OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [fs/] [reiserfs/] [ibalance.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README
3
 */
4
 
5
#include <linux/config.h>
6
#include <asm/uaccess.h>
7
#include <linux/string.h>
8
#include <linux/sched.h>
9
#include <linux/reiserfs_fs.h>
10
 
11
/* this is one and only function that is used outside (do_balance.c) */
12
int     balance_internal (
13
                          struct tree_balance * ,
14
                          int,
15
                          int,
16
                          struct item_head * ,
17
                          struct buffer_head **
18
                          );
19
 
20
/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
21
#define INTERNAL_SHIFT_FROM_S_TO_L 0
22
#define INTERNAL_SHIFT_FROM_R_TO_S 1
23
#define INTERNAL_SHIFT_FROM_L_TO_S 2
24
#define INTERNAL_SHIFT_FROM_S_TO_R 3
25
#define INTERNAL_INSERT_TO_S 4
26
#define INTERNAL_INSERT_TO_L 5
27
#define INTERNAL_INSERT_TO_R 6
28
 
29
static void     internal_define_dest_src_infos (
30
                                                int shift_mode,
31
                                                struct tree_balance * tb,
32
                                                int h,
33
                                                struct buffer_info * dest_bi,
34
                                                struct buffer_info * src_bi,
35
                                                int * d_key,
36
                                                struct buffer_head ** cf
37
                                                )
38
{
39
    memset (dest_bi, 0, sizeof (struct buffer_info));
40
    memset (src_bi, 0, sizeof (struct buffer_info));
41
    /* define dest, src, dest parent, dest position */
42
    switch (shift_mode) {
43
    case INTERNAL_SHIFT_FROM_S_TO_L:    /* used in internal_shift_left */
44
        src_bi->tb = tb;
45
        src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
46
        src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
47
        src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
48
        dest_bi->tb = tb;
49
        dest_bi->bi_bh = tb->L[h];
50
        dest_bi->bi_parent = tb->FL[h];
51
        dest_bi->bi_position = get_left_neighbor_position (tb, h);
52
        *d_key = tb->lkey[h];
53
        *cf = tb->CFL[h];
54
        break;
55
    case INTERNAL_SHIFT_FROM_L_TO_S:
56
        src_bi->tb = tb;
57
        src_bi->bi_bh = tb->L[h];
58
        src_bi->bi_parent = tb->FL[h];
59
        src_bi->bi_position = get_left_neighbor_position (tb, h);
60
        dest_bi->tb = tb;
61
        dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
62
        dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
63
        dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
64
        *d_key = tb->lkey[h];
65
        *cf = tb->CFL[h];
66
        break;
67
 
68
    case INTERNAL_SHIFT_FROM_R_TO_S:    /* used in internal_shift_left */
69
        src_bi->tb = tb;
70
        src_bi->bi_bh = tb->R[h];
71
        src_bi->bi_parent = tb->FR[h];
72
        src_bi->bi_position = get_right_neighbor_position (tb, h);
73
        dest_bi->tb = tb;
74
        dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
75
        dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
76
        dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
77
        *d_key = tb->rkey[h];
78
        *cf = tb->CFR[h];
79
        break;
80
 
81
    case INTERNAL_SHIFT_FROM_S_TO_R:
82
        src_bi->tb = tb;
83
        src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
84
        src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
85
        src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
86
        dest_bi->tb = tb;
87
        dest_bi->bi_bh = tb->R[h];
88
        dest_bi->bi_parent = tb->FR[h];
89
        dest_bi->bi_position = get_right_neighbor_position (tb, h);
90
        *d_key = tb->rkey[h];
91
        *cf = tb->CFR[h];
92
        break;
93
 
94
    case INTERNAL_INSERT_TO_L:
95
        dest_bi->tb = tb;
96
        dest_bi->bi_bh = tb->L[h];
97
        dest_bi->bi_parent = tb->FL[h];
98
        dest_bi->bi_position = get_left_neighbor_position (tb, h);
99
        break;
100
 
101
    case INTERNAL_INSERT_TO_S:
102
        dest_bi->tb = tb;
103
        dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
104
        dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
105
        dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
106
        break;
107
 
108
    case INTERNAL_INSERT_TO_R:
109
        dest_bi->tb = tb;
110
        dest_bi->bi_bh = tb->R[h];
111
        dest_bi->bi_parent = tb->FR[h];
112
        dest_bi->bi_position = get_right_neighbor_position (tb, h);
113
        break;
114
 
