OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [fs/] [jbd/] [journal.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * linux/fs/journal.c
3
 *
4
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5
 *
6
 * Copyright 1998 Red Hat corp --- All Rights Reserved
7
 *
8
 * This file is part of the Linux kernel and is made available under
9
 * the terms of the GNU General Public License, version 2, or at your
10
 * option, any later version, incorporated herein by reference.
11
 *
12
 * Generic filesystem journal-writing code; part of the ext2fs
13
 * journaling system.
14
 *
15
 * This file manages journals: areas of disk reserved for logging
16
 * transactional updates.  This includes the kernel journaling thread
17
 * which is responsible for scheduling updates to the log.
18
 *
19
 * We do not actually manage the physical storage of the journal in this
20
 * file: that is left to a per-journal policy function, which allows us
21
 * to store the journal within a filesystem-specified area for ext2
22
 * journaling (ext2 can use a reserved inode for storing the log).
23
 */
24
 
25
#include <linux/module.h>
26
#include <linux/sched.h>
27
#include <linux/fs.h>
28
#include <linux/jbd.h>
29
#include <linux/errno.h>
30
#include <linux/slab.h>
31
#include <linux/locks.h>
32
#include <linux/smp_lock.h>
33
#include <linux/sched.h>
34
#include <linux/init.h>
35
#include <linux/mm.h>
36
#include <asm/uaccess.h>
37
#include <linux/proc_fs.h>
38
 
39
EXPORT_SYMBOL(journal_start);
40
EXPORT_SYMBOL(journal_try_start);
41
EXPORT_SYMBOL(journal_restart);
42
EXPORT_SYMBOL(journal_extend);
43
EXPORT_SYMBOL(journal_stop);
44
EXPORT_SYMBOL(journal_lock_updates);
45
EXPORT_SYMBOL(journal_unlock_updates);
46
EXPORT_SYMBOL(journal_get_write_access);
47
EXPORT_SYMBOL(journal_get_create_access);
48
EXPORT_SYMBOL(journal_get_undo_access);
49
EXPORT_SYMBOL(journal_dirty_data);
50
EXPORT_SYMBOL(journal_dirty_metadata);
51
#if 0
52
EXPORT_SYMBOL(journal_release_buffer);
53
#endif
54
EXPORT_SYMBOL(journal_forget);
55
#if 0
56
EXPORT_SYMBOL(journal_sync_buffer);
57
#endif
58
EXPORT_SYMBOL(journal_flush);
59
EXPORT_SYMBOL(journal_revoke);
60
EXPORT_SYMBOL(journal_callback_set);
61
 
62
EXPORT_SYMBOL(journal_init_dev);
63
EXPORT_SYMBOL(journal_init_inode);
64
EXPORT_SYMBOL(journal_update_format);
65
EXPORT_SYMBOL(journal_check_used_features);
66
EXPORT_SYMBOL(journal_check_available_features);
67
EXPORT_SYMBOL(journal_set_features);
68
EXPORT_SYMBOL(journal_create);
69
EXPORT_SYMBOL(journal_load);
70
EXPORT_SYMBOL(journal_destroy);
71
EXPORT_SYMBOL(journal_recover);
72
EXPORT_SYMBOL(journal_update_superblock);
73
EXPORT_SYMBOL(journal_abort);
74
EXPORT_SYMBOL(journal_errno);
75
EXPORT_SYMBOL(journal_ack_err);
76
EXPORT_SYMBOL(journal_clear_err);
77
EXPORT_SYMBOL(log_wait_commit);
78
EXPORT_SYMBOL(log_start_commit);
79
EXPORT_SYMBOL(journal_wipe);
80
EXPORT_SYMBOL(journal_blocks_per_page);
81
EXPORT_SYMBOL(journal_flushpage);
82
EXPORT_SYMBOL(journal_try_to_free_buffers);
83
EXPORT_SYMBOL(journal_bmap);
84
EXPORT_SYMBOL(journal_force_commit);
85
 
86
static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
87
 
88
/*
89
 * journal_datalist_lock is used to protect data buffers:
90
 *
91
 *      bh->b_transaction
92
 *      bh->b_tprev
93
 *      bh->b_tnext
94
 *
95
 * journal_free_buffer() is called from journal_try_to_free_buffer(), and is
96
 * async wrt everything else.
97
 *
98
 * It is also used for checkpoint data, also to protect against
99
 * journal_try_to_free_buffer():
100
 *
101
 *      bh->b_cp_transaction
102
 *      bh->b_cpnext
103
 *      bh->b_cpprev
104
 *      transaction->t_checkpoint_list
105
 *      transaction->t_cpnext
106
 *      transaction->t_cpprev
107
 *      journal->j_checkpoint_transactions
108
 *
109
 * It is global at this time rather than per-journal because it's
110
 * impossible for __journal_free_buffer to go from a buffer_head
111
 * back to a journal_t unracily (well, not true.  Fix later)
112
 *
113
 *
114
 * The `datalist' and `checkpoint list' functions are quite
115
 * separate and we could use two spinlocks here.
116
 *
117
 * lru_list_lock nests inside journal_datalist_lock.
118
 */
119
spinlock_t journal_datalist_lock = SPIN_LOCK_UNLOCKED;
120
 
121
/*
122
 * jh_splice_lock needs explantion.
123
 *
124
 * In a number of places we want to do things like:
125
 *
126
 *      if (buffer_jbd(bh) && bh2jh(bh)->foo)
127
 *
128
 * This is racy on SMP, because another CPU could remove the journal_head
129
 * in the middle of this expression.  We need locking.
130
 *
131
 * But we can greatly optimise the locking cost by testing BH_JBD
132
 * outside the lock.  So, effectively:
133
 *
134
 *      ret = 0;
135
 *      if (buffer_jbd(bh)) {
136
 *              spin_lock(&jh_splice_lock);
137
 *              if (buffer_jbd(bh)) {    (* Still there? *)
138
 *                      ret = bh2jh(bh)->foo;
139
 *              }
140
 *              spin_unlock(&jh_splice_lock);
141
 *      }
142
 *      return ret;
143
 *
144
 * Now, that protects us from races where another CPU can remove the
145
 * journal_head.  But it doesn't defend us from the situation where another
146
 * CPU can *add* a journal_head.  This is a correctness issue.  But it's not
147
 * a problem because a) the calling code was *already* racy and b) it often
148
 * can't happen at the call site and c) the places where we add journal_heads
149
 * tend to be under external locking.
150
 */
151
spinlock_t jh_splice_lock = SPIN_LOCK_UNLOCKED;
152
 
153
/*
154
 * List of all journals in the system.  Protected by the BKL.
155
 */
156
static LIST_HEAD(all_journals);
157
 
158
/*
159
 * Helper function used to manage commit timeouts
160
 */
161
 
162
static void commit_timeout(unsigned long __data)
163
{
164
        struct task_struct * p = (struct task_struct *) __data;
165
 
166
        wake_up_process(p);
167
}
168
 
169
/* Static check for data structure consistency.  There's no code
170
 * invoked --- we'll just get a linker failure if things aren't right.
171
 */
172
void __journal_internal_check(void)
173
{
174
        extern void journal_bad_superblock_size(void);
175
        if (sizeof(struct journal_superblock_s) != 1024)
176
                journal_bad_superblock_size();
177
}
178
 
179
/*
180
 * kjournald: The main thread function used to manage a logging device
181
 * journal.
182
 *
183
 * This kernel thread is responsible for two things:
184
 *
185
 * 1) COMMIT:  Every so often we need to commit the current state of the
186
 *    filesystem to disk.  The journal thread is responsible for writing
187
 *    all of the metadata buffers to disk.
188
 *
189
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
190
 *    of the data in that part of the log has been rewritten elsewhere on
191
 *    the disk.  Flushing these old buffers to reclaim space in the log is
192
 *    known as checkpointing, and this thread is responsible for that job.
193
 */
194
 
195
journal_t *current_journal;             // AKPM: debug
196
 
197
int kjournald(void *arg)
198
{
199
        journal_t *journal = (journal_t *) arg;
200
        transaction_t *transaction;
201
        struct timer_list timer;
202
 
203
        current_journal = journal;
204
 
205
        lock_kernel();
206
        daemonize();
207
        reparent_to_init();
208
        spin_lock_irq(&current->sigmask_lock);
209
        sigfillset(&current->blocked);
210
        recalc_sigpending(current);
211
        spin_unlock_irq(&current->sigmask_lock);
212
 
213
        sprintf(current->comm, "kjournald");
214
 
215
        /* Set up an interval timer which can be used to trigger a
216
           commit wakeup after the commit interval expires */
217
        init_timer(&timer);
218
        timer.data = (unsigned long) current;
219
        timer.function = commit_timeout;
220
        journal->j_commit_timer = &timer;
221
 
222
        /* Record that the journal thread is running */
223
        journal->j_task = current;
224
        wake_up(&journal->j_wait_done_commit);
225
 
