |
|
|
DECLARE_MUTEX_LOCKED(sem);
|
174 |
|
|
|
175 |
|
|
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *) HostAdapter->hostdata;
|
176 |
|
|
|
177 |
|
|
ENTER("launch_FC_worker_thread");
|
178 |
|
|
|
179 |
|
|
cpqfcHBAdata->notify_wt = &sem;
|
180 |
|
|
|
181 |
|
|
/* must unlock before kernel_thread(), for it may cause a reschedule. */
|
182 |
|
|
spin_unlock_irq(&io_request_lock);
|
183 |
|
|
kernel_thread((int (*)(void *)) cpqfcTSWorkerThread, (void *) HostAdapter, 0);
|
184 |
|
|
/*
|
185 |
|
|
* Now wait for the kernel error thread to initialize itself
|
186 |
|
|
|
187 |
|
|
*/
|
188 |
|
|
down(&sem);
|
189 |
|
|
spin_lock_irq(&io_request_lock);
|
190 |
|
|
cpqfcHBAdata->notify_wt = NULL;
|
191 |
|
|
|
192 |
|
|
LEAVE("launch_FC_worker_thread");
|
193 |
|
|
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
/* "Entry" point to discover if any supported PCI
|
198 |
|
|
bus adapter can be found
|
199 |
|
|
*/
|
200 |
|
|
/* We're supporting:
|
201 |
|
|
* Compaq 64-bit, 66MHz HBA with Tachyon TS
|
202 |
|
|
* Agilent XL2
|
203 |
|
|
* HP Tachyon
|
204 |
|
|
*/
|
205 |
|
|
#define HBA_TYPES 3
|
206 |
|
|
|
207 |
|
|
#ifndef PCI_DEVICE_ID_COMPAQ_
|
208 |
|
|
#define PCI_DEVICE_ID_COMPAQ_TACHYON 0xa0fc
|
209 |
|
|
#endif
|
210 |
|
|
|
211 |
|
|
static struct SupportedPCIcards cpqfc_boards[] __initdata = {
|
212 |
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_TACHYON},
|
213 |
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHLITE},
|
214 |
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHYON},
|
215 |
|
|
};
|
216 |
|
|
|
217 |
|
|
|
218 |
|
|
int cpqfcTS_detect(Scsi_Host_Template * ScsiHostTemplate)
|
219 |
|
|
{
|
220 |
|
|
int NumberOfAdapters = 0; // how many of our PCI adapters are found?
|
221 |
|
|
struct pci_dev *PciDev = NULL;
|
222 |
|
|
struct Scsi_Host *HostAdapter = NULL;
|
223 |
|
|
CPQFCHBA *cpqfcHBAdata = NULL;
|
224 |
|
|
struct timer_list *cpqfcTStimer = NULL;
|
225 |
|
|
int i;
|
226 |
|
|
|
227 |
|
|
ENTER("cpqfcTS_detect");
|
228 |
|
|
|
229 |
|
|
#if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27)
|
230 |
|
|
ScsiHostTemplate->proc_dir = &proc_scsi_cpqfcTS;
|
231 |
|
|
#else
|
232 |
|
|
ScsiHostTemplate->proc_name = "cpqfcTS";
|
233 |
|
|
#endif
|
234 |
|
|
|
235 |
|
|
if (pci_present() == 0) // no PCI busses?
|
236 |
|
|
{
|
237 |
|
|
printk(" no PCI bus?@#!\n");
|
238 |
|
|
return NumberOfAdapters;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
for (i = 0; i < HBA_TYPES; i++) {
|
242 |
|
|
// look for all HBAs of each type
|
243 |
|
|
|
244 |
|
|
while ((PciDev = pci_find_device(cpqfc_boards[i].vendor_id, cpqfc_boards[i].device_id, PciDev))) {
|
245 |
|
|
|
246 |
|
|
if (pci_enable_device(PciDev) != 0) {
|
247 |
|
|
printk(KERN_WARNING "cpqfc: pci_enable_devive failed, skipping.\n");
|
248 |
|
|
continue;
|
249 |
|
|
}
|
250 |
|
|
if (pci_set_dma_mask(PciDev, CPQFCTS_DMA_MASK) != 0) {
|
251 |
|
|
printk(KERN_WARNING "cpqfc: HBA cannot support required DMA mask, skipping.\n");
|
252 |
|
|
continue;
|
253 |
|
|
}
|
254 |
|
|
// NOTE: (kernel 2.2.12-32) limits allocation to 128k bytes...
|
255 |
|
|
printk(" scsi_register allocating %d bytes for FC HBA\n", (u32) sizeof(CPQFCHBA));
|
256 |
|
|
|
257 |
|
|
HostAdapter = scsi_register(ScsiHostTemplate, sizeof(CPQFCHBA));
|
258 |
|
|
|
259 |
|
|
if (HostAdapter == NULL)
|
260 |
|
|
continue;
|
261 |
|
|
DEBUG_PCI(printk(" HBA found!\n"));
|
262 |
|
|
DEBUG_PCI(printk(" HostAdapter->PciDev->irq = %u\n", PciDev->irq));
|
263 |
|
|
DEBUG_PCI(printk(" PciDev->baseaddress[0]= %lx\n", PciDev->resource[0].start));
|
264 |
|
|
DEBUG_PCI(printk(" PciDev->baseaddress[1]= %lx\n", PciDev->resource[1].start));
|
265 |
|
|
DEBUG_PCI(printk(" PciDev->baseaddress[2]= %lx\n", PciDev->resource[2].start));
|
266 |
|
|
DEBUG_PCI(printk(" PciDev->baseaddress[3]= %lx\n", PciDev->resource[3].start));
|
267 |
|
|
|
268 |
|
|
scsi_set_pci_device(HostAdapter, PciDev);
|
269 |
|
|
HostAdapter->irq = PciDev->irq; // copy for Scsi layers
|
270 |
|
|
|
271 |
|
|
// HP Tachlite uses two (255-byte) ranges of Port I/O (lower & upper),
|
272 |
|
|
// for a total I/O port address space of 512 bytes.
|
273 |
|
|
// mask out the I/O port address (lower) & record
|
274 |
|
|
HostAdapter->io_port = (unsigned int)
|
275 |
|
|
PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK;
|
276 |
|
|
HostAdapter->n_io_port = 0xff;
|
277 |
|
|
|
278 |
|
|
// i.e., expect 128 targets (arbitrary number), while the
|
279 |
|
|
// RA-4000 supports 32 LUNs
|
280 |
|
|
HostAdapter->max_id = 0; // incremented as devices log in
|
281 |
|
|
HostAdapter->max_lun = CPQFCTS_MAX_LUN; // LUNs per FC device
|
282 |
|
|
HostAdapter->max_channel = CPQFCTS_MAX_CHANNEL; // multiple busses?
|
283 |
|
|
|
284 |
|
|
// get the pointer to our HBA specific data... (one for
|
285 |
|
|
// each HBA on the PCI bus(ses)).
|
286 |
|
|
cpqfcHBAdata = (CPQFCHBA *) HostAdapter->hostdata;
|
287 |
|
|
|
288 |
|
|
// make certain our data struct is clear
|
289 |
|
|
memset(cpqfcHBAdata, 0, sizeof(CPQFCHBA));
|
290 |
|
|
|
291 |
|
|
|
292 |
|
|
// initialize our HBA info
|
293 |
|
|
cpqfcHBAdata->HBAnum = NumberOfAdapters;
|
294 |
|
|
|
295 |
|
|
cpqfcHBAdata->HostAdapter = HostAdapter; // back ptr
|
296 |
|
|
Cpqfc_initHBAdata(cpqfcHBAdata, PciDev); // fill MOST fields
|
297 |
|
|
|
298 |
|
|
cpqfcHBAdata->HBAnum = NumberOfAdapters;
|
299 |
|
|
cpqfcHBAdata->hba_spinlock = SPIN_LOCK_UNLOCKED;
|
300 |
|
|
|
301 |
|
|
// request necessary resources and check for conflicts
|
302 |
|
|
if (request_irq(HostAdapter->irq, cpqfcTS_intr_handler, SA_INTERRUPT | SA_SHIRQ, DEV_NAME, HostAdapter)) {
|
303 |
|
|
printk(" IRQ %u already used\n", HostAdapter->irq);
|
304 |
|
|
scsi_unregister(HostAdapter);
|
305 |
|
|
continue;
|
306 |
|
|
}
|
307 |
|
|
// Since we have two 256-byte I/O port ranges (upper
|
308 |
|
|
// and lower), check them both
|
309 |
|
|
if (check_region(cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff)) {
|
310 |
|
|
printk(" cpqfcTS address in use: %x\n", cpqfcHBAdata->fcChip.Registers.IOBaseU);
|
311 |
|
|
free_irq(HostAdapter->irq, HostAdapter);
|
312 |
|
|
scsi_unregister(HostAdapter);
|
313 |
|
|
continue;
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
if (check_region(cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff)) {
|
317 |
|
|
printk(" cpqfcTS address in use: %x\n", cpqfcHBAdata->fcChip.Registers.IOBaseL);
|
318 |
|
|
free_irq(HostAdapter->irq, HostAdapter);
|
319 |
|
|
scsi_unregister(HostAdapter);
|
320 |
|
|
continue;
|
321 |
|
|
}
|
322 |
|
|
// OK, we should be able to grab everything we need now.
|
323 |
|
|
request_region(cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff, DEV_NAME);
|
324 |
|
|
request_region(cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff, DEV_NAME);
|
325 |
|
|
DEBUG_PCI(printk(" Requesting 255 I/O addresses @ %x\n", cpqfcHBAdata->fcChip.Registers.IOBaseL));
|
326 |
|
|
DEBUG_PCI(printk(" Requesting 255 I/O addresses @ %x\n", cpqfcHBAdata->fcChip.Registers.IOBaseU));
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
// start our kernel worker thread
|
330 |
|
|
|
331 |
|
|
launch_FCworker_thread(HostAdapter);
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
// start our TimerTask...
|
335 |
|
|
|
336 |
|
|
cpqfcTStimer = &cpqfcHBAdata->cpqfcTStimer;
|
337 |
|
|
|
338 |
|
|
init_timer(cpqfcTStimer); // Linux clears next/prev values
|
339 |
|
|
cpqfcTStimer->expires = jiffies + HZ; // one second
|
340 |
|
|
cpqfcTStimer->data = (unsigned long) cpqfcHBAdata; // this adapter
|
341 |
|
|
cpqfcTStimer->function = cpqfcTSheartbeat; // handles timeouts, housekeeping
|
342 |
|
|
|
343 |
|
|
add_timer(cpqfcTStimer); // give it to Linux
|
344 |
|
|
|
345 |
|
|
|
346 |
|
|
// now initialize our hardware...
|
347 |
|
|
if (cpqfcHBAdata->fcChip.InitializeTachyon(cpqfcHBAdata, 1, 1)) {
|
348 |
|
|
printk(KERN_WARNING "cpqfc: initialization of HBA hardware failed.\n");
|
349 |
|
|
// FIXME: might want to do something better than nothing here.