115
    default:
116
        reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode);
117
    }
118
}
119
 
120
 
121
 
122
/* Insert count node pointers into buffer cur before position to + 1.
123
 * Insert count items into buffer cur before position to.
124
 * Items and node pointers are specified by inserted and bh respectively.
125
 */
126
static void internal_insert_childs (struct buffer_info * cur_bi,
127
                                    int to, int count,
128
                                    struct item_head * inserted,
129
                                    struct buffer_head ** bh
130
    )
131
{
132
    struct buffer_head * cur = cur_bi->bi_bh;
133
    struct block_head * blkh;
134
    int nr;
135
    struct key * ih;
136
    struct disk_child new_dc[2];
137
    struct disk_child * dc;
138
    int i;
139
 
140
    if (count <= 0)
141
        return;
142
 
143
    blkh = B_BLK_HEAD(cur);
144
    nr = blkh_nr_item(blkh);
145
 
146
    RFALSE( count > 2,
147
            "too many children (%d) are to be inserted", count);
148
    RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE),
149
            "no enough free space (%d), needed %d bytes",
150
            B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE));
151
 
152
    /* prepare space for count disk_child */
153
    dc = B_N_CHILD(cur,to+1);
154
 
155
    memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE);
156
 
157
    /* copy to_be_insert disk children */
158
    for (i = 0; i < count; i ++) {
159
        put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
160
        put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr );
161
    }
162
    memcpy (dc, new_dc, DC_SIZE * count);
163
 
164
 
165
    /* prepare space for count items  */
166
    ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to));
167
 
168
    memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
169
 
170
    /* copy item headers (keys) */
171
    memcpy (ih, inserted, KEY_SIZE);
172
    if ( count > 1 )
173
        memcpy (ih + 1, inserted + 1, KEY_SIZE);
174
 
175
    /* sizes, item number */
176
    set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count );
177
    set_blkh_free_space( blkh,
178
                        blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) );
179
 
180
    do_balance_mark_internal_dirty (cur_bi->tb, cur,0);
181
 
182
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
183
    check_internal (cur);
184
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
185
 
186
    if (cur_bi->bi_parent) {
187
        struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position);
188
        put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
189
        do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0);
190
 
191
        /*&&&&&&&&&&&&&&&&&&&&&&&&*/
192
        check_internal (cur_bi->bi_parent);
193
        /*&&&&&&&&&&&&&&&&&&&&&&&&*/
194
    }
195
 
196
}
197
 
198
 
199
/* Delete del_num items and node pointers from buffer cur starting from *
200
 * the first_i'th item and first_p'th pointers respectively.            */
201
static void     internal_delete_pointers_items (
202
                                                struct buffer_info * cur_bi,
203
                                                int first_p,
204
                                                int first_i,
205
                                                int del_num
206
                                                )
207
{
208
  struct buffer_head * cur = cur_bi->bi_bh;
209
  int nr;
210
  struct block_head * blkh;
211
  struct key * key;
212
  struct disk_child * dc;
213
 
214
  RFALSE( cur == NULL, "buffer is 0");
215
  RFALSE( del_num < 0,
216
          "negative number of items (%d) can not be deleted", del_num);
217
  RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0,
218
          "first pointer order (%d) < 0 or "
219
          "no so many pointers (%d), only (%d) or "
220
          "first key order %d < 0", first_p,
221
          first_p + del_num, B_NR_ITEMS (cur) + 1, first_i);
222
  if ( del_num == 0 )
223
    return;
224
 
225
  blkh = B_BLK_HEAD(cur);
226
  nr = blkh_nr_item(blkh);
227
 
228
  if ( first_p == 0 && del_num == nr + 1 ) {
229
    RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i);
230
    make_empty_node (cur_bi);
231
    return;
232
  }
233
 
234
  RFALSE( first_i + del_num > B_NR_ITEMS (cur),
235
          "first_i = %d del_num = %d "
236
          "no so many keys (%d) in the node (%b)(%z)",
237
          first_i, del_num, first_i + del_num, cur, cur);
238
 
239
 
240
  /* deleting */
241
  dc = B_N_CHILD (cur, first_p);
242
 
243
  memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
244
  key = B_N_PDELIM_KEY (cur, first_i);
245
  memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE);
246
 
