1 |
1275 |
phoenix |
/*
|
2 |
|
|
* Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
|
3 |
|
|
*
|
4 |
|
|
* This program is free software; you can redistribute it and/or modify it
|
5 |
|
|
* under the terms of version 2 of the GNU General Public License as
|
6 |
|
|
* published by the Free Software Foundation.
|
7 |
|
|
*
|
8 |
|
|
* This program is distributed in the hope that it would be useful, but
|
9 |
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
10 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
11 |
|
|
*
|
12 |
|
|
* Further, this software is distributed without any warranty that it is
|
13 |
|
|
* free of the rightful claim of any third person regarding infringement
|
14 |
|
|
* or the like. Any license provided herein, whether implied or
|
15 |
|
|
* otherwise, applies only to this software file. Patent licenses, if
|
16 |
|
|
* any, provided herein do not apply to combinations of this program with
|
17 |
|
|
* other software, or any other product whatsoever.
|
18 |
|
|
*
|
19 |
|
|
* You should have received a copy of the GNU General Public License along
|
20 |
|
|
* with this program; if not, write the Free Software Foundation, Inc., 59
|
21 |
|
|
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
22 |
|
|
*
|
23 |
|
|
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
|
24 |
|
|
* Mountain View, CA 94043, or:
|
25 |
|
|
*
|
26 |
|
|
* http://www.sgi.com
|
27 |
|
|
*
|
28 |
|
|
* For further information regarding this notice, see:
|
29 |
|
|
*
|
30 |
|
|
* http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
|
31 |
|
|
*/
|
32 |
|
|
|
33 |
|
|
#include "xfs.h"
|
34 |
|
|
#include "xfs_macros.h"
|
35 |
|
|
#include "xfs_types.h"
|
36 |
|
|
#include "xfs_inum.h"
|
37 |
|
|
#include "xfs_log.h"
|
38 |
|
|
#include "xfs_trans.h"
|
39 |
|
|
#include "xfs_trans_priv.h"
|
40 |
|
|
#include "xfs_sb.h"
|
41 |
|
|
#include "xfs_ag.h"
|
42 |
|
|
#include "xfs_dir.h"
|
43 |
|
|
#include "xfs_dir2.h"
|
44 |
|
|
#include "xfs_dmapi.h"
|
45 |
|
|
#include "xfs_mount.h"
|
46 |
|
|
#include "xfs_alloc_btree.h"
|
47 |
|
|
#include "xfs_bmap_btree.h"
|
48 |
|
|
#include "xfs_ialloc_btree.h"
|
49 |
|
|
#include "xfs_btree.h"
|
50 |
|
|
#include "xfs_imap.h"
|
51 |
|
|
#include "xfs_alloc.h"
|
52 |
|
|
#include "xfs_ialloc.h"
|
53 |
|
|
#include "xfs_attr_sf.h"
|
54 |
|
|
#include "xfs_dir_sf.h"
|
55 |
|
|
#include "xfs_dir2_sf.h"
|
56 |
|
|
#include "xfs_dinode.h"
|
57 |
|
|
#include "xfs_inode_item.h"
|
58 |
|
|
#include "xfs_inode.h"
|
59 |
|
|
#include "xfs_bmap.h"
|
60 |
|
|
#include "xfs_buf_item.h"
|
61 |
|
|
#include "xfs_rw.h"
|
62 |
|
|
#include "xfs_error.h"
|
63 |
|
|
#include "xfs_bit.h"
|
64 |
|
|
#include "xfs_utils.h"
|
65 |
|
|
#include "xfs_dir2_trace.h"
|
66 |
|
|
#include "xfs_quota.h"
|
67 |
|
|
#include "xfs_mac.h"
|
68 |
|
|
#include "xfs_acl.h"
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
kmem_zone_t *xfs_ifork_zone;
|
72 |
|
|
kmem_zone_t *xfs_inode_zone;
|
73 |
|
|
kmem_zone_t *xfs_chashlist_zone;
|
74 |
|
|
|
75 |
|
|
/*
|
76 |
|
|
* Used in xfs_itruncate(). This is the maximum number of extents
|
77 |
|
|
* freed from a file in a single transaction.
|
78 |
|
|
*/
|
79 |
|
|
#define XFS_ITRUNC_MAX_EXTENTS 2
|
80 |
|
|
|
81 |
|
|
STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
|
82 |
|
|
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
|
83 |
|
|
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
|
84 |
|
|
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
#ifdef DEBUG
|
88 |
|
|
/*
|
89 |
|
|
* Make sure that the extents in the given memory buffer
|
90 |
|
|
* are valid.
|
91 |
|
|
*/
|
92 |
|
|
STATIC void
|
93 |
|
|
xfs_validate_extents(
|
94 |
|
|
xfs_bmbt_rec_t *ep,
|
95 |
|
|
int nrecs,
|
96 |
|
|
int disk,
|
97 |
|
|
xfs_exntfmt_t fmt)
|
98 |
|
|
{
|
99 |
|
|
xfs_bmbt_irec_t irec;
|
100 |
|
|
xfs_bmbt_rec_t rec;
|
101 |
|
|
int i;
|
102 |
|
|
|
103 |
|
|
for (i = 0; i < nrecs; i++) {
|
104 |
|
|
rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
|
105 |
|
|
rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
|
106 |
|
|
if (disk)
|
107 |
|
|
xfs_bmbt_disk_get_all(&rec, &irec);
|
108 |
|
|
else
|
109 |
|
|
xfs_bmbt_get_all(&rec, &irec);
|
110 |
|
|
if (fmt == XFS_EXTFMT_NOSTATE)
|
111 |
|
|
ASSERT(irec.br_state == XFS_EXT_NORM);
|
112 |
|
|
ep++;
|
113 |
|
|
}
|
114 |
|
|
}
|
115 |
|
|
#else /* DEBUG */
|
116 |
|
|
#define xfs_validate_extents(ep, nrecs, disk, fmt)
|
117 |
|
|
#endif /* DEBUG */
|
118 |
|
|
|
119 |
|
|
/*
|
120 |
|
|
* Check that none of the inode's in the buffer have a next
|
121 |
|
|
* unlinked field of 0.
|
122 |
|
|
*/
|
123 |
|
|
#if defined(DEBUG)
|
124 |
|
|
void
|
125 |
|
|
xfs_inobp_check(
|
126 |
|
|
xfs_mount_t *mp,
|
127 |
|
|
xfs_buf_t *bp)
|
128 |
|
|
{
|
129 |
|
|
int i;
|
130 |
|
|
int j;
|
131 |
|
|
xfs_dinode_t *dip;
|
132 |
|
|
|
133 |
|
|
j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
|
134 |
|
|
|
135 |
|
|
for (i = 0; i < j; i++) {
|
136 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
|
137 |
|
|
i * mp->m_sb.sb_inodesize);
|
138 |
|
|
if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)) {
|
139 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp,
|
140 |
|
|
"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
|
141 |
|
|
bp);
|
142 |
|
|
ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
|
143 |
|
|
}
|
144 |
|
|
}
|
145 |
|
|
}
|
146 |
|
|
#endif
|
147 |
|
|
|
148 |
|
|
/*
|
149 |
|
|
* called from bwrite on xfs inode buffers
|
150 |
|
|
*/
|
151 |
|
|
void
|
152 |
|
|
xfs_inobp_bwcheck(xfs_buf_t *bp)
|
153 |
|
|
{
|
154 |
|
|
xfs_mount_t *mp;
|
155 |
|
|
int i;
|
156 |
|
|
int j;
|
157 |
|
|
xfs_dinode_t *dip;
|
158 |
|
|
|
159 |
|
|
ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL);
|
160 |
|
|
|
161 |
|
|
mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
|
162 |
|
|
|
163 |
|
|
|
164 |
|
|
j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
|
165 |
|
|
|
166 |
|
|
for (i = 0; i < j; i++) {
|
167 |
|
|
dip = (xfs_dinode_t *) xfs_buf_offset(bp,
|
168 |
|
|
i * mp->m_sb.sb_inodesize);
|
169 |
|
|
if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
|
170 |
|
|
cmn_err(CE_WARN,
|
171 |
|
|
"Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x",
|
172 |
|
|
INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
|
173 |
|
|
(__uint64_t)(__psunsigned_t) bp,
|
174 |
|
|
(__int64_t) XFS_BUF_ADDR(bp),
|
175 |
|
|
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
|
176 |
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
177 |
|
|
"corrupt, unmount and run xfs_repair");
|
178 |
|
|
}
|
179 |
|
|
if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)) {
|
180 |
|
|
cmn_err(CE_WARN,
|
181 |
|
|
"Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x",
|
182 |
|
|
(__uint64_t)(__psunsigned_t) bp,
|
183 |
|
|
(__int64_t) XFS_BUF_ADDR(bp),
|
184 |
|
|
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
|
185 |
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
186 |
|
|
"corrupt, unmount and run xfs_repair");
|
187 |
|
|
}
|
188 |
|
|
}
|
189 |
|
|
|
190 |
|
|
return;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/*
|
194 |
|
|
* This routine is called to map an inode number within a file
|
195 |
|
|
* system to the buffer containing the on-disk version of the
|
196 |
|
|
* inode. It returns a pointer to the buffer containing the
|
197 |
|
|
* on-disk inode in the bpp parameter, and in the dip parameter
|
198 |
|
|
* it returns a pointer to the on-disk inode within that buffer.
|
199 |
|
|
*
|
200 |
|
|
* If a non-zero error is returned, then the contents of bpp and
|
201 |
|
|
* dipp are undefined.
|
202 |
|
|
*
|
203 |
|
|
* Use xfs_imap() to determine the size and location of the
|
204 |
|
|
* buffer to read from disk.
|
205 |
|
|
*/
|
206 |
|
|
int
|
207 |
|
|
xfs_inotobp(
|
208 |
|
|
xfs_mount_t *mp,
|
209 |
|
|
xfs_trans_t *tp,
|
210 |
|
|
xfs_ino_t ino,
|
211 |
|
|
xfs_dinode_t **dipp,
|
212 |
|
|
xfs_buf_t **bpp,
|
213 |
|
|
int *offset)
|
214 |
|
|
{
|
215 |
|
|
int di_ok;
|
216 |
|
|
xfs_imap_t imap;
|
217 |
|
|
xfs_buf_t *bp;
|
218 |
|
|
int error;
|
219 |
|
|
xfs_dinode_t *dip;
|
220 |
|
|
|
221 |
|
|
/*
|
222 |
|
|
* Call the space managment code to find the location of the
|
223 |
|
|
* inode on disk.
|
224 |
|
|
*/
|
225 |
|
|
imap.im_blkno = 0;
|
226 |
|
|
error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
|
227 |
|
|
if (error != 0) {
|
228 |
|
|
cmn_err(CE_WARN,
|
229 |
|
|
"xfs_inotobp: xfs_imap() returned an "
|
230 |
|
|
"error %d on %s. Returning error.", error, mp->m_fsname);
|
231 |
|
|
return error;
|
232 |
|
|
}
|
233 |
|
|
|
234 |
|
|
/*
|
235 |
|
|
* If the inode number maps to a block outside the bounds of the
|
236 |
|
|
* file system then return NULL rather than calling read_buf
|
237 |
|
|
* and panicing when we get an error from the driver.
|
238 |
|
|
*/
|
239 |
|
|
if ((imap.im_blkno + imap.im_len) >
|
240 |
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
|
241 |
|
|
cmn_err(CE_WARN,
|
242 |
|
|
"xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
|
243 |
|
|
"of the file system %s. Returning EINVAL.",
|
244 |
|
|
imap.im_blkno, imap.im_len,mp->m_fsname);
|
245 |
|
|
return XFS_ERROR(EINVAL);
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
/*
|
249 |
|
|
* Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
|
250 |
|
|
* default to just a read_buf() call.
|
251 |
|
|
*/
|
252 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
|
253 |
|
|
(int)imap.im_len, XFS_BUF_LOCK, &bp);
|
254 |
|
|
|
255 |
|
|
if (error) {
|
256 |
|
|
cmn_err(CE_WARN,
|
257 |
|
|
"xfs_inotobp: xfs_trans_read_buf() returned an "
|
258 |
|
|
"error %d on %s. Returning error.", error, mp->m_fsname);
|
259 |
|
|
return error;
|
260 |
|
|
}
|
261 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
|
262 |
|
|
di_ok =
|
263 |
|
|
INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
|
264 |
|
|
XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
|
265 |
|
|
if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
|
266 |
|
|
XFS_RANDOM_ITOBP_INOTOBP))) {
|
267 |
|
|
XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
|
268 |
|
|
xfs_trans_brelse(tp, bp);
|
269 |
|
|
cmn_err(CE_WARN,
|
270 |
|
|
"xfs_inotobp: XFS_TEST_ERROR() returned an "
|
271 |
|
|
"error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
|
272 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
xfs_inobp_check(mp, bp);
|
276 |
|
|
|
277 |
|
|
/*
|
278 |
|
|
* Set *dipp to point to the on-disk inode in the buffer.
|
279 |
|
|
*/
|
280 |
|
|
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
|
281 |
|
|
*bpp = bp;
|
282 |
|
|
*offset = imap.im_boffset;
|
283 |
|
|
return 0;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
|
287 |
|
|
/*
|
288 |
|
|
* This routine is called to map an inode to the buffer containing
|
289 |
|
|
* the on-disk version of the inode. It returns a pointer to the
|
290 |
|
|
* buffer containing the on-disk inode in the bpp parameter, and in
|
291 |
|
|
* the dip parameter it returns a pointer to the on-disk inode within
|
292 |
|
|
* that buffer.
|
293 |
|
|
*
|
294 |
|
|
* If a non-zero error is returned, then the contents of bpp and
|
295 |
|
|
* dipp are undefined.
|
296 |
|
|
*
|
297 |
|
|
* If the inode is new and has not yet been initialized, use xfs_imap()
|
298 |
|
|
* to determine the size and location of the buffer to read from disk.
|
299 |
|
|
* If the inode has already been mapped to its buffer and read in once,
|
300 |
|
|
* then use the mapping information stored in the inode rather than
|
301 |
|
|
* calling xfs_imap(). This allows us to avoid the overhead of looking
|
302 |
|
|
* at the inode btree for small block file systems (see xfs_dilocate()).
|
303 |
|
|
* We can tell whether the inode has been mapped in before by comparing
|
304 |
|
|
* its disk block address to 0. Only uninitialized inodes will have
|
305 |
|
|
* 0 for the disk block address.
|
306 |
|
|
*/
|
307 |
|
|
int
|
308 |
|
|
xfs_itobp(
|
309 |
|
|
xfs_mount_t *mp,
|
310 |
|
|
xfs_trans_t *tp,
|
311 |
|
|
xfs_inode_t *ip,
|
312 |
|
|
xfs_dinode_t **dipp,
|
313 |
|
|
xfs_buf_t **bpp,
|
314 |
|
|
xfs_daddr_t bno)
|
315 |
|
|
{
|
316 |
|
|
xfs_buf_t *bp;
|
317 |
|
|
int error;
|
318 |
|
|
xfs_imap_t imap;
|
319 |
|
|
#ifdef __KERNEL__
|
320 |
|
|
int i;
|
321 |
|
|
int ni;
|
322 |
|
|
#endif
|
323 |
|
|
|
324 |
|
|
if (ip->i_blkno == (xfs_daddr_t)0) {
|
325 |
|
|
/*
|
326 |
|
|
* Call the space management code to find the location of the
|
327 |
|
|
* inode on disk.
|
328 |
|
|
*/
|
329 |
|
|
imap.im_blkno = bno;
|
330 |
|
|
error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
|
331 |
|
|
if (error != 0) {
|
332 |
|
|
return error;
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/*
|
336 |
|
|
* If the inode number maps to a block outside the bounds
|
337 |
|
|
* of the file system then return NULL rather than calling
|
338 |
|
|
* read_buf and panicing when we get an error from the
|
339 |
|
|
* driver.
|
340 |
|
|
*/
|
341 |
|
|
if ((imap.im_blkno + imap.im_len) >
|
342 |
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
|
343 |
|
|
#ifdef DEBUG
|
344 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
|
345 |
|
|
"(imap.im_blkno (0x%llx) "
|
346 |
|
|
"+ imap.im_len (0x%llx)) > "
|
347 |
|
|
" XFS_FSB_TO_BB(mp, "
|
348 |
|
|
"mp->m_sb.sb_dblocks) (0x%llx)",
|
349 |
|
|
(unsigned long long) imap.im_blkno,
|
350 |
|
|
(unsigned long long) imap.im_len,
|
351 |
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
|
352 |
|
|
#endif /* DEBUG */
|
353 |
|
|
return XFS_ERROR(EINVAL);
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
/*
|
357 |
|
|
* Fill in the fields in the inode that will be used to
|
358 |
|
|
* map the inode to its buffer from now on.
|
359 |
|
|
*/
|
360 |
|
|
ip->i_blkno = imap.im_blkno;
|
361 |
|
|
ip->i_len = imap.im_len;
|
362 |
|
|
ip->i_boffset = imap.im_boffset;
|
363 |
|
|
} else {
|
364 |
|
|
/*
|
365 |
|
|
* We've already mapped the inode once, so just use the
|
366 |
|
|
* mapping that we saved the first time.
|
367 |
|
|
*/
|
368 |
|
|
imap.im_blkno = ip->i_blkno;
|
369 |
|
|
imap.im_len = ip->i_len;
|
370 |
|
|
imap.im_boffset = ip->i_boffset;
|
371 |
|
|
}
|
372 |
|
|
ASSERT(bno == 0 || bno == imap.im_blkno);
|
373 |
|
|
|
374 |
|
|
/*
|
375 |
|
|
* Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
|
376 |
|
|
* default to just a read_buf() call.
|
377 |
|
|
*/
|
378 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
|
379 |
|
|
(int)imap.im_len, XFS_BUF_LOCK, &bp);
|
380 |
|
|
|
381 |
|
|
if (error) {
|
382 |
|
|
#ifdef DEBUG
|
383 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
|
384 |
|
|
"xfs_trans_read_buf() returned error %d, "
|
385 |
|
|
"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
|
386 |
|
|
error, (unsigned long long) imap.im_blkno,
|
387 |
|
|
(unsigned long long) imap.im_len);
|
388 |
|
|
#endif /* DEBUG */
|
389 |
|
|
return error;
|
390 |
|
|
}
|
391 |
|
|
#ifdef __KERNEL__
|
392 |
|
|
/*
|
393 |
|
|
* Validate the magic number and version of every inode in the buffer
|
394 |
|
|
* (if DEBUG kernel) or the first inode in the buffer, otherwise.