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
cpqfcHBAdata->fcStatsTime = jiffies; // (for FC Statistics delta)
|
353 |
|
|
|
354 |
|
|
// give our HBA time to initialize and login current devices...
|
355 |
|
|
{
|
356 |
|
|
// The Brocade switch (e.g. 2400, 2010, etc.) as of March 2000,
|
357 |
|
|
// has the following algorithm for FL_Port startup:
|
358 |
|
|
// Time(sec) Action
|
359 |
|
|
// 0: Device Plugin and LIP(F7,F7) transmission
|
360 |
|
|
// 1.0 LIP incoming
|
361 |
|
|
// 1.027 LISA incoming, no CLS! (link not up)
|
362 |
|
|
// 1.028 NOS incoming (switch test for N_Port)
|
363 |
|
|
// 1.577 ED_TOV expired, transmit LIPs again
|
364 |
|
|
// 3.0 LIP(F8,F7) incoming (switch passes Tach Prim.Sig)
|
365 |
|
|
// 3.028 LILP received, link up, FLOGI starts
|
366 |
|
|
// slowest(worst) case, measured on 1Gb Finisar GT analyzer
|
367 |
|
|
|
368 |
|
|
unsigned long stop_time;
|
369 |
|
|
|
370 |
|
|
spin_unlock_irq(&io_request_lock);
|
371 |
|
|
stop_time = jiffies + 4 * HZ;
|
372 |
|
|
while (time_before(jiffies, stop_time))
|
373 |
|
|
schedule(); // (our worker task needs to run)
|
374 |
|
|
|
375 |
|
|
spin_lock_irq(&io_request_lock);
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
NumberOfAdapters++;
|
379 |
|
|
} // end of while()
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
LEAVE("cpqfcTS_detect");
|
383 |
|
|
|
384 |
|
|
return NumberOfAdapters;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
static void my_ioctl_done(Scsi_Cmnd * SCpnt)
|
388 |
|
|
{
|
389 |
|
|
struct request *req;
|
390 |
|
|
|
391 |
|
|
req = &SCpnt->request;
|
392 |
|
|
req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */
|
393 |
|
|
|
394 |
|
|
if (req->CPQFC_WAITING != NULL)
|
395 |
|
|
CPQFC_COMPLETE(req->CPQFC_WAITING);
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
|
399 |
|
|
|
400 |
|
|
int cpqfcTS_ioctl(Scsi_Device * ScsiDev, int Cmnd, void *arg)
|
401 |
|
|
{
|
402 |
|
|
int result = 0;
|
403 |
|
|
struct Scsi_Host *HostAdapter = ScsiDev->host;
|
404 |
|
|
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *) HostAdapter->hostdata;
|
405 |
|
|
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
|
406 |
|
|
PFC_LOGGEDIN_PORT pLoggedInPort;
|
407 |
|
|
Scsi_Cmnd DumCmnd;
|
408 |
|
|
int i, j;
|
409 |
|
|
VENDOR_IOCTL_REQ ioc;
|
410 |
|
|
cpqfc_passthru_t *vendor_cmd;
|
411 |
|
|
Scsi_Device *SDpnt;
|
412 |
|
|
Scsi_Cmnd *ScsiPassThruCmnd;
|
413 |
|
|
|
414 |
|
|
ENTER("cpqfcTS_ioctl ");
|
415 |
|
|
|
416 |
|
|
// can we find an FC device mapping to this SCSI target?
|
417 |
|
|
DumCmnd.channel = ScsiDev->channel; // For searching
|
418 |
|
|
DumCmnd.target = ScsiDev->id;
|
419 |
|
|
DumCmnd.lun = ScsiDev->lun;
|
420 |
|
|
pLoggedInPort = fcFindLoggedInPort(fcChip, &DumCmnd, // search Scsi Nexus
|
421 |
|
|
0, // DON'T search linked list for FC port id
|
422 |
|
|
NULL, // DON'T search linked list for FC WWN
|
423 |
|
|
NULL); // DON'T care about end of list
|
424 |
|
|
|
425 |
|
|
if (pLoggedInPort == NULL) // not found!
|
426 |
|
|
{
|
427 |
|
|
result = -ENXIO;
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
else // we know what FC device to operate on...
|
431 |
|
|
{
|
432 |
|
|
// printk("ioctl CMND %d", Cmnd);
|
433 |
|
|
switch (Cmnd) {
|
434 |
|
|
// Passthrough provides a mechanism to bypass the RAID
|
435 |
|
|
// or other controller and talk directly to the devices
|
436 |
|
|
// (e.g. physical disk drive)
|
437 |
|
|
// Passthrough commands, unfortunately, tend to be vendor
|
438 |
|
|
// specific; this is tailored to COMPAQ's RAID (RA4x00)
|
439 |
|
|
case CPQFCTS_SCSI_PASSTHRU:
|
440 |
|
|
{
|
441 |
|
|
void *buf = NULL; // for kernel space buffer for user data
|
442 |
|
|
|
443 |
|
|
if (!arg)
|
444 |
|
|
return -EINVAL;
|
445 |
|
|
|
446 |
|
|
// must be super user to send stuff directly to the
|
447 |
|
|
// controller and/or physical drives...
|
448 |
|
|
if (!suser())
|
449 |
|
|
return -EPERM;
|
450 |
|
|
|
451 |
|
|
// copy the caller's struct to our space.
|
452 |
|
|
if (copy_from_user(&ioc, arg, sizeof(VENDOR_IOCTL_REQ)))
|
453 |
|
|
return (-EFAULT);
|
454 |
|
|
|
455 |
|
|
vendor_cmd = ioc.argp; // i.e., CPQ specific command struct
|
456 |
|
|
|
457 |
|
|
// If necessary, grab a kernel/DMA buffer
|
458 |
|
|
if (vendor_cmd->len) {
|
459 |
|
|
buf = kmalloc(vendor_cmd->len, GFP_KERNEL);
|
460 |
|
|
if (!buf)
|
461 |
|
|
return -ENOMEM;
|
462 |
|
|
}
|
463 |
|
|
// Now build a SCSI_CMND to pass down...
|
464 |
|
|
// This function allocates and sets Scsi_Cmnd ptrs such as
|
465 |
|
|
// ->channel, ->target, ->host
|
466 |
|
|
ScsiPassThruCmnd = scsi_allocate_device(ScsiDev, 1, 1);
|
467 |
|
|
|
468 |
|
|
// Need data from user?
|
469 |
|
|
// make sure caller's buffer is in kernel space.
|
470 |
|
|
if ((vendor_cmd->rw_flag == VENDOR_WRITE_OPCODE) && vendor_cmd->len)
|
471 |
|
|
if (copy_from_user(buf, vendor_cmd->bufp, vendor_cmd->len)) {
|
472 |
|
|
kfree(buf);
|
473 |
|
|
return (-EFAULT);
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
// copy the CDB (if/when MAX_COMMAND_SIZE is 16, remove copy below)
|
477 |
|
|
memcpy(&ScsiPassThruCmnd->cmnd[0], &vendor_cmd->cdb[0], MAX_COMMAND_SIZE);
|
478 |
|
|
// we want to copy all 16 bytes into the FCP-SCSI CDB,
|
479 |
|
|
// although the actual passthru only uses up to the
|
480 |
|
|
// first 12.
|
481 |
|
|
|
482 |
|
|
ScsiPassThruCmnd->cmd_len = 16; // sizeof FCP-SCSI CDB
|
483 |
|
|
|
484 |
|
|
// Unfortunately, the SCSI command cmnd[] field has only
|
485 |
|
|
// 12 bytes. Ideally the MAX_COMMAND_SIZE should be increased
|
486 |
|
|
// to 16 for newer Fibre Channel and SCSI-3 larger CDBs.
|
487 |
|
|
// However, to avoid a mandatory kernel rebuild, we use the SCp
|
488 |
|
|
// spare field to store the extra 4 bytes ( ugly :-(
|
489 |
|
|
|
490 |
|
|
if (MAX_COMMAND_SIZE < 16) {
|
491 |
|
|
memcpy(&ScsiPassThruCmnd->SCp.buffers_residual, &vendor_cmd->cdb[12], 4);
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
|
495 |
|
|
ScsiPassThruCmnd->SCp.sent_command = 1; // PASSTHRU!
|
496 |
|
|
// suppress LUN masking
|
497 |
|
|
// and VSA logic
|
498 |
|
|
|
499 |
|
|
// Use spare fields to copy FCP-SCSI LUN address info...
|
500 |
|
|
ScsiPassThruCmnd->SCp.phase = vendor_cmd->bus;
|
501 |
|
|
ScsiPassThruCmnd->SCp.have_data_in = vendor_cmd->pdrive;
|
502 |
|
|
|
503 |
|
|
// We copy the scheme used by scsi.c to submit commands
|
504 |
|
|
// to our own HBA. We do this in order to stall the
|
505 |
|
|
// thread calling the IOCTL until it completes, and use
|
506 |
|
|
// the same "_quecommand" function for synchronizing
|
507 |
|
|
// FC Link events with our "worker thread".
|
508 |
|
|
|
509 |
|
|
{
|
510 |
|
|
CPQFC_DECLARE_COMPLETION(wait);
|
511 |
|
|
ScsiPassThruCmnd->request.CPQFC_WAITING = &wait;
|
512 |
|
|
// eventually gets us to our own _quecommand routine
|
513 |
|
|
scsi_do_cmd(ScsiPassThruCmnd, &vendor_cmd->cdb[0], buf, vendor_cmd->len, my_ioctl_done, 10 * HZ, 1); // timeout,retries
|
514 |
|
|
// Other I/Os can now resume; we wait for our ioctl
|
515 |
|
|
// command to complete
|
516 |
|
|
CPQFC_WAIT_FOR_COMPLETION(&wait);
|
517 |
|
|
ScsiPassThruCmnd->request.CPQFC_WAITING = NULL;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
result = ScsiPassThruCmnd->result;
|
521 |
|
|
|
522 |
|
|
// copy any sense data back to caller
|
523 |
|
|
if (result != 0) {
|
524 |
|
|
memcpy(vendor_cmd->sense_data, // see struct def - size=40
|
525 |
|
|
ScsiPassThruCmnd->sense_buffer, sizeof(ScsiPassThruCmnd->sense_buffer));
|
526 |
|
|
}
|
527 |
|
|
SDpnt = ScsiPassThruCmnd->device;
|
528 |
|
|
scsi_release_command(ScsiPassThruCmnd); // "de-allocate"
|
529 |
|
|
ScsiPassThruCmnd = NULL;
|
530 |
|
|
|
531 |
|
|
// if (!SDpnt->was_reset && SDpnt->scsi_request_fn)
|
532 |
|
|
// (*SDpnt->scsi_request_fn)();
|
533 |
|
|
|
534 |
|
|
wake_up(&SDpnt->scpnt_wait);
|
535 |
|
|
|
536 |
|
|
// need to pass data back to user (space)?