226
        printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
227
                        journal->j_commit_interval / HZ);
228
        list_add(&journal->j_all_journals, &all_journals);
229
 
230
        /* And now, wait forever for commit wakeup events. */
231
        while (1) {
232
                if (journal->j_flags & JFS_UNMOUNT)
233
                        break;
234
 
235
                jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
236
                        journal->j_commit_sequence, journal->j_commit_request);
237
 
238
                if (journal->j_commit_sequence != journal->j_commit_request) {
239
                        jbd_debug(1, "OK, requests differ\n");
240
                        if (journal->j_commit_timer_active) {
241
                                journal->j_commit_timer_active = 0;
242
                                del_timer(journal->j_commit_timer);
243
                        }
244
 
245
                        journal_commit_transaction(journal);
246
                        continue;
247
                }
248
 
249
                wake_up(&journal->j_wait_done_commit);
250
                interruptible_sleep_on(&journal->j_wait_commit);
251
 
252
                jbd_debug(1, "kjournald wakes\n");
253
 
254
                /* Were we woken up by a commit wakeup event? */
255
                if ((transaction = journal->j_running_transaction) != NULL &&
256
                    journal->j_commit_interval &&
257
                    time_after_eq(jiffies, transaction->t_expires)) {
258
                        journal->j_commit_request = transaction->t_tid;
259
                        jbd_debug(1, "woke because of timeout\n");
260
                }
261
        }
262
 
263
        if (journal->j_commit_timer_active) {
264
                journal->j_commit_timer_active = 0;
265
                del_timer_sync(journal->j_commit_timer);
266
        }
267
 
268
        list_del(&journal->j_all_journals);
269
 
270
        journal->j_task = NULL;
271
        wake_up(&journal->j_wait_done_commit);
272
        unlock_kernel();
273
        jbd_debug(1, "Journal thread exiting.\n");
274
        return 0;
275
}
276
 
277
static void journal_start_thread(journal_t *journal)
278
{
279
        kernel_thread(kjournald, (void *) journal,
280
                      CLONE_VM | CLONE_FS | CLONE_FILES);
281
        while (!journal->j_task)
282
                sleep_on(&journal->j_wait_done_commit);
283
}
284
 
285
static void journal_kill_thread(journal_t *journal)
286
{
287
        journal->j_flags |= JFS_UNMOUNT;
288
 
289
        while (journal->j_task) {
290
                wake_up(&journal->j_wait_commit);
291
                sleep_on(&journal->j_wait_done_commit);
292
        }
293
}
294
 
295
#if 0
296
 
297
This is no longer needed - we do it in commit quite efficiently.
298
Note that if this function is resurrected, the loop needs to
299
be reorganised into the next_jh/last_jh algorithm.
300
 
301
/*
302
 * journal_clean_data_list: cleanup after data IO.
303
 *
304
 * Once the IO system has finished writing the buffers on the transaction's
305
 * data list, we can remove those buffers from the list.  This function
306
 * scans the list for such buffers and removes them cleanly.
307
 *
308
 * We assume that the journal is already locked.
309
 * We are called with journal_datalist_lock held.
310
 *
311
 * AKPM: This function looks inefficient.  Approximately O(n^2)
312
 * for potentially thousands of buffers.  It no longer shows on profiles
313
 * because these buffers are mainly dropped in journal_commit_transaction().
314
 */
315
 
316
void __journal_clean_data_list(transaction_t *transaction)
317
{
318
        struct journal_head *jh, *next;
319
 
320
        assert_spin_locked(&journal_datalist_lock);
321
 
322
restart:
323
        jh = transaction->t_sync_datalist;
324
        if (!jh)
325
                goto out;
326
        do {
327
                next = jh->b_tnext;
328
                if (!buffer_locked(jh2bh(jh)) && !buffer_dirty(jh2bh(jh))) {
329
                        struct buffer_head *bh = jh2bh(jh);
330
                        BUFFER_TRACE(bh, "data writeout complete: unfile");
331
                        __journal_unfile_buffer(jh);
332
                        jh->b_transaction = NULL;
333
                        __journal_remove_journal_head(bh);
334
                        refile_buffer(bh);
335
                        __brelse(bh);
336
                        goto restart;
337
                }
338
                jh = next;
339
        } while (transaction->t_sync_datalist &&
340
                        jh != transaction->t_sync_datalist);
341
out:
342
        return;
343
}
344
#endif
345
 
346
/*
347
 * journal_write_metadata_buffer: write a metadata buffer to the journal.
348
 *
349
 * Writes a metadata buffer to a given disk block.  The actual IO is not
350
 * performed but a new buffer_head is constructed which labels the data
351
 * to be written with the correct destination disk block.
352
 *
353
 * Any magic-number escaping which needs to be done will cause a
354
 * copy-out here.  If the buffer happens to start with the
355
 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
356
 * magic number is only written to the log for descripter blocks.  In
357
 * this case, we copy the data and replace the first word with 0, and we
358
 * return a result code which indicates that this buffer needs to be
359
 * marked as an escaped buffer in the corresponding log descriptor
360
 * block.  The missing word can then be restored when the block is read
361
 * during recovery.
362
 *
363
 * If the source buffer has already been modified by a new transaction
364
 * since we took the last commit snapshot, we use the frozen copy of
365
 * that data for IO.  If we end up using the existing buffer_head's data
366
 * for the write, then we *have* to lock the buffer to prevent anyone
367
 * else from using and possibly modifying it while the IO is in
368
 * progress.
369
 *
370
 * The function returns a pointer to the buffer_heads to be used for IO.
371
 *
372
 * We assume that the journal has already been locked in this function.
373
 *
374
 * Return value:
375
 *  <0: Error
376
 * >=0: Finished OK
377
 *
378
 * On success:
379
 * Bit 0 set == escape performed on the data
380
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
381
 */
382
 
383
static inline unsigned long virt_to_offset(void *p)
384
{return ((unsigned long) p) & ~PAGE_MASK;}
385
 
386
int journal_write_metadata_buffer(transaction_t *transaction,
387
                                  struct journal_head  *jh_in,
388
                                  struct journal_head **jh_out,
389
                                  int blocknr)
390
{
391
        int need_copy_out = 0;
392
        int done_copy_out = 0;
393
        int do_escape = 0;
394
        char *mapped_data;
395
        struct buffer_head *new_bh;
396
        struct journal_head * new_jh;
397
        struct page *new_page;
398
        unsigned int new_offset;
399
 
400
        /*
401
         * The buffer really shouldn't be locked: only the current committing
402
         * transaction is allowed to write it, so nobody else is allowed
403
         * to do any IO.
404
         *
405
         * akpm: except if we're journalling data, and write() output is
406
         * also part of a shared mapping, and another thread has
407
         * decided to launch a writepage() against this buffer.
408
         */
409
        J_ASSERT_JH(jh_in, buffer_jdirty(jh2bh(jh_in)));
410
 
411
        /*
412
         * If a new transaction has already done a buffer copy-out, then
413
         * we use that version of the data for the commit.
414
         */
415
 
416
        if (jh_in->b_frozen_data) {
417
                done_copy_out = 1;
418
                new_page = virt_to_page(jh_in->b_frozen_data);
419
                new_offset = virt_to_offset(jh_in->b_frozen_data);
420
        } else {
421
                new_page = jh2bh(jh_in)->b_page;
422
                new_offset = virt_to_offset(jh2bh(jh_in)->b_data);
423
        }
424
 
425
        mapped_data = ((char *) kmap(new_page)) + new_offset;
426
 
427
        /*
428
         * Check for escaping
429
         */
430
        if (* ((unsigned int *) mapped_data) == htonl(JFS_MAGIC_NUMBER)) {
431
                need_copy_out = 1;
432
                do_escape = 1;
433
        }
434
 
435
        /*
436
         * Do we need to do a data copy?
437
         */
438
 
439
        if (need_copy_out && !done_copy_out) {
440
                char *tmp;
441
                tmp = jbd_rep_kmalloc(jh2bh(jh_in)->b_size, GFP_NOFS);
442
 
443
                jh_in->b_frozen_data = tmp;
444
                memcpy (tmp, mapped_data, jh2bh(jh_in)->b_size);
445
 
446
                /* If we get to this path, we'll always need the new
447
                   address kmapped so that we can clear the escaped
448
                   magic number below. */
449
                kunmap(new_page);
450
                new_page = virt_to_page(tmp);
451
                new_offset = virt_to_offset(tmp);
452
                mapped_data = ((char *) kmap(new_page)) + new_offset;
453
 