|
395 |
|
|
*/
|
396 |
|
|
#ifdef DEBUG
|
397 |
|
|
ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
|
398 |
|
|
#else
|
399 |
|
|
ni = 1;
|
400 |
|
|
#endif
|
401 |
|
|
for (i = 0; i < ni; i++) {
|
402 |
|
|
int di_ok;
|
403 |
|
|
xfs_dinode_t *dip;
|
404 |
|
|
|
405 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
|
406 |
|
|
(i << mp->m_sb.sb_inodelog));
|
407 |
|
|
di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
|
408 |
|
|
XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
|
409 |
|
|
if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
|
410 |
|
|
XFS_RANDOM_ITOBP_INOTOBP))) {
|
411 |
|
|
#ifdef DEBUG
|
412 |
|
|
prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
|
413 |
|
|
mp->m_ddev_targp,
|
414 |
|
|
(unsigned long long)imap.im_blkno, i,
|
415 |
|
|
INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
|
416 |
|
|
#endif
|
417 |
|
|
XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
|
418 |
|
|
mp, dip);
|
419 |
|
|
xfs_trans_brelse(tp, bp);
|
420 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
421 |
|
|
}
|
422 |
|
|
}
|
423 |
|
|
#endif /* __KERNEL__ */
|
424 |
|
|
|
425 |
|
|
xfs_inobp_check(mp, bp);
|
426 |
|
|
|
427 |
|
|
/*
|
428 |
|
|
* Mark the buffer as an inode buffer now that it looks good
|
429 |
|
|
*/
|
430 |
|
|
XFS_BUF_SET_VTYPE(bp, B_FS_INO);
|
431 |
|
|
|
432 |
|
|
/*
|
433 |
|
|
* Set *dipp to point to the on-disk inode in the buffer.
|
434 |
|
|
*/
|
435 |
|
|
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
|
436 |
|
|
*bpp = bp;
|
437 |
|
|
return 0;
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
/*
|
441 |
|
|
* Move inode type and inode format specific information from the
|
442 |
|
|
* on-disk inode to the in-core inode. For fifos, devs, and sockets
|
443 |
|
|
* this means set if_rdev to the proper value. For files, directories,
|
444 |
|
|
* and symlinks this means to bring in the in-line data or extent
|
445 |
|
|
* pointers. For a file in B-tree format, only the root is immediately
|
446 |
|
|
* brought in-core. The rest will be in-lined in if_extents when it
|
447 |
|
|
* is first referenced (see xfs_iread_extents()).
|
448 |
|
|
*/
|
449 |
|
|
STATIC int
|
450 |
|
|
xfs_iformat(
|
451 |
|
|
xfs_inode_t *ip,
|
452 |
|
|
xfs_dinode_t *dip)
|
453 |
|
|
{
|
454 |
|
|
xfs_attr_shortform_t *atp;
|
455 |
|
|
int size;
|
456 |
|
|
int error;
|
457 |
|
|
xfs_fsize_t di_size;
|
458 |
|
|
ip->i_df.if_ext_max =
|
459 |
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
460 |
|
|
error = 0;
|
461 |
|
|
|
462 |
|
|
if (unlikely(
|
463 |
|
|
INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
|
464 |
|
|
INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
|
465 |
|
|
INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
|
466 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
467 |
|
|
"corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
|
468 |
|
|
" Unmount and run xfs_repair.",
|
469 |
|
|
(unsigned long long)ip->i_ino,
|
470 |
|
|
(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
|
471 |
|
|
+ INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
|
472 |
|
|
(unsigned long long)
|
473 |
|
|
INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
|
474 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
|
475 |
|
|
ip->i_mount, dip);
|
476 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
|
480 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
481 |
|
|
"corrupt dinode %Lu, forkoff = 0x%x."
|
482 |
|
|
" Unmount and run xfs_repair.",
|
483 |
|
|
(unsigned long long)ip->i_ino,
|
484 |
|
|
(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
|
485 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
|
486 |
|
|
ip->i_mount, dip);
|
487 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
switch (ip->i_d.di_mode & S_IFMT) {
|
491 |
|
|
case S_IFIFO:
|
492 |
|
|
case S_IFCHR:
|
493 |
|
|
case S_IFBLK:
|
494 |
|
|
case S_IFSOCK:
|
495 |
|
|
if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
|
496 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
|
497 |
|
|
ip->i_mount, dip);
|
498 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
499 |
|
|
}
|
500 |
|
|
ip->i_d.di_size = 0;
|
501 |
|
|
ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
|
502 |
|
|
break;
|
503 |
|
|
|
504 |
|
|
case S_IFREG:
|
505 |
|
|
case S_IFLNK:
|
506 |
|
|
case S_IFDIR:
|
507 |
|
|
switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
|
508 |
|
|
case XFS_DINODE_FMT_LOCAL:
|
509 |
|
|
/*
|
510 |
|
|
* no local regular files yet
|
511 |
|
|
*/
|
512 |
|
|
if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
|
513 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
514 |
|
|
"corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
|
515 |
|
|
(unsigned long long) ip->i_ino);
|
516 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(4)",
|
517 |
|
|
XFS_ERRLEVEL_LOW,
|
518 |
|
|
ip->i_mount, dip);
|
519 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
|
523 |
|
|
if (unlikely(di_size >
|
524 |
|
|
XFS_DFORK_DSIZE_ARCH(dip, ip->i_mount, ARCH_CONVERT))) {
|
525 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
526 |
|
|
"corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
|
527 |
|
|
(unsigned long long) ip->i_ino,
|
528 |
|
|
(long long) di_size);
|
529 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(5)",
|
530 |
|
|
XFS_ERRLEVEL_LOW,
|
531 |
|
|
ip->i_mount, dip);
|
532 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
size = (int)di_size;
|
536 |
|
|
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
|
537 |
|
|
break;
|
538 |
|
|
case XFS_DINODE_FMT_EXTENTS:
|
539 |
|
|
error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
|
540 |
|
|
break;
|
541 |
|
|
case XFS_DINODE_FMT_BTREE:
|
542 |
|
|
error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
|
543 |
|
|
break;
|
544 |
|
|
default:
|
545 |
|
|
XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
|
546 |
|
|
ip->i_mount);
|
547 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
548 |
|
|
}
|
549 |
|
|
break;
|
550 |
|
|
|
551 |
|
|
default:
|
552 |
|
|
XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
|
553 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
554 |
|
|
}
|
555 |
|
|
if (error) {
|
556 |
|
|
return error;
|
557 |
|
|
}
|
558 |
|
|
if (!XFS_DFORK_Q_ARCH(dip, ARCH_CONVERT))
|
559 |
|
|
return 0;
|
560 |
|
|
ASSERT(ip->i_afp == NULL);
|
561 |
|
|
ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
|
562 |
|
|
ip->i_afp->if_ext_max =
|
563 |
|
|
XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
564 |
|
|
switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
|
565 |
|
|
case XFS_DINODE_FMT_LOCAL:
|
566 |
|
|
atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR_ARCH(dip, ARCH_CONVERT);
|
567 |
|
|
size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
|
568 |
|
|
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
|
569 |
|
|
break;
|
570 |
|
|
case XFS_DINODE_FMT_EXTENTS:
|
571 |
|
|
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
|
572 |
|
|
break;
|
573 |
|
|
case XFS_DINODE_FMT_BTREE:
|
574 |
|
|
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
|
575 |
|
|
break;
|
576 |
|
|
default:
|
577 |
|
|
error = XFS_ERROR(EFSCORRUPTED);
|
578 |
|
|
break;
|
579 |
|
|
}
|
580 |
|
|
if (error) {
|
581 |
|
|
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
|
582 |
|
|
ip->i_afp = NULL;
|
583 |
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
584 |
|
|
}
|
585 |
|
|
return error;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
/*
|
589 |
|
|
* The file is in-lined in the on-disk inode.
|
590 |
|
|
* If it fits into if_inline_data, then copy
|
591 |
|
|
* it there, otherwise allocate a buffer for it
|
592 |
|
|
* and copy the data there. Either way, set
|
593 |
|
|
* if_data to point at the data.
|
594 |
|
|
* If we allocate a buffer for the data, make
|
595 |
|
|
* sure that its size is a multiple of 4 and
|
596 |
|
|
* record the real size in i_real_bytes.
|
597 |
|
|
*/
|
598 |
|
|
STATIC int
|
599 |
|
|
xfs_iformat_local(
|
600 |
|
|
xfs_inode_t *ip,
|
601 |
|
|
xfs_dinode_t *dip,
|
602 |
|
|
int whichfork,
|
603 |
|
|
int size)
|
604 |
|
|
{
|
605 |
|
|
xfs_ifork_t *ifp;
|
606 |
|
|
int real_size;
|
607 |
|
|
|
608 |
|
|
/*
|
609 |
|
|
* If the size is unreasonable, then something
|
610 |
|
|
* is wrong and we just bail out rather than crash in
|
611 |
|
|
* kmem_alloc() or memcpy() below.
|
612 |
|
|
*/
|
613 |
|
|
if (unlikely(size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
|
614 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
615 |
|
|
"corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
|
616 |
|
|
(unsigned long long) ip->i_ino, size,
|
617 |
|
|
XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT));
|
618 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
|
619 |
|
|
ip->i_mount, dip);
|
620 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
621 |
|
|
}
|
622 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
623 |
|
|
real_size = 0;
|
624 |
|
|
if (size == 0)
|
625 |
|
|
ifp->if_u1.if_data = NULL;
|
626 |
|
|
else if (size <= sizeof(ifp->if_u2.if_inline_data))
|
627 |
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
628 |
|
|
else {
|
629 |
|
|
real_size = roundup(size, 4);
|
630 |
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
|
631 |
|
|
}
|
632 |
|
|
ifp->if_bytes = size;
|
633 |
|
|
ifp->if_real_bytes = real_size;
|
634 |
|
|
if (size)
|
635 |
|
|
memcpy(ifp->if_u1.if_data,
|
636 |
|
|
XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT), size);
|
637 |
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
638 |
|
|
ifp->if_flags |= XFS_IFINLINE;
|
639 |
|
|
return 0;
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
/*
|
643 |
|
|
* The file consists of a set of extents all
|
644 |
|
|
* of which fit into the on-disk inode.
|
645 |
|
|
* If there are few enough extents to fit into
|
646 |
|
|
* the if_inline_ext, then copy them there.
|
647 |
|
|
* Otherwise allocate a buffer for them and copy
|
648 |
|
|
* them into it. Either way, set if_extents
|
649 |
|
|
* to point at the extents.
|
650 |
|
|
*/
|
651 |
|
|
STATIC int
|
652 |
|
|
xfs_iformat_extents(
|
653 |
|
|
xfs_inode_t *ip,
|
654 |
|
|
xfs_dinode_t *dip,
|
655 |
|
|
int whichfork)
|
656 |
|
|
{
|
657 |
|
|
xfs_bmbt_rec_t *ep, *dp;
|
658 |
|
|
xfs_ifork_t *ifp;
|
659 |
|
|
int nex;
|
660 |
|
|
int real_size;
|
661 |
|
|
int size;
|
662 |
|
|
int i;
|
663 |
|
|
|
664 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
665 |
|
|
nex = XFS_DFORK_NEXTENTS_ARCH(dip, whichfork, ARCH_CONVERT);
|
666 |
|
|
size = nex * (uint)sizeof(xfs_bmbt_rec_t);
|
667 |
|
|
|
668 |
|
|
/*
|
669 |
|
|
* If the number of extents is unreasonable, then something
|
670 |
|
|
* is wrong and we just bail out rather than crash in
|
671 |
|
|
* kmem_alloc() or memcpy() below.
|
672 |
|
|
*/
|
673 |
|
|
if (unlikely(size < 0 || size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
|
674 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
675 |
|
|
"corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
|
676 |
|
|
(unsigned long long) ip->i_ino, nex);
|
677 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
|
678 |
|
|
ip->i_mount, dip);
|
679 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
real_size = 0;
|
683 |
|
|
if (nex == 0)
|
684 |
|
|
ifp->if_u1.if_extents = NULL;
|
685 |
|
|
else if (nex <= XFS_INLINE_EXTS)
|
686 |
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
687 |
|
|
else {
|
688 |
|
|
ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
|
689 |
|
|
ASSERT(ifp->if_u1.if_extents != NULL);
|
690 |
|
|
real_size = size;
|
691 |
|
|
}
|
692 |
|
|
ifp->if_bytes = size;
|
693 |
|
|
ifp->if_real_bytes = real_size;
|
694 |
|
|
if (size) {
|
695 |
|
|
dp = (xfs_bmbt_rec_t *)
|
696 |
|
|
XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
|
697 |
|
|
xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
|
698 |
|
|
ep = ifp->if_u1.if_extents;
|
699 |
|
|
for (i = 0; i < nex; i++, ep++, dp++) {
|
700 |
|
|
ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
|
701 |
|
|
ARCH_CONVERT);
|
702 |
|
|
ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
|
703 |
|
|
ARCH_CONVERT);
|
704 |
|
|
}
|
705 |
|
|
xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
|
706 |
|
|
whichfork);
|
707 |
|
|
if (whichfork != XFS_DATA_FORK ||
|
708 |
|
|
XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
|
709 |
|
|
if (unlikely(xfs_check_nostate_extents(
|
710 |
|
|
ifp->if_u1.if_extents, nex))) {
|
711 |
|
|
XFS_ERROR_REPORT("xfs_iformat_extents(2)",
|
712 |
|
|
XFS_ERRLEVEL_LOW,
|
713 |
|
|
ip->i_mount);
|
714 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
715 |
|
|
}
|
716 |
|
|
}
|
717 |
|
|
ifp->if_flags |= XFS_IFEXTENTS;
|
718 |
|
|
return 0;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/*
|
722 |
|
|
* The file has too many extents to fit into
|
723 |
|
|
* the inode, so they are in B-tree format.
|
724 |
|
|
* Allocate a buffer for the root of the B-tree
|
725 |
|
|
* and copy the root into it. The i_extents
|
726 |
|
|
* field will remain NULL until all of the
|
727 |
|
|
* extents are read in (when they are needed).
|
728 |
|
|
*/
|
729 |
|
|
STATIC int
|
730 |
|
|
xfs_iformat_btree(
|
731 |
|
|
xfs_inode_t *ip,
|
732 |
|
|
xfs_dinode_t *dip,
|
733 |
|
|
int whichfork)
|
734 |
|
|
{
|
735 |
|
|
xfs_bmdr_block_t *dfp;
|
736 |
|
|
xfs_ifork_t *ifp;
|
737 |
|
|
/* REFERENCED */
|
738 |
|
|
int nrecs;
|
739 |
|
|
int size;
|
740 |
|
|
|
741 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
742 |
|
|
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
|
743 |
|
|
size = XFS_BMAP_BROOT_SPACE(dfp);
|
744 |
|
|
nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
|
745 |
|
|
|
746 |
|
|
/*
|
747 |
|
|
* blow out if -- fork has less extents than can fit in
|
748 |
|
|
* fork (fork shouldn't be a btree format), root btree
|
749 |
|
|
* block has more records than can fit into the fork,
|
750 |
|
|
* or the number of extents is greater than the number of
|
751 |
|
|
* blocks.
|
752 |
|
|
*/
|
753 |
|
|
if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
|
754 |
|
|
|| XFS_BMDR_SPACE_CALC(nrecs) >
|
755 |
|
|
XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT)
|
756 |
|
|
|| XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
|
757 |
|
|
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
|
758 |
|
|
"corrupt inode %Lu (btree). Unmount and run xfs_repair.",
|
759 |
|
|
(unsigned long long) ip->i_ino);
|
760 |
|
|
XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
|
761 |
|
|
ip->i_mount);
|
762 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
763 |
|
|
}
|
764 |
|
|
|
765 |
|
|
ifp->if_broot_bytes = size;
|
766 |
|
|
ifp->if_broot = kmem_alloc(size, KM_SLEEP);
|
767 |
|
|
ASSERT(ifp->if_broot != NULL);
|
768 |
|
|
/*
|
769 |
|
|
* Copy and convert from the on-disk structure
|
770 |
|
|
* to the in-memory structure.
|
771 |
|
|
*/
|
772 |
|
|
xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT),
|
773 |
|
|
ifp->if_broot, size);
|
774 |
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
775 |
|
|
ifp->if_flags |= XFS_IFBROOT;
|
776 |
|
|
|
777 |
|
|
return 0;
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
/*
|
781 |
|
|
* xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
|
782 |
|
|
* and native format
|
783 |
|
|
*
|
784 |
|
|
* buf = on-disk representation
|
785 |
|
|
* dip = native representation
|
786 |
|
|
* dir = direction - +ve -> disk to native
|
787 |
|
|
* -ve -> native to disk
|
788 |
|
|
* arch = on-disk architecture
|
789 |
|
|
*/
|
790 |
|
|
void
|
791 |
|
|
xfs_xlate_dinode_core(
|
792 |
|
|
xfs_caddr_t buf,
|
793 |
|
|
xfs_dinode_core_t *dip,
|
794 |
|
|
int dir,
|
795 |
|
|
xfs_arch_t arch)
|
796 |
|
|
{
|
797 |
|
|
xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
|
798 |
|
|
xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
|
799 |
|
|
|
800 |
|
|
ASSERT(dir);
|
801 |
|
|
if (arch == ARCH_NOCONVERT) {
|
802 |
|
|
if (dir > 0) {
|
803 |
|
|
memcpy((xfs_caddr_t)mem_core, (xfs_caddr_t)buf_core,
|
804 |
|
|
sizeof(xfs_dinode_core_t));
|
805 |
|
|
} else {
|
806 |
|
|
memcpy((xfs_caddr_t)buf_core, (xfs_caddr_t)mem_core,
|
807 |
|
|
sizeof(xfs_dinode_core_t));
|
808 |
|
|
}
|
809 |
|
|
return;
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
|
813 |
|
|
INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
|
814 |
|
|
INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
|
815 |
|
|
INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
|
816 |
|
|
INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
|
817 |
|
|
INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
|
818 |
|
|
INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
|
819 |
|
|
INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
|
820 |
|
|
INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
|
821 |
|
|
|
822 |
|
|
if (dir > 0) {
|
823 |
|
|
memcpy(mem_core->di_pad, buf_core->di_pad,
|
824 |
|
|
sizeof(buf_core->di_pad));
|
825 |
|
|
} else {
|
826 |
|
|
memcpy(buf_core->di_pad, mem_core->di_pad,
|
827 |
|
|
sizeof(buf_core->di_pad));
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
|
831 |
|
|
|
832 |
|
|
INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
|
833 |
|
|
dir, arch);
|
834 |
|
|
INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
|
835 |
|
|
dir, arch);
|
836 |
|
|
INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
|
837 |
|
|
dir, arch);
|
838 |
|
|
INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
|
839 |
|
|
dir, arch);
|
840 |
|
|
INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
|
841 |
|
|
dir, arch);
|
842 |
|
|
INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
|
843 |
|
|
dir, arch);
|
844 |
|
|
INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
|
845 |
|
|
INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
|
846 |
|
|
INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
|
847 |
|
|
INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
|
848 |
|
|
INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
|
849 |
|
|
INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
|
850 |
|
|
INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
|
851 |
|
|
INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
|
852 |
|
|
INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
|
853 |
|
|
INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
|
854 |
|
|
INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
/*
|
858 |
|
|
* Given a mount structure and an inode number, return a pointer
|
859 |
|
|
* to a newly allocated in-core inode coresponding to the given
|
860 |
|
|
* inode number.