|
537 |
|
|
if ((vendor_cmd->rw_flag == VENDOR_READ_OPCODE) && vendor_cmd->len)
|
538 |
|
|
if (copy_to_user(vendor_cmd->bufp, buf, vendor_cmd->len))
|
539 |
|
|
result = -EFAULT;
|
540 |
|
|
|
541 |
|
|
if (buf)
|
542 |
|
|
kfree(buf);
|
543 |
|
|
|
544 |
|
|
return result;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
case CPQFCTS_GETPCIINFO:
|
548 |
|
|
{
|
549 |
|
|
cpqfc_pci_info_struct pciinfo;
|
550 |
|
|
|
551 |
|
|
if (!arg)
|
552 |
|
|
return -EINVAL;
|
553 |
|
|
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
pciinfo.bus = cpqfcHBAdata->PciDev->bus->number;
|
557 |
|
|
pciinfo.dev_fn = cpqfcHBAdata->PciDev->devfn;
|
558 |
|
|
pciinfo.board_id = cpqfcHBAdata->PciDev->device | (cpqfcHBAdata->PciDev->vendor << 16);
|
559 |
|
|
|
560 |
|
|
if (copy_to_user(arg, &pciinfo, sizeof(cpqfc_pci_info_struct)))
|
561 |
|
|
return (-EFAULT);
|
562 |
|
|
return 0;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
case CPQFCTS_GETDRIVVER:
|
566 |
|
|
{
|
567 |
|
|
DriverVer_type DriverVer = CPQFCTS_DRIVER_VER(VER_MAJOR, VER_MINOR, VER_SUBMINOR);
|
568 |
|
|
|
569 |
|
|
if (!arg)
|
570 |
|
|
return -EINVAL;
|
571 |
|
|
|
572 |
|
|
if (copy_to_user(arg, &DriverVer, sizeof(DriverVer)))
|
573 |
|
|
return (-EFAULT);
|
574 |
|
|
return 0;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
|
578 |
|
|
|
579 |
|
|
case CPQFC_IOCTL_FC_TARGET_ADDRESS:
|
580 |
|
|
result = verify_area(VERIFY_WRITE, arg, sizeof(Scsi_FCTargAddress));
|
581 |
|
|
if (result)
|
582 |
|
|
break;
|
583 |
|
|
|
584 |
|
|
put_user(pLoggedInPort->port_id, &((Scsi_FCTargAddress *) arg)->host_port_id);
|
585 |
|
|
|
586 |
|
|
for (i = 3, j = 0; i >= 0; i--) // copy the LOGIN port's WWN
|
587 |
|
|
put_user(pLoggedInPort->u.ucWWN[i], &((Scsi_FCTargAddress *) arg)->host_wwn[j++]);
|
588 |
|
|
for (i = 7; i > 3; i--) // copy the LOGIN port's WWN
|
589 |
|
|
put_user(pLoggedInPort->u.ucWWN[i], &((Scsi_FCTargAddress *) arg)->host_wwn[j++]);
|
590 |
|
|
break;
|
591 |
|
|
|
592 |
|
|
|
593 |
|
|
case CPQFC_IOCTL_FC_TDR:
|
594 |
|
|
|
595 |
|
|
result = cpqfcTS_TargetDeviceReset(ScsiDev, 0);
|
596 |
|
|
|
597 |
|
|
break;
|
598 |
|
|
|
599 |
|
|
|
600 |
|
|
|
601 |
|
|
|
602 |
|
|
default:
|
603 |
|
|
result = -EINVAL;
|
604 |
|
|
break;
|
605 |
|
|
}
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
LEAVE("cpqfcTS_ioctl");
|
609 |
|
|
return result;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
|
613 |
|
|
/* "Release" the Host Bus Adapter...
|
614 |
|
|
disable interrupts, stop the HBA, release the interrupt,
|
615 |
|
|
and free all resources */
|
616 |
|
|
|
617 |
|
|
int cpqfcTS_release(struct Scsi_Host *HostAdapter)
|
618 |
|
|
{
|
619 |
|
|
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *) HostAdapter->hostdata;
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
ENTER("cpqfcTS_release");
|
623 |
|
|
|
624 |
|
|
DEBUG_PCI(printk(" cpqfcTS: delete timer...\n"));
|
625 |
|
|
del_timer(&cpqfcHBAdata->cpqfcTStimer);
|
626 |
|
|
|
627 |
|
|
// disable the hardware...
|
628 |
|
|
DEBUG_PCI(printk(" disable hardware, destroy queues, free mem\n"));
|
629 |
|
|
cpqfcHBAdata->fcChip.ResetTachyon(cpqfcHBAdata, CLEAR_FCPORTS);
|
630 |
|
|
|
631 |
|
|
// kill kernel thread
|
632 |
|
|
if (cpqfcHBAdata->worker_thread) // (only if exists)
|
633 |
|
|
{
|
634 |
|
|
DECLARE_MUTEX_LOCKED(sem); // synchronize thread kill
|
635 |
|
|
|
636 |
|
|
cpqfcHBAdata->notify_wt = &sem;
|
637 |
|
|
DEBUG_PCI(printk(" killing kernel thread\n"));
|
638 |
|
|
send_sig(SIGKILL, cpqfcHBAdata->worker_thread, 1);
|
639 |
|
|
down(&sem);
|
640 |
|
|
cpqfcHBAdata->notify_wt = NULL;
|
641 |
|
|
|
642 |
|
|
}
|
643 |
|
|
// free Linux resources
|
644 |
|
|
DEBUG_PCI(printk(" cpqfcTS: freeing resources...\n"));
|
645 |
|
|
free_irq(HostAdapter->irq, HostAdapter);
|
646 |
|
|
scsi_unregister(HostAdapter);
|
647 |
|
|
release_region(cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff);
|
648 |
|
|
release_region(cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff);
|
649 |
|
|
/* we get "vfree: bad address" executing this - need to investigate...
|
650 |
|
|
if( (void*)((unsigned long)cpqfcHBAdata->fcChip.Registers.MemBase) !=
|
651 |
|
|
cpqfcHBAdata->fcChip.Registers.ReMapMemBase)
|
652 |
|
|
vfree( cpqfcHBAdata->fcChip.Registers.ReMapMemBase);
|
653 |
|
|
*/
|
654 |
|
|
|
655 |
|
|
LEAVE("cpqfcTS_release");
|
656 |
|
|
return 0;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
const char *cpqfcTS_info(struct Scsi_Host *HostAdapter)
|
661 |
|
|
{
|
662 |
|
|
static char buf[300];
|
663 |
|
|
CPQFCHBA *cpqfcHBA;
|
664 |
|
|
int BusSpeed, BusWidth;
|
665 |
|
|
|
666 |
|
|
// get the pointer to our Scsi layer HBA buffer
|
667 |
|
|
cpqfcHBA = (CPQFCHBA *) HostAdapter->hostdata;
|
668 |
|
|
|
669 |
|
|
BusWidth = (cpqfcHBA->fcChip.Registers.PCIMCTR & 0x4) > 0 ? 64 : 32;
|
670 |
|
|
|
671 |
|
|
if (cpqfcHBA->fcChip.Registers.TYconfig.value & 0x80000000)
|
672 |
|
|
BusSpeed = 66;
|
673 |
|
|
else
|
674 |
|
|
BusSpeed = 33;
|
675 |
|
|
|
676 |
|
|
sprintf(buf,
|
677 |
|
|
"%s: WWN %08X%08X\n on PCI bus %d device 0x%02x irq %d IObaseL 0x%x, MEMBASE 0x%x\nPCI bus width %d bits, bus speed %d MHz\nFCP-SCSI Driver v%d.%d.%d",
|
678 |
|
|
cpqfcHBA->fcChip.Name,
|
679 |
|
|
cpqfcHBA->fcChip.Registers.wwn_hi,
|
680 |
|
|
cpqfcHBA->fcChip.Registers.wwn_lo, cpqfcHBA->PciDev->bus->number, cpqfcHBA->PciDev->device, HostAdapter->irq, cpqfcHBA->fcChip.Registers.IOBaseL, cpqfcHBA->fcChip.Registers.MemBase, BusWidth, BusSpeed, VER_MAJOR, VER_MINOR, VER_SUBMINOR);
|
681 |
|
|
|
682 |
|
|
|
683 |
|
|
cpqfcTSDecodeGBICtype(&cpqfcHBA->fcChip, &buf[strlen(buf)]);
|
684 |
|
|
cpqfcTSGetLPSM(&cpqfcHBA->fcChip, &buf[strlen(buf)]);
|
685 |
|
|
return buf;
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
//
|
689 |
|
|
// /proc/scsi support. The following routines allow us to do 'normal'
|
690 |
|
|
// sprintf like calls to return the currently requested piece (buflenght
|
691 |
|
|
// chars, starting at bufoffset) of the file. Although procfs allows for
|
692 |
|
|
// a 1 Kb bytes overflow after te supplied buffer, I consider it bad
|
693 |
|
|
// programming to use it to make programming a little simpler. This piece
|
694 |
|
|
// of coding is borrowed from ncr53c8xx.c with some modifications
|
695 |
|
|
//
|
696 |
|
|
struct info_str {
|
697 |
|
|
char *buffer; // Pointer to output buffer
|
698 |
|
|
int buflength; // It's length
|
699 |
|
|
int bufoffset; // File offset corresponding with buf[0]
|
700 |
|
|
int buffillen; // Current filled length
|
701 |
|
|
int filpos; // Current file offset
|
702 |
|
|
};
|
703 |
|
|
|
704 |
|
|
static void copy_mem_info(struct info_str *info, char *data, int datalen)
|
705 |
|
|
{
|
706 |
|
|
|
707 |
|
|
if (info->filpos < info->bufoffset) { // Current offset before buffer offset
|
708 |
|
|
if (info->filpos + datalen <= info->bufoffset) {
|
709 |
|
|
info->filpos += datalen; // Discard if completely before buffer
|
710 |
|
|
return;
|
711 |
|
|
} else { // Partial copy, set to begin
|
712 |
|
|
data += (info->bufoffset - info->filpos);
|
713 |
|
|
datalen -= (info->bufoffset - info->filpos);
|
714 |
|
|
info->filpos = info->bufoffset;
|
715 |
|
|
}
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
info->filpos += datalen; // Update current offset
|
719 |
|
|
|
720 |
|
|
if (info->buffillen == info->buflength) // Buffer full, discard
|
721 |
|
|
return;
|
722 |
|
|
|
723 |
|
|
if (info->buflength - info->buffillen < datalen) // Overflows buffer ?
|
724 |
|
|
datalen = info->buflength - info->buffillen;
|
725 |
|
|
|
726 |
|
|
memcpy(info->buffer + info->buffillen, data, datalen);
|
727 |
|
|
info->buffillen += datalen;
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
static int copy_info(struct info_str *info, char *fmt, ...)