247
 
248
  /* sizes, item number */
249
  set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num );
250
  set_blkh_free_space( blkh,
251
                    blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) );
252
 
253
  do_balance_mark_internal_dirty (cur_bi->tb, cur, 0);
254
  /*&&&&&&&&&&&&&&&&&&&&&&&*/
255
  check_internal (cur);
256
  /*&&&&&&&&&&&&&&&&&&&&&&&*/
257
 
258
  if (cur_bi->bi_parent) {
259
    struct disk_child *t_dc;
260
    t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position);
261
    put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) );
262
 
263
    do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0);
264
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
265
    check_internal (cur_bi->bi_parent);
266
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
267
  }
268
}
269
 
270
 
271
/* delete n node pointers and items starting from given position */
272
static void  internal_delete_childs (struct buffer_info * cur_bi,
273
                                     int from, int n)
274
{
275
  int i_from;
276
 
277
  i_from = (from == 0) ? from : from - 1;
278
 
279
  /* delete n pointers starting from `from' position in CUR;
280
     delete n keys starting from 'i_from' position in CUR;
281
     */
282
  internal_delete_pointers_items (cur_bi, from, i_from, n);
283
}
284
 
285
 
286
/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
287
* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
288
 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
289
 */
290
static void internal_copy_pointers_items (
291
                                          struct buffer_info * dest_bi,
292
                                          struct buffer_head * src,
293
                                          int last_first, int cpy_num
294
                                          )
295
{
296
  /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
297
   * as delimiting key have already inserted to buffer dest.*/
298
  struct buffer_head * dest = dest_bi->bi_bh;
299
  int nr_dest, nr_src;
300
  int dest_order, src_order;
301
  struct block_head * blkh;
302
  struct key * key;
303
  struct disk_child * dc;
304
 
305
  nr_src = B_NR_ITEMS (src);
306
 
307
  RFALSE( dest == NULL || src == NULL,
308
          "src (%p) or dest (%p) buffer is 0", src, dest);
309
  RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
310
          "invalid last_first parameter (%d)", last_first);
311
  RFALSE( nr_src < cpy_num - 1,
312
          "no so many items (%d) in src (%d)", cpy_num, nr_src);
313
  RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
314
  RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
315
          "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
316
          cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
317
 
318
  if ( cpy_num == 0 )
319
    return;
320
 
321
        /* coping */
322
  blkh = B_BLK_HEAD(dest);
323
  nr_dest = blkh_nr_item(blkh);
324
 
325
  /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/
326
  /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/
327
  (last_first == LAST_TO_FIRST) ?       (dest_order = 0, src_order = nr_src - cpy_num + 1) :
328
    (dest_order = nr_dest, src_order = 0);
329
 
330
  /* prepare space for cpy_num pointers */
331
  dc = B_N_CHILD (dest, dest_order);
332
 
333
  memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
334
 
335
        /* insert pointers */
336
  memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num);
337
 
338
 
339
  /* prepare space for cpy_num - 1 item headers */
340
  key = B_N_PDELIM_KEY(dest, dest_order);
341
  memmove (key + cpy_num - 1, key,
342
           KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num));
343
 
344
 
345
  /* insert headers */
346
  memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1));
347
 
348
  /* sizes, item number */
349
  set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) );
350
  set_blkh_free_space( blkh,
351
      blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) );
352
 
353
  do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
354
 
355
  /*&&&&&&&&&&&&&&&&&&&&&&&&*/
356
  check_internal (dest);
357
  /*&&&&&&&&&&&&&&&&&&&&&&&&*/
358
 
359
  if (dest_bi->bi_parent) {
360
    struct disk_child *t_dc;
361
    t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
362
    put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) );
363
 
364
    do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
365
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
366
    check_internal (dest_bi->bi_parent);
367
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
368
  }
369
 
370
}
371
 
372
 
373
/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
374
 * Delete cpy_num - del_par items and node pointers from buffer src.
375
 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
376
 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
377
 */
378
static void internal_move_pointers_items (struct buffer_info * dest_bi,
379
                                          struct buffer_info * src_bi,
380
                                          int last_first, int cpy_num, int del_par)
381
{
382
    int first_pointer;
383
    int first_item;
384
 
385
    internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num);
386
 
387
    if (last_first == FIRST_TO_LAST) {  /* shift_left occurs */
388
        first_pointer = 0;
389
        first_item = 0;
390
        /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
391
           for key - with first_item */
392
        internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par);
393
    } else {                    /* shift_right occurs */
394
        int i, j;
395
 