|
861 |
|
|
*
|
862 |
|
|
* Initialize the inode's attributes and extent pointers if it
|
863 |
|
|
* already has them (it will not if the inode has no links).
|
864 |
|
|
*/
|
865 |
|
|
int
|
866 |
|
|
xfs_iread(
|
867 |
|
|
xfs_mount_t *mp,
|
868 |
|
|
xfs_trans_t *tp,
|
869 |
|
|
xfs_ino_t ino,
|
870 |
|
|
xfs_inode_t **ipp,
|
871 |
|
|
xfs_daddr_t bno)
|
872 |
|
|
{
|
873 |
|
|
xfs_buf_t *bp;
|
874 |
|
|
xfs_dinode_t *dip;
|
875 |
|
|
xfs_inode_t *ip;
|
876 |
|
|
int error;
|
877 |
|
|
|
878 |
|
|
ASSERT(xfs_inode_zone != NULL);
|
879 |
|
|
|
880 |
|
|
ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
|
881 |
|
|
ip->i_ino = ino;
|
882 |
|
|
ip->i_mount = mp;
|
883 |
|
|
|
884 |
|
|
/*
|
885 |
|
|
* Get pointer's to the on-disk inode and the buffer containing it.
|
886 |
|
|
* If the inode number refers to a block outside the file system
|
887 |
|
|
* then xfs_itobp() will return NULL. In this case we should
|
888 |
|
|
* return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
|
889 |
|
|
* know that this is a new incore inode.
|
890 |
|
|
*/
|
891 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
|
892 |
|
|
|
893 |
|
|
if (error != 0) {
|
894 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
895 |
|
|
return error;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
/*
|
899 |
|
|
* Initialize inode's trace buffers.
|
900 |
|
|
* Do this before xfs_iformat in case it adds entries.
|
901 |
|
|
*/
|
902 |
|
|
#ifdef XFS_BMAP_TRACE
|
903 |
|
|
ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
|
904 |
|
|
#endif
|
905 |
|
|
#ifdef XFS_BMBT_TRACE
|
906 |
|
|
ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
|
907 |
|
|
#endif
|
908 |
|
|
#ifdef XFS_RW_TRACE
|
909 |
|
|
ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
|
910 |
|
|
#endif
|
911 |
|
|
#ifdef XFS_ILOCK_TRACE
|
912 |
|
|
ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
|
913 |
|
|
#endif
|
914 |
|
|
#ifdef XFS_DIR2_TRACE
|
915 |
|
|
ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
|
916 |
|
|
#endif
|
917 |
|
|
|
918 |
|
|
/*
|
919 |
|
|
* If we got something that isn't an inode it means someone
|
920 |
|
|
* (nfs or dmi) has a stale handle.
|
921 |
|
|
*/
|
922 |
|
|
if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
|
923 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
924 |
|
|
xfs_trans_brelse(tp, bp);
|
925 |
|
|
#ifdef DEBUG
|
926 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
|
927 |
|
|
"dip->di_core.di_magic (0x%x) != "
|
928 |
|
|
"XFS_DINODE_MAGIC (0x%x)",
|
929 |
|
|
INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
|
930 |
|
|
XFS_DINODE_MAGIC);
|
931 |
|
|
#endif /* DEBUG */
|
932 |
|
|
return XFS_ERROR(EINVAL);
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
/*
|
936 |
|
|
* If the on-disk inode is already linked to a directory
|
937 |
|
|
* entry, copy all of the inode into the in-core inode.
|
938 |
|
|
* xfs_iformat() handles copying in the inode format
|
939 |
|
|
* specific information.
|
940 |
|
|
* Otherwise, just get the truly permanent information.
|
941 |
|
|
*/
|
942 |
|
|
if (!INT_ISZERO(dip->di_core.di_mode, ARCH_CONVERT)) {
|
943 |
|
|
xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
|
944 |
|
|
&(ip->i_d), 1, ARCH_CONVERT);
|
945 |
|
|
error = xfs_iformat(ip, dip);
|
946 |
|
|
if (error) {
|
947 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
948 |
|
|
xfs_trans_brelse(tp, bp);
|
949 |
|
|
#ifdef DEBUG
|
950 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
|
951 |
|
|
"xfs_iformat() returned error %d",
|
952 |
|
|
error);
|
953 |
|
|
#endif /* DEBUG */
|
954 |
|
|
return error;
|
955 |
|
|
}
|
956 |
|
|
} else {
|
957 |
|
|
ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
|
958 |
|
|
ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
|
959 |
|
|
ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
|
960 |
|
|
ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
|
961 |
|
|
/*
|
962 |
|
|
* Make sure to pull in the mode here as well in
|
963 |
|
|
* case the inode is released without being used.
|
964 |
|
|
* This ensures that xfs_inactive() will see that
|
965 |
|
|
* the inode is already free and not try to mess
|
966 |
|
|
* with the uninitialized part of it.
|
967 |
|
|
*/
|
968 |
|
|
ip->i_d.di_mode = 0;
|
969 |
|
|
/*
|
970 |
|
|
* Initialize the per-fork minima and maxima for a new
|
971 |
|
|
* inode here. xfs_iformat will do it for old inodes.
|
972 |
|
|
*/
|
973 |
|
|
ip->i_df.if_ext_max =
|
974 |
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
INIT_LIST_HEAD(&ip->i_reclaim);
|
978 |
|
|
|
979 |
|
|
/*
|
980 |
|
|
* The inode format changed when we moved the link count and
|
981 |
|
|
* made it 32 bits long. If this is an old format inode,
|
982 |
|
|
* convert it in memory to look like a new one. If it gets
|
983 |
|
|
* flushed to disk we will convert back before flushing or
|
984 |
|
|
* logging it. We zero out the new projid field and the old link
|
985 |
|
|
* count field. We'll handle clearing the pad field (the remains
|
986 |
|
|
* of the old uuid field) when we actually convert the inode to
|
987 |
|
|
* the new format. We don't change the version number so that we
|
988 |
|
|
* can distinguish this from a real new format inode.
|
989 |
|
|
*/
|
990 |
|
|
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
991 |
|
|
ip->i_d.di_nlink = ip->i_d.di_onlink;
|
992 |
|
|
ip->i_d.di_onlink = 0;
|
993 |
|
|
ip->i_d.di_projid = 0;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
ip->i_delayed_blks = 0;
|
997 |
|
|
|
998 |
|
|
/*
|
999 |
|
|
* Mark the buffer containing the inode as something to keep
|
1000 |
|
|
* around for a while. This helps to keep recently accessed
|
1001 |
|
|
* meta-data in-core longer.
|
1002 |
|
|
*/
|
1003 |
|
|
XFS_BUF_SET_REF(bp, XFS_INO_REF);
|
1004 |
|
|
|
1005 |
|
|
/*
|
1006 |
|
|
* Use xfs_trans_brelse() to release the buffer containing the
|
1007 |
|
|
* on-disk inode, because it was acquired with xfs_trans_read_buf()
|
1008 |
|
|
* in xfs_itobp() above. If tp is NULL, this is just a normal
|
1009 |
|
|
* brelse(). If we're within a transaction, then xfs_trans_brelse()
|
1010 |
|
|
* will only release the buffer if it is not dirty within the
|
1011 |
|
|
* transaction. It will be OK to release the buffer in this case,
|
1012 |
|
|
* because inodes on disk are never destroyed and we will be
|
1013 |
|
|
* locking the new in-core inode before putting it in the hash
|
1014 |
|
|
* table where other processes can find it. Thus we don't have
|
1015 |
|
|
* to worry about the inode being changed just because we released
|
1016 |
|
|
* the buffer.
|
1017 |
|
|
*/
|
1018 |
|
|
xfs_trans_brelse(tp, bp);
|
1019 |
|
|
*ipp = ip;
|
1020 |
|
|
return 0;
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
/*
|
1024 |
|
|
* Read in extents from a btree-format inode.
|
1025 |
|
|
* Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
|
1026 |
|
|
*/
|
1027 |
|
|
int
|
1028 |
|
|
xfs_iread_extents(
|
1029 |
|
|
xfs_trans_t *tp,
|
1030 |
|
|
xfs_inode_t *ip,
|
1031 |
|
|
int whichfork)
|
1032 |
|
|
{
|
1033 |
|
|
int error;
|
1034 |
|
|
xfs_ifork_t *ifp;
|
1035 |
|
|
size_t size;
|
1036 |
|
|
|
1037 |
|
|
if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
|
1038 |
|
|
XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
|
1039 |
|
|
ip->i_mount);
|
1040 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
1041 |
|
|
}
|
1042 |
|
|
size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
|
1043 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
1044 |
|
|
/*
|
1045 |
|
|
* We know that the size is valid (it's checked in iformat_btree)
|
1046 |
|
|
*/
|
1047 |
|
|
ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
|
1048 |
|
|
ASSERT(ifp->if_u1.if_extents != NULL);
|
1049 |
|
|
ifp->if_lastex = NULLEXTNUM;
|
1050 |
|
|
ifp->if_bytes = ifp->if_real_bytes = (int)size;
|
1051 |
|
|
ifp->if_flags |= XFS_IFEXTENTS;
|
1052 |
|
|
error = xfs_bmap_read_extents(tp, ip, whichfork);
|
1053 |
|
|
if (error) {
|
1054 |
|
|
kmem_free(ifp->if_u1.if_extents, size);
|
1055 |
|
|
ifp->if_u1.if_extents = NULL;
|
1056 |
|
|
ifp->if_bytes = ifp->if_real_bytes = 0;
|
1057 |
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
1058 |
|
|
return error;
|
1059 |
|
|
}
|
1060 |
|
|
xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
|
1061 |
|
|
XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
|
1062 |
|
|
return 0;
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
/*
|
1066 |
|
|
* Allocate an inode on disk and return a copy of its in-core version.
|
1067 |
|
|
* The in-core inode is locked exclusively. Set mode, nlink, and rdev
|
1068 |
|
|
* appropriately within the inode. The uid and gid for the inode are
|
1069 |
|
|
* set according to the contents of the given cred structure.
|
1070 |
|
|
*
|
1071 |
|
|
* Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
|
1072 |
|
|
* has a free inode available, call xfs_iget()
|
1073 |
|
|
* to obtain the in-core version of the allocated inode. Finally,
|
1074 |
|
|
* fill in the inode and log its initial contents. In this case,
|
1075 |
|
|
* ialloc_context would be set to NULL and call_again set to false.
|
1076 |
|
|
*
|
1077 |
|
|
* If xfs_dialloc() does not have an available inode,
|
1078 |
|
|
* it will replenish its supply by doing an allocation. Since we can
|
1079 |
|
|
* only do one allocation within a transaction without deadlocks, we
|
1080 |
|
|
* must commit the current transaction before returning the inode itself.
|
1081 |
|
|
* In this case, therefore, we will set call_again to true and return.
|
1082 |
|
|
* The caller should then commit the current transaction, start a new
|
1083 |
|
|
* transaction, and call xfs_ialloc() again to actually get the inode.
|
1084 |
|
|
*
|
1085 |
|
|
* To ensure that some other process does not grab the inode that
|
1086 |
|
|
* was allocated during the first call to xfs_ialloc(), this routine
|
1087 |
|
|
* also returns the [locked] bp pointing to the head of the freelist
|
1088 |
|
|
* as ialloc_context. The caller should hold this buffer across
|
1089 |
|
|
* the commit and pass it back into this routine on the second call.
|
1090 |
|
|
*/
|
1091 |
|
|
int
|
1092 |
|
|
xfs_ialloc(
|
1093 |
|
|
xfs_trans_t *tp,
|
1094 |
|
|
xfs_inode_t *pip,
|
1095 |
|
|
mode_t mode,
|
1096 |
|
|
nlink_t nlink,
|
1097 |
|
|
xfs_dev_t rdev,
|
1098 |
|
|
cred_t *cr,
|
1099 |
|
|
xfs_prid_t prid,
|
1100 |
|
|
int okalloc,
|
1101 |
|
|
xfs_buf_t **ialloc_context,
|
1102 |
|
|
boolean_t *call_again,
|
1103 |
|
|
xfs_inode_t **ipp)
|
1104 |
|
|
{
|
1105 |
|
|
xfs_ino_t ino;
|
1106 |
|
|
xfs_inode_t *ip;
|
1107 |
|
|
vnode_t *vp;
|
1108 |
|
|
uint flags;
|
1109 |
|
|
int error;
|
1110 |
|
|
|
1111 |
|
|
/*
|
1112 |
|
|
* Call the space management code to pick
|
1113 |
|
|
* the on-disk inode to be allocated.
|
1114 |
|
|
*/
|
1115 |
|
|
ASSERT(pip != NULL);
|
1116 |
|
|
error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
|
1117 |
|
|
ialloc_context, call_again, &ino);
|
1118 |
|
|
if (error != 0) {
|
1119 |
|
|
return error;
|
1120 |
|
|
}
|
1121 |
|
|
if (*call_again || ino == NULLFSINO) {
|
1122 |
|
|
*ipp = NULL;
|
1123 |
|
|
return 0;
|
1124 |
|
|
}
|
1125 |
|
|
ASSERT(*ialloc_context == NULL);
|
1126 |
|
|
|
1127 |
|
|
/*
|
1128 |
|
|
* Get the in-core inode with the lock held exclusively.
|
1129 |
|
|
* This is because we're setting fields here we need
|
1130 |
|
|
* to prevent others from looking at until we're done.
|
1131 |
|
|
*/
|
1132 |
|
|
error = xfs_trans_iget(tp->t_mountp, tp, ino, XFS_ILOCK_EXCL, &ip);
|
1133 |
|
|
if (error != 0) {
|
1134 |
|
|
return error;
|
1135 |
|
|
}
|
1136 |
|
|
ASSERT(ip != NULL);
|
1137 |
|
|
|
1138 |
|
|
vp = XFS_ITOV(ip);
|
1139 |
|
|
vp->v_type = IFTOVT(mode);
|
1140 |
|
|
ip->i_d.di_mode = (__uint16_t)mode;
|
1141 |
|
|
ip->i_d.di_onlink = 0;
|
1142 |
|
|
ip->i_d.di_nlink = nlink;
|
1143 |
|
|
ASSERT(ip->i_d.di_nlink == nlink);
|
1144 |
|
|
ip->i_d.di_uid = current_fsuid(cr);
|
1145 |
|
|
ip->i_d.di_gid = current_fsgid(cr);
|
1146 |
|
|
ip->i_d.di_projid = prid;
|
1147 |
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
1148 |
|
|
|
1149 |
|
|
/*
|
1150 |
|
|
* If the superblock version is up to where we support new format
|
1151 |
|
|
* inodes and this is currently an old format inode, then change
|
1152 |
|
|
* the inode version number now. This way we only do the conversion
|
1153 |
|
|
* here rather than here and in the flush/logging code.
|
1154 |
|
|
*/
|
1155 |
|
|
if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
|
1156 |
|
|
ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
1157 |
|
|
ip->i_d.di_version = XFS_DINODE_VERSION_2;
|
1158 |
|
|
/*
|
1159 |
|
|
* We've already zeroed the old link count, the projid field,
|
1160 |
|
|
* and the pad field.
|
1161 |
|
|
*/
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
/*
|
1165 |
|
|
* Project ids won't be stored on disk if we are using a version 1 inode.
|
1166 |
|
|
*/
|
1167 |
|
|
if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
|
1168 |
|
|
xfs_bump_ino_vers2(tp, ip);
|
1169 |
|
|
|
1170 |
|
|
if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
|
1171 |
|
|
ip->i_d.di_gid = pip->i_d.di_gid;
|
1172 |
|
|
if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
|
1173 |
|
|
ip->i_d.di_mode |= S_ISGID;
|
1174 |
|
|
}
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
/*
|
1178 |
|
|
* If the group ID of the new file does not match the effective group
|
1179 |
|
|
* ID or one of the supplementary group IDs, the S_ISGID bit is cleared
|
1180 |
|
|
* (and only if the irix_sgid_inherit compatibility variable is set).
|
1181 |
|
|
*/
|
1182 |
|
|
if ((irix_sgid_inherit) &&
|
1183 |
|
|
(ip->i_d.di_mode & S_ISGID) &&
|
1184 |
|
|
(!in_group_p((gid_t)ip->i_d.di_gid))) {
|
1185 |
|
|
ip->i_d.di_mode &= ~S_ISGID;
|
1186 |
|
|
}
|
1187 |
|
|
|
1188 |
|
|
ip->i_d.di_size = 0;
|
1189 |
|
|
ip->i_d.di_nextents = 0;
|
1190 |
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
1191 |
|
|
xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
|
1192 |
|
|
/*
|
1193 |
|
|
* di_gen will have been taken care of in xfs_iread.
|
1194 |
|
|
*/
|
1195 |
|
|
ip->i_d.di_extsize = 0;
|
1196 |
|
|
ip->i_d.di_dmevmask = 0;
|
1197 |
|
|
ip->i_d.di_dmstate = 0;
|
1198 |
|
|
ip->i_d.di_flags = 0;
|
1199 |
|
|
flags = XFS_ILOG_CORE;
|
1200 |
|
|
switch (mode & S_IFMT) {
|
1201 |
|
|
case S_IFIFO:
|
1202 |
|
|
case S_IFCHR:
|
1203 |
|
|
case S_IFBLK:
|
1204 |
|
|
case S_IFSOCK:
|
1205 |
|
|
ip->i_d.di_format = XFS_DINODE_FMT_DEV;
|
1206 |
|
|
ip->i_df.if_u2.if_rdev = rdev;
|
1207 |
|
|
ip->i_df.if_flags = 0;
|
1208 |
|
|
flags |= XFS_ILOG_DEV;
|
1209 |
|
|
break;
|
1210 |
|
|
case S_IFREG:
|
1211 |
|
|
case S_IFDIR:
|
1212 |
|
|
if (pip->i_d.di_flags &
|
1213 |
|
|
(XFS_DIFLAG_NOATIME|XFS_DIFLAG_NODUMP|XFS_DIFLAG_SYNC)) {
|
1214 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
|
1215 |
|
|
xfs_inherit_noatime)
|
1216 |
|
|
ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
|
1217 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
|
1218 |
|
|
xfs_inherit_nodump)
|
1219 |
|
|
ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
|
1220 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
|
1221 |
|
|
xfs_inherit_sync)
|
1222 |
|
|
ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
|
1223 |
|
|
}
|
1224 |
|
|
case S_IFLNK:
|
1225 |
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
1226 |
|
|
ip->i_df.if_flags = XFS_IFEXTENTS;
|
1227 |
|
|
ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
|
1228 |
|
|
ip->i_df.if_u1.if_extents = NULL;
|
1229 |
|
|
break;
|
1230 |
|
|
default:
|
1231 |
|
|
ASSERT(0);
|
1232 |
|
|
}
|
1233 |
|
|
/*
|
1234 |
|
|
* Attribute fork settings for new inode.