|
731 |
|
|
{
|
732 |
|
|
va_list args;
|
733 |
|
|
char buf[400];
|
734 |
|
|
int len;
|
735 |
|
|
|
736 |
|
|
va_start(args, fmt);
|
737 |
|
|
len = vsprintf(buf, fmt, args);
|
738 |
|
|
va_end(args);
|
739 |
|
|
|
740 |
|
|
copy_mem_info(info, buf, len);
|
741 |
|
|
return len;
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
|
745 |
|
|
// Routine to get data for /proc RAM filesystem
|
746 |
|
|
//
|
747 |
|
|
int cpqfcTS_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int inout)
|
748 |
|
|
{
|
749 |
|
|
struct Scsi_Host *host;
|
750 |
|
|
Scsi_Cmnd DumCmnd;
|
751 |
|
|
int Chan, Targ, i;
|
752 |
|
|
struct info_str info;
|
753 |
|
|
CPQFCHBA *cpqfcHBA;
|
754 |
|
|
PTACHYON fcChip;
|
755 |
|
|
PFC_LOGGEDIN_PORT pLoggedInPort;
|
756 |
|
|
char buf[81];
|
757 |
|
|
|
758 |
|
|
// Search the Scsi host list for our controller
|
759 |
|
|
for (host = scsi_hostlist; host; host = host->next)
|
760 |
|
|
if (host->host_no == hostno)
|
761 |
|
|
break;
|
762 |
|
|
|
763 |
|
|
if (!host)
|
764 |
|
|
return -ESRCH;
|
765 |
|
|
|
766 |
|
|
if (inout)
|
767 |
|
|
return -EINVAL;
|
768 |
|
|
|
769 |
|
|
// get the pointer to our Scsi layer HBA buffer
|
770 |
|
|
cpqfcHBA = (CPQFCHBA *) host->hostdata;
|
771 |
|
|
fcChip = &cpqfcHBA->fcChip;
|
772 |
|
|
|
773 |
|
|
*start = buffer;
|
774 |
|
|
|
775 |
|
|
info.buffer = buffer;
|
776 |
|
|
info.buflength = length;
|
777 |
|
|
info.bufoffset = offset;
|
778 |
|
|
info.filpos = 0;
|
779 |
|
|
info.buffillen = 0;
|
780 |
|
|
copy_info(&info, "Driver version = %d.%d.%d", VER_MAJOR, VER_MINOR, VER_SUBMINOR);
|
781 |
|
|
cpqfcTSDecodeGBICtype(&cpqfcHBA->fcChip, &buf[0]);
|
782 |
|
|
cpqfcTSGetLPSM(&cpqfcHBA->fcChip, &buf[strlen(buf)]);
|
783 |
|
|
copy_info(&info, "%s\n", buf);
|
784 |
|
|
|
785 |
|
|
#define DISPLAY_WWN_INFO
|
786 |
|
|
#ifdef DISPLAY_WWN_INFO
|
787 |
|
|
copy_info(&info, "WWN database: (\"port_id: 000000\" means disconnected)\n");
|
788 |
|
|
for (Chan = 0; Chan <= host->max_channel; Chan++) {
|
789 |
|
|
DumCmnd.channel = Chan;
|
790 |
|
|
for (Targ = 0; Targ <= host->max_id; Targ++) {
|
791 |
|
|
DumCmnd.target = Targ;
|
792 |
|
|
if ((pLoggedInPort = fcFindLoggedInPort(fcChip, &DumCmnd, // search Scsi Nexus
|
793 |
|
|
0, // DON'T search list for FC port id
|
794 |
|
|
NULL, // DON'T search list for FC WWN
|
795 |
|
|
NULL))) { // DON'T care about end of list
|
796 |
|
|
copy_info(&info, "Host: scsi%d Channel: %02d TargetId: %02d -> WWN: ", hostno, Chan, Targ);
|
797 |
|
|
for (i = 3; i >= 0; i--) // copy the LOGIN port's WWN
|
798 |
|
|
copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]);
|
799 |
|
|
for (i = 7; i > 3; i--) // copy the LOGIN port's WWN
|
800 |
|
|
copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]);
|
801 |
|
|
copy_info(&info, " port_id: %06X\n", pLoggedInPort->port_id);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
}
|
805 |
|
|
#endif
|
806 |
|
|
|
807 |
|
|
|
808 |
|
|
|
809 |
|
|
|
810 |
|
|
|
811 |
|
|
// Unfortunately, the proc_info buffer isn't big enough
|
812 |
|
|
// for everything we would like...
|
813 |
|
|
// For FC stats, compile this and turn off WWN stuff above
|
814 |
|
|
//#define DISPLAY_FC_STATS
|
815 |
|
|
#ifdef DISPLAY_FC_STATS
|
816 |
|
|
// get the Fibre Channel statistics
|
817 |
|
|
{
|
818 |
|
|
int DeltaSecs = (jiffies - cpqfcHBA->fcStatsTime) / HZ;
|
819 |
|
|
int days, hours, minutes, secs;
|
820 |
|
|
|
821 |
|
|
days = DeltaSecs / (3600 * 24); // days
|
822 |
|
|
hours = (DeltaSecs % (3600 * 24)) / 3600; // hours
|
823 |
|
|
minutes = (DeltaSecs % 3600 / 60); // minutes
|
824 |
|
|
secs = DeltaSecs % 60; // secs
|
825 |
|
|
copy_info(&info, "Fibre Channel Stats (time dd:hh:mm:ss %02u:%02u:%02u:%02u\n", days, hours, minutes, secs);
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
cpqfcHBA->fcStatsTime = jiffies; // (for next delta)
|
829 |
|
|
|
830 |
|
|
copy_info(&info, " LinkUp %9u LinkDown %u\n", fcChip->fcStats.linkUp, fcChip->fcStats.linkDown);
|
831 |
|
|
|
832 |
|
|
copy_info(&info, " Loss of Signal %9u Loss of Sync %u\n", fcChip->fcStats.LossofSignal, fcChip->fcStats.LossofSync);
|
833 |
|
|
|
834 |
|
|
copy_info(&info, " Discarded Frames %9u Bad CRC Frame %u\n", fcChip->fcStats.Dis_Frm, fcChip->fcStats.Bad_CRC);
|
835 |
|
|
|
836 |
|
|
copy_info(&info, " TACH LinkFailTX %9u TACH LinkFailRX %u\n", fcChip->fcStats.linkFailTX, fcChip->fcStats.linkFailRX);
|
837 |
|
|
|
838 |
|
|
copy_info(&info, " TACH RxEOFa %9u TACH Elastic Store %u\n", fcChip->fcStats.Rx_EOFa, fcChip->fcStats.e_stores);
|
839 |
|
|
|
840 |
|
|
copy_info(&info, " BufferCreditWait %9uus TACH FM Inits %u\n", fcChip->fcStats.BB0_Timer * 10, fcChip->fcStats.FMinits);
|
841 |
|
|
|
842 |
|
|
copy_info(&info, " FC-2 Timeouts %9u FC-2 Logouts %u\n", fcChip->fcStats.timeouts, fcChip->fcStats.logouts);
|
843 |
|
|
|
844 |
|
|
copy_info(&info, " FC-2 Aborts %9u FC-4 Aborts %u\n", fcChip->fcStats.FC2aborted, fcChip->fcStats.FC4aborted);
|
845 |
|
|
|
846 |
|
|
// clear the counters
|
847 |
|
|
cpqfcTSClearLinkStatusCounters(fcChip);
|
848 |
|
|
#endif
|
849 |
|
|
|
850 |
|
|
return info.buffillen;
|
851 |
|
|
}
|
852 |
|
|
|
853 |
|
|
|
854 |
|
|
#if DEBUG_CMND
|
855 |
|
|
|
856 |
|
|
u8 *ScsiToAscii(u8 ScsiCommand)
|
857 |
|
|
{
|
858 |
|
|
|
859 |
|
|
/*++
|
860 |
|
|
|
861 |
|
|
Routine Description:
|
862 |
|
|
|
863 |
|
|
Converts a SCSI command to a text string for debugging purposes.
|
864 |
|
|
|
865 |
|
|
|
866 |
|
|
Arguments:
|
867 |
|
|
|
868 |
|
|
ScsiCommand -- hex value SCSI Command
|
869 |
|
|
|
870 |
|
|
|
871 |
|
|
Return Value:
|
872 |
|
|
|
873 |
|
|
An ASCII, null-terminated string if found, else returns NULL.
|
874 |
|
|
|
875 |
|
|
Original code from M. McGowen, Compaq
|
876 |
|
|
--*/
|
877 |
|
|
|
878 |
|
|
|
879 |
|
|
switch (ScsiCommand) {
|
880 |
|
|
case 0x00:
|
881 |
|
|
return ("Test Unit Ready");
|
882 |
|
|
|
883 |
|
|
case 0x01:
|
884 |
|
|
return ("Rezero Unit or Rewind");
|
885 |
|
|
|
886 |
|
|
case 0x02:
|
887 |
|
|
return ("Request Block Address");
|
888 |
|
|
|
889 |
|
|
case 0x03:
|
890 |
|
|
return ("Requese Sense");
|
891 |
|
|
|
892 |
|
|
case 0x04:
|
893 |
|
|
return ("Format Unit");
|
894 |
|
|
|
895 |
|
|
case 0x05:
|
896 |
|
|
return ("Read Block Limits");
|
897 |
|
|
|
898 |
|
|
case 0x07:
|
899 |
|
|
return ("Reassign Blocks");
|
900 |
|
|
|
901 |
|
|
case 0x08:
|
902 |
|
|
return ("Read (6)");
|
903 |
|
|
|
904 |
|
|
case 0x0a:
|
905 |
|
|
return ("Write (6)");
|
906 |
|
|
|
907 |
|
|
case 0x0b:
|
908 |
|
|
return ("Seek (6)");
|
909 |
|
|
|
910 |
|
|
case 0x12:
|
911 |
|
|
return ("Inquiry");
|
912 |
|
|
|
913 |
|
|
case 0x15:
|
914 |
|
|
return ("Mode Select (6)");
|
915 |
|
|
|
916 |
|
|
case 0x16:
|
917 |
|
|
return ("Reserve");
|
918 |
|
|
|
919 |
|
|
case 0x17:
|
920 |
|
|
return ("Release");
|
921 |
|
|
|
922 |
|
|
case 0x1a:
|
923 |
|
|
return ("ModeSen(6)");
|
924 |
|
|
|
925 |
|
|
case 0x1b:
|
926 |
|
|
return ("Start/Stop Unit");
|
927 |
|
|
|
928 |
|
|
case 0x1c:
|
929 |
|
|
return ("Receive Diagnostic Results");
|
930 |
|
|
|
931 |
|
|
case 0x1d:
|
932 |
|
|
return ("Send Diagnostic");
|
933 |
|
|
|
934 |
|
|
case 0x25:
|
935 |
|
|
return ("Read Capacity");
|
936 |
|
|
|
937 |
|
|
case 0x28:
|
938 |
|
|
return ("Read (10)");
|
939 |
|
|
|
940 |
|
|
case 0x2a:
|
941 |
|
|
return ("Write (10)");
|
942 |
|
|
|
943 |
|
|
case 0x2b:
|
944 |
|
|
return ("Seek (10)");
|
945 |
|
|
|
946 |
|
|
case 0x2e:
|
947 |
|
|
return ("Write and Verify");
|
948 |
|
|
|
949 |
|
|
case 0x2f:
|
950 |
|
|
return ("Verify");
|
951 |
|
|
|
952 |
|
|
case 0x34:
|
953 |
|
|
return ("Pre-Fetch");
|
954 |
|
|
|
955 |
|
|
case 0x35:
|
956 |
|
|
return ("Synchronize Cache");
|
957 |
|
|
|
958 |
|
|
case 0x37:
|
959 |
|
|
return ("Read Defect Data (10)");
|
960 |
|
|
|
961 |
|
|
case 0x3b:
|
962 |
|
|
return ("Write Buffer");
|
963 |
|
|
|
964 |
|
|
case 0x3c:
|
965 |
|
|
return ("Read Buffer");
|
966 |
|
|
|
967 |
|
|
case 0x3e:
|
968 |
|
|
return ("Read Long");
|
969 |
|
|
|
970 |
|
|
case 0x3f:
|
971 |
|
|
return ("Write Long");
|
972 |
|
|
|
973 |
|
|
case 0x41:
|
974 |
|
|
return ("Write Same");
|
975 |
|
|
|
976 |
|
|
case 0x4c:
|
977 |
|
|
return ("Log Select");
|
978 |
|
|
|
979 |
|
|
case 0x4d:
|
980 |
|
|
return ("Log Sense");
|
981 |
|
|
|
982 |
|
|
case 0x56:
|
983 |
|
|
return ("Reserve (10)");
|
984 |
|
|
|
985 |
|
|
case 0x57:
|
986 |
|
|
return ("Release (10)");
|
987 |
|
|
|
988 |
|
|
case 0xa0:
|
989 |
|
|
return ("ReportLuns");
|
990 |
|
|
|
991 |
|
|
case 0xb7:
|
992 |
|
|
return ("Read Defect Data (12)");
|
993 |
|
|
|
994 |
|
|
case 0xca:
|
995 |
|
|
return ("Peripheral Device Addressing SCSI Passthrough");
|
996 |
|
|
|
997 |
|
|
case 0xcb:
|
998 |
|
|
return ("Compaq Array Firmware Passthrough");
|
999 |
|
|
|
1000 |
|
|
default:
|
1001 |
|
|
return (NULL);
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
} // end ScsiToAscii()
|
1005 |
|
|
|
1006 |
|
|
void cpqfcTS_print_scsi_cmd(Scsi_Cmnd * cmd)
|
1007 |
|
|
{
|
1008 |
|
|
|
1009 |
|
|
printk("cpqfcTS: (%s) chnl 0x%02x, trgt = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n", ScsiToAscii(cmd->cmnd[0]), cmd->channel, cmd->target, cmd->lun, cmd->cmd_len);
|
1010 |
|
|
|
1011 |
|
|
if (cmd->cmnd[0] == 0) // Test Unit Ready?