454
                done_copy_out = 1;
455
        }
456
 
457
        /*
458
         * Right, time to make up the new buffer_head.
459
         */
460
        do {
461
                new_bh = get_unused_buffer_head(0);
462
                if (!new_bh) {
463
                        printk (KERN_NOTICE "%s: ENOMEM at "
464
                                "get_unused_buffer_head, trying again.\n",
465
                                __FUNCTION__);
466
                        yield();
467
                }
468
        } while (!new_bh);
469
        /* keep subsequent assertions sane */
470
        new_bh->b_prev_free = 0;
471
        new_bh->b_next_free = 0;
472
        new_bh->b_state = 0;
473
        init_buffer(new_bh, NULL, NULL);
474
        atomic_set(&new_bh->b_count, 1);
475
        new_jh = journal_add_journal_head(new_bh);
476
 
477
        set_bh_page(new_bh, new_page, new_offset);
478
 
479
        new_jh->b_transaction = NULL;
480
        new_bh->b_size = jh2bh(jh_in)->b_size;
481
        new_bh->b_dev = transaction->t_journal->j_dev;
482
        new_bh->b_blocknr = blocknr;
483
        new_bh->b_state |= (1 << BH_Mapped) | (1 << BH_Dirty);
484
 
485
        *jh_out = new_jh;
486
 
487
        /*
488
         * Did we need to do an escaping?  Now we've done all the
489
         * copying, we can finally do so.
490
         */
491
 
492
        if (do_escape)
493
                * ((unsigned int *) mapped_data) = 0;
494
        kunmap(new_page);
495
 
496
        /*
497
         * The to-be-written buffer needs to get moved to the io queue,
498
         * and the original buffer whose contents we are shadowing or
499
         * copying is moved to the transaction's shadow queue.
500
         */
501
        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
502
        journal_file_buffer(jh_in, transaction, BJ_Shadow);
503
        JBUFFER_TRACE(new_jh, "file as BJ_IO");
504
        journal_file_buffer(new_jh, transaction, BJ_IO);
505
 
506
        return do_escape | (done_copy_out << 1);
507
}
508
 
509
/*
510
 * Allocation code for the journal file.  Manage the space left in the
511
 * journal, so that we can begin checkpointing when appropriate.
512
 */
513
 
514
/*
515
 * log_space_left: Return the number of free blocks left in the journal.
516
 *
517
 * Called with the journal already locked.
518
 */
519
 
520
int log_space_left (journal_t *journal)
521
{
522
        int left = journal->j_free;
523
 
524
        /* Be pessimistic here about the number of those free blocks
525
         * which might be required for log descriptor control blocks. */
526
 
527
#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
528
 
529
        left -= MIN_LOG_RESERVED_BLOCKS;
530
 
531
        if (left <= 0)
532
                return 0;
533
        left -= (left >> 3);
534
        return left;
535
}
536
 
537
/*
538
 * This function must be non-allocating for PF_MEMALLOC tasks
539
 */
540
tid_t log_start_commit (journal_t *journal, transaction_t *transaction)
541
{
542
        tid_t target = journal->j_commit_request;
543
 
544
        lock_kernel(); /* Protect journal->j_running_transaction */
545
 
546
        /*
547
         * A NULL transaction asks us to commit the currently running
548
         * transaction, if there is one.
549
         */
550
        if (transaction)
551
                target = transaction->t_tid;
552
        else {
553
                transaction = journal->j_running_transaction;
554
                if (!transaction)
555
                        goto out;
556
                target = transaction->t_tid;
557
        }
558
 
559
        /*
560
         * Are we already doing a recent enough commit?
561
         */
562
        if (tid_geq(journal->j_commit_request, target))
563
                goto out;
564
 
565
        /*
566
         * We want a new commit: OK, mark the request and wakup the
567
         * commit thread.  We do _not_ do the commit ourselves.
568
         */
569
 
570
        journal->j_commit_request = target;
571
        jbd_debug(1, "JBD: requesting commit %d/%d\n",
572
                  journal->j_commit_request,
573
                  journal->j_commit_sequence);
574
        wake_up(&journal->j_wait_commit);
575
 
576
out:
577
        unlock_kernel();
578
        return target;
579
}
580
 
581
/*
582
 * Wait for a specified commit to complete.
583
 * The caller may not hold the journal lock.
584
 */
585
void log_wait_commit (journal_t *journal, tid_t tid)
586
{
587
        lock_kernel();
588
#ifdef CONFIG_JBD_DEBUG
589
        lock_journal(journal);
590
        if (!tid_geq(journal->j_commit_request, tid)) {
591
                printk(KERN_EMERG "%s: error: j_commit_request=%d, tid=%d\n",
592
                        __FUNCTION__, journal->j_commit_request, tid);
593
        }
594
        unlock_journal(journal);
595
#endif
596
        while (tid_gt(tid, journal->j_commit_sequence)) {
597
                jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
598
                                  tid, journal->j_commit_sequence);
599
                wake_up(&journal->j_wait_commit);
600
                sleep_on(&journal->j_wait_done_commit);
601
        }
602
        unlock_kernel();
603
}
604
 
605
/*
606
 * Log buffer allocation routines:
607
 */
608
 
609
int journal_next_log_block(journal_t *journal, unsigned long *retp)
610
{
611
        unsigned long blocknr;
612
 
613
        J_ASSERT(journal->j_free > 1);
614
 
615
        blocknr = journal->j_head;
616
        journal->j_head++;
617
        journal->j_free--;
618
        if (journal->j_head == journal->j_last)
619
                journal->j_head = journal->j_first;
620
        return journal_bmap(journal, blocknr, retp);
621
}
622
 
623
/*
624
 * Conversion of logical to physical block numbers for the journal
625
 *
626
 * On external journals the journal blocks are identity-mapped, so
627
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
628
 * ready.
629
 */
630
int journal_bmap(journal_t *journal, unsigned long blocknr,
631
                 unsigned long *retp)
632
{
633
        int err = 0;
634
        unsigned long ret;
635
 
636
        if (journal->j_inode) {
637
                ret = bmap(journal->j_inode, blocknr);
638
                if (ret)
639
                        *retp = ret;
640
                else {
641
                        printk (KERN_ALERT "%s: journal block not found "
642
                                "at offset %lu on %s\n", __FUNCTION__,
643
                                blocknr, bdevname(journal->j_dev));
644
                        err = -EIO;
645
                        __journal_abort_soft(journal, err);
646
                }
647
        } else {
648
                *retp = blocknr; /* +journal->j_blk_offset */
649
        }
650
        return err;
651
}
652
 
653
/*
654
 * We play buffer_head aliasing tricks to write data/metadata blocks to
655
 * the journal without copying their contents, but for journal
656
 * descriptor blocks we do need to generate bona fide buffers.
657
 *
658
 * We return a jh whose bh is locked and ready to be populated.
659
 */
660
 
661
struct journal_head * journal_get_descriptor_buffer(journal_t *journal)
662
{
663
        struct buffer_head *bh;
664
        unsigned long blocknr;
665
        int err;
666
 
667
        err = journal_next_log_block(journal, &blocknr);
668
 
669
        if (err)
670
                return NULL;
671
 
672
        bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
673
        lock_buffer(bh);
674
        memset(bh->b_data, 0, journal->j_blocksize);
675
        BUFFER_TRACE(bh, "return this buffer");
676
        return journal_add_journal_head(bh);
677
}
678
 
679
/*
680
 * Management for journal control blocks: functions to create and
681
 * destroy journal_t structures, and to initialise and read existing
682
 * journal blocks from disk.  */
683
 
684
/* First: create and setup a journal_t object in memory.  We initialise
685
 * very few fields yet: that has to wait until we have created the
686
 * journal structures from from scratch, or loaded them from disk. */
687
 
688
static journal_t * journal_init_common (void)
689
{
690
        journal_t *journal;
691
        int err;
692
 
693
        MOD_INC_USE_COUNT;
694
 
695
        journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
696
        if (!journal)
697
                goto fail;
698
        memset(journal, 0, sizeof(*journal));
699
 
700
        init_waitqueue_head(&journal->j_wait_transaction_locked);
701
        init_waitqueue_head(&journal->j_wait_logspace);
702
        init_waitqueue_head(&journal->j_wait_done_commit);
703
        init_waitqueue_head(&journal->j_wait_checkpoint);
704
        init_waitqueue_head(&journal->j_wait_commit);
705
        init_waitqueue_head(&journal->j_wait_updates);
706
        init_MUTEX(&journal->j_barrier);
707
        init_MUTEX(&journal->j_checkpoint_sem);
708
        init_MUTEX(&journal->j_sem);
709
 
710
        journal->j_commit_interval = get_buffer_flushtime();
711
 
712
        /* The journal is marked for error until we succeed with recovery! */
713
        journal->j_flags = JFS_ABORT;
714
 
715
        /* Set up a default-sized revoke table for the new mount. */
716
        err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
717
        if (err) {
718
                kfree(journal);
719
                goto fail;
720
        }
721
        return journal;
722
fail:
723
        MOD_DEC_USE_COUNT;
724
        return NULL;
725
}
726
 