396
        i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par;
397
 
398
        internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par);
399
    }
400
}
401
 
402
/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
403
static void internal_insert_key (struct buffer_info * dest_bi,
404
                                 int dest_position_before,                 /* insert key before key with n_dest number */
405
                                 struct buffer_head * src,
406
                                 int src_position)
407
{
408
    struct buffer_head * dest = dest_bi->bi_bh;
409
    int nr;
410
    struct block_head * blkh;
411
    struct key * key;
412
 
413
    RFALSE( dest == NULL || src == NULL,
414
            "source(%p) or dest(%p) buffer is 0", src, dest);
415
    RFALSE( dest_position_before < 0 || src_position < 0,
416
            "source(%d) or dest(%d) key number less than 0",
417
            src_position, dest_position_before);
418
    RFALSE( dest_position_before > B_NR_ITEMS (dest) ||
419
            src_position >= B_NR_ITEMS(src),
420
            "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
421
            dest_position_before, B_NR_ITEMS (dest),
422
            src_position, B_NR_ITEMS(src));
423
    RFALSE( B_FREE_SPACE (dest) < KEY_SIZE,
424
            "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest));
425
 
426
    blkh = B_BLK_HEAD(dest);
427
    nr = blkh_nr_item(blkh);
428
 
429
    /* prepare space for inserting key */
430
    key = B_N_PDELIM_KEY (dest, dest_position_before);
431
    memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
432
 
433
    /* insert key */
434
    memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
435
 
436
    /* Change dirt, free space, item number fields. */
437
 
438
    set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 );
439
    set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE );
440
 
441
    do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
442
 
443
    if (dest_bi->bi_parent) {
444
        struct disk_child *t_dc;
445
        t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
446
        put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE );
447
 
448
        do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
449
    }
450
}
451
 
452
 
453
 
454
/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
455
 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
456
 * Replace  d_key'th key in buffer cfl.
457
 * Delete pointer_amount items and node pointers from buffer src.
458
 */
459
/* this can be invoked both to shift from S to L and from R to S */
460
static void     internal_shift_left (
461
                                     int mode,  /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
462
                                     struct tree_balance * tb,
463
                                     int h,
464
                                     int pointer_amount
465
                                     )
466
{
467
  struct buffer_info dest_bi, src_bi;
468
  struct buffer_head * cf;
469
  int d_key_position;
470
 
471
  internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
472
 
473
  /*printk("pointer_amount = %d\n",pointer_amount);*/
474
 
475
  if (pointer_amount) {
476
    /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477
    internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
478
 
479
    if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
480
      if (src_bi.bi_position/*src->b_item_order*/ == 0)
481
        replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0);
482
    } else
483
      replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1);
484
  }
485
  /* last parameter is del_parameter */
486
  internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0);
487
 
488
}
489
 
490
/* Insert delimiting key to L[h].
491
 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
492
 * Delete n - 1 items and node pointers from buffer S[h].
493
 */
494
/* it always shifts from S[h] to L[h] */
495
static void     internal_shift1_left (
496
                                      struct tree_balance * tb,
497
                                      int h,
498
                                      int pointer_amount
499
                                      )
500
{
501
  struct buffer_info dest_bi, src_bi;
502
  struct buffer_head * cf;
503
  int d_key_position;
504
 
505
  internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
506
 
507
  if ( pointer_amount > 0 ) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
508
    internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
509
  /*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/
510
 
511
  /* last parameter is del_parameter */
512
  internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1);
513
  /*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/
514
}
515
 
516
 
517
/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
518
 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
519
 * Replace  d_key'th key in buffer cfr.
520
 * Delete n items and node pointers from buffer src.
521
 */
522
static void internal_shift_right (
523
                                  int mode,     /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
524
                                  struct tree_balance * tb,
525
                                  int h,
526
                                  int pointer_amount
527
                                  )
528
{
529
  struct buffer_info dest_bi, src_bi;
530
  struct buffer_head * cf;
531
  int d_key_position;
532
  int nr;
533
 