|
1012 |
|
|
{
|
1013 |
|
|
int i;
|
1014 |
|
|
|
1015 |
|
|
printk("Cmnd->request_bufflen = 0x%X, ->use_sg = %d, ->bufflen = %d\n", cmd->request_bufflen, cmd->use_sg, cmd->bufflen);
|
1016 |
|
|
printk("Cmnd->request_buffer = %p, ->sglist_len = %d, ->buffer = %p\n", cmd->request_buffer, cmd->sglist_len, cmd->buffer);
|
1017 |
|
|
for (i = 0; i < cmd->cmd_len; i++)
|
1018 |
|
|
printk("0x%02x ", cmd->cmnd[i]);
|
1019 |
|
|
printk("\n");
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
#endif /* DEBUG_CMND */
|
1025 |
|
|
|
1026 |
|
|
|
1027 |
|
|
|
1028 |
|
|
|
1029 |
|
|
static void QueCmndOnBoardLock(CPQFCHBA * cpqfcHBAdata, Scsi_Cmnd * Cmnd)
|
1030 |
|
|
{
|
1031 |
|
|
int i;
|
1032 |
|
|
|
1033 |
|
|
for (i = 0; i < CPQFCTS_REQ_QUEUE_LEN; i++) { // find spare slot
|
1034 |
|
|
if (cpqfcHBAdata->BoardLockCmnd[i] == NULL) {
|
1035 |
|
|
cpqfcHBAdata->BoardLockCmnd[i] = Cmnd;
|
1036 |
|
|
// printk(" BoardLockCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n",
|
1037 |
|
|
// i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
|
1038 |
|
|
break;
|
1039 |
|
|
}
|
1040 |
|
|
}
|
1041 |
|
|
if (i >= CPQFCTS_REQ_QUEUE_LEN) {
|
1042 |
|
|
printk(" cpqfcTS WARNING: Lost Cmnd %p on BoardLock Q full!", Cmnd);
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
}
|
1046 |
|
|
|
1047 |
|
|
|
1048 |
|
|
static void QueLinkDownCmnd(CPQFCHBA * cpqfcHBAdata, Scsi_Cmnd * Cmnd)
|
1049 |
|
|
{
|
1050 |
|
|
int indx;
|
1051 |
|
|
|
1052 |
|
|
// Remember the command ptr so we can return; we'll complete when
|
1053 |
|
|
// the device comes back, causing immediate retry
|
1054 |
|
|
for (indx = 0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++) //, SCptr++)
|
1055 |
|
|
{
|
1056 |
|
|
if (cpqfcHBAdata->LinkDnCmnd[indx] == NULL) // available?
|
1057 |
|
|
{
|
1058 |
|
|
#ifdef DUMMYCMND_DBG
|
1059 |
|
|
printk(" @add Cmnd %p to LnkDnCmnd[%d]@ ", Cmnd, indx);
|
1060 |
|
|
#endif
|
1061 |
|
|
cpqfcHBAdata->LinkDnCmnd[indx] = Cmnd;
|
1062 |
|
|
break;
|
1063 |
|
|
}
|
1064 |
|
|
}
|
1065 |
|
|
|
1066 |
|
|
if (indx >= CPQFCTS_REQ_QUEUE_LEN) // no space for Cmnd??
|
1067 |
|
|
{
|
1068 |
|
|
// this will result in an _abort call later (with possible trouble)
|
1069 |
|
|
printk("no buffer for LinkDnCmnd!! %p\n", Cmnd);
|
1070 |
|
|
}
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
|
1074 |
|
|
|
1075 |
|
|
|
1076 |
|
|
|
1077 |
|
|
// The file "hosts.h" says not to call scsi_done from
|
1078 |
|
|
// inside _queuecommand, so we'll do it from the heartbeat timer
|
1079 |
|
|
// (clarification: Turns out it's ok to call scsi_done from queuecommand
|
1080 |
|
|
// for cases that don't go to the hardware like scsi cmds destined
|
1081 |
|
|
// for LUNs we know don't exist, so this code might be simplified...)
|
1082 |
|
|
|
1083 |
|
|
static void QueBadTargetCmnd(CPQFCHBA * cpqfcHBAdata, Scsi_Cmnd * Cmnd)
|
1084 |
|
|
{
|
1085 |
|
|
int i;
|
1086 |
|
|
// printk(" can't find target %d\n", Cmnd->target);
|
1087 |
|
|
|
1088 |
|
|
for (i = 0; i < CPQFCTS_MAX_TARGET_ID; i++) { // find spare slot
|
1089 |
|
|
if (cpqfcHBAdata->BadTargetCmnd[i] == NULL) {
|
1090 |
|
|
cpqfcHBAdata->BadTargetCmnd[i] = Cmnd;
|
1091 |
|
|
// printk(" BadTargetCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n",
|
1092 |
|
|
// i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
|
1093 |
|
|
break;
|
1094 |
|
|
}
|
1095 |
|
|
}
|
1096 |
|
|
}
|
1097 |
|
|
|
1098 |
|
|
|
1099 |
|
|
// This is the "main" entry point for Linux Scsi commands --
|
1100 |
|
|
// it all starts here.
|
1101 |
|
|
|
1102 |
|
|
int cpqfcTS_queuecommand(Scsi_Cmnd * Cmnd, void (*done) (Scsi_Cmnd *))
|
1103 |
|
|
{
|
1104 |
|
|
struct Scsi_Host *HostAdapter = Cmnd->host;
|
1105 |
|
|
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *) HostAdapter->hostdata;
|
1106 |
|
|
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
|
1107 |
|
|
TachFCHDR_GCMND fchs; // only use for FC destination id field
|
1108 |
|
|
PFC_LOGGEDIN_PORT pLoggedInPort;
|
1109 |
|
|
u32 ulStatus, SESTtype;
|
1110 |
|
|
s32 ExchangeID;
|
1111 |
|
|
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
|
|
|
1115 |
|
|
ENTER("cpqfcTS_queuecommand");
|
1116 |
|
|
|
1117 |
|
|
PCI_TRACEO((u32) Cmnd, 0x98)
|
1118 |
|
|
|
1119 |
|
|
|
1120 |
|
|
Cmnd->scsi_done = done;
|
1121 |
|
|
#ifdef DEBUG_CMND
|
1122 |
|
|
cpqfcTS_print_scsi_cmd(Cmnd);
|
1123 |
|
|
#endif
|
1124 |
|
|
|
1125 |
|
|
// prevent board contention with kernel thread...
|
1126 |
|
|
|
1127 |
|
|
if (cpqfcHBAdata->BoardLock) {
|
1128 |
|
|
// printk(" @BrdLck Hld@ ");
|
1129 |
|
|
QueCmndOnBoardLock(cpqfcHBAdata, Cmnd);
|
1130 |
|
|
}
|
1131 |
|
|
|
1132 |
|
|
else {
|
1133 |
|
|
|
1134 |
|
|
// in the current system (2.2.12), this routine is called
|
1135 |
|
|
// after spin_lock_irqsave(), so INTs are disabled. However,
|
1136 |
|
|
// we might have something pending in the LinkQ, which
|
1137 |
|
|
// might cause the WorkerTask to run. In case that
|
1138 |
|
|
// happens, make sure we lock it out.
|
1139 |
|
|
|
1140 |
|
|
|
1141 |
|
|
|
1142 |
|
|
PCI_TRACE(0x98)
|
1143 |
|
|
CPQ_SPINLOCK_HBA(cpqfcHBAdata)
|
1144 |
|
|
PCI_TRACE(0x98)
|
1145 |
|
|
// can we find an FC device mapping to this SCSI target?
|
1146 |
|
|
pLoggedInPort = fcFindLoggedInPort(fcChip, Cmnd, // search Scsi Nexus
|
1147 |
|
|
0, // DON'T search linked list for FC port id
|
1148 |
|
|
NULL, // DON'T search linked list for FC WWN
|
1149 |
|
|
NULL); // DON'T care about end of list
|
1150 |
|
|
|
1151 |
|
|
if (pLoggedInPort == NULL) // not found!
|
1152 |
|
|
{
|
1153 |
|
|
// printk(" @Q bad targ cmnd %p@ ", Cmnd);
|
1154 |
|
|
QueBadTargetCmnd(cpqfcHBAdata, Cmnd);
|
1155 |
|
|
} else if (Cmnd->lun >= CPQFCTS_MAX_LUN) {
|
1156 |
|
|
printk(KERN_WARNING "cpqfc: Invalid LUN: %d\n", Cmnd->lun);
|
1157 |
|
|
QueBadTargetCmnd(cpqfcHBAdata, Cmnd);
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
else // we know what FC device to send to...
|
1161 |
|
|
{
|
1162 |
|
|
|
1163 |
|
|
// does this device support FCP target functions?
|
1164 |
|
|
// (determined by PRLI field)
|
1165 |
|
|
|
1166 |
|
|
if (!(pLoggedInPort->fcp_info & TARGET_FUNCTION)) {
|
1167 |
|
|
printk(" Doesn't support TARGET functions port_id %Xh\n", pLoggedInPort->port_id);
|
1168 |
|
|
QueBadTargetCmnd(cpqfcHBAdata, Cmnd);
|
1169 |
|
|
}
|
1170 |
|
|
// In this case (previous login OK), the device is temporarily
|
1171 |
|
|
// unavailable waiting for re-login, in which case we expect it
|
1172 |
|
|
// to be back in between 25 - 500ms.
|
1173 |
|
|
// If the FC port doesn't log back in within several seconds
|
1174 |
|
|
// (i.e. implicit "logout"), or we get an explicit logout,
|
1175 |
|
|
// we set "device_blocked" in Scsi_Device struct; in this
|
1176 |
|
|
// case 30 seconds will elapse before Linux/Scsi sends another
|
1177 |
|
|
// command to the device.
|
1178 |
|
|
else if (pLoggedInPort->prli != TRUE) {
|
1179 |
|
|
// printk("Device (Chnl/Target %d/%d) invalid PRLI, port_id %06lXh\n",
|
1180 |
|
|
// Cmnd->channel, Cmnd->target, pLoggedInPort->port_id);
|
1181 |
|
|
QueLinkDownCmnd(cpqfcHBAdata, Cmnd);
|
1182 |
|
|
// Need to use "blocked" flag??
|
1183 |
|
|
// Cmnd->device->device_blocked = TRUE; // just let it timeout
|
1184 |
|
|
} else // device supports TARGET functions, and is logged in...
|
1185 |
|
|
{
|
1186 |
|
|
// (context of fchs is to "reply" to...)
|
1187 |
|
|
fchs.s_id = pLoggedInPort->port_id; // destination FC address
|
1188 |
|
|
|
1189 |
|
|
// what is the data direction? For data TO the device,
|
1190 |
|
|
// we need IWE (Intiator Write Entry). Otherwise, IRE.