727
/* journal_init_dev and journal_init_inode:
728
 *
729
 * Create a journal structure assigned some fixed set of disk blocks to
730
 * the journal.  We don't actually touch those disk blocks yet, but we
731
 * need to set up all of the mapping information to tell the journaling
732
 * system where the journal blocks are.
733
 *
734
 */
735
 
736
 /**
737
  *  journal_t * journal_init_dev() - creates an initialises a journal structure
738
  *  @kdev: Block device on which to create the journal
739
  *  @fs_dev: Device which hold journalled filesystem for this journal.
740
  *  @start: Block nr Start of journal.
741
  *  @len:  Lenght of the journal in blocks.
742
  *  @blocksize: blocksize of journalling device
743
  *  @returns: a newly created journal_t *
744
  *
745
  *  journal_init_dev creates a journal which maps a fixed contiguous
746
  *  range of blocks on an arbitrary block device.
747
  *
748
  */
749
journal_t * journal_init_dev(kdev_t dev, kdev_t fs_dev,
750
                        int start, int len, int blocksize)
751
{
752
        journal_t *journal = journal_init_common();
753
        struct buffer_head *bh;
754
 
755
        if (!journal)
756
                return NULL;
757
 
758
        journal->j_dev = dev;
759
        journal->j_fs_dev = fs_dev;
760
        journal->j_blk_offset = start;
761
        journal->j_maxlen = len;
762
        journal->j_blocksize = blocksize;
763
 
764
        bh = getblk(journal->j_dev, start, journal->j_blocksize);
765
        J_ASSERT(bh != NULL);
766
        journal->j_sb_buffer = bh;
767
        journal->j_superblock = (journal_superblock_t *)bh->b_data;
768
 
769
        return journal;
770
}
771
 
772
/**
773
 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
774
 *  @inode: An inode to create the journal in
775
 *
776
 * journal_init_inode creates a journal which maps an on-disk inode as
777
 * the journal.  The inode must exist already, must support bmap() and
778
 * must have all data blocks preallocated.
779
 */
780
journal_t * journal_init_inode (struct inode *inode)
781
{
782
        struct buffer_head *bh;
783
        journal_t *journal = journal_init_common();
784
        int err;
785
        unsigned long blocknr;
786
 
787
        if (!journal)
788
                return NULL;
789
 
790
        journal->j_dev = inode->i_dev;
791
        journal->j_fs_dev = inode->i_dev;
792
        journal->j_inode = inode;
793
        jbd_debug(1,
794
                  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
795
                  journal, bdevname(inode->i_dev), inode->i_ino,
796
                  (long long) inode->i_size,
797
                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
798
 
799
        journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
800
        journal->j_blocksize = inode->i_sb->s_blocksize;
801
 
802
        err = journal_bmap(journal, 0, &blocknr);
803
        /* If that failed, give up */
804
        if (err) {
805
                printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
806
                        __FUNCTION__);
807
                kfree(journal);
808
                return NULL;
809
        }
810
 
811
        bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
812
        J_ASSERT(bh != NULL);
813
        journal->j_sb_buffer = bh;
814
        journal->j_superblock = (journal_superblock_t *)bh->b_data;
815
 
816
        return journal;
817
}
818
 
819
/*
820
 * If the journal init or create aborts, we need to mark the journal
821
 * superblock as being NULL to prevent the journal destroy from writing
822
 * back a bogus superblock.
823
 */
824
static void journal_fail_superblock (journal_t *journal)
825
{
826
        struct buffer_head *bh = journal->j_sb_buffer;
827
        brelse(bh);
828
        journal->j_sb_buffer = NULL;
829
}
830
 
831
/*
832
 * Given a journal_t structure, initialise the various fields for
833
 * startup of a new journaling session.  We use this both when creating
834
 * a journal, and after recovering an old journal to reset it for
835
 * subsequent use.
836
 */
837
 
838
static int journal_reset (journal_t *journal)
839
{
840
        journal_superblock_t *sb = journal->j_superblock;
841
        unsigned int first, last;
842
 
843
        first = ntohl(sb->s_first);
844
        last = ntohl(sb->s_maxlen);
845
 
846
        journal->j_first = first;
847
        journal->j_last = last;
848
 
849
        journal->j_head = first;
850
        journal->j_tail = first;
851
        journal->j_free = last - first;
852
 
853
        journal->j_tail_sequence = journal->j_transaction_sequence;
854
        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
855
        journal->j_commit_request = journal->j_commit_sequence;
856
 
857
        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
858
 
859
        /* Add the dynamic fields and write it to disk. */
860
        journal_update_superblock(journal, 1);
861
 
862
        lock_journal(journal);
863
        journal_start_thread(journal);
864
        unlock_journal(journal);
865
 
866
        return 0;
867
}
868
 
869
/**
870
 * int journal_create() - Initialise the new journal file
871
 * @journal: Journal to create. This structure must have been initialised
872
 *
873
 * Given a journal_t structure which tells us which disk blocks we can
874
 * use, create a new journal superblock and initialise all of the
875
 * journal fields from scratch.
876
 **/
877
int journal_create(journal_t *journal)
878
{
879
        unsigned long blocknr;
880
        struct buffer_head *bh;
881
        journal_superblock_t *sb;
882
        int i, err;
883
 
884
        if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
885
                printk (KERN_ERR "Journal length (%d blocks) too short.\n",
886
                        journal->j_maxlen);
887
                journal_fail_superblock(journal);
888
                return -EINVAL;
889
        }
890
 
891
        if (journal->j_inode == NULL) {
892
                /*
893
                 * We don't know what block to start at!
894
                 */
895
                printk(KERN_EMERG "%s: creation of journal on external "
896
                        "device!\n", __FUNCTION__);
897
                BUG();
898
        }
899
 
900
        /* Zero out the entire journal on disk.  We cannot afford to
901
           have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
902
        jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
903
        for (i = 0; i < journal->j_maxlen; i++) {
904
                err = journal_bmap(journal, i, &blocknr);
905
                if (err)
906
                        return err;
907
                bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
908
                wait_on_buffer(bh);
909
                memset (bh->b_data, 0, journal->j_blocksize);
910
                BUFFER_TRACE(bh, "marking dirty");
911
                mark_buffer_dirty(bh);
912
                BUFFER_TRACE(bh, "marking uptodate");
913
                mark_buffer_uptodate(bh, 1);
914
                __brelse(bh);
915
        }
916
 
917
        fsync_no_super(journal->j_dev);
918
        jbd_debug(1, "JBD: journal cleared.\n");
919
 
920
        /* OK, fill in the initial static fields in the new superblock */
921
        sb = journal->j_superblock;
922
 
923
        sb->s_header.h_magic     = htonl(JFS_MAGIC_NUMBER);
924
        sb->s_header.h_blocktype = htonl(JFS_SUPERBLOCK_V2);
925
 
926
        sb->s_blocksize = htonl(journal->j_blocksize);
927
        sb->s_maxlen    = htonl(journal->j_maxlen);
928
        sb->s_first     = htonl(1);
929
 
930
        journal->j_transaction_sequence = 1;
931
 
932
        journal->j_flags &= ~JFS_ABORT;
933
        journal->j_format_version = 2;
934
 
935
        return journal_reset(journal);
936
}
937
 
938
/**
939
 * void journal_update_superblock() - Update journal sb on disk.
940
 * @journal: The journal to update.
941
 * @wait: Set to '0' if you don't want to wait for IO completion.
942
 *
943
 * Update a journal's dynamic superblock fields and write it to disk,
944
 * optionally waiting for the IO to complete.
945
 */
946
void journal_update_superblock(journal_t *journal, int wait)
947
{
948
        journal_superblock_t *sb = journal->j_superblock;
949
        struct buffer_head *bh = journal->j_sb_buffer;
950
 
951
        jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
952
                  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
953
 
954
        sb->s_sequence = htonl(journal->j_tail_sequence);
955
        sb->s_start    = htonl(journal->j_tail);
956
        sb->s_errno    = htonl(journal->j_errno);
957
 
958
        BUFFER_TRACE(bh, "marking dirty");
959
        mark_buffer_dirty(bh);
960
        ll_rw_block(WRITE, 1, &bh);
961
        if (wait)
962
                wait_on_buffer(bh);
963
 
964
        /* If we have just flushed the log (by marking s_start==0), then
965
         * any future commit will have to be careful to update the
966
         * superblock again to re-record the true start of the log. */
967
 
968
        if (sb->s_start)
969
                journal->j_flags &= ~JFS_FLUSHED;
970
        else
971
                journal->j_flags |= JFS_FLUSHED;
972
}
973
 
974
 
975
/*
976
 * Read the superblock for a given journal, performing initial
977
 * validation of the format.
978
 */
979
 
980
static int journal_get_superblock(journal_t *journal)
981
{
982
        struct buffer_head *bh;
983
        journal_superblock_t *sb;
984
        int err = -EIO;
985
 