534
 
535
  internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
536
 
537
  nr = B_NR_ITEMS (src_bi.bi_bh);
538
 
539
  if (pointer_amount > 0) {
540
    /* insert delimiting key from common father of dest and src to dest node into position 0 */
541
    internal_insert_key (&dest_bi, 0, cf, d_key_position);
542
    if (nr == pointer_amount - 1) {
543
         RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ ||
544
                 dest_bi.bi_bh != tb->R[h],
545
                 "src (%p) must be == tb->S[h](%p) when it disappears",
546
                 src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h));
547
      /* when S[h] disappers replace left delemiting key as well */
548
      if (tb->CFL[h])
549
        replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]);
550
    } else
551
      replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount);
552
  }
553
 
554
  /* last parameter is del_parameter */
555
  internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0);
556
}
557
 
558
/* Insert delimiting key to R[h].
559
 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
560
 * Delete n - 1 items and node pointers from buffer S[h].
561
 */
562
/* it always shift from S[h] to R[h] */
563
static void     internal_shift1_right (
564
                                       struct tree_balance * tb,
565
                                       int h,
566
                                       int pointer_amount
567
                                       )
568
{
569
  struct buffer_info dest_bi, src_bi;
570
  struct buffer_head * cf;
571
  int d_key_position;
572
 
573
  internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
574
 
575
  if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
576
    internal_insert_key (&dest_bi, 0, cf, d_key_position);
577
  /*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/
578
 
579
  /* last parameter is del_parameter */
580
  internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1);
581
  /*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/
582
}
583
 
584
 
585
/* Delete insert_num node pointers together with their left items
586
 * and balance current node.*/
587
static void balance_internal_when_delete (struct tree_balance * tb,
588
                                          int h, int child_pos)
589
{
590
    int insert_num;
591
    int n;
592
    struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
593
    struct buffer_info bi;
594
 
595
    insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
596
 
597
    /* delete child-node-pointer(s) together with their left item(s) */
598
    bi.tb = tb;
599
    bi.bi_bh = tbSh;
600
    bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
601
    bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
602
 
603
    internal_delete_childs (&bi, child_pos, -insert_num);
604
 
605
    RFALSE( tb->blknum[h] > 1,
606
            "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
607
 
608
    n = B_NR_ITEMS(tbSh);
609
 
610
    if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) {
611
        if ( tb->blknum[h] == 0 ) {
612
            /* node S[h] (root of the tree) is empty now */
613
            struct buffer_head *new_root;
614
 
615
            RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE,
616
                    "buffer must have only 0 keys (%d)", n);
617
            RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent);
618
 
619
            /* choose a new root */
620
            if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) )
621
                new_root = tb->R[h-1];
622
            else
623
                new_root = tb->L[h-1];
624
            /* switch super block's tree root block number to the new value */
625
            PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr );
626
            //tb->tb_sb->u.reiserfs_sb.s_rs->s_tree_height --;
627
            PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 );
628
 
629
            do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
630
            /*&&&&&&&&&&&&&&&&&&&&&&*/
631
            if (h > 1)
632
                /* use check_internal if new root is an internal node */
633
                check_internal (new_root);
634
            /*&&&&&&&&&&&&&&&&&&&&&&*/
635
            tb->tb_sb->s_dirt = 1;
636
 
637
            /* do what is needed for buffer thrown from tree */
638
            reiserfs_invalidate_buffer(tb, tbSh);
639
            return;
640
        }
641
        return;
642
    }
643
 
644
    if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */
645
 
646
        RFALSE( tb->rnum[h] != 0,
647
                "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
648
                h, tb->rnum[h]);
649
 
650
        internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
651
        reiserfs_invalidate_buffer(tb, tbSh);
652
 
653
        return;
654
    }
655
 
656
    if ( tb->R[h] &&  tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */
657
        RFALSE( tb->lnum[h] != 0,
658
                "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
659
                h, tb->lnum[h]);
660
 
661
        internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
662
 
663
        reiserfs_invalidate_buffer(tb,tbSh);
664
        return;
665
    }
666
 
667
    if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */
668
        RFALSE( tb->rnum[h] != 0,
669
                "wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]);
670
        /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/
671
        internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]);
672
        return;
673
    }
674
 
675
    if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */
676
         RFALSE( tb->lnum[h] != 0,
677
                 "invalid tb->lnum[%d]==%d when borrow from R[h]",
678
                 h, tb->lnum[h]);
679
        internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/
680
        return;
681
    }
682
 
683
    if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */
684
        RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
685
                "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
686
                h, tb->lnum[h], h, tb->rnum[h], n);
687
 