|
1235 |
|
|
*/
|
1236 |
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
1237 |
|
|
ip->i_d.di_anextents = 0;
|
1238 |
|
|
|
1239 |
|
|
/*
|
1240 |
|
|
* Log the new values stuffed into the inode.
|
1241 |
|
|
*/
|
1242 |
|
|
xfs_trans_log_inode(tp, ip, flags);
|
1243 |
|
|
|
1244 |
|
|
/* now that we have a v_type we can set Linux inode ops (& unlock) */
|
1245 |
|
|
VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
|
1246 |
|
|
|
1247 |
|
|
*ipp = ip;
|
1248 |
|
|
return 0;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/*
|
1252 |
|
|
* Check to make sure that there are no blocks allocated to the
|
1253 |
|
|
* file beyond the size of the file. We don't check this for
|
1254 |
|
|
* files with fixed size extents or real time extents, but we
|
1255 |
|
|
* at least do it for regular files.
|
1256 |
|
|
*/
|
1257 |
|
|
#ifdef DEBUG
|
1258 |
|
|
void
|
1259 |
|
|
xfs_isize_check(
|
1260 |
|
|
xfs_mount_t *mp,
|
1261 |
|
|
xfs_inode_t *ip,
|
1262 |
|
|
xfs_fsize_t isize)
|
1263 |
|
|
{
|
1264 |
|
|
xfs_fileoff_t map_first;
|
1265 |
|
|
int nimaps;
|
1266 |
|
|
xfs_bmbt_irec_t imaps[2];
|
1267 |
|
|
|
1268 |
|
|
if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
|
1269 |
|
|
return;
|
1270 |
|
|
|
1271 |
|
|
if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
|
1272 |
|
|
return;
|
1273 |
|
|
|
1274 |
|
|
nimaps = 2;
|
1275 |
|
|
map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
|
1276 |
|
|
/*
|
1277 |
|
|
* The filesystem could be shutting down, so bmapi may return
|
1278 |
|
|
* an error.
|
1279 |
|
|
*/
|
1280 |
|
|
if (xfs_bmapi(NULL, ip, map_first,
|
1281 |
|
|
(XFS_B_TO_FSB(mp,
|
1282 |
|
|
(xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
|
1283 |
|
|
map_first),
|
1284 |
|
|
XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
|
1285 |
|
|
NULL))
|
1286 |
|
|
return;
|
1287 |
|
|
ASSERT(nimaps == 1);
|
1288 |
|
|
ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
|
1289 |
|
|
}
|
1290 |
|
|
#endif /* DEBUG */
|
1291 |
|
|
|
1292 |
|
|
/*
|
1293 |
|
|
* Calculate the last possible buffered byte in a file. This must
|
1294 |
|
|
* include data that was buffered beyond the EOF by the write code.
|
1295 |
|
|
* This also needs to deal with overflowing the xfs_fsize_t type
|
1296 |
|
|
* which can happen for sizes near the limit.
|
1297 |
|
|
*
|
1298 |
|
|
* We also need to take into account any blocks beyond the EOF. It
|
1299 |
|
|
* may be the case that they were buffered by a write which failed.
|
1300 |
|
|
* In that case the pages will still be in memory, but the inode size
|
1301 |
|
|
* will never have been updated.
|
1302 |
|
|
*/
|
1303 |
|
|
xfs_fsize_t
|
1304 |
|
|
xfs_file_last_byte(
|
1305 |
|
|
xfs_inode_t *ip)
|
1306 |
|
|
{
|
1307 |
|
|
xfs_mount_t *mp;
|
1308 |
|
|
xfs_fsize_t last_byte;
|
1309 |
|
|
xfs_fileoff_t last_block;
|
1310 |
|
|
xfs_fileoff_t size_last_block;
|
1311 |
|
|
int error;
|
1312 |
|
|
|
1313 |
|
|
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
|
1314 |
|
|
|
1315 |
|
|
mp = ip->i_mount;
|
1316 |
|
|
/*
|
1317 |
|
|
* Only check for blocks beyond the EOF if the extents have
|
1318 |
|
|
* been read in. This eliminates the need for the inode lock,
|
1319 |
|
|
* and it also saves us from looking when it really isn't
|
1320 |
|
|
* necessary.
|
1321 |
|
|
*/
|
1322 |
|
|
if (ip->i_df.if_flags & XFS_IFEXTENTS) {
|
1323 |
|
|
error = xfs_bmap_last_offset(NULL, ip, &last_block,
|
1324 |
|
|
XFS_DATA_FORK);
|
1325 |
|
|
if (error) {
|
1326 |
|
|
last_block = 0;
|
1327 |
|
|
}
|
1328 |
|
|
} else {
|
1329 |
|
|
last_block = 0;
|
1330 |
|
|
}
|
1331 |
|
|
size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
|
1332 |
|
|
last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
|
1333 |
|
|
|
1334 |
|
|
last_byte = XFS_FSB_TO_B(mp, last_block);
|
1335 |
|
|
if (last_byte < 0) {
|
1336 |
|
|
return XFS_MAXIOFFSET(mp);
|
1337 |
|
|
}
|
1338 |
|
|
last_byte += (1 << mp->m_writeio_log);
|
1339 |
|
|
if (last_byte < 0) {
|
1340 |
|
|
return XFS_MAXIOFFSET(mp);
|
1341 |
|
|
}
|
1342 |
|
|
return last_byte;
|
1343 |
|
|
}
|
1344 |
|
|
|
1345 |
|
|
#if defined(XFS_RW_TRACE)
|
1346 |
|
|
STATIC void
|
1347 |
|
|
xfs_itrunc_trace(
|
1348 |
|
|
int tag,
|
1349 |
|
|
xfs_inode_t *ip,
|
1350 |
|
|
int flag,
|
1351 |
|
|
xfs_fsize_t new_size,
|
1352 |
|
|
xfs_off_t toss_start,
|
1353 |
|
|
xfs_off_t toss_finish)
|
1354 |
|
|
{
|
1355 |
|
|
if (ip->i_rwtrace == NULL) {
|
1356 |
|
|
return;
|
1357 |
|
|
}
|
1358 |
|
|
|
1359 |
|
|
ktrace_enter(ip->i_rwtrace,
|
1360 |
|
|
(void*)((long)tag),
|
1361 |
|
|
(void*)ip,
|
1362 |
|
|
(void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
|
1363 |
|
|
(void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
|
1364 |
|
|
(void*)((long)flag),
|
1365 |
|
|
(void*)(unsigned long)((new_size >> 32) & 0xffffffff),
|
1366 |
|
|
(void*)(unsigned long)(new_size & 0xffffffff),
|
1367 |
|
|
(void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
|
1368 |
|
|
(void*)(unsigned long)(toss_start & 0xffffffff),
|
1369 |
|
|
(void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
|
1370 |
|
|
(void*)(unsigned long)(toss_finish & 0xffffffff),
|
1371 |
|
|
(void*)(unsigned long)current_cpu(),
|
1372 |
|
|
(void*)0,
|
1373 |
|
|
(void*)0,
|
1374 |
|
|
(void*)0,
|
1375 |
|
|
(void*)0);
|
1376 |
|
|
}
|
1377 |
|
|
#else
|
1378 |
|
|
#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
|
1379 |
|
|
#endif
|
1380 |
|
|
|
1381 |
|
|
/*
|
1382 |
|
|
* Start the truncation of the file to new_size. The new size
|
1383 |
|
|
* must be smaller than the current size. This routine will
|
1384 |
|
|
* clear the buffer and page caches of file data in the removed
|
1385 |
|
|
* range, and xfs_itruncate_finish() will remove the underlying
|
1386 |
|
|
* disk blocks.
|
1387 |
|
|
*
|
1388 |
|
|
* The inode must have its I/O lock locked EXCLUSIVELY, and it
|
1389 |
|
|
* must NOT have the inode lock held at all. This is because we're
|
1390 |
|
|
* calling into the buffer/page cache code and we can't hold the
|
1391 |
|
|
* inode lock when we do so.
|
1392 |
|
|
*
|
1393 |
|
|
* The flags parameter can have either the value XFS_ITRUNC_DEFINITE
|
1394 |
|
|
* or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
|
1395 |
|
|
* in the case that the caller is locking things out of order and
|
1396 |
|
|
* may not be able to call xfs_itruncate_finish() with the inode lock
|
1397 |
|
|
* held without dropping the I/O lock. If the caller must drop the
|
1398 |
|
|
* I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
|
1399 |
|
|
* must be called again with all the same restrictions as the initial
|
1400 |
|
|
* call.
|
1401 |
|
|
*/
|
1402 |
|
|
void
|
1403 |
|
|
xfs_itruncate_start(
|
1404 |
|
|
xfs_inode_t *ip,
|
1405 |
|
|
uint flags,
|
1406 |
|
|
xfs_fsize_t new_size)
|
1407 |
|
|
{
|
1408 |
|
|
xfs_fsize_t last_byte;
|
1409 |
|
|
xfs_off_t toss_start;
|
1410 |
|
|
xfs_mount_t *mp;
|
1411 |
|
|
vnode_t *vp;
|
1412 |
|
|
|
1413 |
|
|
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
|
1414 |
|
|
ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
|
1415 |
|
|
ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
|
1416 |
|
|
(flags == XFS_ITRUNC_MAYBE));
|
1417 |
|
|
|
1418 |
|
|
mp = ip->i_mount;
|
1419 |
|
|
vp = XFS_ITOV(ip);
|
1420 |
|
|
/*
|
1421 |
|
|
* Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
|
1422 |
|
|
* overlapping the region being removed. We have to use
|
1423 |
|
|
* the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
|
1424 |
|
|
* caller may not be able to finish the truncate without
|
1425 |
|
|
* dropping the inode's I/O lock. Make sure
|
1426 |
|
|
* to catch any pages brought in by buffers overlapping
|
1427 |
|
|
* the EOF by searching out beyond the isize by our
|
1428 |
|
|
* block size. We round new_size up to a block boundary
|
1429 |
|
|
* so that we don't toss things on the same block as
|
1430 |
|
|
* new_size but before it.
|
1431 |
|
|
*
|
1432 |
|
|
* Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
|
1433 |
|
|
* call remapf() over the same region if the file is mapped.
|
1434 |
|
|
* This frees up mapped file references to the pages in the
|
1435 |
|
|
* given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
|
1436 |
|
|
* that we get the latest mapped changes flushed out.
|
1437 |
|
|
*/
|
1438 |
|
|
toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
1439 |
|
|
toss_start = XFS_FSB_TO_B(mp, toss_start);
|
1440 |
|
|
if (toss_start < 0) {
|
1441 |
|
|
/*
|
1442 |
|
|
* The place to start tossing is beyond our maximum
|
1443 |
|
|
* file size, so there is no way that the data extended
|
1444 |
|
|
* out there.
|
1445 |
|
|
*/
|
1446 |
|
|
return;
|
1447 |
|
|
}
|
1448 |
|
|
last_byte = xfs_file_last_byte(ip);
|
1449 |
|
|
xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
|
1450 |
|
|
last_byte);
|
1451 |
|
|
if (last_byte > toss_start) {
|
1452 |
|
|
if (flags & XFS_ITRUNC_DEFINITE) {
|
1453 |
|
|
VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
|
1454 |
|
|
} else {
|
1455 |
|
|
VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
|
1456 |
|
|
}
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
#ifdef DEBUG
|
1460 |
|
|
if (new_size == 0) {
|
1461 |
|
|
ASSERT(VN_CACHED(vp) == 0);
|
1462 |
|
|
}
|
1463 |
|
|
#endif
|
1464 |
|
|
}
|
1465 |
|
|
|
1466 |
|
|
/*
|
1467 |
|
|
* Shrink the file to the given new_size. The new
|
1468 |
|
|
* size must be smaller than the current size.
|
1469 |
|
|
* This will free up the underlying blocks
|
1470 |
|
|
* in the removed range after a call to xfs_itruncate_start()
|
1471 |
|
|
* or xfs_atruncate_start().
|
1472 |
|
|
*
|
1473 |
|
|
* The transaction passed to this routine must have made
|
1474 |
|
|
* a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
|
1475 |
|
|
* This routine may commit the given transaction and
|
1476 |
|
|
* start new ones, so make sure everything involved in
|
1477 |
|
|
* the transaction is tidy before calling here.
|
1478 |
|
|
* Some transaction will be returned to the caller to be
|
1479 |
|
|
* committed. The incoming transaction must already include
|
1480 |
|
|
* the inode, and both inode locks must be held exclusively.
|
1481 |
|
|
* The inode must also be "held" within the transaction. On
|
1482 |
|
|
* return the inode will be "held" within the returned transaction.
|
1483 |
|
|
* This routine does NOT require any disk space to be reserved
|
1484 |
|
|
* for it within the transaction.
|
1485 |
|
|
*
|
1486 |
|
|
* The fork parameter must be either xfs_attr_fork or xfs_data_fork,
|
1487 |
|
|
* and it indicates the fork which is to be truncated. For the
|
1488 |
|
|
* attribute fork we only support truncation to size 0.
|
1489 |
|
|
*
|
1490 |
|
|
* We use the sync parameter to indicate whether or not the first
|
1491 |
|
|
* transaction we perform might have to be synchronous. For the attr fork,
|
1492 |
|
|
* it needs to be so if the unlink of the inode is not yet known to be
|
1493 |
|
|
* permanent in the log. This keeps us from freeing and reusing the
|
1494 |
|
|
* blocks of the attribute fork before the unlink of the inode becomes
|
1495 |
|
|
* permanent.
|
1496 |
|
|
*
|
1497 |
|
|
* For the data fork, we normally have to run synchronously if we're
|
1498 |
|
|
* being called out of the inactive path or we're being called
|
1499 |
|
|
* out of the create path where we're truncating an existing file.
|
1500 |
|
|
* Either way, the truncate needs to be sync so blocks don't reappear
|
1501 |
|
|
* in the file with altered data in case of a crash. wsync filesystems
|
1502 |
|
|
* can run the first case async because anything that shrinks the inode
|
1503 |
|
|
* has to run sync so by the time we're called here from inactive, the
|
1504 |
|
|
* inode size is permanently set to 0.
|
1505 |
|
|
*
|
1506 |
|
|
* Calls from the truncate path always need to be sync unless we're
|
1507 |
|
|
* in a wsync filesystem and the file has already been unlinked.
|
1508 |
|
|
*
|
1509 |
|
|
* The caller is responsible for correctly setting the sync parameter.
|
1510 |
|
|
* It gets too hard for us to guess here which path we're being called
|
1511 |
|
|
* out of just based on inode state.
|
1512 |
|
|
*/
|
1513 |
|
|
int
|
1514 |
|
|
xfs_itruncate_finish(
|
1515 |
|
|
xfs_trans_t **tp,
|
1516 |
|
|
xfs_inode_t *ip,
|
1517 |
|
|
xfs_fsize_t new_size,
|
1518 |
|
|
int fork,
|
1519 |
|
|
int sync)
|
1520 |
|
|
{
|
1521 |
|
|
xfs_fsblock_t first_block;
|
1522 |
|
|
xfs_fileoff_t first_unmap_block;
|
1523 |
|
|
xfs_fileoff_t last_block;
|
1524 |
|
|
xfs_filblks_t unmap_len=0;
|
1525 |
|
|
xfs_mount_t *mp;
|
1526 |
|
|
xfs_trans_t *ntp;
|
1527 |
|
|
int done;
|
1528 |
|
|
int committed;
|
1529 |
|
|
xfs_bmap_free_t free_list;
|
1530 |
|
|
int error;
|
1531 |
|
|
|
1532 |
|
|
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
|
1533 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
|
1534 |
|
|
ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
|
1535 |
|
|
ASSERT(*tp != NULL);
|
1536 |
|
|
ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
|
1537 |
|
|
ASSERT(ip->i_transp == *tp);
|
1538 |
|
|
ASSERT(ip->i_itemp != NULL);
|
1539 |
|
|
ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
|
1540 |
|
|
|
1541 |
|
|
|
1542 |
|
|
ntp = *tp;
|
1543 |
|
|
mp = (ntp)->t_mountp;
|
1544 |
|
|
ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
|
1545 |
|
|
|
1546 |
|
|
/*
|
1547 |
|
|
* We only support truncating the entire attribute fork.
|
1548 |
|
|
*/
|
1549 |
|
|
if (fork == XFS_ATTR_FORK) {
|
1550 |
|
|
new_size = 0LL;
|
1551 |
|
|
}
|
1552 |
|
|
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
1553 |
|
|
xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
|
1554 |
|
|
/*
|
1555 |
|
|
* The first thing we do is set the size to new_size permanently
|
1556 |
|
|
* on disk. This way we don't have to worry about anyone ever
|
1557 |
|
|
* being able to look at the data being freed even in the face
|
1558 |
|
|
* of a crash. What we're getting around here is the case where
|
1559 |
|
|
* we free a block, it is allocated to another file, it is written
|
1560 |
|
|
* to, and then we crash. If the new data gets written to the
|
1561 |
|
|
* file but the log buffers containing the free and reallocation
|
1562 |
|
|
* don't, then we'd end up with garbage in the blocks being freed.
|
1563 |
|
|
* As long as we make the new_size permanent before actually
|
1564 |
|
|
* freeing any blocks it doesn't matter if they get writtten to.
|
1565 |
|
|
*
|
1566 |
|
|
* The callers must signal into us whether or not the size
|
1567 |
|
|
* setting here must be synchronous. There are a few cases
|
1568 |
|
|
* where it doesn't have to be synchronous. Those cases
|
1569 |
|
|
* occur if the file is unlinked and we know the unlink is
|
1570 |
|
|
* permanent or if the blocks being truncated are guaranteed
|
1571 |
|
|
* to be beyond the inode eof (regardless of the link count)
|
1572 |
|
|
* and the eof value is permanent. Both of these cases occur
|
1573 |
|
|
* only on wsync-mounted filesystems. In those cases, we're
|
1574 |
|
|
* guaranteed that no user will ever see the data in the blocks
|
1575 |
|
|
* that are being truncated so the truncate can run async.