|
1191 |
|
|
|
1192 |
|
|
if (Cmnd->cmnd[0] == WRITE_10 || Cmnd->cmnd[0] == WRITE_6 || Cmnd->cmnd[0] == WRITE_BUFFER || Cmnd->cmnd[0] == VENDOR_WRITE_OPCODE || // CPQ specific
|
1193 |
|
|
Cmnd->cmnd[0] == MODE_SELECT) {
|
1194 |
|
|
SESTtype = SCSI_IWE; // data from HBA to Device
|
1195 |
|
|
} else
|
1196 |
|
|
SESTtype = SCSI_IRE; // data from Device to HBA
|
1197 |
|
|
|
1198 |
|
|
ulStatus = cpqfcTSBuildExchange(cpqfcHBAdata, SESTtype, // e.g. Initiator Read Entry (IRE)
|
1199 |
|
|
&fchs, // we are originator; only use d_id
|
1200 |
|
|
Cmnd, // Linux SCSI command (with scatter/gather list)
|
1201 |
|
|
&ExchangeID); // fcController->fcExchanges index, -1 if failed
|
1202 |
|
|
|
1203 |
|
|
if (!ulStatus) // Exchange setup?
|
1204 |
|
|
|
1205 |
|
|
{
|
1206 |
|
|
if (cpqfcHBAdata->BoardLock) {
|
1207 |
|
|
TriggerHBA(fcChip->Registers.ReMapMemBase, 0);
|
1208 |
|
|
printk(" @bl! %d, xID %Xh@ ", current->pid, ExchangeID);
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
ulStatus = cpqfcTSStartExchange(cpqfcHBAdata, ExchangeID);
|
1212 |
|
|
if (!ulStatus) {
|
1213 |
|
|
PCI_TRACEO(ExchangeID, 0xB8)
|
1214 |
|
|
// submitted to Tach's Outbound Que (ERQ PI incremented)
|
1215 |
|
|
// waited for completion for ELS type (Login frames issued
|
1216 |
|
|
// synchronously)
|
1217 |
|
|
} else
|
1218 |
|
|
// check reason for Exchange not being started - we might
|
1219 |
|
|
// want to Queue and start later, or fail with error
|
1220 |
|
|
{
|
1221 |
|
|
printk("quecommand: cpqfcTSStartExchange failed: %Xh\n", ulStatus);
|
1222 |
|
|
}
|
1223 |
|
|
} // end good BuildExchange status
|
1224 |
|
|
|
1225 |
|
|
else // SEST table probably full -- why? hardware hang?
|
1226 |
|
|
{
|
1227 |
|
|
printk("quecommand: cpqfcTSBuildExchange faild: %Xh\n", ulStatus);
|
1228 |
|
|
}
|
1229 |
|
|
} // end can't do FCP-SCSI target functions
|
1230 |
|
|
} // end can't find target (FC device)
|
1231 |
|
|
|
1232 |
|
|
CPQ_SPINUNLOCK_HBA(cpqfcHBAdata)
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
PCI_TRACEO((u32) Cmnd, 0x9C)
|
1236 |
|
|
LEAVE("cpqfcTS_queuecommand");
|
1237 |
|
|
return 0;
|
1238 |
|
|
}
|
1239 |
|
|
|
1240 |
|
|
|
1241 |
|
|
// Entry point for upper Scsi layer intiated abort. Typically
|
1242 |
|
|
// this is called if the command (for hard disk) fails to complete
|
1243 |
|
|
// in 30 seconds. This driver intends to complete all disk commands
|
1244 |
|
|
// within Exchange ".timeOut" seconds (now 7) with target status, or
|
1245 |
|
|
// in case of ".timeOut" expiration, a DID_SOFT_ERROR which causes
|
1246 |
|
|
// immediate retry.
|
1247 |
|
|
// If any disk commands get the _abort call, except for the case that
|
1248 |
|
|
// the physical device was removed or unavailable due to hardware
|
1249 |
|
|
// errors, it should be considered a driver error and reported to
|
1250 |
|
|
// the author.
|
1251 |
|
|
|
1252 |
|
|
int cpqfcTS_abort(Scsi_Cmnd * Cmnd)
|
1253 |
|
|
{
|
1254 |
|
|
// printk(" cpqfcTS_abort called?? \n");
|
1255 |
|
|
return 0;
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
int cpqfcTS_eh_abort(Scsi_Cmnd * Cmnd)
|
1259 |
|
|
{
|
1260 |
|
|
|
1261 |
|
|
struct Scsi_Host *HostAdapter = Cmnd->host;
|
1262 |
|
|
// get the pointer to our Scsi layer HBA buffer
|
1263 |
|
|
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *) HostAdapter->hostdata;
|
1264 |
|
|
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
|
1265 |
|
|
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
|
1266 |
|
|
int i;
|
1267 |
|
|
ENTER("cpqfcTS_eh_abort");
|
1268 |
|
|
|
1269 |
|
|
Cmnd->result = DID_ABORT << 16; // assume we'll find it
|
1270 |
|
|
|
1271 |
|
|
printk(" @Linux _abort Scsi_Cmnd %p ", Cmnd);
|
1272 |
|
|
// See if we can find a Cmnd pointer that matches...
|
1273 |
|
|
// The most likely case is we accepted the command
|
1274 |
|
|
// from Linux Scsi (e.g. ceated a SEST entry) and it
|
1275 |
|
|
// got lost somehow. If we can't find any reference
|
1276 |
|
|
// to the passed pointer, we can only presume it
|
1277 |
|
|
// got completed as far as our driver is concerned.
|
1278 |
|
|
// If we found it, we will try to abort it through
|
1279 |
|
|
// common mechanism. If FC ABTS is successful (ACC)
|
1280 |
|
|
// or is rejected (RJT) by target, we will call
|
1281 |
|
|
// Scsi "done" quickly. Otherwise, the ABTS will timeout
|
1282 |
|
|
// and we'll call "done" later.
|
1283 |
|
|
|
1284 |
|
|
// Search the SEST exchanges for a matching Cmnd ptr.
|
1285 |
|
|
for (i = 0; i < TACH_SEST_LEN; i++) {
|
1286 |
|
|
if (Exchanges->fcExchange[i].Cmnd == Cmnd) {
|
1287 |
|
|
|
1288 |
|
|
// found it!
|
1289 |
|
|
printk(" x_ID %Xh, type %Xh\n", i, Exchanges->fcExchange[i].type);
|
1290 |
|
|
|
1291 |
|
|
Exchanges->fcExchange[i].status = INITIATOR_ABORT; // seconds default
|
1292 |
|
|
Exchanges->fcExchange[i].timeOut = 10; // seconds default (changed later)
|
1293 |
|
|
|
1294 |
|
|
// Since we need to immediately return the aborted Cmnd to Scsi
|
1295 |
|
|
// upper layers, we can't make future reference to any of it's
|
1296 |
|
|
// fields (e.g the Nexus).
|
1297 |
|
|
|
1298 |
|
|
cpqfcTSPutLinkQue(cpqfcHBAdata, BLS_ABTS, &i);
|
1299 |
|
|
|
1300 |
|
|
break;
|
1301 |
|
|
}
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
if (i >= TACH_SEST_LEN) // didn't find Cmnd ptr in chip's SEST?
|
1305 |
|
|
{
|
1306 |
|
|
// now search our non-SEST buffers (i.e. Cmnd waiting to
|
1307 |
|
|
// start on the HBA or waiting to complete with error for retry).
|
1308 |
|
|
|
1309 |
|
|
// first check BadTargetCmnd
|
1310 |
|
|
for (i = 0; i < CPQFCTS_MAX_TARGET_ID; i++) {
|
1311 |
|
|
if (cpqfcHBAdata->BadTargetCmnd[i] == Cmnd) {
|
1312 |
|
|
cpqfcHBAdata->BadTargetCmnd[i] = NULL;
|
1313 |
|
|
printk("in BadTargetCmnd Q\n");
|
1314 |
|
|
goto Done; // exit
|
1315 |
|
|
}
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
// if not found above...
|
1319 |
|
|
|
1320 |
|
|
for (i = 0; i < CPQFCTS_REQ_QUEUE_LEN; i++) {
|
1321 |
|
|
if (cpqfcHBAdata->LinkDnCmnd[i] == Cmnd) {
|
1322 |
|
|
cpqfcHBAdata->LinkDnCmnd[i] = NULL;
|
1323 |
|
|
printk("in LinkDnCmnd Q\n");
|
1324 |
|
|
goto Done;
|
1325 |
|
|
}
|
1326 |
|
|
}
|
1327 |
|
|
|
1328 |
|
|
|
1329 |
|
|
for (i = 0; i < CPQFCTS_REQ_QUEUE_LEN; i++) { // find spare slot
|
1330 |
|
|
if (cpqfcHBAdata->BoardLockCmnd[i] == Cmnd) {
|
1331 |
|
|
cpqfcHBAdata->BoardLockCmnd[i] = NULL;
|
1332 |
|
|
printk("in BoardLockCmnd Q\n");
|
1333 |
|
|
goto Done;
|
1334 |
|
|
}
|
1335 |
|
|
}
|
1336 |
|
|
|
1337 |
|
|
Cmnd->result = DID_ERROR << 16; // Hmmm...