688
        internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/
689
        internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
690
 
691
        reiserfs_invalidate_buffer (tb, tbSh);
692
 
693
        return;
694
    }
695
    reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
696
                    h, tb->lnum[h], h, tb->rnum[h]);
697
}
698
 
699
 
700
/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
701
void    replace_lkey (
702
                      struct tree_balance * tb,
703
                      int h,
704
                      struct item_head * key
705
                      )
706
{
707
   RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL,
708
           "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
709
           tb->L[h], tb->CFL[h]);
710
 
711
  if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
712
    return;
713
 
714
  memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE);
715
 
716
  do_balance_mark_internal_dirty (tb, tb->CFL[h],0);
717
}
718
 
719
 
720
/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
721
void    replace_rkey (
722
                      struct tree_balance * tb,
723
                      int h,
724
                      struct item_head * key
725
                      )
726
{
727
  RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL,
728
          "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
729
          tb->R[h], tb->CFR[h]);
730
  RFALSE( B_NR_ITEMS(tb->R[h]) == 0,
731
          "R[h] can not be empty if it exists (item number=%d)",
732
          B_NR_ITEMS(tb->R[h]));
733
 
734
  memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE);
735
 
736
  do_balance_mark_internal_dirty (tb, tb->CFR[h], 0);
737
}
738
 
739
 
740
int balance_internal (struct tree_balance * tb,                 /* tree_balance structure               */
741
                      int h,                                    /* level of the tree                    */
742
                      int child_pos,
743
                      struct item_head * insert_key,            /* key for insertion on higher level    */
744
                      struct buffer_head ** insert_ptr  /* node for insertion on higher level*/
745
    )
746
    /* if inserting/pasting
747
       {
748
       child_pos is the position of the node-pointer in S[h] that        *
749
       pointed to S[h-1] before balancing of the h-1 level;              *
750
       this means that new pointers and items must be inserted AFTER *
751
       child_pos
752
       }
753
       else
754
       {
755
   it is the position of the leftmost pointer that must be deleted (together with
756
   its corresponding key to the left of the pointer)
757
   as a result of the previous level's balancing.
758
   }
759
*/
760
{
761
    struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
762
    struct buffer_info bi;
763
    int order;          /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
764
    int insert_num, n, k;
765
    struct buffer_head * S_new;
766
    struct item_head new_insert_key;
767
    struct buffer_head * new_insert_ptr = NULL;
768
    struct item_head * new_insert_key_addr = insert_key;
769
 
770
    RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h);
771
 
772
    PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] );
773
 
774
    order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0;
775
 
776
  /* Using insert_size[h] calculate the number insert_num of items
777
     that must be inserted to or deleted from S[h]. */
778
    insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE));
779
 
780
    /* Check whether insert_num is proper **/
781
    RFALSE( insert_num < -2  ||  insert_num > 2,
782
            "incorrect number of items inserted to the internal node (%d)",
783
            insert_num);
784
    RFALSE( h > 1  && (insert_num > 1 || insert_num < -1),
785
            "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
786
            insert_num, h);
787
 
788
    /* Make balance in case insert_num < 0 */
789
    if ( insert_num < 0 ) {
790
        balance_internal_when_delete (tb, h, child_pos);
791
        return order;
792
    }
793
 
794
    k = 0;
795
    if ( tb->lnum[h] > 0 ) {
796
        /* shift lnum[h] items from S[h] to the left neighbor L[h].
797
           check how many of new items fall into L[h] or CFL[h] after
798
           shifting */
799
        n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */
800
        if ( tb->lnum[h] <= child_pos ) {
801
            /* new items don't fall into L[h] or CFL[h] */
802
            internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);
803
            /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/
804
            child_pos -= tb->lnum[h];
805
        } else if ( tb->lnum[h] > child_pos + insert_num ) {
806
            /* all new items fall into L[h] */
807
            internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num);
808
            /*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
809
                                tb->lnum[h]-insert_num);
810
            */
811
            /* insert insert_num keys and node-pointers into L[h] */
812
            bi.tb = tb;
813
            bi.bi_bh = tb->L[h];
814
            bi.bi_parent = tb->FL[h];
815
            bi.bi_position = get_left_neighbor_position (tb, h);
816
            internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1,
817
                                    insert_num,insert_key,insert_ptr);
818
 
819
            insert_num = 0;
820
        } else {
821
            struct disk_child * dc;
822
 