|
1576 |
|
|
* In the free beyond eof case, the file may wind up with
|
1577 |
|
|
* more blocks allocated to it than it needs if we crash
|
1578 |
|
|
* and that won't get fixed until the next time the file
|
1579 |
|
|
* is re-opened and closed but that's ok as that shouldn't
|
1580 |
|
|
* be too many blocks.
|
1581 |
|
|
*
|
1582 |
|
|
* However, we can't just make all wsync xactions run async
|
1583 |
|
|
* because there's one call out of the create path that needs
|
1584 |
|
|
* to run sync where it's truncating an existing file to size
|
1585 |
|
|
* 0 whose size is > 0.
|
1586 |
|
|
*
|
1587 |
|
|
* It's probably possible to come up with a test in this
|
1588 |
|
|
* routine that would correctly distinguish all the above
|
1589 |
|
|
* cases from the values of the function parameters and the
|
1590 |
|
|
* inode state but for sanity's sake, I've decided to let the
|
1591 |
|
|
* layers above just tell us. It's simpler to correctly figure
|
1592 |
|
|
* out in the layer above exactly under what conditions we
|
1593 |
|
|
* can run async and I think it's easier for others read and
|
1594 |
|
|
* follow the logic in case something has to be changed.
|
1595 |
|
|
* cscope is your friend -- rcc.
|
1596 |
|
|
*
|
1597 |
|
|
* The attribute fork is much simpler.
|
1598 |
|
|
*
|
1599 |
|
|
* For the attribute fork we allow the caller to tell us whether
|
1600 |
|
|
* the unlink of the inode that led to this call is yet permanent
|
1601 |
|
|
* in the on disk log. If it is not and we will be freeing extents
|
1602 |
|
|
* in this inode then we make the first transaction synchronous
|
1603 |
|
|
* to make sure that the unlink is permanent by the time we free
|
1604 |
|
|
* the blocks.
|
1605 |
|
|
*/
|
1606 |
|
|
if (fork == XFS_DATA_FORK) {
|
1607 |
|
|
if (ip->i_d.di_nextents > 0) {
|
1608 |
|
|
ip->i_d.di_size = new_size;
|
1609 |
|
|
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
|
1610 |
|
|
}
|
1611 |
|
|
} else if (sync) {
|
1612 |
|
|
ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
|
1613 |
|
|
if (ip->i_d.di_anextents > 0)
|
1614 |
|
|
xfs_trans_set_sync(ntp);
|
1615 |
|
|
}
|
1616 |
|
|
ASSERT(fork == XFS_DATA_FORK ||
|
1617 |
|
|
(fork == XFS_ATTR_FORK &&
|
1618 |
|
|
((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
|
1619 |
|
|
(sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
|
1620 |
|
|
|
1621 |
|
|
/*
|
1622 |
|
|
* Since it is possible for space to become allocated beyond
|
1623 |
|
|
* the end of the file (in a crash where the space is allocated
|
1624 |
|
|
* but the inode size is not yet updated), simply remove any
|
1625 |
|
|
* blocks which show up between the new EOF and the maximum
|
1626 |
|
|
* possible file size. If the first block to be removed is
|
1627 |
|
|
* beyond the maximum file size (ie it is the same as last_block),
|
1628 |
|
|
* then there is nothing to do.
|
1629 |
|
|
*/
|
1630 |
|
|
last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
|
1631 |
|
|
ASSERT(first_unmap_block <= last_block);
|
1632 |
|
|
done = 0;
|
1633 |
|
|
if (last_block == first_unmap_block) {
|
1634 |
|
|
done = 1;
|
1635 |
|
|
} else {
|
1636 |
|
|
unmap_len = last_block - first_unmap_block + 1;
|
1637 |
|
|
}
|
1638 |
|
|
while (!done) {
|
1639 |
|
|
/*
|
1640 |
|
|
* Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
|
1641 |
|
|
* will tell us whether it freed the entire range or
|
1642 |
|
|
* not. If this is a synchronous mount (wsync),
|
1643 |
|
|
* then we can tell bunmapi to keep all the
|
1644 |
|
|
* transactions asynchronous since the unlink
|
1645 |
|
|
* transaction that made this inode inactive has
|
1646 |
|
|
* already hit the disk. There's no danger of
|
1647 |
|
|
* the freed blocks being reused, there being a
|
1648 |
|
|
* crash, and the reused blocks suddenly reappearing
|
1649 |
|
|
* in this file with garbage in them once recovery
|
1650 |
|
|
* runs.
|
1651 |
|
|
*/
|
1652 |
|
|
XFS_BMAP_INIT(&free_list, &first_block);
|
1653 |
|
|
error = xfs_bunmapi(ntp, ip, first_unmap_block,
|
1654 |
|
|
unmap_len,
|
1655 |
|
|
XFS_BMAPI_AFLAG(fork) |
|
1656 |
|
|
(sync ? 0 : XFS_BMAPI_ASYNC),
|
1657 |
|
|
XFS_ITRUNC_MAX_EXTENTS,
|
1658 |
|
|
&first_block, &free_list, &done);
|
1659 |
|
|
if (error) {
|
1660 |
|
|
/*
|
1661 |
|
|
* If the bunmapi call encounters an error,
|
1662 |
|
|
* return to the caller where the transaction
|
1663 |
|
|
* can be properly aborted. We just need to
|
1664 |
|
|
* make sure we're not holding any resources
|
1665 |
|
|
* that we were not when we came in.
|
1666 |
|
|
*/
|
1667 |
|
|
xfs_bmap_cancel(&free_list);
|
1668 |
|
|
return error;
|
1669 |
|
|
}
|
1670 |
|
|
|
1671 |
|
|
/*
|
1672 |
|
|
* Duplicate the transaction that has the permanent
|
1673 |
|
|
* reservation and commit the old transaction.
|
1674 |
|
|
*/
|
1675 |
|
|
error = xfs_bmap_finish(tp, &free_list, first_block,
|
1676 |
|
|
&committed);
|
1677 |
|
|
ntp = *tp;
|
1678 |
|
|
if (error) {
|
1679 |
|
|
/*
|
1680 |
|
|
* If the bmap finish call encounters an error,
|
1681 |
|
|
* return to the caller where the transaction
|
1682 |
|
|
* can be properly aborted. We just need to
|
1683 |
|
|
* make sure we're not holding any resources
|
1684 |
|
|
* that we were not when we came in.
|
1685 |
|
|
*
|
1686 |
|
|
* Aborting from this point might lose some
|
1687 |
|
|
* blocks in the file system, but oh well.
|
1688 |
|
|
*/
|
1689 |
|
|
xfs_bmap_cancel(&free_list);
|
1690 |
|
|
if (committed) {
|
1691 |
|
|
/*
|
1692 |
|
|
* If the passed in transaction committed
|
1693 |
|
|
* in xfs_bmap_finish(), then we want to
|
1694 |
|
|
* add the inode to this one before returning.
|
1695 |
|
|
* This keeps things simple for the higher
|
1696 |
|
|
* level code, because it always knows that
|
1697 |
|
|
* the inode is locked and held in the
|
1698 |
|
|
* transaction that returns to it whether
|
1699 |
|
|
* errors occur or not. We don't mark the
|
1700 |
|
|
* inode dirty so that this transaction can
|
1701 |
|
|
* be easily aborted if possible.
|
1702 |
|
|
*/
|
1703 |
|
|
xfs_trans_ijoin(ntp, ip,
|
1704 |
|
|
XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
1705 |
|
|
xfs_trans_ihold(ntp, ip);
|
1706 |
|
|
}
|
1707 |
|
|
return error;
|
1708 |
|
|
}
|
1709 |
|
|
|
1710 |
|
|
if (committed) {
|
1711 |
|
|
/*
|
1712 |
|
|
* The first xact was committed,
|
1713 |
|
|
* so add the inode to the new one.
|
1714 |
|
|
* Mark it dirty so it will be logged
|
1715 |
|
|
* and moved forward in the log as
|
1716 |
|
|
* part of every commit.
|
1717 |
|
|
*/
|
1718 |
|
|
xfs_trans_ijoin(ntp, ip,
|
1719 |
|
|
XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
1720 |
|
|
xfs_trans_ihold(ntp, ip);
|
1721 |
|
|
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
|
1722 |
|
|
}
|
1723 |
|
|
ntp = xfs_trans_dup(ntp);
|
1724 |
|
|
(void) xfs_trans_commit(*tp, 0, NULL);
|
1725 |
|
|
*tp = ntp;
|
1726 |
|
|
error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
|
1727 |
|
|
XFS_TRANS_PERM_LOG_RES,
|
1728 |
|
|
XFS_ITRUNCATE_LOG_COUNT);
|
1729 |
|
|
/*
|
1730 |
|
|
* Add the inode being truncated to the next chained
|
1731 |
|
|
* transaction.
|
1732 |
|
|
*/
|
1733 |
|
|
xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
1734 |
|
|
xfs_trans_ihold(ntp, ip);
|
1735 |
|
|
if (error)
|
1736 |
|
|
return (error);
|
1737 |
|
|
}
|
1738 |
|
|
/*
|
1739 |
|
|
* Only update the size in the case of the data fork, but
|
1740 |
|
|
* always re-log the inode so that our permanent transaction
|
1741 |
|
|
* can keep on rolling it forward in the log.
|
1742 |
|
|
*/
|
1743 |
|
|
if (fork == XFS_DATA_FORK) {
|
1744 |
|
|
xfs_isize_check(mp, ip, new_size);
|
1745 |
|
|
ip->i_d.di_size = new_size;
|
1746 |
|
|
}
|
1747 |
|
|
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
|
1748 |
|
|
ASSERT((new_size != 0) ||
|
1749 |
|
|
(fork == XFS_ATTR_FORK) ||
|
1750 |
|
|
(ip->i_delayed_blks == 0));
|
1751 |
|
|
ASSERT((new_size != 0) ||
|
1752 |
|
|
(fork == XFS_ATTR_FORK) ||
|
1753 |
|
|
(ip->i_d.di_nextents == 0));
|
1754 |
|
|
xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
|
1755 |
|
|
return 0;
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
|
1759 |
|
|
/*
|
1760 |
|
|
* xfs_igrow_start
|
1761 |
|
|
*
|
1762 |
|
|
* Do the first part of growing a file: zero any data in the last
|
1763 |
|
|
* block that is beyond the old EOF. We need to do this before
|
1764 |
|
|
* the inode is joined to the transaction to modify the i_size.
|
1765 |
|
|
* That way we can drop the inode lock and call into the buffer
|
1766 |
|
|
* cache to get the buffer mapping the EOF.
|
1767 |
|
|
*/
|
1768 |
|
|
int
|
1769 |
|
|
xfs_igrow_start(
|
1770 |
|
|
xfs_inode_t *ip,
|
1771 |
|
|
xfs_fsize_t new_size,
|
1772 |
|
|
cred_t *credp)
|
1773 |
|
|
{
|
1774 |
|
|
xfs_fsize_t isize;
|
1775 |
|
|
int error;
|
1776 |
|
|
|
1777 |
|
|
ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
|
1778 |
|
|
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
|
1779 |
|
|
ASSERT(new_size > ip->i_d.di_size);
|
1780 |
|
|
|
1781 |
|
|
error = 0;
|
1782 |
|
|
isize = ip->i_d.di_size;
|
1783 |
|
|
/*
|
1784 |
|
|
* Zero any pages that may have been created by
|
1785 |
|
|
* xfs_write_file() beyond the end of the file
|
1786 |
|
|
* and any blocks between the old and new file sizes.
|
1787 |
|
|
*/
|
1788 |
|
|
error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
|
1789 |
|
|
new_size);
|
1790 |
|
|
return error;
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
/*
|
1794 |
|
|
* xfs_igrow_finish
|
1795 |
|
|
*
|
1796 |
|
|
* This routine is called to extend the size of a file.
|
1797 |
|
|
* The inode must have both the iolock and the ilock locked
|
1798 |
|
|
* for update and it must be a part of the current transaction.
|
1799 |
|
|
* The xfs_igrow_start() function must have been called previously.
|
1800 |
|
|
* If the change_flag is not zero, the inode change timestamp will
|
1801 |
|
|
* be updated.
|
1802 |
|
|
*/
|
1803 |
|
|
void
|
1804 |
|
|
xfs_igrow_finish(
|
1805 |
|
|
xfs_trans_t *tp,
|
1806 |
|
|
xfs_inode_t *ip,
|
1807 |
|
|
xfs_fsize_t new_size,
|
1808 |
|
|
int change_flag)
|
1809 |
|
|
{
|
1810 |
|
|
ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
|
1811 |
|
|
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
|
1812 |
|
|
ASSERT(ip->i_transp == tp);
|
1813 |
|
|
ASSERT(new_size > ip->i_d.di_size);
|
1814 |
|
|
|
1815 |
|
|
/*
|
1816 |
|
|
* Update the file size. Update the inode change timestamp
|
1817 |
|
|
* if change_flag set.
|
1818 |
|
|
*/
|
1819 |
|
|
ip->i_d.di_size = new_size;
|
1820 |
|
|
if (change_flag)
|
1821 |
|
|
xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
|
1822 |
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
1823 |
|
|
|
1824 |
|
|
}
|
1825 |
|
|
|
1826 |
|
|
|
1827 |
|
|
/*
|
1828 |
|
|
* This is called when the inode's link count goes to 0.
|
1829 |
|
|
* We place the on-disk inode on a list in the AGI. It
|
1830 |
|
|
* will be pulled from this list when the inode is freed.
|
1831 |
|
|
*/
|
1832 |
|
|
int
|
1833 |
|
|
xfs_iunlink(
|
1834 |
|
|
xfs_trans_t *tp,
|
1835 |
|
|
xfs_inode_t *ip)
|
1836 |
|
|
{
|
1837 |
|
|
xfs_mount_t *mp;
|
1838 |
|
|
xfs_agi_t *agi;
|
1839 |
|
|
xfs_dinode_t *dip;
|
1840 |
|
|
xfs_buf_t *agibp;
|
1841 |
|
|
xfs_buf_t *ibp;
|
1842 |
|
|
xfs_agnumber_t agno;
|
1843 |
|
|
xfs_daddr_t agdaddr;
|
1844 |
|
|
xfs_agino_t agino;
|
1845 |
|
|
short bucket_index;
|
1846 |
|
|
int offset;
|
1847 |
|
|
int error;
|
1848 |
|
|
int agi_ok;
|
1849 |
|
|
|
1850 |
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
1851 |
|
|
ASSERT(ip->i_d.di_mode != 0);
|
1852 |
|
|
ASSERT(ip->i_transp == tp);
|
1853 |
|
|
|
1854 |
|
|
mp = tp->t_mountp;
|
1855 |
|
|
|
1856 |
|
|
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
1857 |
|
|
agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
|
1858 |
|
|
|
1859 |
|
|
/*
|
1860 |
|
|
* Get the agi buffer first. It ensures lock ordering
|
1861 |
|
|
* on the list.
|
1862 |
|
|
*/
|
1863 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
|
1864 |
|
|
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
|
1865 |
|
|
if (error) {
|
1866 |
|
|
return error;
|
1867 |
|
|
}
|
1868 |
|
|
/*
|
1869 |
|
|
* Validate the magic number of the agi block.
|
1870 |
|
|
*/
|
1871 |
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
1872 |
|
|
agi_ok =
|
1873 |
|
|
INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
|
1874 |
|
|
XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
|
1875 |
|
|
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
|
1876 |
|
|
XFS_RANDOM_IUNLINK))) {
|
1877 |
|
|
XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
|
1878 |
|
|
xfs_trans_brelse(tp, agibp);
|
1879 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
1880 |
|
|
}
|
1881 |
|
|
/*
|
1882 |
|
|
* Get the index into the agi hash table for the
|
1883 |
|
|
* list this inode will go on.
|
1884 |
|
|
*/
|
1885 |
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
1886 |
|
|
ASSERT(agino != 0);
|
1887 |
|
|
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
1888 |
|
|
ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
|
1889 |
|
|
ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
|
1890 |
|
|
|
1891 |
|
|
if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
|
1892 |
|
|
/*
|
1893 |
|
|
* There is already another inode in the bucket we need
|
1894 |
|
|
* to add ourselves to. Add us at the front of the list.
|
1895 |
|
|
* Here we put the head pointer into our next pointer,
|
1896 |
|
|
* and then we fall through to point the head at us.
|
1897 |
|
|
*/
|
1898 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
|
1899 |
|
|
if (error) {
|
1900 |
|
|
return error;
|
1901 |
|
|
}
|
1902 |
|
|
ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
|
1903 |
|
|
ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
|
1904 |
|
|
/* both on-disk, don't endian flip twice */
|
1905 |
|
|
dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
|
1906 |
|
|
offset = ip->i_boffset +
|
1907 |
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
1908 |
|
|
xfs_trans_inode_buf(tp, ibp);
|
1909 |
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
1910 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
1911 |
|
|
xfs_inobp_check(mp, ibp);
|
1912 |
|
|
}
|
1913 |
|
|
|
1914 |
|
|
/*
|
1915 |
|
|
* Point the bucket head pointer at the inode being inserted.
|
1916 |
|
|
*/
|
1917 |
|
|
ASSERT(agino != 0);
|
1918 |
|
|
INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
|
1919 |
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
1920 |
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
1921 |
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
1922 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
1923 |
|
|
return 0;
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
/*
|
1927 |
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
1928 |
|
|
*/
|
1929 |
|
|
STATIC int
|
1930 |
|
|
xfs_iunlink_remove(
|
1931 |
|
|
xfs_trans_t *tp,
|
1932 |
|
|
xfs_inode_t *ip)
|
1933 |
|
|
{
|
1934 |
|
|
xfs_ino_t next_ino;
|
1935 |
|
|
xfs_mount_t *mp;
|
1936 |
|
|
xfs_agi_t *agi;
|
1937 |
|
|
xfs_dinode_t *dip;
|
1938 |
|
|
xfs_buf_t *agibp;
|
1939 |
|
|
xfs_buf_t *ibp;
|
1940 |
|
|
xfs_agnumber_t agno;
|
1941 |
|
|
xfs_daddr_t agdaddr;
|
1942 |
|
|
xfs_agino_t agino;
|
1943 |
|
|
xfs_agino_t next_agino;
|
1944 |
|
|
xfs_buf_t *last_ibp;
|
1945 |
|
|
xfs_dinode_t *last_dip;
|
1946 |
|
|
short bucket_index;
|
1947 |
|
|
int offset, last_offset;
|
1948 |
|
|
int error;
|
1949 |
|
|
int agi_ok;
|
1950 |
|
|
|
1951 |
|
|
/*
|
1952 |
|
|
* First pull the on-disk inode from the AGI unlinked list.