986
        bh = journal->j_sb_buffer;
987
 
988
        J_ASSERT(bh != NULL);
989
        if (!buffer_uptodate(bh)) {
990
                ll_rw_block(READ, 1, &bh);
991
                wait_on_buffer(bh);
992
                if (!buffer_uptodate(bh)) {
993
                        printk (KERN_ERR
994
                                "JBD: IO error reading journal superblock\n");
995
                        goto out;
996
                }
997
        }
998
 
999
        sb = journal->j_superblock;
1000
 
1001
        err = -EINVAL;
1002
 
1003
        if (sb->s_header.h_magic != htonl(JFS_MAGIC_NUMBER) ||
1004
            sb->s_blocksize != htonl(journal->j_blocksize)) {
1005
                printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1006
                goto out;
1007
        }
1008
 
1009
        switch(ntohl(sb->s_header.h_blocktype)) {
1010
        case JFS_SUPERBLOCK_V1:
1011
                journal->j_format_version = 1;
1012
                break;
1013
        case JFS_SUPERBLOCK_V2:
1014
                journal->j_format_version = 2;
1015
                break;
1016
        default:
1017
                printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1018
                goto out;
1019
        }
1020
 
1021
        if (ntohl(sb->s_maxlen) < journal->j_maxlen)
1022
                journal->j_maxlen = ntohl(sb->s_maxlen);
1023
        else if (ntohl(sb->s_maxlen) > journal->j_maxlen) {
1024
                printk (KERN_WARNING "JBD: journal file too short\n");
1025
                goto out;
1026
        }
1027
 
1028
        return 0;
1029
 
1030
out:
1031
        journal_fail_superblock(journal);
1032
        return err;
1033
}
1034
 
1035
/*
1036
 * Load the on-disk journal superblock and read the key fields into the
1037
 * journal_t.
1038
 */
1039
 
1040
static int load_superblock(journal_t *journal)
1041
{
1042
        int err;
1043
        journal_superblock_t *sb;
1044
 
1045
        err = journal_get_superblock(journal);
1046
        if (err)
1047
                return err;
1048
 
1049
        sb = journal->j_superblock;
1050
 
1051
        journal->j_tail_sequence = ntohl(sb->s_sequence);
1052
        journal->j_tail = ntohl(sb->s_start);
1053
        journal->j_first = ntohl(sb->s_first);
1054
        journal->j_last = ntohl(sb->s_maxlen);
1055
        journal->j_errno = ntohl(sb->s_errno);
1056
 
1057
        return 0;
1058
}
1059
 
1060
 
1061
/**
1062
 * int journal_load() - Read journal from disk.
1063
 * @journal: Journal to act on.
1064
 *
1065
 * Given a journal_t structure which tells us which disk blocks contain
1066
 * a journal, read the journal from disk to initialise the in-memory
1067
 * structures.
1068
 */
1069
int journal_load(journal_t *journal)
1070
{
1071
        int err;
1072
 
1073
        err = load_superblock(journal);
1074
        if (err)
1075
                return err;
1076
 
1077
        /* If this is a V2 superblock, then we have to check the
1078
         * features flags on it. */
1079
 
1080
        if (journal->j_format_version >= 2) {
1081
                journal_superblock_t *sb = journal->j_superblock;
1082
 
1083
                if ((sb->s_feature_ro_compat &
1084
                     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1085
                    (sb->s_feature_incompat &
1086
                     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1087
                        printk (KERN_WARNING
1088
                                "JBD: Unrecognised features on journal\n");
1089
                        return -EINVAL;
1090
                }
1091
        }
1092
 
1093
        /* Let the recovery code check whether it needs to recover any
1094
         * data from the journal. */
1095
        if (journal_recover(journal))
1096
                goto recovery_error;
1097
 
1098
        /* OK, we've finished with the dynamic journal bits:
1099
         * reinitialise the dynamic contents of the superblock in memory
1100
         * and reset them on disk. */
1101
        if (journal_reset(journal))
1102
                goto recovery_error;
1103
 
1104
        journal->j_flags &= ~JFS_ABORT;
1105
        journal->j_flags |= JFS_LOADED;
1106
        return 0;
1107
 
1108
recovery_error:
1109
        printk (KERN_WARNING "JBD: recovery failed\n");
1110
        return -EIO;
1111
}
1112
 
1113
/**
1114
 * void journal_destroy() - Release a journal_t structure.
1115
 * @journal: Journal to act on.
1116
*
1117
 * Release a journal_t structure once it is no longer in use by the
1118
 * journaled object.
1119
 */
1120
void journal_destroy (journal_t *journal)
1121
{
1122
        /* Wait for the commit thread to wake up and die. */
1123
        journal_kill_thread(journal);
1124
 
1125
        /* Force a final log commit */
1126
        if (journal->j_running_transaction)
1127
                journal_commit_transaction(journal);
1128
 
1129
        /* Force any old transactions to disk */
1130
        lock_journal(journal);
1131
        while (journal->j_checkpoint_transactions != NULL)
1132
                log_do_checkpoint(journal, 1);
1133
 
1134
        J_ASSERT(journal->j_running_transaction == NULL);
1135
        J_ASSERT(journal->j_committing_transaction == NULL);
1136
        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1137
 
1138
        /* We can now mark the journal as empty. */
1139
        journal->j_tail = 0;
1140
        journal->j_tail_sequence = ++journal->j_transaction_sequence;
1141
        if (journal->j_sb_buffer) {
1142
                journal_update_superblock(journal, 1);
1143
                brelse(journal->j_sb_buffer);
1144
        }
1145
 
1146
        if (journal->j_inode)
1147
                iput(journal->j_inode);
1148
        if (journal->j_revoke)
1149
                journal_destroy_revoke(journal);
1150
 
1151
        unlock_journal(journal);
1152
        kfree(journal);
1153
        MOD_DEC_USE_COUNT;
1154
}
1155
 
1156
 
1157
/**
1158
 *int journal_check_used_features () - Check if features specified are used.
1159
 *
1160
 * Check whether the journal uses all of a given set of
1161
 * features.  Return true (non-zero) if it does.
1162
 **/
1163
 
1164
int journal_check_used_features (journal_t *journal, unsigned long compat,
1165
                                 unsigned long ro, unsigned long incompat)
1166
{
1167
        journal_superblock_t *sb;
1168
 
1169
        if (!compat && !ro && !incompat)
1170
                return 1;
1171
        if (journal->j_format_version == 1)
1172
                return 0;
1173
 
1174
        sb = journal->j_superblock;
1175
 
1176
        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1177
            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1178
            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1179
                return 1;
1180
 
1181
        return 0;
1182
}
1183
 
1184
/**
1185
 * int journal_check_available_features() - Check feature set in journalling layer
1186
 *
1187
 * Check whether the journaling code supports the use of
1188
 * all of a given set of features on this journal.  Return true
1189
 * (non-zero) if it can. */
1190
 
1191
int journal_check_available_features (journal_t *journal, unsigned long compat,
1192
                                      unsigned long ro, unsigned long incompat)
1193
{
1194
        journal_superblock_t *sb;
1195
 
1196
        if (!compat && !ro && !incompat)
1197
                return 1;
1198
 
1199
        sb = journal->j_superblock;
1200
 
1201
        /* We can support any known requested features iff the
1202
         * superblock is in version 2.  Otherwise we fail to support any
1203
         * extended sb features. */
1204
 
1205
        if (journal->j_format_version != 2)
1206
                return 0;
1207
 
1208
        if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1209
            (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1210
            (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1211
                return 1;
1212
 
1213
        return 0;
1214
}
1215
 
1216
/**
1217
 * int journal_set_features () - Mark a given journal feature in the superblock
1218
 *
1219
 * Mark a given journal feature as present on the
1220
 * superblock.  Returns true if the requested features could be set.
1221
 *
1222
 */
1223
 
1224
int journal_set_features (journal_t *journal, unsigned long compat,
1225
                          unsigned long ro, unsigned long incompat)
1226
{
1227
        journal_superblock_t *sb;
1228
 
1229
        if (journal_check_used_features(journal, compat, ro, incompat))
1230
                return 1;
1231
 
1232
        if (!journal_check_available_features(journal, compat, ro, incompat))
1233
                return 0;
1234
 
1235
        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1236
                  compat, ro, incompat);
1237
 
1238
        sb = journal->j_superblock;
1239
 
1240
        sb->s_feature_compat    |= cpu_to_be32(compat);
1241
        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1242
        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1243
 
1244
        return 1;
1245
}
1246
 
1247
 
1248
/**
1249
 * int journal_update_format () - Update on-disk journal structure.
1250
 *
1251
 * Given an initialised but unloaded journal struct, poke about in the
1252
 * on-disk structure to update it to the most recent supported version.
1253
 */
1254
int journal_update_format (journal_t *journal)
1255
{
1256
        journal_superblock_t *sb;
1257
        int err;
1258
 