823
            /* some items fall into L[h] or CFL[h], but some don't fall */
824
            internal_shift1_left(tb,h,child_pos+1);
825
            /* calculate number of new items that fall into L[h] */
826
            k = tb->lnum[h] - child_pos - 1;
827
            bi.tb = tb;
828
            bi.bi_bh = tb->L[h];
829
            bi.bi_parent = tb->FL[h];
830
            bi.bi_position = get_left_neighbor_position (tb, h);
831
            internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k,
832
                                    insert_key,insert_ptr);
833
 
834
            replace_lkey(tb,h,insert_key + k);
835
 
836
            /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
837
            dc = B_N_CHILD(tbSh, 0);
838
            put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k]));
839
            put_dc_block_number( dc, insert_ptr[k]->b_blocknr );
840
 
841
            do_balance_mark_internal_dirty (tb, tbSh, 0);
842
 
843
            k++;
844
            insert_key += k;
845
            insert_ptr += k;
846
            insert_num -= k;
847
            child_pos = 0;
848
        }
849
    }   /* tb->lnum[h] > 0 */
850
 
851
    if ( tb->rnum[h] > 0 ) {
852
        /*shift rnum[h] items from S[h] to the right neighbor R[h]*/
853
        /* check how many of new items fall into R or CFR after shifting */
854
        n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
855
        if ( n - tb->rnum[h] >= child_pos )
856
            /* new items fall into S[h] */
857
            /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/
858
            internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
859
        else
860
            if ( n + insert_num - tb->rnum[h] < child_pos )
861
            {
862
                /* all new items fall into R[h] */
863
                /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
864
            tb->rnum[h] - insert_num);*/
865
                internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num);
866
 
867
                /* insert insert_num keys and node-pointers into R[h] */
868
                bi.tb = tb;
869
                bi.bi_bh = tb->R[h];
870
                bi.bi_parent = tb->FR[h];
871
                bi.bi_position = get_right_neighbor_position (tb, h);
872
                internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1,
873
                                        insert_num,insert_key,insert_ptr);
874
                insert_num = 0;
875
            }
876
            else
877
            {
878
                struct disk_child * dc;
879
 
880
                /* one of the items falls into CFR[h] */
881
                internal_shift1_right(tb,h,n - child_pos + 1);
882
                /* calculate number of new items that fall into R[h] */
883
                k = tb->rnum[h] - n + child_pos - 1;
884
                bi.tb = tb;
885
                bi.bi_bh = tb->R[h];
886
                bi.bi_parent = tb->FR[h];
887
                bi.bi_position = get_right_neighbor_position (tb, h);
888
                internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1);
889
 
890
                replace_rkey(tb,h,insert_key + insert_num - k - 1);
891
 
892
                /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/
893
                dc = B_N_CHILD(tb->R[h], 0);
894
                put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
895
                                    B_FREE_SPACE (insert_ptr[insert_num-k-1]));
896
                put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
897
 
898
                do_balance_mark_internal_dirty (tb, tb->R[h],0);
899
 
900
                insert_num -= (k + 1);
901
            }
902
    }
903
 
904
    /** Fill new node that appears instead of S[h] **/
905
    RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
906
    RFALSE( tb->blknum[h] < 0, "blknum can not be < 0");
907
 
908
    if ( ! tb->blknum[h] )
909
    { /* node S[h] is empty now */
910
        RFALSE( ! tbSh, "S[h] is equal NULL");
911
 
912
        /* do what is needed for buffer thrown from tree */
913
        reiserfs_invalidate_buffer(tb,tbSh);
914
        return order;
915
    }
916
 
917
    if ( ! tbSh ) {
918
        /* create new root */
919
        struct disk_child  * dc;
920
        struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1);
921
        struct block_head *  blkh;
922
 
923
 
924
        if ( tb->blknum[h] != 1 )
925
            reiserfs_panic(0, "balance_internal: One new node required for creating the new root");
926
        /* S[h] = empty buffer from the list FEB. */
927
        tbSh = get_FEB (tb);
928
        blkh = B_BLK_HEAD(tbSh);
929
        set_blkh_level( blkh, h + 1 );
930
 
931
        /* Put the unique node-pointer to S[h] that points to S[h-1]. */
932
 
933
        dc = B_N_CHILD(tbSh, 0);
934
        put_dc_block_number( dc, tbSh_1->b_blocknr );
935
        put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1)));
936
 