|
1338 |
|
|
printk("Not found! ");
|
1339 |
|
|
// panic("_abort");
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
Done:
|
1343 |
|
|
|
1344 |
|
|
// panic("_abort");
|
1345 |
|
|
LEAVE("cpqfcTS_eh_abort");
|
1346 |
|
|
return 0; // (see scsi.h)
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
|
1350 |
|
|
// FCP-SCSI Target Device Reset
|
1351 |
|
|
// See dpANS Fibre Channel Protocol for SCSI
|
1352 |
|
|
// X3.269-199X revision 12, pg 25
|
1353 |
|
|
|
1354 |
|
|
int cpqfcTS_TargetDeviceReset(Scsi_Device * ScsiDev, unsigned int reset_flags)
|
1355 |
|
|
{
|
1356 |
|
|
int timeout = 10 * HZ;
|
1357 |
|
|
int retries = 1;
|
1358 |
|
|
char scsi_cdb[12];
|
1359 |
|
|
int result;
|
1360 |
|
|
Scsi_Cmnd *SCpnt;
|
1361 |
|
|
Scsi_Device *SDpnt;
|
1362 |
|
|
|
1363 |
|
|
|
1364 |
|
|
// printk(" ENTERING cpqfcTS_TargetDeviceReset() - flag=%d \n",reset_flags);
|
1365 |
|
|
|
1366 |
|
|
if (ScsiDev->host->eh_active)
|
1367 |
|
|
return FAILED;
|
1368 |
|
|
|
1369 |
|
|
memset(scsi_cdb, 0, sizeof(scsi_cdb));
|
1370 |
|
|
|
1371 |
|
|
scsi_cdb[0] = RELEASE;
|
1372 |
|
|
|
1373 |
|
|
// allocate with wait = true, interruptible = false
|
1374 |
|
|
SCpnt = scsi_allocate_device(ScsiDev, 1, 0);
|
1375 |
|
|
{
|
1376 |
|
|
CPQFC_DECLARE_COMPLETION(wait);
|
1377 |
|
|
|
1378 |
|
|
SCpnt->SCp.buffers_residual = FCP_TARGET_RESET;
|
1379 |
|
|
|
1380 |
|
|
SCpnt->request.CPQFC_WAITING = &wait;
|
1381 |
|
|
scsi_do_cmd(SCpnt, scsi_cdb, NULL, 0, my_ioctl_done, timeout, retries);
|
1382 |
|
|
CPQFC_WAIT_FOR_COMPLETION(&wait);
|
1383 |
|
|
SCpnt->request.CPQFC_WAITING = NULL;
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
/*
|
1387 |
|
|
if(driver_byte(SCpnt->result) != 0)
|
1388 |
|
|
switch(SCpnt->sense_buffer[2] & 0xf) {
|
1389 |
|
|
case ILLEGAL_REQUEST:
|
1390 |
|
|
if(cmd[0] == ALLOW_MEDIUM_REMOVAL) dev->lockable = 0;
|
1391 |
|
|
else printk("SCSI device (ioctl) reports ILLEGAL REQUEST.\n");
|
1392 |
|
|
break;
|
1393 |
|
|
case NOT_READY: // This happens if there is no disc in drive
|
1394 |
|
|
if(dev->removable && (cmd[0] != TEST_UNIT_READY)){
|
1395 |
|
|
printk(KERN_INFO "Device not ready. Make sure there is a disc in the drive.\n");
|
1396 |
|
|
break;
|
1397 |
|
|
}
|
1398 |
|
|
case UNIT_ATTENTION:
|
1399 |
|
|
if (dev->removable){
|
1400 |
|
|
dev->changed = 1;
|
1401 |
|
|
SCpnt->result = 0; // This is no longer considered an error
|
1402 |
|
|
// gag this error, VFS will log it anyway /axboe
|
1403 |
|
|
// printk(KERN_INFO "Disc change detected.\n");
|
1404 |
|
|
break;
|
1405 |
|
|
};
|
1406 |
|
|
default: // Fall through for non-removable media
|
1407 |
|
|
printk("SCSI error: host %d id %d lun %d return code = %x\n",
|
1408 |
|
|
dev->host->host_no,
|
1409 |
|
|
dev->id,
|
1410 |
|
|
dev->lun,
|
1411 |
|
|
SCpnt->result);
|
1412 |
|
|
printk("\tSense class %x, sense error %x, extended sense %x\n",
|
1413 |
|
|
sense_class(SCpnt->sense_buffer[0]),
|
1414 |
|
|
sense_error(SCpnt->sense_buffer[0]),
|
1415 |
|
|
SCpnt->sense_buffer[2] & 0xf);
|
1416 |
|
|
|
1417 |
|
|
};
|
1418 |
|
|
*/
|
1419 |
|
|
result = SCpnt->result;
|
1420 |
|
|
|
1421 |
|
|
SDpnt = SCpnt->device;
|
1422 |
|
|
scsi_release_command(SCpnt);
|
1423 |
|
|
SCpnt = NULL;
|
1424 |
|
|
|
1425 |
|
|
// if (!SDpnt->was_reset && SDpnt->scsi_request_fn)
|
1426 |
|
|
// (*SDpnt->scsi_request_fn)();
|
1427 |
|
|
|
1428 |
|
|
wake_up(&SDpnt->scpnt_wait);
|
1429 |
|
|
// printk(" LEAVING cpqfcTS_TargetDeviceReset() - return SUCCESS \n");
|
1430 |
|
|
return SUCCESS;
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
|
1434 |
|
|
int cpqfcTS_eh_device_reset(Scsi_Cmnd * Cmnd)
|
1435 |
|
|
{
|
1436 |
|
|
int retval;
|
1437 |
|
|
Scsi_Device *SDpnt = Cmnd->device;
|
1438 |
|
|
// printk(" ENTERING cpqfcTS_eh_device_reset() \n");
|
1439 |
|
|
spin_unlock_irq(&io_request_lock);
|
1440 |
|
|
retval = cpqfcTS_TargetDeviceReset(SDpnt, 0);
|
1441 |
|
|
spin_lock_irq(&io_request_lock);
|
1442 |
|
|
return retval;
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
|
1446 |
|
|
int cpqfcTS_reset(Scsi_Cmnd * Cmnd, unsigned int reset_flags)
|
1447 |
|
|
{
|
1448 |
|
|
|
1449 |
|
|
ENTER("cpqfcTS_reset");
|
1450 |
|
|
|
1451 |
|
|
LEAVE("cpqfcTS_reset");
|
1452 |
|
|
return SCSI_RESET_ERROR; /* Bus Reset Not supported */
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
/* This function determines the bios parameters for a given
|
1456 |
|
|
harddisk. These tend to be numbers that are made up by the
|
1457 |
|
|
host adapter. Parameters:
|
1458 |
|
|
size, device number, list (heads, sectors,cylinders).
|
1459 |
|
|
(from hosts.h)
|
1460 |
|
|
*/
|
1461 |
|
|
|
1462 |
|
|
int cpqfcTS_biosparam(Disk * disk, kdev_t n, int ip[])
|
1463 |
|
|
{
|
1464 |
|
|
int size = disk->capacity;
|
1465 |
|
|
|
1466 |
|
|
ENTER("cpqfcTS_biosparam");
|
1467 |
|
|
ip[0] = 64;
|
1468 |
|
|
ip[1] = 32;
|
1469 |
|
|
ip[2] = size >> 11;
|
1470 |
|
|
|
1471 |
|
|
if (ip[2] > 1024) {
|
1472 |
|
|
ip[0] = 255;
|
1473 |
|
|
ip[1] = 63;
|
1474 |
|
|
ip[2] = size / (ip[0] * ip[1]);
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
LEAVE("cpqfcTS_biosparam");
|
1478 |
|
|
return 0;
|
1479 |
|
|
}
|
1480 |
|
|
|
1481 |
|
|
|
1482 |
|
|
|
1483 |
|
|
void cpqfcTS_intr_handler(int irq, void *dev_id, struct pt_regs *regs)
|
1484 |
|
|
{
|
1485 |
|
|
|
1486 |
|
|
unsigned long flags, InfLoopBrk = 0;
|
1487 |
|
|
struct Scsi_Host *HostAdapter = dev_id;
|
1488 |
|
|
CPQFCHBA *cpqfcHBA = (CPQFCHBA *) HostAdapter->hostdata;
|
1489 |
|
|
int MoreMessages = 1; // assume we have something to do
|
1490 |
|
|
u8 IntPending;
|
1491 |
|
|
|
1492 |
|
|
ENTER("intr_handler");
|
1493 |
|
|
|
1494 |
|
|
spin_lock_irqsave(&io_request_lock, flags);
|
1495 |
|
|
// is this our INT?
|
1496 |
|
|
IntPending = readb(cpqfcHBA->fcChip.Registers.INTPEND.address);
|
1497 |
|
|
|
1498 |
|
|
// broken boards can generate messages forever, so
|
1499 |
|
|
// prevent the infinite loop
|
1500 |
|
|
#define INFINITE_IMQ_BREAK 10000
|
1501 |
|
|
if (IntPending) {
|
1502 |
|
|
|
1503 |
|
|
// mask our HBA interrupts until we handle it...
|
1504 |
|
|
writeb(0, cpqfcHBA->fcChip.Registers.INTEN.address);
|
1505 |
|
|
|
1506 |
|
|
if (IntPending & 0x4) // "INT" - Tach wrote to IMQ
|
1507 |
|
|
{
|
1508 |
|
|
while ((++InfLoopBrk < INFINITE_IMQ_BREAK) && (MoreMessages == 1)) {
|
1509 |
|
|
MoreMessages = CpqTsProcessIMQEntry(HostAdapter); // ret 0 when done
|
1510 |
|
|
}
|
1511 |
|
|
if (InfLoopBrk >= INFINITE_IMQ_BREAK) {
|
1512 |
|
|
printk("WARNING: Compaq FC adapter generating excessive INTs -REPLACE\n");
|
1513 |
|
|
printk("or investigate alternate causes (e.g. physical FC layer)\n");
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
else // working normally - re-enable INTs and continue
|
1517 |
|
|
writeb(0x1F, cpqfcHBA->fcChip.Registers.INTEN.address);
|
1518 |
|
|
|
1519 |
|
|
} // (...ProcessIMQEntry() clears INT by writing IMQ consumer)
|
1520 |
|
|
else // indications of errors or problems...
|
1521 |
|
|
// these usually indicate critical system hardware problems.
|
1522 |
|
|
{
|
1523 |
|
|
if (IntPending & 0x10)
|
1524 |
|
|
printk(" cpqfcTS adapter external memory parity error detected\n");
|
1525 |
|
|
if (IntPending & 0x8)
|
1526 |
|
|
printk(" cpqfcTS adapter PCI master address crossed 45-bit boundary\n");
|
1527 |
|
|
if (IntPending & 0x2)
|
1528 |
|
|
printk(" cpqfcTS adapter DMA error detected\n");
|
1529 |
|
|
if (IntPending & 0x1) {
|
1530 |
|
|
u8 IntStat;
|
1531 |
|
|
printk(" cpqfcTS adapter PCI error detected\n");
|
1532 |
|
|
IntStat = readb(cpqfcHBA->fcChip.Registers.INTSTAT.address);
|
1533 |
|
|
if (IntStat & 0x4)
|
1534 |
|
|
printk("(INT)\n");
|
1535 |
|
|
if (IntStat & 0x8)
|
1536 |
|
|
printk("CRS: PCI master address crossed 46 bit bouandary\n");
|
1537 |
|
|
if (IntStat & 0x10)
|
1538 |
|
|
printk("MRE: external memory parity error.\n");
|
1539 |
|
|
}
|
1540 |
|
|
}
|
1541 |
|
|
}
|
1542 |
|
|
spin_unlock_irqrestore(&io_request_lock, flags);
|
1543 |
|
|
LEAVE("intr_handler");
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
|
1547 |
|
|
|
1548 |
|
|
|
1549 |
|
|
int cpqfcTSDecodeGBICtype(PTACHYON fcChip, char cErrorString[])
|
1550 |
|
|
{
|
1551 |
|
|
// Verify GBIC type (if any) and correct Tachyon Port State Machine
|
1552 |
|
|
// (GBIC) module definition is:
|
1553 |
|
|
// GPIO1, GPIO0, GPIO4 for MD2, MD1, MD0. The input states appear
|
1554 |
|
|
// to be inverted -- i.e., a setting of 111 is read when there is NO
|
1555 |
|
|
// GBIC present. The Module Def (MD) spec says 000 is "no GBIC"
|
1556 |
|
|
// Hard code the bit states to detect Copper,
|
1557 |
|
|
// Long wave (single mode), Short wave (multi-mode), and absent GBIC
|
1558 |
|
|
|
1559 |
|
|
u32 ulBuff;
|
1560 |
|
|
|
1561 |
|
|
sprintf(cErrorString, "\nGBIC detected: ");
|
1562 |
|
|
|
1563 |
|
|
ulBuff = fcChip->Registers.TYstatus.value & 0x13;
|
1564 |
|
|
switch (ulBuff) {
|
1565 |
|
|
case 0x13: // GPIO4, GPIO1, GPIO0 = 111; no GBIC!
|
1566 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "NONE! ");
|
1567 |
|
|
return FALSE;
|
1568 |
|
|
|
1569 |
|
|
|
1570 |
|
|
case 0x11: // Copper GBIC detected
|
1571 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Copper. ");
|
1572 |
|
|
break;
|
1573 |
|
|
|
1574 |
|
|
case 0x10: // Long-wave (single mode) GBIC detected
|
1575 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Long-wave. ");
|
1576 |
|
|
break;
|
1577 |
|
|
case 0x1: // Short-wave (multi mode) GBIC detected
|
1578 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Short-wave. ");
|
1579 |
|
|
break;
|
1580 |
|
|
default: // unknown GBIC - presumably it will work (?)
|
1581 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Unknown. ");
|
1582 |
|
|
|
1583 |
|
|
break;
|
1584 |
|
|
} // end switch GBIC detection
|
1585 |
|
|
|
1586 |
|
|
return TRUE;
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
|
1590 |
|
|
|
1591 |
|
|
|
1592 |
|
|
|
1593 |
|
|
|
1594 |
|
|
int cpqfcTSGetLPSM(PTACHYON fcChip, char cErrorString[])
|
1595 |
|
|
{
|
1596 |
|
|
// Tachyon's Frame Manager LPSM in LinkDown state?