1259
        err = journal_get_superblock(journal);
1260
        if (err)
1261
                return err;
1262
 
1263
        sb = journal->j_superblock;
1264
 
1265
        switch (ntohl(sb->s_header.h_blocktype)) {
1266
        case JFS_SUPERBLOCK_V2:
1267
                return 0;
1268
        case JFS_SUPERBLOCK_V1:
1269
                return journal_convert_superblock_v1(journal, sb);
1270
        default:
1271
                break;
1272
        }
1273
        return -EINVAL;
1274
}
1275
 
1276
static int journal_convert_superblock_v1(journal_t *journal,
1277
                                         journal_superblock_t *sb)
1278
{
1279
        int offset, blocksize;
1280
        struct buffer_head *bh;
1281
 
1282
        printk(KERN_WARNING
1283
                "JBD: Converting superblock from version 1 to 2.\n");
1284
 
1285
        /* Pre-initialise new fields to zero */
1286
        offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1287
        blocksize = ntohl(sb->s_blocksize);
1288
        memset(&sb->s_feature_compat, 0, blocksize-offset);
1289
 
1290
        sb->s_nr_users = cpu_to_be32(1);
1291
        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1292
        journal->j_format_version = 2;
1293
 
1294
        bh = journal->j_sb_buffer;
1295
        BUFFER_TRACE(bh, "marking dirty");
1296
        mark_buffer_dirty(bh);
1297
        ll_rw_block(WRITE, 1, &bh);
1298
        wait_on_buffer(bh);
1299
        return 0;
1300
}
1301
 
1302
 
1303
/**
1304
 * int journal_flush () - Flush journal
1305
 * @journal: Journal to act on.
1306
 *
1307
 * Flush all data for a given journal to disk and empty the journal.
1308
 * Filesystems can use this when remounting readonly to ensure that
1309
 * recovery does not need to happen on remount.
1310
 */
1311
 
1312
int journal_flush (journal_t *journal)
1313
{
1314
        int err = 0;
1315
        transaction_t *transaction = NULL;
1316
        unsigned long old_tail;
1317
 
1318
        lock_kernel();
1319
 
1320
        /* Force everything buffered to the log... */
1321
        if (journal->j_running_transaction) {
1322
                transaction = journal->j_running_transaction;
1323
                log_start_commit(journal, transaction);
1324
        } else if (journal->j_committing_transaction)
1325
                transaction = journal->j_committing_transaction;
1326
 
1327
        /* Wait for the log commit to complete... */
1328
        if (transaction)
1329
                log_wait_commit(journal, transaction->t_tid);
1330
 
1331
        /* ...and flush everything in the log out to disk. */
1332
        lock_journal(journal);
1333
        while (!err && journal->j_checkpoint_transactions != NULL)
1334
                err = log_do_checkpoint(journal, journal->j_maxlen);
1335
        cleanup_journal_tail(journal);
1336
 
1337
        /* Finally, mark the journal as really needing no recovery.
1338
         * This sets s_start==0 in the underlying superblock, which is
1339
         * the magic code for a fully-recovered superblock.  Any future
1340
         * commits of data to the journal will restore the current
1341
         * s_start value. */
1342
        old_tail = journal->j_tail;
1343
        journal->j_tail = 0;
1344
        journal_update_superblock(journal, 1);
1345
        journal->j_tail = old_tail;
1346
 
1347
        unlock_journal(journal);
1348
 
1349
        J_ASSERT(!journal->j_running_transaction);
1350
        J_ASSERT(!journal->j_committing_transaction);
1351
        J_ASSERT(!journal->j_checkpoint_transactions);
1352
        J_ASSERT(journal->j_head == journal->j_tail);
1353
        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1354
 
1355
        unlock_kernel();
1356
 
1357
        return err;
1358
}
1359
 
1360
/**
1361
 * int journal_wipe() - Wipe journal contents
1362
 * @journal: Journal to act on.
1363
 * @write: flag (see below)
1364
 *
1365
 * Wipe out all of the contents of a journal, safely.  This will produce
1366
 * a warning if the journal contains any valid recovery information.
1367
 * Must be called between journal_init_*() and journal_load().
1368
 *
1369
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1370
 * we merely suppress recovery.
1371
 */
1372
 
1373
int journal_wipe (journal_t *journal, int write)
1374
{
1375
        journal_superblock_t *sb;
1376
        int err = 0;
1377
 
1378
        J_ASSERT (!(journal->j_flags & JFS_LOADED));
1379
 
1380
        err = load_superblock(journal);
1381
        if (err)
1382
                return err;
1383
 
1384
        sb = journal->j_superblock;
1385
 
1386
        if (!journal->j_tail)
1387
                goto no_recovery;
1388
 
1389
        printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1390
                write ? "Clearing" : "Ignoring");
1391
 
1392
        err = journal_skip_recovery(journal);
1393
        if (write)
1394
                journal_update_superblock(journal, 1);
1395
 
1396
 no_recovery:
1397
        return err;
1398
}
1399
 
1400
/*
1401
 * journal_dev_name: format a character string to describe on what
1402
 * device this journal is present.
1403
 */
1404
 
1405
const char * journal_dev_name(journal_t *journal)
1406
{
1407
        kdev_t dev;
1408
 
1409
        if (journal->j_inode)
1410
                dev = journal->j_inode->i_dev;
1411
        else
1412
                dev = journal->j_dev;
1413
 
1414
        return bdevname(dev);
1415
}
1416
 
1417
/*
1418
 * Journal abort has very specific semantics, which we describe
1419
 * for journal abort.
1420
 *
1421
 * Two internal function, which provide abort to te jbd layer
1422
 * itself are here.
1423
 */
1424
 
1425
/* Quick version for internal journal use (doesn't lock the journal).
1426
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1427
 * and don't attempt to make any other journal updates. */
1428
void __journal_abort_hard (journal_t *journal)
1429
{
1430
        transaction_t *transaction;
1431
 
1432
        if (journal->j_flags & JFS_ABORT)
1433
                return;
1434
 
1435
        printk (KERN_ERR "Aborting journal on device %s.\n",
1436
                journal_dev_name(journal));
1437
 
1438
        journal->j_flags |= JFS_ABORT;
1439
        transaction = journal->j_running_transaction;
1440
        if (transaction)
1441
                log_start_commit(journal, transaction);
1442
}
1443
 
1444
/* Soft abort: record the abort error status in the journal superblock,
1445
 * but don't do any other IO. */
1446
void __journal_abort_soft (journal_t *journal, int errno)
1447
{
1448
        if (journal->j_flags & JFS_ABORT)
1449
                return;
1450
 
1451
        if (!journal->j_errno)
1452
                journal->j_errno = errno;
1453
 
1454
        __journal_abort_hard(journal);
1455
 
1456
        if (errno)
1457
                journal_update_superblock(journal, 1);
1458
}
1459
 
1460
/**
1461
 * void journal_abort () - Shutdown the journal immediately.
1462
 * @journal: the journal to shutdown.
1463
 * @errno:   an error number to record in the journal indicating
1464
 *           the reason for the shutdown.
1465
 *
1466
 * Perform a complete, immediate shutdown of the ENTIRE
1467
 * journal (not of a single transaction).  This operation cannot be
1468
 * undone without closing and reopening the journal.
1469
 *
1470
 * The journal_abort function is intended to support higher level error
1471
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1472
 * mode.
1473
 *
1474
 * Journal abort has very specific semantics.  Any existing dirty,
1475
 * unjournaled buffers in the main filesystem will still be written to
1476
 * disk by bdflush, but the journaling mechanism will be suspended
1477
 * immediately and no further transaction commits will be honoured.
1478
 *
1479
 * Any dirty, journaled buffers will be written back to disk without
1480
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1481
 * filesystem, but we _do_ attempt to leave as much data as possible
1482
 * behind for fsck to use for cleanup.
1483
 *
1484
 * Any attempt to get a new transaction handle on a journal which is in
1485
 * ABORT state will just result in an -EROFS error return.  A
1486
 * journal_stop on an existing handle will return -EIO if we have
1487
 * entered abort state during the update.
1488
 *
1489
 * Recursive transactions are not disturbed by journal abort until the
1490
 * final journal_stop, which will receive the -EIO error.
1491
 *
1492
 * Finally, the journal_abort call allows the caller to supply an errno
1493
 * which will be recorded (if possible) in the journal superblock.  This
1494
 * allows a client to record failure conditions in the middle of a
1495
 * transaction without having to complete the transaction to record the
1496
 * failure to disk.  ext3_error, for example, now uses this
1497
 * functionality.
1498
 *
1499
 * Errors which originate from within the journaling layer will NOT
1500
 * supply an errno; a null errno implies that absolutely no further
1501
 * writes are done to the journal (unless there are any already in
1502
 * progress).
1503
 *
1504
 */
1505
 