|
1953 |
|
|
*/
|
1954 |
|
|
mp = tp->t_mountp;
|
1955 |
|
|
|
1956 |
|
|
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
1957 |
|
|
agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
|
1958 |
|
|
|
1959 |
|
|
/*
|
1960 |
|
|
* Get the agi buffer first. It ensures lock ordering
|
1961 |
|
|
* on the list.
|
1962 |
|
|
*/
|
1963 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
|
1964 |
|
|
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
|
1965 |
|
|
if (error) {
|
1966 |
|
|
cmn_err(CE_WARN,
|
1967 |
|
|
"xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
|
1968 |
|
|
error, mp->m_fsname);
|
1969 |
|
|
return error;
|
1970 |
|
|
}
|
1971 |
|
|
/*
|
1972 |
|
|
* Validate the magic number of the agi block.
|
1973 |
|
|
*/
|
1974 |
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
1975 |
|
|
agi_ok =
|
1976 |
|
|
INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
|
1977 |
|
|
XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
|
1978 |
|
|
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
|
1979 |
|
|
XFS_RANDOM_IUNLINK_REMOVE))) {
|
1980 |
|
|
XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
|
1981 |
|
|
mp, agi);
|
1982 |
|
|
xfs_trans_brelse(tp, agibp);
|
1983 |
|
|
cmn_err(CE_WARN,
|
1984 |
|
|
"xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
|
1985 |
|
|
mp->m_fsname);
|
1986 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
1987 |
|
|
}
|
1988 |
|
|
/*
|
1989 |
|
|
* Get the index into the agi hash table for the
|
1990 |
|
|
* list this inode will go on.
|
1991 |
|
|
*/
|
1992 |
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
1993 |
|
|
ASSERT(agino != 0);
|
1994 |
|
|
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
1995 |
|
|
ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
|
1996 |
|
|
ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
|
1997 |
|
|
|
1998 |
|
|
if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
|
1999 |
|
|
/*
|
2000 |
|
|
* We're at the head of the list. Get the inode's
|
2001 |
|
|
* on-disk buffer to see if there is anyone after us
|
2002 |
|
|
* on the list. Only modify our next pointer if it
|
2003 |
|
|
* is not already NULLAGINO. This saves us the overhead
|
2004 |
|
|
* of dealing with the buffer when there is no need to
|
2005 |
|
|
* change it.
|
2006 |
|
|
*/
|
2007 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
|
2008 |
|
|
if (error) {
|
2009 |
|
|
cmn_err(CE_WARN,
|
2010 |
|
|
"xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
|
2011 |
|
|
error, mp->m_fsname);
|
2012 |
|
|
return error;
|
2013 |
|
|
}
|
2014 |
|
|
next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
|
2015 |
|
|
ASSERT(next_agino != 0);
|
2016 |
|
|
if (next_agino != NULLAGINO) {
|
2017 |
|
|
INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
|
2018 |
|
|
offset = ip->i_boffset +
|
2019 |
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
2020 |
|
|
xfs_trans_inode_buf(tp, ibp);
|
2021 |
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
2022 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2023 |
|
|
xfs_inobp_check(mp, ibp);
|
2024 |
|
|
} else {
|
2025 |
|
|
xfs_trans_brelse(tp, ibp);
|
2026 |
|
|
}
|
2027 |
|
|
/*
|
2028 |
|
|
* Point the bucket head pointer at the next inode.
|
2029 |
|
|
*/
|
2030 |
|
|
ASSERT(next_agino != 0);
|
2031 |
|
|
ASSERT(next_agino != agino);
|
2032 |
|
|
INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
|
2033 |
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
2034 |
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
2035 |
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
2036 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2037 |
|
|
} else {
|
2038 |
|
|
/*
|
2039 |
|
|
* We need to search the list for the inode being freed.
|
2040 |
|
|
*/
|
2041 |
|
|
next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
|
2042 |
|
|
last_ibp = NULL;
|
2043 |
|
|
while (next_agino != agino) {
|
2044 |
|
|
/*
|
2045 |
|
|
* If the last inode wasn't the one pointing to
|
2046 |
|
|
* us, then release its buffer since we're not
|
2047 |
|
|
* going to do anything with it.
|
2048 |
|
|
*/
|
2049 |
|
|
if (last_ibp != NULL) {
|
2050 |
|
|
xfs_trans_brelse(tp, last_ibp);
|
2051 |
|
|
}
|
2052 |
|
|
next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
|
2053 |
|
|
error = xfs_inotobp(mp, tp, next_ino, &last_dip,
|
2054 |
|
|
&last_ibp, &last_offset);
|
2055 |
|
|
if (error) {
|
2056 |
|
|
cmn_err(CE_WARN,
|
2057 |
|
|
"xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
|
2058 |
|
|
error, mp->m_fsname);
|
2059 |
|
|
return error;
|
2060 |
|
|
}
|
2061 |
|
|
next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
|
2062 |
|
|
ASSERT(next_agino != NULLAGINO);
|
2063 |
|
|
ASSERT(next_agino != 0);
|
2064 |
|
|
}
|
2065 |
|
|
/*
|
2066 |
|
|
* Now last_ibp points to the buffer previous to us on
|
2067 |
|
|
* the unlinked list. Pull us from the list.
|
2068 |
|
|
*/
|
2069 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
|
2070 |
|
|
if (error) {
|
2071 |
|
|
cmn_err(CE_WARN,
|
2072 |
|
|
"xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
|
2073 |
|
|
error, mp->m_fsname);
|
2074 |
|
|
return error;
|
2075 |
|
|
}
|
2076 |
|
|
next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
|
2077 |
|
|
ASSERT(next_agino != 0);
|
2078 |
|
|
ASSERT(next_agino != agino);
|
2079 |
|
|
if (next_agino != NULLAGINO) {
|
2080 |
|
|
INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
|
2081 |
|
|
offset = ip->i_boffset +
|
2082 |
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
2083 |
|
|
xfs_trans_inode_buf(tp, ibp);
|
2084 |
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
2085 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2086 |
|
|
xfs_inobp_check(mp, ibp);
|
2087 |
|
|
} else {
|
2088 |
|
|
xfs_trans_brelse(tp, ibp);
|
2089 |
|
|
}
|
2090 |
|
|
/*
|
2091 |
|
|
* Point the previous inode on the list to the next inode.
|
2092 |
|
|
*/
|
2093 |
|
|
INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
|
2094 |
|
|
ASSERT(next_agino != 0);
|
2095 |
|
|
offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
|
2096 |
|
|
xfs_trans_inode_buf(tp, last_ibp);
|
2097 |
|
|
xfs_trans_log_buf(tp, last_ibp, offset,
|
2098 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2099 |
|
|
xfs_inobp_check(mp, last_ibp);
|
2100 |
|
|
}
|
2101 |
|
|
return 0;
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
|
2105 |
|
|
{
|
2106 |
|
|
return (((ip->i_itemp == NULL) ||
|
2107 |
|
|
!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
|
2108 |
|
|
(ip->i_update_core == 0));
|
2109 |
|
|
}
|
2110 |
|
|
|
2111 |
|
|
void
|
2112 |
|
|
xfs_ifree_cluster(
|
2113 |
|
|
xfs_inode_t *free_ip,
|
2114 |
|
|
xfs_trans_t *tp,
|
2115 |
|
|
xfs_ino_t inum)
|
2116 |
|
|
{
|
2117 |
|
|
xfs_mount_t *mp = free_ip->i_mount;
|
2118 |
|
|
int blks_per_cluster;
|
2119 |
|
|
int nbufs;
|
2120 |
|
|
int ninodes;
|
2121 |
|
|
int i, j, found, pre_flushed;
|
2122 |
|
|
xfs_daddr_t blkno;
|
2123 |
|
|
xfs_buf_t *bp;
|
2124 |
|
|
xfs_ihash_t *ih;
|
2125 |
|
|
xfs_inode_t *ip, **ip_found;
|
2126 |
|
|
xfs_inode_log_item_t *iip;
|
2127 |
|
|
xfs_log_item_t *lip;
|
2128 |
|
|
SPLDECL(s);
|
2129 |
|
|
|
2130 |
|
|
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
|
2131 |
|
|
blks_per_cluster = 1;
|
2132 |
|
|
ninodes = mp->m_sb.sb_inopblock;
|
2133 |
|
|
nbufs = XFS_IALLOC_BLOCKS(mp);
|
2134 |
|
|
} else {
|
2135 |
|
|
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
|
2136 |
|
|
mp->m_sb.sb_blocksize;
|
2137 |
|
|
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
|
2138 |
|
|
nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
|
2142 |
|
|
|
2143 |
|
|
for (j = 0; j < nbufs; j++, inum += ninodes) {
|
2144 |
|
|
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
|
2145 |
|
|
XFS_INO_TO_AGBNO(mp, inum));
|
2146 |
|
|
|
2147 |
|
|
|
2148 |
|
|
/*
|
2149 |
|
|
* Look for each inode in memory and attempt to lock it,
|
2150 |
|
|
* we can be racing with flush and tail pushing here.
|
2151 |
|
|
* any inode we get the locks on, add to an array of
|
2152 |
|
|
* inode items to process later.
|
2153 |
|
|
*
|
2154 |
|
|
* The get the buffer lock, we could beat a flush
|
2155 |
|
|
* or tail pushing thread to the lock here, in which
|
2156 |
|
|
* case they will go looking for the inode buffer
|
2157 |
|
|
* and fail, we need some other form of interlock
|
2158 |
|
|
* here.
|
2159 |
|
|
*/
|
2160 |
|
|
found = 0;
|
2161 |
|
|
for (i = 0; i < ninodes; i++) {
|
2162 |
|
|
ih = XFS_IHASH(mp, inum + i);
|
2163 |
|
|
read_lock(&ih->ih_lock);
|
2164 |
|
|
for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
|
2165 |
|
|
if (ip->i_ino == inum + i)
|
2166 |
|
|
break;
|
2167 |
|
|
}
|
2168 |
|
|
|
2169 |
|
|
/* Inode not in memory or we found it already,
|
2170 |
|
|
* nothing to do
|
2171 |
|
|
*/
|
2172 |
|
|
if (!ip || (ip->i_flags & XFS_ISTALE)) {
|
2173 |
|
|
read_unlock(&ih->ih_lock);
|
2174 |
|
|
continue;
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
if (xfs_inode_clean(ip)) {
|
2178 |
|
|
read_unlock(&ih->ih_lock);
|
2179 |
|
|
continue;
|
2180 |
|
|
}
|
2181 |
|
|
|
2182 |
|
|
/* If we can get the locks then add it to the
|
2183 |
|
|
* list, otherwise by the time we get the bp lock
|
2184 |
|
|
* below it will already be attached to the
|
2185 |
|
|
* inode buffer.
|
2186 |
|
|
*/
|
2187 |
|
|
|
2188 |
|
|
/* This inode will already be locked - by us, lets
|
2189 |
|
|
* keep it that way.
|
2190 |
|
|
*/
|
2191 |
|
|
|
2192 |
|
|
if (ip == free_ip) {
|
2193 |
|
|
if (xfs_iflock_nowait(ip)) {
|
2194 |
|
|
ip->i_flags |= XFS_ISTALE;
|
2195 |
|
|
|
2196 |
|
|
if (xfs_inode_clean(ip)) {
|
2197 |
|
|
xfs_ifunlock(ip);
|
2198 |
|
|
} else {
|
2199 |
|
|
ip_found[found++] = ip;
|
2200 |
|
|
}
|
2201 |
|
|
}
|
2202 |
|
|
read_unlock(&ih->ih_lock);
|
2203 |
|
|
continue;
|
2204 |
|
|
}
|
2205 |
|
|
|
2206 |
|
|
if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
|
2207 |
|
|
if (xfs_iflock_nowait(ip)) {
|
2208 |
|
|
ip->i_flags |= XFS_ISTALE;
|
2209 |
|
|
|
2210 |
|
|
if (xfs_inode_clean(ip)) {
|
2211 |
|
|
xfs_ifunlock(ip);
|
2212 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2213 |
|
|
} else {
|
2214 |
|
|
ip_found[found++] = ip;
|
2215 |
|
|
}
|
2216 |
|
|
} else {
|
2217 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2218 |
|
|
}
|
2219 |
|
|
}
|
2220 |
|
|
|
2221 |
|
|
read_unlock(&ih->ih_lock);
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
|
2225 |
|
|
mp->m_bsize * blks_per_cluster,
|
2226 |
|
|
XFS_BUF_LOCK);
|
2227 |
|
|
|
2228 |
|
|
pre_flushed = 0;
|
2229 |
|
|
lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
|
2230 |
|
|
while (lip) {
|
2231 |
|
|
if (lip->li_type == XFS_LI_INODE) {
|
2232 |
|
|
iip = (xfs_inode_log_item_t *)lip;
|
2233 |
|
|
ASSERT(iip->ili_logged == 1);
|
2234 |
|
|
lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
|
2235 |
|
|
AIL_LOCK(mp,s);
|
2236 |
|
|
iip->ili_flush_lsn = iip->ili_item.li_lsn;
|
2237 |
|
|
AIL_UNLOCK(mp, s);
|
2238 |
|
|
iip->ili_inode->i_flags |= XFS_ISTALE;
|
2239 |
|
|
pre_flushed++;
|
2240 |
|
|
}
|
2241 |
|
|
lip = lip->li_bio_list;
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
for (i = 0; i < found; i++) {
|
2245 |
|
|
ip = ip_found[i];
|
2246 |
|
|
iip = ip->i_itemp;
|
2247 |
|
|
|
2248 |
|
|
if (!iip) {
|
2249 |
|
|
ip->i_update_core = 0;
|
2250 |
|
|
xfs_ifunlock(ip);
|
2251 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2252 |
|
|
continue;
|
2253 |
|
|
}
|
2254 |
|
|
|
2255 |
|
|
iip->ili_last_fields = iip->ili_format.ilf_fields;
|
2256 |
|
|
iip->ili_format.ilf_fields = 0;
|
2257 |
|
|
iip->ili_logged = 1;
|
2258 |
|
|
AIL_LOCK(mp,s);
|
2259 |
|
|
iip->ili_flush_lsn = iip->ili_item.li_lsn;
|
2260 |
|
|
AIL_UNLOCK(mp, s);
|
2261 |
|
|
|
2262 |
|
|
xfs_buf_attach_iodone(bp,
|
2263 |
|
|
(void(*)(xfs_buf_t*,xfs_log_item_t*))
|
2264 |
|
|
xfs_istale_done, (xfs_log_item_t *)iip);
|
2265 |
|
|
if (ip != free_ip) {
|
2266 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2267 |
|
|
}
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
if (found || pre_flushed)
|
2271 |
|
|
xfs_trans_stale_inode_buf(tp, bp);
|
2272 |
|
|
xfs_trans_binval(tp, bp);
|
2273 |
|
|
}
|
2274 |
|
|
|
2275 |
|
|
kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
/*
|
2279 |
|
|
* This is called to return an inode to the inode free list.
|
2280 |
|
|
* The inode should already be truncated to 0 length and have
|
2281 |
|
|
* no pages associated with it. This routine also assumes that
|
2282 |
|
|
* the inode is already a part of the transaction.
|
2283 |
|
|
*
|
2284 |
|
|
* The on-disk copy of the inode will have been added to the list
|
2285 |
|
|
* of unlinked inodes in the AGI. We need to remove the inode from
|
2286 |
|
|
* that list atomically with respect to freeing it here.
|
2287 |
|
|
*/
|
2288 |
|
|
int
|
2289 |
|
|
xfs_ifree(
|
2290 |
|
|
xfs_trans_t *tp,
|
2291 |
|
|
xfs_inode_t *ip,
|
2292 |
|
|
xfs_bmap_free_t *flist)
|
2293 |
|
|
{
|
2294 |
|
|
int error;
|
2295 |
|
|
int delete;
|
2296 |
|
|
xfs_ino_t first_ino;
|
2297 |
|
|
|
2298 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
|
2299 |
|
|
ASSERT(ip->i_transp == tp);
|
2300 |
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
2301 |
|
|
ASSERT(ip->i_d.di_nextents == 0);
|
2302 |
|
|
ASSERT(ip->i_d.di_anextents == 0);
|
2303 |
|
|
ASSERT((ip->i_d.di_size == 0) ||
|
2304 |
|
|
((ip->i_d.di_mode & S_IFMT) != S_IFREG));
|
2305 |
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
2306 |
|
|
|
2307 |
|
|
/*
|
2308 |
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
2309 |
|
|
*/
|
2310 |
|
|
error = xfs_iunlink_remove(tp, ip);
|
2311 |
|
|
if (error != 0) {
|
2312 |
|
|
return error;
|
2313 |
|
|
}
|
2314 |
|
|
|
2315 |
|
|
error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
|
2316 |
|
|
if (error != 0) {
|
2317 |
|
|
return error;
|
2318 |
|
|
}
|
2319 |
|
|
ip->i_d.di_mode = 0; /* mark incore inode as free */
|
2320 |
|
|
ip->i_d.di_flags = 0;
|
2321 |
|
|
ip->i_d.di_dmevmask = 0;
|
2322 |
|
|
ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
|
2323 |
|
|
ip->i_df.if_ext_max =
|
2324 |
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
2325 |
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
2326 |
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
2327 |
|
|
/*
|
2328 |
|
|
* Bump the generation count so no one will be confused
|
2329 |
|
|
* by reincarnations of this inode.
|
2330 |
|
|
*/
|
2331 |
|
|
ip->i_d.di_gen++;
|
2332 |
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
2333 |
|
|
|
2334 |
|
|
if (delete) {
|
2335 |
|
|
xfs_ifree_cluster(ip, tp, first_ino);
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
return 0;
|
2339 |
|
|
}
|
2340 |
|
|
|
2341 |
|
|
/*
|
2342 |
|
|
* Reallocate the space for if_broot based on the number of records
|
2343 |
|
|
* being added or deleted as indicated in rec_diff. Move the records
|
2344 |
|
|
* and pointers in if_broot to fit the new size. When shrinking this
|
2345 |
|
|
* will eliminate holes between the records and pointers created by
|
2346 |
|
|
* the caller. When growing this will create holes to be filled in
|
2347 |
|
|
* by the caller.
|
2348 |
|
|
*
|
2349 |
|
|
* The caller must not request to add more records than would fit in
|
2350 |
|
|
* the on-disk inode root. If the if_broot is currently NULL, then
|
2351 |
|
|
* if we adding records one will be allocated. The caller must also
|
2352 |
|
|
* not request that the number of records go below zero, although
|
2353 |
|
|
* it can go to zero.
|
2354 |
|
|
*
|
2355 |
|
|
* ip -- the inode whose if_broot area is changing
|
2356 |
|
|
* ext_diff -- the change in the number of records, positive or negative,
|
2357 |
|
|
* requested for the if_broot array.