937
        tb->insert_size[h] -= DC_SIZE;
938
        set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE );
939
 
940
        do_balance_mark_internal_dirty (tb, tbSh, 0);
941
 
942
        /*&&&&&&&&&&&&&&&&&&&&&&&&*/
943
        check_internal (tbSh);
944
        /*&&&&&&&&&&&&&&&&&&&&&&&&*/
945
 
946
    /* put new root into path structure */
947
        PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh;
948
 
949
        /* Change root in structure super block. */
950
        PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr );
951
        PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 );
952
        do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
953
        tb->tb_sb->s_dirt = 1;
954
    }
955
 
956
    if ( tb->blknum[h] == 2 ) {
957
        int snum;
958
        struct buffer_info dest_bi, src_bi;
959
 
960
 
961
        /* S_new = free buffer from list FEB */
962
        S_new = get_FEB(tb);
963
 
964
        set_blkh_level( B_BLK_HEAD(S_new), h + 1 );
965
 
966
        dest_bi.tb = tb;
967
        dest_bi.bi_bh = S_new;
968
        dest_bi.bi_parent = 0;
969
        dest_bi.bi_position = 0;
970
        src_bi.tb = tb;
971
        src_bi.bi_bh = tbSh;
972
        src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
973
        src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
974
 
975
        n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
976
        snum = (insert_num + n + 1)/2;
977
        if ( n - snum >= child_pos ) {
978
            /* new items don't fall into S_new */
979
            /*  store the delimiting key for the next level */
980
            /* new_insert_key = (n - snum)'th key in S[h] */
981
            memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum),
982
                    KEY_SIZE);
983
            /* last parameter is del_par */
984
            internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0);
985
            /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/
986
        } else if ( n + insert_num - snum < child_pos ) {
987
            /* all new items fall into S_new */
988
            /*  store the delimiting key for the next level */
989
            /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
990
            memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum),
991
                   KEY_SIZE);
992
            /* last parameter is del_par */
993
            internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0);
994
            /*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/
995
 
996
            /* insert insert_num keys and node-pointers into S_new */
997
            internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1,
998
                                    insert_num,insert_key,insert_ptr);
999
 
1000
            insert_num = 0;
1001
        } else {
1002
            struct disk_child * dc;
1003
 
1004
            /* some items fall into S_new, but some don't fall */
1005
            /* last parameter is del_par */
1006
            internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1);
1007
            /*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/
1008
            /* calculate number of new items that fall into S_new */
1009
            k = snum - n + child_pos - 1;
1010
 
1011
            internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1);
1012
 
1013
            /* new_insert_key = insert_key[insert_num - k - 1] */
1014
            memcpy(&new_insert_key,insert_key + insert_num - k - 1,
1015
                   KEY_SIZE);
1016
            /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1017
 
1018
            dc = B_N_CHILD(S_new,0);
1019
            put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
1020
                                B_FREE_SPACE(insert_ptr[insert_num-k-1])) );
1021
            put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
1022
 
1023
            do_balance_mark_internal_dirty (tb, S_new,0);
1024
 
1025
            insert_num -= (k + 1);
1026
        }
1027
        /* new_insert_ptr = node_pointer to S_new */
1028
        new_insert_ptr = S_new;
1029
 
1030
        RFALSE(( buffer_locked(S_new) || atomic_read (&(S_new->b_count)) != 1) &&
1031
               (buffer_locked(S_new) || atomic_read(&(S_new->b_count)) > 2 ||
1032
                !(buffer_journaled(S_new) || buffer_journal_dirty(S_new))),
1033
               "cm-00001: bad S_new (%b)", S_new);
1034
 
1035
        // S_new is released in unfix_nodes
1036
    }
1037
 
1038
    n = B_NR_ITEMS (tbSh); /*number of items in S[h] */
1039
 
1040
        if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) {
1041
            bi.tb = tb;
1042
            bi.bi_bh = tbSh;
1043
            bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
1044
            bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
1045
                internal_insert_childs (
1046
                    &bi,/*tbSh,*/
1047
                    /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next,*/
1048
                    child_pos,insert_num,insert_key,insert_ptr
1049
                    );
1050
        }
1051
 
1052
 
1053
        memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE);
1054
        insert_ptr[0] = new_insert_ptr;
1055
 
1056
        return order;
1057
    }
1058
 
1059
 
1060
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.