|
1597 |
|
|
// (For non-loop port, check PSM instead.)
|
1598 |
|
|
// return string with state and FALSE is Link Down
|
1599 |
|
|
|
1600 |
|
|
int LinkUp;
|
1601 |
|
|
|
1602 |
|
|
if (fcChip->Registers.FMstatus.value & 0x80)
|
1603 |
|
|
LinkUp = FALSE;
|
1604 |
|
|
else
|
1605 |
|
|
LinkUp = TRUE;
|
1606 |
|
|
|
1607 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], " LPSM %Xh ", (fcChip->Registers.FMstatus.value >> 4) & 0xf);
|
1608 |
|
|
|
1609 |
|
|
|
1610 |
|
|
switch (fcChip->Registers.FMstatus.value & 0xF0) {
|
1611 |
|
|
// bits set in LPSM
|
1612 |
|
|
case 0x10:
|
1613 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "ARB");
|
1614 |
|
|
break;
|
1615 |
|
|
case 0x20:
|
1616 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "ARBwon");
|
1617 |
|
|
break;
|
1618 |
|
|
case 0x30:
|
1619 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "OPEN");
|
1620 |
|
|
break;
|
1621 |
|
|
case 0x40:
|
1622 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "OPENed");
|
1623 |
|
|
break;
|
1624 |
|
|
case 0x50:
|
1625 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "XmitCLS");
|
1626 |
|
|
break;
|
1627 |
|
|
case 0x60:
|
1628 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "RxCLS");
|
1629 |
|
|
break;
|
1630 |
|
|
case 0x70:
|
1631 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Xfer");
|
1632 |
|
|
break;
|
1633 |
|
|
case 0x80:
|
1634 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Init");
|
1635 |
|
|
break;
|
1636 |
|
|
case 0x90:
|
1637 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "O-IInitFin");
|
1638 |
|
|
break;
|
1639 |
|
|
case 0xa0:
|
1640 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "O-IProtocol");
|
1641 |
|
|
break;
|
1642 |
|
|
case 0xb0:
|
1643 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "O-ILipRcvd");
|
1644 |
|
|
break;
|
1645 |
|
|
case 0xc0:
|
1646 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "HostControl");
|
1647 |
|
|
break;
|
1648 |
|
|
case 0xd0:
|
1649 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "LoopFail");
|
1650 |
|
|
break;
|
1651 |
|
|
case 0xe0:
|
1652 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Offline");
|
1653 |
|
|
break;
|
1654 |
|
|
case 0xf0:
|
1655 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "OldPort");
|
1656 |
|
|
break;
|
1657 |
|
|
case 0:
|
1658 |
|
|
default:
|
1659 |
|
|
sprintf(&cErrorString[strlen(cErrorString)], "Monitor");
|
1660 |
|
|
break;
|
1661 |
|
|
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
return LinkUp;
|
1665 |
|
|
}
|
1666 |
|
|
|
1667 |
|
|
// Dynamic memory allocation alignment routines
|
1668 |
|
|
// HP's Tachyon Fibre Channel Controller chips require
|
1669 |
|
|
// certain memory queues and register pointers to be aligned
|
1670 |
|
|
// on various boundaries, usually the size of the Queue in question.
|
1671 |
|
|
// Alignment might be on 2, 4, 8, ... or even 512 byte boundaries.
|
1672 |
|
|
// Since most O/Ss don't allow this (usually only Cache aligned -
|
1673 |
|
|
// 32-byte boundary), these routines provide generic alignment (after
|
1674 |
|
|
// O/S allocation) at any boundary, and store the original allocated
|
1675 |
|
|
// pointer for deletion (O/S free function). Typically, we expect
|
1676 |
|
|
// these functions to only be called at HBA initialization and
|
1677 |
|
|
// removal time (load and unload times)
|
1678 |
|
|
// ALGORITHM notes:
|
1679 |
|
|
// Memory allocation varies by compiler and platform. In the worst case,
|
1680 |
|
|
// we are only assured BYTE alignment, but in the best case, we can
|
1681 |
|
|
// request allocation on any desired boundary. Our strategy: pad the
|
1682 |
|
|
// allocation request size (i.e. waste memory) so that we are assured
|
1683 |
|
|
// of passing desired boundary near beginning of contiguous space, then
|
1684 |
|
|
// mask out lower address bits.
|
1685 |
|
|
// We define the following algorithm:
|
1686 |
|
|
// allocBoundary - compiler/platform specific address alignment
|
1687 |
|
|
// in number of bytes (default is single byte; i.e. 1)
|
1688 |
|
|
// n_alloc - number of bytes application wants @ aligned address
|
1689 |
|
|
// ab - alignment boundary, in bytes (e.g. 4, 32, ...)
|
1690 |
|
|
// t_alloc - total allocation needed to ensure desired boundary
|
1691 |
|
|
// mask - to clear least significant address bits for boundary
|
1692 |
|
|
// Compute:
|
1693 |
|
|
// t_alloc = n_alloc + (ab - allocBoundary)
|
1694 |
|
|
// allocate t_alloc bytes @ alloc_address
|
1695 |
|
|
// mask = NOT (ab - 1)
|
1696 |
|
|
// (e.g. if ab=32 _0001 1111 -> _1110 0000
|
1697 |
|
|
// aligned_address = alloc_address & mask
|
1698 |
|
|
// set n_alloc bytes to 0
|
1699 |
|
|
// return aligned_address (NULL if failed)
|
1700 |
|
|
//
|
1701 |
|
|
// If u32_AlignedAddress is non-zero, then search for BaseAddress (stored
|
1702 |
|
|
// from previous allocation). If found, invoke call to FREE the memory.
|
1703 |
|
|
// Return NULL if BaseAddress not found
|
1704 |
|
|
|
1705 |
|
|
// we need about 8 allocations per HBA. Figuring at most 10 HBAs per server
|
1706 |
|
|
// size the dynamic_mem array at 80.
|
1707 |
|
|
|
1708 |
|
|
void *fcMemManager(struct pci_dev *pdev, ALIGNED_MEM * dynamic_mem, u32 n_alloc, u32 ab, u32 u32_AlignedAddress, dma_addr_t * dma_handle)
|
1709 |
|
|
{
|
1710 |
|
|
u16 allocBoundary = 1; // compiler specific - worst case 1
|
1711 |
|
|
// best case - replace malloc() call
|
1712 |
|
|
// with function that allocates exactly
|
1713 |
|
|
// at desired boundary
|
1714 |
|
|
|
1715 |
|
|
unsigned long ulAddress;
|
1716 |
|
|
u32 t_alloc, i;
|
1717 |
|
|
void *alloc_address = 0; // def. error code / address not found
|
1718 |
|
|
s32 mask; // must be 32-bits wide!
|
1719 |
|
|
|
1720 |
|
|
ENTER("fcMemManager");
|
1721 |
|
|
if (u32_AlignedAddress) // are we freeing existing memory?
|
1722 |
|
|
{
|
1723 |
|
|
// printk(" freeing AlignedAddress %Xh\n", u32_AlignedAddress);
|
1724 |
|
|
for (i = 0; i < DYNAMIC_ALLOCATIONS; i++) // look for the base address
|
1725 |
|
|
{
|
1726 |
|
|
// printk("dynamic_mem[%u].AlignedAddress %lX\n", i, dynamic_mem[i].AlignedAddress);
|
1727 |
|
|
if (dynamic_mem[i].AlignedAddress == u32_AlignedAddress) {
|
1728 |
|
|
alloc_address = dynamic_mem[i].BaseAllocated; // 'success' status
|
1729 |
|
|
pci_free_consistent(pdev, dynamic_mem[i].size, alloc_address, dynamic_mem[i].dma_handle);
|
1730 |
|
|
dynamic_mem[i].BaseAllocated = 0; // clear for next use
|
1731 |
|
|
dynamic_mem[i].AlignedAddress = 0;
|
1732 |
|
|
dynamic_mem[i].size = 0;
|
1733 |
|
|
break; // quit for loop; done
|
1734 |
|
|
}
|
1735 |
|
|
}
|
1736 |
|
|
} else if (n_alloc) // want new memory?
|
1737 |
|
|
{
|
1738 |
|
|
dma_addr_t handle;
|
1739 |
|
|
t_alloc = n_alloc + (ab - allocBoundary); // pad bytes for alignment
|
1740 |
|
|
// printk("pci_alloc_consistent() for Tach alignment: %ld bytes\n", t_alloc);
|
1741 |
|
|
|
1742 |
|
|
// (would like to) allow thread block to free pages
|
1743 |
|
|
alloc_address = // total bytes (NumberOfBytes)
|
1744 |
|
|
pci_alloc_consistent(pdev, t_alloc, &handle);
|
1745 |
|
|
|
1746 |
|
|
// now mask off least sig. bits of address
|
1747 |
|
|
if (alloc_address) // (only if non-NULL)
|
1748 |
|
|
{
|
1749 |
|
|
// find place to store ptr, so we
|
1750 |
|
|
// can free it later...
|
1751 |
|
|
|
1752 |
|
|
mask = (s32) (ab - 1); // mask all low-order bits
|
1753 |
|
|
mask = ~mask; // invert bits
|
1754 |
|
|
for (i = 0; i < DYNAMIC_ALLOCATIONS; i++) // look for free slot
|
1755 |
|
|
{
|
1756 |
|
|
if (dynamic_mem[i].BaseAllocated == 0) // take 1st available
|
1757 |
|
|
{
|
1758 |
|
|
dynamic_mem[i].BaseAllocated = alloc_address; // address from O/S
|
1759 |
|
|
dynamic_mem[i].dma_handle = handle;
|
1760 |
|
|
if (dma_handle != NULL) {
|
1761 |
|
|
// printk("handle = %p, ab=%d, boundary = %d, mask=0x%08x\n",
|
1762 |
|
|
// handle, ab, allocBoundary, mask);
|
1763 |
|
|
*dma_handle = (dma_addr_t)
|
1764 |
|
|
((((u32) handle) + (ab - allocBoundary)) & mask);
|
1765 |
|
|
}
|
1766 |
|
|
dynamic_mem[i].size = t_alloc;
|
1767 |
|
|
break;
|
1768 |
|
|
}
|
1769 |
|
|
}
|
1770 |
|
|
ulAddress = (unsigned long) alloc_address;
|
1771 |
|
|
|
1772 |
|
|
ulAddress += (ab - allocBoundary); // add the alignment bytes-
|
1773 |
|
|
// then truncate address...
|
1774 |
|
|
alloc_address = (void *) (ulAddress & mask);
|
1775 |
|
|
|
1776 |
|
|
dynamic_mem[i].AlignedAddress = (u32) (ulAddress & mask); // 32bit Tach address
|
1777 |
|
|
memset(alloc_address, 0, n_alloc); // clear new memory
|
1778 |
|
|
} else // O/S dynamic mem alloc failed!
|
1779 |
|
|
alloc_address = 0; // (for debugging breakpt)
|
1780 |
|
|
|
1781 |
|
|
}
|
1782 |
|
|
|
1783 |
|
|
LEAVE("fcMemManager");
|
1784 |
|
|
return alloc_address; // good (or NULL) address
|
1785 |
|
|
}
|
1786 |
|
|
|
1787 |
|
|
|
1788 |
|
|
static Scsi_Host_Template driver_template = CPQFCTS;
|
1789 |
|
|
|
1790 |
|
|
#include "scsi_module.c"
|