|
2358 |
|
|
*/
|
2359 |
|
|
void
|
2360 |
|
|
xfs_iroot_realloc(
|
2361 |
|
|
xfs_inode_t *ip,
|
2362 |
|
|
int rec_diff,
|
2363 |
|
|
int whichfork)
|
2364 |
|
|
{
|
2365 |
|
|
int cur_max;
|
2366 |
|
|
xfs_ifork_t *ifp;
|
2367 |
|
|
xfs_bmbt_block_t *new_broot;
|
2368 |
|
|
int new_max;
|
2369 |
|
|
size_t new_size;
|
2370 |
|
|
char *np;
|
2371 |
|
|
char *op;
|
2372 |
|
|
|
2373 |
|
|
/*
|
2374 |
|
|
* Handle the degenerate case quietly.
|
2375 |
|
|
*/
|
2376 |
|
|
if (rec_diff == 0) {
|
2377 |
|
|
return;
|
2378 |
|
|
}
|
2379 |
|
|
|
2380 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2381 |
|
|
if (rec_diff > 0) {
|
2382 |
|
|
/*
|
2383 |
|
|
* If there wasn't any memory allocated before, just
|
2384 |
|
|
* allocate it now and get out.
|
2385 |
|
|
*/
|
2386 |
|
|
if (ifp->if_broot_bytes == 0) {
|
2387 |
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
|
2388 |
|
|
ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
|
2389 |
|
|
KM_SLEEP);
|
2390 |
|
|
ifp->if_broot_bytes = (int)new_size;
|
2391 |
|
|
return;
|
2392 |
|
|
}
|
2393 |
|
|
|
2394 |
|
|
/*
|
2395 |
|
|
* If there is already an existing if_broot, then we need
|
2396 |
|
|
* to realloc() it and shift the pointers to their new
|
2397 |
|
|
* location. The records don't change location because
|
2398 |
|
|
* they are kept butted up against the btree block header.
|
2399 |
|
|
*/
|
2400 |
|
|
cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
|
2401 |
|
|
new_max = cur_max + rec_diff;
|
2402 |
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
|
2403 |
|
|
ifp->if_broot = (xfs_bmbt_block_t *)
|
2404 |
|
|
kmem_realloc(ifp->if_broot,
|
2405 |
|
|
new_size,
|
2406 |
|
|
(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
|
2407 |
|
|
KM_SLEEP);
|
2408 |
|
|
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
|
2409 |
|
|
ifp->if_broot_bytes);
|
2410 |
|
|
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
|
2411 |
|
|
(int)new_size);
|
2412 |
|
|
ifp->if_broot_bytes = (int)new_size;
|
2413 |
|
|
ASSERT(ifp->if_broot_bytes <=
|
2414 |
|
|
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
|
2415 |
|
|
memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
|
2416 |
|
|
return;
|
2417 |
|
|
}
|
2418 |
|
|
|
2419 |
|
|
/*
|
2420 |
|
|
* rec_diff is less than 0. In this case, we are shrinking the
|
2421 |
|
|
* if_broot buffer. It must already exist. If we go to zero
|
2422 |
|
|
* records, just get rid of the root and clear the status bit.
|
2423 |
|
|
*/
|
2424 |
|
|
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
|
2425 |
|
|
cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
|
2426 |
|
|
new_max = cur_max + rec_diff;
|
2427 |
|
|
ASSERT(new_max >= 0);
|
2428 |
|
|
if (new_max > 0)
|
2429 |
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
|
2430 |
|
|
else
|
2431 |
|
|
new_size = 0;
|
2432 |
|
|
if (new_size > 0) {
|
2433 |
|
|
new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
|
2434 |
|
|
/*
|
2435 |
|
|
* First copy over the btree block header.
|
2436 |
|
|
*/
|
2437 |
|
|
memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
|
2438 |
|
|
} else {
|
2439 |
|
|
new_broot = NULL;
|
2440 |
|
|
ifp->if_flags &= ~XFS_IFBROOT;
|
2441 |
|
|
}
|
2442 |
|
|
|
2443 |
|
|
/*
|
2444 |
|
|
* Only copy the records and pointers if there are any.
|
2445 |
|
|
*/
|
2446 |
|
|
if (new_max > 0) {
|
2447 |
|
|
/*
|
2448 |
|
|
* First copy the records.
|
2449 |
|
|
*/
|
2450 |
|
|
op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
|
2451 |
|
|
ifp->if_broot_bytes);
|
2452 |
|
|
np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
|
2453 |
|
|
(int)new_size);
|
2454 |
|
|
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
|
2455 |
|
|
|
2456 |
|
|
/*
|
2457 |
|
|
* Then copy the pointers.
|
2458 |
|
|
*/
|
2459 |
|
|
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
|
2460 |
|
|
ifp->if_broot_bytes);
|
2461 |
|
|
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
|
2462 |
|
|
(int)new_size);
|
2463 |
|
|
memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
|
2464 |
|
|
}
|
2465 |
|
|
kmem_free(ifp->if_broot, ifp->if_broot_bytes);
|
2466 |
|
|
ifp->if_broot = new_broot;
|
2467 |
|
|
ifp->if_broot_bytes = (int)new_size;
|
2468 |
|
|
ASSERT(ifp->if_broot_bytes <=
|
2469 |
|
|
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
|
2470 |
|
|
return;
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
|
2474 |
|
|
/*
|
2475 |
|
|
* This is called when the amount of space needed for if_extents
|
2476 |
|
|
* is increased or decreased. The change in size is indicated by
|
2477 |
|
|
* the number of extents that need to be added or deleted in the
|
2478 |
|
|
* ext_diff parameter.
|
2479 |
|
|
*
|
2480 |
|
|
* If the amount of space needed has decreased below the size of the
|
2481 |
|
|
* inline buffer, then switch to using the inline buffer. Otherwise,
|
2482 |
|
|
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
|
2483 |
|
|
* to what is needed.
|
2484 |
|
|
*
|
2485 |
|
|
* ip -- the inode whose if_extents area is changing
|
2486 |
|
|
* ext_diff -- the change in the number of extents, positive or negative,
|
2487 |
|
|
* requested for the if_extents array.
|
2488 |
|
|
*/
|
2489 |
|
|
void
|
2490 |
|
|
xfs_iext_realloc(
|
2491 |
|
|
xfs_inode_t *ip,
|
2492 |
|
|
int ext_diff,
|
2493 |
|
|
int whichfork)
|
2494 |
|
|
{
|
2495 |
|
|
int byte_diff;
|
2496 |
|
|
xfs_ifork_t *ifp;
|
2497 |
|
|
int new_size;
|
2498 |
|
|
uint rnew_size;
|
2499 |
|
|
|
2500 |
|
|
if (ext_diff == 0) {
|
2501 |
|
|
return;
|
2502 |
|
|
}
|
2503 |
|
|
|
2504 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2505 |
|
|
byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
|
2506 |
|
|
new_size = (int)ifp->if_bytes + byte_diff;
|
2507 |
|
|
ASSERT(new_size >= 0);
|
2508 |
|
|
|
2509 |
|
|
if (new_size == 0) {
|
2510 |
|
|
if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
|
2511 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2512 |
|
|
kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
|
2513 |
|
|
}
|
2514 |
|
|
ifp->if_u1.if_extents = NULL;
|
2515 |
|
|
rnew_size = 0;
|
2516 |
|
|
} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
|
2517 |
|
|
/*
|
2518 |
|
|
* If the valid extents can fit in if_inline_ext,
|
2519 |
|
|
* copy them from the malloc'd vector and free it.
|
2520 |
|
|
*/
|
2521 |
|
|
if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
|
2522 |
|
|
/*
|
2523 |
|
|
* For now, empty files are format EXTENTS,
|
2524 |
|
|
* so the if_extents pointer is null.
|
2525 |
|
|
*/
|
2526 |
|
|
if (ifp->if_u1.if_extents) {
|
2527 |
|
|
memcpy(ifp->if_u2.if_inline_ext,
|
2528 |
|
|
ifp->if_u1.if_extents, new_size);
|
2529 |
|
|
kmem_free(ifp->if_u1.if_extents,
|
2530 |
|
|
ifp->if_real_bytes);
|
2531 |
|
|
}
|
2532 |
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
2533 |
|
|
}
|
2534 |
|
|
rnew_size = 0;
|
2535 |
|
|
} else {
|
2536 |
|
|
rnew_size = new_size;
|
2537 |
|
|
if ((rnew_size & (rnew_size - 1)) != 0)
|
2538 |
|
|
rnew_size = xfs_iroundup(rnew_size);
|
2539 |
|
|
/*
|
2540 |
|
|
* Stuck with malloc/realloc.
|
2541 |
|
|
*/
|
2542 |
|
|
if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
|
2543 |
|
|
ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
|
2544 |
|
|
kmem_alloc(rnew_size, KM_SLEEP);
|
2545 |
|
|
memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
|
2546 |
|
|
sizeof(ifp->if_u2.if_inline_ext));
|
2547 |
|
|
} else if (rnew_size != ifp->if_real_bytes) {
|
2548 |
|
|
ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
|
2549 |
|
|
kmem_realloc(ifp->if_u1.if_extents,
|
2550 |
|
|
rnew_size,
|
2551 |
|
|
ifp->if_real_bytes,
|
2552 |
|
|
KM_NOFS);
|
2553 |
|
|
}
|
2554 |
|
|
}
|
2555 |
|
|
ifp->if_real_bytes = rnew_size;
|
2556 |
|
|
ifp->if_bytes = new_size;
|
2557 |
|
|
}
|
2558 |
|
|
|
2559 |
|
|
|
2560 |
|
|
/*
|
2561 |
|
|
* This is called when the amount of space needed for if_data
|
2562 |
|
|
* is increased or decreased. The change in size is indicated by
|
2563 |
|
|
* the number of bytes that need to be added or deleted in the
|
2564 |
|
|
* byte_diff parameter.
|
2565 |
|
|
*
|
2566 |
|
|
* If the amount of space needed has decreased below the size of the
|
2567 |
|
|
* inline buffer, then switch to using the inline buffer. Otherwise,
|
2568 |
|
|
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
|
2569 |
|
|
* to what is needed.
|
2570 |
|
|
*
|
2571 |
|
|
* ip -- the inode whose if_data area is changing
|
2572 |
|
|
* byte_diff -- the change in the number of bytes, positive or negative,
|
2573 |
|
|
* requested for the if_data array.
|
2574 |
|
|
*/
|
2575 |
|
|
void
|
2576 |
|
|
xfs_idata_realloc(
|
2577 |
|
|
xfs_inode_t *ip,
|
2578 |
|
|
int byte_diff,
|
2579 |
|
|
int whichfork)
|
2580 |
|
|
{
|
2581 |
|
|
xfs_ifork_t *ifp;
|
2582 |
|
|
int new_size;
|
2583 |
|
|
int real_size;
|
2584 |
|
|
|
2585 |
|
|
if (byte_diff == 0) {
|
2586 |
|
|
return;
|
2587 |
|
|
}
|
2588 |
|
|
|
2589 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2590 |
|
|
new_size = (int)ifp->if_bytes + byte_diff;
|
2591 |
|
|
ASSERT(new_size >= 0);
|
2592 |
|
|
|
2593 |
|
|
if (new_size == 0) {
|
2594 |
|
|
if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2595 |
|
|
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
|
2596 |
|
|
}
|
2597 |
|
|
ifp->if_u1.if_data = NULL;
|
2598 |
|
|
real_size = 0;
|
2599 |
|
|
} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
|
2600 |
|
|
/*
|
2601 |
|
|
* If the valid extents/data can fit in if_inline_ext/data,
|
2602 |
|
|
* copy them from the malloc'd vector and free it.
|
2603 |
|
|
*/
|
2604 |
|
|
if (ifp->if_u1.if_data == NULL) {
|
2605 |
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
2606 |
|
|
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2607 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2608 |
|
|
memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
|
2609 |
|
|
new_size);
|
2610 |
|
|
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
|
2611 |
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
2612 |
|
|
}
|
2613 |
|
|
real_size = 0;
|
2614 |
|
|
} else {
|
2615 |
|
|
/*
|
2616 |
|
|
* Stuck with malloc/realloc.
|
2617 |
|
|
* For inline data, the underlying buffer must be
|
2618 |
|
|
* a multiple of 4 bytes in size so that it can be
|
2619 |
|
|
* logged and stay on word boundaries. We enforce
|
2620 |
|
|
* that here.
|
2621 |
|
|
*/
|
2622 |
|
|
real_size = roundup(new_size, 4);
|
2623 |
|
|
if (ifp->if_u1.if_data == NULL) {
|
2624 |
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2625 |
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
|
2626 |
|
|
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2627 |
|
|
/*
|
2628 |
|
|
* Only do the realloc if the underlying size
|
2629 |
|
|
* is really changing.
|
2630 |
|
|
*/
|
2631 |
|
|
if (ifp->if_real_bytes != real_size) {
|
2632 |
|
|
ifp->if_u1.if_data =
|
2633 |
|
|
kmem_realloc(ifp->if_u1.if_data,
|
2634 |
|
|
real_size,
|
2635 |
|
|
ifp->if_real_bytes,
|
2636 |
|
|
KM_SLEEP);
|
2637 |
|
|
}
|
2638 |
|
|
} else {
|
2639 |
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2640 |
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
|
2641 |
|
|
memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
|
2642 |
|
|
ifp->if_bytes);
|
2643 |
|
|
}
|
2644 |
|
|
}
|
2645 |
|
|
ifp->if_real_bytes = real_size;
|
2646 |
|
|
ifp->if_bytes = new_size;
|
2647 |
|
|
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
|
2648 |
|
|
}
|
2649 |
|
|
|
2650 |
|
|
|
2651 |
|
|
|
2652 |
|
|
|
2653 |
|
|
/*
|
2654 |
|
|
* Map inode to disk block and offset.
|
2655 |
|
|
*
|
2656 |
|
|
* mp -- the mount point structure for the current file system
|
2657 |
|
|
* tp -- the current transaction
|
2658 |
|
|
* ino -- the inode number of the inode to be located
|
2659 |
|
|
* imap -- this structure is filled in with the information necessary
|
2660 |
|
|
* to retrieve the given inode from disk
|
2661 |
|
|
* flags -- flags to pass to xfs_dilocate indicating whether or not
|
2662 |
|
|
* lookups in the inode btree were OK or not
|
2663 |
|
|
*/
|
2664 |
|
|
int
|
2665 |
|
|
xfs_imap(
|
2666 |
|
|
xfs_mount_t *mp,
|
2667 |
|
|
xfs_trans_t *tp,
|
2668 |
|
|
xfs_ino_t ino,
|
2669 |
|
|
xfs_imap_t *imap,
|
2670 |
|
|
uint flags)
|
2671 |
|
|
{
|
2672 |
|
|
xfs_fsblock_t fsbno;
|
2673 |
|
|
int len;
|
2674 |
|
|
int off;
|
2675 |
|
|
int error;
|
2676 |
|
|
|
2677 |
|
|
fsbno = imap->im_blkno ?
|
2678 |
|
|
XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
|
2679 |
|
|
error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
|
2680 |
|
|
if (error != 0) {
|
2681 |
|
|
return error;
|
2682 |
|
|
}
|
2683 |
|
|
imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
|
2684 |
|
|
imap->im_len = XFS_FSB_TO_BB(mp, len);
|
2685 |
|
|
imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
|
2686 |
|
|
imap->im_ioffset = (ushort)off;
|
2687 |
|
|
imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
|
2688 |
|
|
return 0;
|
2689 |
|
|
}
|
2690 |
|
|
|
2691 |
|
|
void
|
2692 |
|
|
xfs_idestroy_fork(
|
2693 |
|
|
xfs_inode_t *ip,
|
2694 |
|
|
int whichfork)
|
2695 |
|
|
{
|
2696 |
|
|
xfs_ifork_t *ifp;
|
2697 |
|
|
|
2698 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2699 |
|
|
if (ifp->if_broot != NULL) {
|
2700 |
|
|
kmem_free(ifp->if_broot, ifp->if_broot_bytes);
|
2701 |
|
|
ifp->if_broot = NULL;
|
2702 |
|
|
}
|
2703 |
|
|
|
2704 |
|
|
/*
|
2705 |
|
|
* If the format is local, then we can't have an extents
|
2706 |
|
|
* array so just look for an inline data array. If we're
|
2707 |
|
|
* not local then we may or may not have an extents list,
|
2708 |
|
|
* so check and free it up if we do.
|
2709 |
|
|
*/
|
2710 |
|
|
if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
|
2711 |
|
|
if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
|
2712 |
|
|
(ifp->if_u1.if_data != NULL)) {
|
2713 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2714 |
|
|
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
|
2715 |
|
|
ifp->if_u1.if_data = NULL;
|
2716 |
|
|
ifp->if_real_bytes = 0;
|
2717 |
|
|
}
|
2718 |
|
|
} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
|
2719 |
|
|
(ifp->if_u1.if_extents != NULL) &&
|
2720 |
|
|
(ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
|
2721 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2722 |
|
|
kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
|
2723 |
|
|
ifp->if_u1.if_extents = NULL;
|
2724 |
|
|
ifp->if_real_bytes = 0;
|
2725 |
|
|
}
|
2726 |
|
|
ASSERT(ifp->if_u1.if_extents == NULL ||
|
2727 |
|
|
ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
|
2728 |
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2729 |
|
|
if (whichfork == XFS_ATTR_FORK) {
|
2730 |
|
|
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
|
2731 |
|
|
ip->i_afp = NULL;
|
2732 |
|
|
}
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
/*
|
2736 |
|
|
* This is called free all the memory associated with an inode.
|
2737 |
|
|
* It must free the inode itself and any buffers allocated for
|
2738 |
|
|
* if_extents/if_data and if_broot. It must also free the lock
|
2739 |
|
|
* associated with the inode.