1506
void journal_abort (journal_t *journal, int errno)
1507
{
1508
        lock_journal(journal);
1509
        __journal_abort_soft(journal, errno);
1510
        unlock_journal(journal);
1511
}
1512
 
1513
/**
1514
 * int journal_errno () - returns the journal's error state.
1515
 * @journal: journal to examine.
1516
 *
1517
 * This is the errno numbet set with journal_abort(), the last
1518
 * time the journal was mounted - if the journal was stopped
1519
 * without calling abort this will be 0.
1520
 *
1521
 * If the journal has been aborted on this mount time -EROFS will
1522
 * be returned.
1523
 */
1524
int journal_errno (journal_t *journal)
1525
{
1526
        int err;
1527
 
1528
        lock_journal(journal);
1529
        if (journal->j_flags & JFS_ABORT)
1530
                err = -EROFS;
1531
        else
1532
                err = journal->j_errno;
1533
        unlock_journal(journal);
1534
        return err;
1535
}
1536
 
1537
 
1538
 
1539
/**
1540
 * int journal_clear_err () - clears the journal's error state
1541
 *
1542
 * An error must be cleared or Acked to take a FS out of readonly
1543
 * mode.
1544
 */
1545
int journal_clear_err (journal_t *journal)
1546
{
1547
        int err = 0;
1548
 
1549
        lock_journal(journal);
1550
        if (journal->j_flags & JFS_ABORT)
1551
                err = -EROFS;
1552
        else
1553
                journal->j_errno = 0;
1554
        unlock_journal(journal);
1555
        return err;
1556
}
1557
 
1558
 
1559
/**
1560
 * void journal_ack_err() - Ack journal err.
1561
 *
1562
 * An error must be cleared or Acked to take a FS out of readonly
1563
 * mode.
1564
 */
1565
void journal_ack_err (journal_t *journal)
1566
{
1567
        lock_journal(journal);
1568
        if (journal->j_errno)
1569
                journal->j_flags |= JFS_ACK_ERR;
1570
        unlock_journal(journal);
1571
}
1572
 
1573
 
1574
/*
1575
 * Report any unexpected dirty buffers which turn up.  Normally those
1576
 * indicate an error, but they can occur if the user is running (say)
1577
 * tune2fs to modify the live filesystem, so we need the option of
1578
 * continuing as gracefully as possible.  #
1579
 *
1580
 * The caller should already hold the journal lock and
1581
 * journal_datalist_lock spinlock: most callers will need those anyway
1582
 * in order to probe the buffer's journaling state safely.
1583
 */
1584
void __jbd_unexpected_dirty_buffer(char *function, int line,
1585
                                 struct journal_head *jh)
1586
{
1587
        struct buffer_head *bh = jh2bh(jh);
1588
        int jlist;
1589
 
1590
        if (buffer_dirty(bh)) {
1591
                printk ("%sUnexpected dirty buffer encountered at "
1592
                        "%s:%d (%s blocknr %lu)\n",
1593
                        KERN_WARNING, function, line,
1594
                        kdevname(bh->b_dev), bh->b_blocknr);
1595
#ifdef JBD_PARANOID_WRITES
1596
                J_ASSERT_BH (bh, !buffer_dirty(bh));
1597
#endif  
1598
 
1599
                /* If this buffer is one which might reasonably be dirty
1600
                 * --- ie. data, or not part of this journal --- then
1601
                 * we're OK to leave it alone, but otherwise we need to
1602
                 * move the dirty bit to the journal's own internal
1603
                 * JBDDirty bit. */
1604
                jlist = jh->b_jlist;
1605
 
1606
                if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1607
                    jlist == BJ_Shadow || jlist == BJ_Forget) {
1608
                        if (atomic_set_buffer_clean(jh2bh(jh))) {
1609
                                set_bit(BH_JBDDirty, &jh2bh(jh)->b_state);
1610
                        }
1611
                }
1612
        }
1613
}
1614
 
1615
 
1616
int journal_blocks_per_page(struct inode *inode)
1617
{
1618
        return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1619
}
1620
 
1621
/*
1622
 * shrink_journal_memory().
1623
 * Called when we're under memory pressure.  Free up all the written-back
1624
 * checkpointed metadata buffers.
1625
 */
1626
void shrink_journal_memory(void)
1627
{
1628
        struct list_head *list;
1629
 
1630
        lock_kernel();
1631
        list_for_each(list, &all_journals) {
1632
                journal_t *journal =
1633
                        list_entry(list, journal_t, j_all_journals);
1634
                spin_lock(&journal_datalist_lock);
1635
                __journal_clean_checkpoint_list(journal);
1636
                spin_unlock(&journal_datalist_lock);
1637
        }
1638
        unlock_kernel();
1639
}
1640
 
1641
/*
1642
 * Simple support for retying memory allocations.  Introduced to help to
1643
 * debug different VM deadlock avoidance strategies.
1644
 */
1645
/*
1646
 * Simple support for retying memory allocations.  Introduced to help to
1647
 * debug different VM deadlock avoidance strategies.
1648
 */
1649
void * __jbd_kmalloc (char *where, size_t size, int flags, int retry)
1650
{
1651
        void *p;
1652
        static unsigned long last_warning;
1653
 
1654
        while (1) {
1655
                p = kmalloc(size, flags);
1656
                if (p)
1657
                        return p;
1658
                if (!retry)
1659
                        return NULL;
1660
                /* Log every retry for debugging.  Also log them to the
1661
                 * syslog, but do rate-limiting on the non-debugging
1662
                 * messages. */
1663
                jbd_debug(1, "ENOMEM in %s, retrying.\n", where);
1664
 
1665
                if (time_after(jiffies, last_warning + 120*HZ)) {
1666
                        printk(KERN_NOTICE
1667
                               "ENOMEM in %s, retrying.\n", where);
1668
                        last_warning = jiffies;
1669
                }
1670
 
1671
                yield();
1672
        }
1673
}
1674
 
1675
/*
1676
 * Journal_head storage management
1677
 */
1678
static kmem_cache_t *journal_head_cache;
1679
#ifdef CONFIG_JBD_DEBUG
1680
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1681
#endif
1682
 
1683
static int journal_init_journal_head_cache(void)
1684
{
1685
        int retval;
1686
 
1687
        J_ASSERT(journal_head_cache == 0);
1688
        journal_head_cache = kmem_cache_create("journal_head",
1689
                                sizeof(struct journal_head),
1690
                                0,               /* offset */
1691
                                0,               /* flags */
1692
                                NULL,           /* ctor */
1693
                                NULL);          /* dtor */
1694
        retval = 0;
1695
        if (journal_head_cache == 0) {
1696
                retval = -ENOMEM;
1697
                printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1698
        }
1699
        return retval;
1700
}
1701
 
1702
static void journal_destroy_journal_head_cache(void)
1703
{
1704
        J_ASSERT(journal_head_cache != NULL);
1705
        kmem_cache_destroy(journal_head_cache);
1706
        journal_head_cache = 0;
1707
}
1708
 
1709
/*
1710
 * journal_head splicing and dicing
1711
 */
1712
static struct journal_head *journal_alloc_journal_head(void)
1713
{
1714
        struct journal_head *ret;
1715
        static unsigned long last_warning;
1716
 
1717
#ifdef CONFIG_JBD_DEBUG
1718
        atomic_inc(&nr_journal_heads);
1719
#endif
1720
        ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1721
        if (ret == 0) {
1722
                jbd_debug(1, "out of memory for journal_head\n");
1723
                if (time_after(jiffies, last_warning + 5*HZ)) {
1724
                        printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1725
                                __FUNCTION__);
1726
                        last_warning = jiffies;
1727
                }
1728
                while (ret == 0) {
1729
                        yield();
1730
                        ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1731
                }
1732
        }
1733
        return ret;
1734
}
1735
 
1736
static void journal_free_journal_head(struct journal_head *jh)
1737
{
1738
#ifdef CONFIG_JBD_DEBUG
1739
        atomic_dec(&nr_journal_heads);
1740
        memset(jh, 0x5b, sizeof(*jh));
1741
#endif
1742
        kmem_cache_free(journal_head_cache, jh);
1743
}
1744
 
1745
/*
1746
 * A journal_head is attached to a buffer_head whenever JBD has an
1747
 * interest in the buffer.
1748
 *
1749
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1750
 * is set.  This bit is tested in core kernel code where we need to take
1751
 * JBD-specific actions.  Testing the zeroness of ->b_journal_head is not
1752
 * reliable there.
1753
 *
1754
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1755
 *
1756
 * When a buffer has its BH_JBD bit set it is immune from being released by
1757
 * core kernel code, mainly via ->b_count.
1758
 *
1759
 * A journal_head may be detached from its buffer_head when the journal_head's
1760
 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1761
 * Various places in JBD call journal_remove_journal_head() to indicate that the
1762
 * journal_head can be dropped if needed.
1763
 *
1764
 * Various places in the kernel want to attach a journal_head to a buffer_head
1765
 * _before_ attaching the journal_head to a transaction.  To protect the
1766
 * journal_head in this situation, journal_add_journal_head elevates the
1767
 * journal_head's b_jcount refcount by one.  The caller must call
1768
 * journal_unlock_journal_head() to undo this.
1769
 *
1770
 * So the typical usage would be:
1771
 *
1772
 *      (Attach a journal_head if needed.  Increments b_jcount)
1773
 *      struct journal_head *jh = journal_add_journal_head(bh);
1774
 *      ...
1775
 *      jh->b_transaction = xxx;
1776
 *      journal_unlock_journal_head(jh);
1777
 *
1778
 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1779
 * because it has a non-zero b_transaction.
1780
 */
1781
 
1782
/*
1783
 * Give a buffer_head a journal_head.
1784
 *
1785
 * Doesn't need the journal lock.
1786
 * May sleep.
1787
 * Cannot be called with journal_datalist_lock held.
1788
 */
1789
struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1790
{
1791
        struct journal_head *jh;
1792
 
1793
        spin_lock(&journal_datalist_lock);
1794
        if (buffer_jbd(bh)) {
1795
                jh = bh2jh(bh);
1796
        } else {
1797
                J_ASSERT_BH(bh,
1798
                        (atomic_read(&bh->b_count) > 0) ||
1799
                        (bh->b_page && bh->b_page->mapping));
1800
                spin_unlock(&journal_datalist_lock);
1801
                jh = journal_alloc_journal_head();
1802
                memset(jh, 0, sizeof(*jh));
1803
                spin_lock(&journal_datalist_lock);
1804
 
1805
                if (buffer_jbd(bh)) {
1806
                        /* Someone did it for us! */
1807
                        J_ASSERT_BH(bh, bh->b_private != NULL);
1808
                        journal_free_journal_head(jh);
1809
                        jh = bh->b_private;
1810
                } else {
1811
                        /*
1812
                         * We actually don't need jh_splice_lock when
1813
                         * adding a journal_head - only on removal.
1814
                         */
1815
                        spin_lock(&jh_splice_lock);
1816
                        set_bit(BH_JBD, &bh->b_state);
1817
                        bh->b_private = jh;
1818
                        jh->b_bh = bh;
1819
                        atomic_inc(&bh->b_count);
1820
                        spin_unlock(&jh_splice_lock);
1821
                        BUFFER_TRACE(bh, "added journal_head");
1822
                }
1823
        }
1824
        jh->b_jcount++;
1825
        spin_unlock(&journal_datalist_lock);
1826
        return bh->b_private;
1827
}
1828
 
1829
/*
1830
 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1831
 * and has a zero b_jcount then remove and release its journal_head.   If we did
1832
 * see that the buffer is not used by any transaction we also "logically"
1833
 * decrement ->b_count.
1834
 *
1835
 * We in fact take an additional increment on ->b_count as a convenience,
1836
 * because the caller usually wants to do additional things with the bh
1837
 * after calling here.
1838
 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1839
 * time.  Once the caller has run __brelse(), the buffer is eligible for
1840
 * reaping by try_to_free_buffers().
1841
 *
1842
 * Requires journal_datalist_lock.
1843
 */
1844
void __journal_remove_journal_head(struct buffer_head *bh)
1845
{
1846
        struct journal_head *jh = bh2jh(bh);
1847
 
1848
        assert_spin_locked(&journal_datalist_lock);
1849
        J_ASSERT_JH(jh, jh->b_jcount >= 0);
1850
        atomic_inc(&bh->b_count);
1851
        if (jh->b_jcount == 0) {
1852
                if (jh->b_transaction == NULL &&
1853
                                jh->b_next_transaction == NULL &&
1854
                                jh->b_cp_transaction == NULL) {
1855
                        J_ASSERT_BH(bh, buffer_jbd(bh));
1856
                        J_ASSERT_BH(bh, jh2bh(jh) == bh);
1857
                        BUFFER_TRACE(bh, "remove journal_head");
1858
                        spin_lock(&jh_splice_lock);
1859
                        bh->b_private = NULL;
1860
                        jh->b_bh = NULL;        /* debug, really */
1861
                        clear_bit(BH_JBD, &bh->b_state);
1862
                        __brelse(bh);
1863
                        spin_unlock(&jh_splice_lock);
1864
                        journal_free_journal_head(jh);
1865
                } else {
1866
                        BUFFER_TRACE(bh, "journal_head was locked");
1867
                }
1868
        }
1869
}
1870
 
1871
void journal_unlock_journal_head(struct journal_head *jh)
1872
{
1873
        spin_lock(&journal_datalist_lock);
1874
        J_ASSERT_JH(jh, jh->b_jcount > 0);
1875
        --jh->b_jcount;
1876
        if (!jh->b_jcount && !jh->b_transaction) {
1877
                struct buffer_head *bh;
1878
                bh = jh2bh(jh);
1879
                __journal_remove_journal_head(bh);
1880
                __brelse(bh);
1881
        }
1882
 
1883
        spin_unlock(&journal_datalist_lock);
1884
}
1885
 
1886
void journal_remove_journal_head(struct buffer_head *bh)
1887
{
1888
        spin_lock(&journal_datalist_lock);
1889
        __journal_remove_journal_head(bh);
1890
        spin_unlock(&journal_datalist_lock);
1891
}
1892
 
1893
/*
1894
 * /proc tunables
1895
 */
1896
#if defined(CONFIG_JBD_DEBUG)
1897
int journal_enable_debug;
1898
EXPORT_SYMBOL(journal_enable_debug);
1899
#endif
1900
 
1901
#if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1902
 
1903
static struct proc_dir_entry *proc_jbd_debug;
1904
 
1905
int read_jbd_debug(char *page, char **start, off_t off,
1906
                          int count, int *eof, void *data)
1907
{
1908
        int ret;
1909
 
1910
        ret = sprintf(page + off, "%d\n", journal_enable_debug);
1911
        *eof = 1;
1912
        return ret;
1913
}
1914
 
1915
int write_jbd_debug(struct file *file, const char *buffer,
1916
                           unsigned long count, void *data)
1917
{
1918
        char buf[32];
1919
 
1920
        if (count > ARRAY_SIZE(buf) - 1)
1921
                count = ARRAY_SIZE(buf) - 1;
1922
        if (copy_from_user(buf, buffer, count))
1923
                return -EFAULT;
1924
        buf[ARRAY_SIZE(buf) - 1] = '\0';
1925
        journal_enable_debug = simple_strtoul(buf, NULL, 10);
1926
        return count;
1927
}
1928
 
1929
#define JBD_PROC_NAME "sys/fs/jbd-debug"
1930
 
1931
static void __init create_jbd_proc_entry(void)
1932
{
1933
        proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1934
        if (proc_jbd_debug) {
1935
                /* Why is this so hard? */
1936
                proc_jbd_debug->read_proc = read_jbd_debug;
1937
                proc_jbd_debug->write_proc = write_jbd_debug;
1938
        }
1939
}
1940
 
1941
static void __exit remove_jbd_proc_entry(void)
1942
{
1943
        if (proc_jbd_debug)
1944
                remove_proc_entry(JBD_PROC_NAME, NULL);
1945
}
1946
 
1947
#else
1948
 
1949
#define create_jbd_proc_entry() do {} while (0)
1950
#define remove_jbd_proc_entry() do {} while (0)
1951
 
1952
#endif
1953
 
1954
/*
1955
 * Module startup and shutdown
1956
 */
1957
 
1958
static int __init journal_init_caches(void)
1959
{
1960
        int ret;
1961
 
1962
        ret = journal_init_revoke_caches();
1963
        if (ret == 0)
1964
                ret = journal_init_journal_head_cache();
1965
        return ret;
1966
}
1967
 
1968
static void journal_destroy_caches(void)
1969
{
1970
        journal_destroy_revoke_caches();
1971
        journal_destroy_journal_head_cache();
1972
}
1973
 
1974
static int __init journal_init(void)
1975
{
1976
        int ret;
1977
 
1978
        printk(KERN_INFO "Journalled Block Device driver loaded\n");
1979
        ret = journal_init_caches();
1980
        if (ret != 0)
1981
                journal_destroy_caches();
1982
        create_jbd_proc_entry();
1983
        return ret;
1984
}
1985
 
1986
static void __exit journal_exit(void)
1987
{
1988
#ifdef CONFIG_JBD_DEBUG
1989
        int n = atomic_read(&nr_journal_heads);
1990
        if (n)
1991
                printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1992
#endif
1993
        remove_jbd_proc_entry();
1994
        journal_destroy_caches();
1995
}
1996
 
1997
MODULE_LICENSE("GPL");
1998
module_init(journal_init);
1999
module_exit(journal_exit);
2000
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.