|
2740 |
|
|
*/
|
2741 |
|
|
void
|
2742 |
|
|
xfs_idestroy(
|
2743 |
|
|
xfs_inode_t *ip)
|
2744 |
|
|
{
|
2745 |
|
|
|
2746 |
|
|
switch (ip->i_d.di_mode & S_IFMT) {
|
2747 |
|
|
case S_IFREG:
|
2748 |
|
|
case S_IFDIR:
|
2749 |
|
|
case S_IFLNK:
|
2750 |
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
2751 |
|
|
break;
|
2752 |
|
|
}
|
2753 |
|
|
if (ip->i_afp)
|
2754 |
|
|
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
2755 |
|
|
mrfree(&ip->i_lock);
|
2756 |
|
|
mrfree(&ip->i_iolock);
|
2757 |
|
|
freesema(&ip->i_flock);
|
2758 |
|
|
#ifdef XFS_BMAP_TRACE
|
2759 |
|
|
ktrace_free(ip->i_xtrace);
|
2760 |
|
|
#endif
|
2761 |
|
|
#ifdef XFS_BMBT_TRACE
|
2762 |
|
|
ktrace_free(ip->i_btrace);
|
2763 |
|
|
#endif
|
2764 |
|
|
#ifdef XFS_RW_TRACE
|
2765 |
|
|
ktrace_free(ip->i_rwtrace);
|
2766 |
|
|
#endif
|
2767 |
|
|
#ifdef XFS_ILOCK_TRACE
|
2768 |
|
|
ktrace_free(ip->i_lock_trace);
|
2769 |
|
|
#endif
|
2770 |
|
|
#ifdef XFS_DIR2_TRACE
|
2771 |
|
|
ktrace_free(ip->i_dir_trace);
|
2772 |
|
|
#endif
|
2773 |
|
|
if (ip->i_itemp) {
|
2774 |
|
|
/* XXXdpd should be able to assert this but shutdown
|
2775 |
|
|
* is leaving the AIL behind. */
|
2776 |
|
|
ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
|
2777 |
|
|
XFS_FORCED_SHUTDOWN(ip->i_mount));
|
2778 |
|
|
xfs_inode_item_destroy(ip);
|
2779 |
|
|
}
|
2780 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
2781 |
|
|
}
|
2782 |
|
|
|
2783 |
|
|
|
2784 |
|
|
/*
|
2785 |
|
|
* Increment the pin count of the given buffer.
|
2786 |
|
|
* This value is protected by ipinlock spinlock in the mount structure.
|
2787 |
|
|
*/
|
2788 |
|
|
void
|
2789 |
|
|
xfs_ipin(
|
2790 |
|
|
xfs_inode_t *ip)
|
2791 |
|
|
{
|
2792 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
|
2793 |
|
|
|
2794 |
|
|
atomic_inc(&ip->i_pincount);
|
2795 |
|
|
}
|
2796 |
|
|
|
2797 |
|
|
/*
|
2798 |
|
|
* Decrement the pin count of the given inode, and wake up
|
2799 |
|
|
* anyone in xfs_iwait_unpin() if the count goes to 0. The
|
2800 |
|
|
* inode must have been previoulsy pinned with a call to xfs_ipin().
|
2801 |
|
|
*/
|
2802 |
|
|
void
|
2803 |
|
|
xfs_iunpin(
|
2804 |
|
|
xfs_inode_t *ip)
|
2805 |
|
|
{
|
2806 |
|
|
ASSERT(atomic_read(&ip->i_pincount) > 0);
|
2807 |
|
|
|
2808 |
|
|
if (atomic_dec_and_test(&ip->i_pincount)) {
|
2809 |
|
|
vnode_t *vp = XFS_ITOV_NULL(ip);
|
2810 |
|
|
|
2811 |
|
|
/* make sync come back and flush this inode */
|
2812 |
|
|
if (vp) {
|
2813 |
|
|
struct inode *inode = LINVFS_GET_IP(vp);
|
2814 |
|
|
|
2815 |
|
|
if (!(inode->i_state & I_NEW))
|
2816 |
|
|
mark_inode_dirty_sync(inode);
|
2817 |
|
|
}
|
2818 |
|
|
|
2819 |
|
|
wake_up(&ip->i_ipin_wait);
|
2820 |
|
|
}
|
2821 |
|
|
}
|
2822 |
|
|
|
2823 |
|
|
/*
|
2824 |
|
|
* This is called to wait for the given inode to be unpinned.
|
2825 |
|
|
* It will sleep until this happens. The caller must have the
|
2826 |
|
|
* inode locked in at least shared mode so that the buffer cannot
|
2827 |
|
|
* be subsequently pinned once someone is waiting for it to be
|
2828 |
|
|
* unpinned.
|
2829 |
|
|
*/
|
2830 |
|
|
void
|
2831 |
|
|
xfs_iunpin_wait(
|
2832 |
|
|
xfs_inode_t *ip)
|
2833 |
|
|
{
|
2834 |
|
|
xfs_inode_log_item_t *iip;
|
2835 |
|
|
xfs_lsn_t lsn;
|
2836 |
|
|
|
2837 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
|
2838 |
|
|
|
2839 |
|
|
if (atomic_read(&ip->i_pincount) == 0) {
|
2840 |
|
|
return;
|
2841 |
|
|
}
|
2842 |
|
|
|
2843 |
|
|
iip = ip->i_itemp;
|
2844 |
|
|
if (iip && iip->ili_last_lsn) {
|
2845 |
|
|
lsn = iip->ili_last_lsn;
|
2846 |
|
|
} else {
|
2847 |
|
|
lsn = (xfs_lsn_t)0;
|
2848 |
|
|
}
|
2849 |
|
|
|
2850 |
|
|
/*
|
2851 |
|
|
* Give the log a push so we don't wait here too long.
|
2852 |
|
|
*/
|
2853 |
|
|
xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
|
2854 |
|
|
|
2855 |
|
|
wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
|
2856 |
|
|
}
|
2857 |
|
|
|
2858 |
|
|
|
2859 |
|
|
/*
|
2860 |
|
|
* xfs_iextents_copy()
|
2861 |
|
|
*
|
2862 |
|
|
* This is called to copy the REAL extents (as opposed to the delayed
|
2863 |
|
|
* allocation extents) from the inode into the given buffer. It
|
2864 |
|
|
* returns the number of bytes copied into the buffer.
|
2865 |
|
|
*
|
2866 |
|
|
* If there are no delayed allocation extents, then we can just
|
2867 |
|
|
* memcpy() the extents into the buffer. Otherwise, we need to
|
2868 |
|
|
* examine each extent in turn and skip those which are delayed.
|
2869 |
|
|
*/
|
2870 |
|
|
int
|
2871 |
|
|
xfs_iextents_copy(
|
2872 |
|
|
xfs_inode_t *ip,
|
2873 |
|
|
xfs_bmbt_rec_t *buffer,
|
2874 |
|
|
int whichfork)
|
2875 |
|
|
{
|
2876 |
|
|
int copied;
|
2877 |
|
|
xfs_bmbt_rec_t *dest_ep;
|
2878 |
|
|
xfs_bmbt_rec_t *ep;
|
2879 |
|
|
#ifdef XFS_BMAP_TRACE
|
2880 |
|
|
static char fname[] = "xfs_iextents_copy";
|
2881 |
|
|
#endif
|
2882 |
|
|
int i;
|
2883 |
|
|
xfs_ifork_t *ifp;
|
2884 |
|
|
int nrecs;
|
2885 |
|
|
xfs_fsblock_t start_block;
|
2886 |
|
|
|
2887 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2888 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
|
2889 |
|
|
ASSERT(ifp->if_bytes > 0);
|
2890 |
|
|
|
2891 |
|
|
nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
2892 |
|
|
xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
|
2893 |
|
|
ASSERT(nrecs > 0);
|
2894 |
|
|
|
2895 |
|
|
/*
|
2896 |
|
|
* There are some delayed allocation extents in the
|
2897 |
|
|
* inode, so copy the extents one at a time and skip
|
2898 |
|
|
* the delayed ones. There must be at least one
|
2899 |
|
|
* non-delayed extent.
|
2900 |
|
|
*/
|
2901 |
|
|
ep = ifp->if_u1.if_extents;
|
2902 |
|
|
dest_ep = buffer;
|
2903 |
|
|
copied = 0;
|
2904 |
|
|
for (i = 0; i < nrecs; i++) {
|
2905 |
|
|
start_block = xfs_bmbt_get_startblock(ep);
|
2906 |
|
|
if (ISNULLSTARTBLOCK(start_block)) {
|
2907 |
|
|
/*
|
2908 |
|
|
* It's a delayed allocation extent, so skip it.
|
2909 |
|
|
*/
|
2910 |
|
|
ep++;
|
2911 |
|
|
continue;
|
2912 |
|
|
}
|
2913 |
|
|
|
2914 |
|
|
/* Translate to on disk format */
|
2915 |
|
|
put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
|
2916 |
|
|
(__uint64_t*)&dest_ep->l0);
|
2917 |
|
|
put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
|
2918 |
|
|
(__uint64_t*)&dest_ep->l1);
|
2919 |
|
|
dest_ep++;
|
2920 |
|
|
ep++;
|
2921 |
|
|
copied++;
|
2922 |
|
|
}
|
2923 |
|
|
ASSERT(copied != 0);
|
2924 |
|
|
xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
|
2925 |
|
|
|
2926 |
|
|
return (copied * (uint)sizeof(xfs_bmbt_rec_t));
|
2927 |
|
|
}
|
2928 |
|
|
|
2929 |
|
|
/*
|
2930 |
|
|
* Each of the following cases stores data into the same region
|
2931 |
|
|
* of the on-disk inode, so only one of them can be valid at
|
2932 |
|
|
* any given time. While it is possible to have conflicting formats
|
2933 |
|
|
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
|
2934 |
|
|
* in EXTENTS format, this can only happen when the fork has
|
2935 |
|
|
* changed formats after being modified but before being flushed.
|
2936 |
|
|
* In these cases, the format always takes precedence, because the
|
2937 |
|
|
* format indicates the current state of the fork.
|
2938 |
|
|
*/
|
2939 |
|
|
/*ARGSUSED*/
|
2940 |
|
|
STATIC int
|
2941 |
|
|
xfs_iflush_fork(
|
2942 |
|
|
xfs_inode_t *ip,
|
2943 |
|
|
xfs_dinode_t *dip,
|
2944 |
|
|
xfs_inode_log_item_t *iip,
|
2945 |
|
|
int whichfork,
|
2946 |
|
|
xfs_buf_t *bp)
|
2947 |
|
|
{
|
2948 |
|
|
char *cp;
|
2949 |
|
|
xfs_ifork_t *ifp;
|
2950 |
|
|
xfs_mount_t *mp;
|
2951 |
|
|
#ifdef XFS_TRANS_DEBUG
|
2952 |
|
|
int first;
|
2953 |
|
|
#endif
|
2954 |
|
|
static const short brootflag[2] =
|
2955 |
|
|
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
|
2956 |
|
|
static const short dataflag[2] =
|
2957 |
|
|
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
|
2958 |
|
|
static const short extflag[2] =
|
2959 |
|
|
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
|
2960 |
|
|
|
2961 |
|
|
if (iip == NULL)
|
2962 |
|
|
return 0;
|
2963 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2964 |
|
|
/*
|
2965 |
|
|
* This can happen if we gave up in iformat in an error path,
|
2966 |
|
|
* for the attribute fork.
|
2967 |
|
|
*/
|
2968 |
|
|
if (ifp == NULL) {
|
2969 |
|
|
ASSERT(whichfork == XFS_ATTR_FORK);
|
2970 |
|
|
return 0;
|
2971 |
|
|
}
|
2972 |
|
|
cp = XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
|
2973 |
|
|
mp = ip->i_mount;
|
2974 |
|
|
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
|
2975 |
|
|
case XFS_DINODE_FMT_LOCAL:
|
2976 |
|
|
if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
|
2977 |
|
|
(ifp->if_bytes > 0)) {
|
2978 |
|
|
ASSERT(ifp->if_u1.if_data != NULL);
|
2979 |
|
|
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
|
2980 |
|
|
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
|
2981 |
|
|
}
|
2982 |
|
|
if (whichfork == XFS_DATA_FORK) {
|
2983 |
|
|
if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
|
2984 |
|
|
XFS_ERROR_REPORT("xfs_iflush_fork",
|
2985 |
|
|
XFS_ERRLEVEL_LOW, mp);
|
2986 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
2987 |
|
|
}
|
2988 |
|
|
}
|
2989 |
|
|
break;
|
2990 |
|
|
|
2991 |
|
|
case XFS_DINODE_FMT_EXTENTS:
|
2992 |
|
|
ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
|
2993 |
|
|
!(iip->ili_format.ilf_fields & extflag[whichfork]));
|
2994 |
|
|
ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
|
2995 |
|
|
ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
|
2996 |
|
|
if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
|
2997 |
|
|
(ifp->if_bytes > 0)) {
|
2998 |
|
|
ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
|
2999 |
|
|
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
|
3000 |
|
|
whichfork);
|
3001 |
|
|
}
|
3002 |
|
|
break;
|
3003 |
|
|
|
3004 |
|
|
case XFS_DINODE_FMT_BTREE:
|
3005 |
|
|
if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
|
3006 |
|
|
(ifp->if_broot_bytes > 0)) {
|
3007 |
|
|
ASSERT(ifp->if_broot != NULL);
|
3008 |
|
|
ASSERT(ifp->if_broot_bytes <=
|
3009 |
|
|
(XFS_IFORK_SIZE(ip, whichfork) +
|
3010 |
|
|
XFS_BROOT_SIZE_ADJ));
|
3011 |
|
|
xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
|
3012 |
|
|
(xfs_bmdr_block_t *)cp,
|
3013 |
|
|
XFS_DFORK_SIZE_ARCH(dip, mp, whichfork, ARCH_CONVERT));
|
3014 |
|
|
}
|
3015 |
|
|
break;
|
3016 |
|
|
|
3017 |
|
|
case XFS_DINODE_FMT_DEV:
|
3018 |
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
|
3019 |
|
|
ASSERT(whichfork == XFS_DATA_FORK);
|
3020 |
|
|
INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
|
3021 |
|
|
}
|
3022 |
|
|
break;
|
3023 |
|
|
|
3024 |
|
|
case XFS_DINODE_FMT_UUID:
|
3025 |
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
|
3026 |
|
|
ASSERT(whichfork == XFS_DATA_FORK);
|
3027 |
|
|
memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
|
3028 |
|
|
sizeof(uuid_t));
|
3029 |
|
|
}
|
3030 |
|
|
break;
|
3031 |
|
|
|
3032 |
|
|
default:
|
3033 |
|
|
ASSERT(0);
|
3034 |
|
|
break;
|
3035 |
|
|
}
|
3036 |
|
|
|
3037 |
|
|
return 0;
|
3038 |
|
|
}
|
3039 |
|
|
|
3040 |
|
|
/*
|
3041 |
|
|
* xfs_iflush() will write a modified inode's changes out to the
|
3042 |
|
|
* inode's on disk home. The caller must have the inode lock held
|
3043 |
|
|
* in at least shared mode and the inode flush semaphore must be
|
3044 |
|
|
* held as well. The inode lock will still be held upon return from
|
3045 |
|
|
* the call and the caller is free to unlock it.
|
3046 |
|
|
* The inode flush lock will be unlocked when the inode reaches the disk.
|
3047 |
|
|
* The flags indicate how the inode's buffer should be written out.
|
3048 |
|
|
*/
|
3049 |
|
|
int
|
3050 |
|
|
xfs_iflush(
|
3051 |
|
|
xfs_inode_t *ip,
|
3052 |
|
|
uint flags)
|
3053 |
|
|
{
|
3054 |
|
|
xfs_inode_log_item_t *iip;
|
3055 |
|
|
xfs_buf_t *bp;
|
3056 |
|
|
xfs_dinode_t *dip;
|
3057 |
|
|
xfs_mount_t *mp;
|
3058 |
|
|
int error;
|
3059 |
|
|
/* REFERENCED */
|
3060 |
|
|
xfs_chash_t *ch;
|
3061 |
|
|
xfs_inode_t *iq;
|
3062 |
|
|
int clcount; /* count of inodes clustered */
|
3063 |
|
|
int bufwasdelwri;
|
3064 |
|
|
enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
|
3065 |
|
|
SPLDECL(s);
|
3066 |
|
|
|
3067 |
|
|
XFS_STATS_INC(xs_iflush_count);
|
3068 |
|
|
|
3069 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
|
3070 |
|
|
ASSERT(valusema(&ip->i_flock) <= 0);
|
3071 |
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
3072 |
|
|
ip->i_d.di_nextents > ip->i_df.if_ext_max);
|
3073 |
|
|
|
3074 |
|
|
iip = ip->i_itemp;
|
3075 |
|
|
mp = ip->i_mount;
|
3076 |
|
|
|
3077 |
|
|
/*
|
3078 |
|
|
* If the inode isn't dirty, then just release the inode
|
3079 |
|
|
* flush lock and do nothing.
|
3080 |
|
|
*/
|
3081 |
|
|
if ((ip->i_update_core == 0) &&
|
3082 |
|
|
((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
|
3083 |
|
|
ASSERT((iip != NULL) ?
|
3084 |
|
|
!(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
|
3085 |
|
|
xfs_ifunlock(ip);
|
3086 |
|
|
return 0;
|
3087 |
|
|
}
|
3088 |
|
|
|
3089 |
|
|
/*
|
3090 |
|
|
* We can't flush the inode until it is unpinned, so
|
3091 |
|
|
* wait for it. We know noone new can pin it, because
|
3092 |
|
|
* we are holding the inode lock shared and you need
|
3093 |
|
|
* to hold it exclusively to pin the inode.
|
3094 |
|
|
*/
|
3095 |
|
|
xfs_iunpin_wait(ip);
|
3096 |
|
|
|
3097 |
|
|
/*
|
3098 |
|
|
* This may have been unpinned because the filesystem is shutting
|
3099 |
|
|
* down forcibly. If that's the case we must not write this inode
|
3100 |
|
|
* to disk, because the log record didn't make it to disk!
|
3101 |
|
|
*/
|
3102 |
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
3103 |
|
|
ip->i_update_core = 0;
|
3104 |
|
|
if (iip)
|
3105 |
|
|
iip->ili_format.ilf_fields = 0;
|
3106 |
|
|
xfs_ifunlock(ip);
|
3107 |
|
|
return XFS_ERROR(EIO);
|
3108 |
|
|
}
|
3109 |
|
|
|
3110 |
|
|
/*
|
3111 |
|
|
* Get the buffer containing the on-disk inode.
|
3112 |
|
|
*/
|
3113 |
|
|
error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
|
3114 |
|
|
if (error != 0) {
|
3115 |
|
|
xfs_ifunlock(ip);
|
3116 |
|
|
return error;
|
3117 |
|
|
}
|
3118 |
|
|
|
3119 |
|
|
/*
|
3120 |
|
|
* Decide how buffer will be flushed out. This is done before
|
3121 |
|
|
* the call to xfs_iflush_int because this field is zeroed by it.
|
3122 |
|
|
*/
|
3123 |
|
|
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
|
3124 |
|
|
/*
|
3125 |
|
|
* Flush out the inode buffer according to the directions
|
3126 |
|
|
* of the caller. In the cases where the caller has given
|
3127 |
|
|
* us a choice choose the non-delwri case. This is because
|
3128 |
|
|
* the inode is in the AIL and we need to get it out soon.
|
3129 |
|
|
*/
|
3130 |
|
|
switch (flags) {
|
3131 |
|
|
case XFS_IFLUSH_SYNC:
|
3132 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_SYNC:
|
3133 |
|
|
flags = 0;
|
3134 |
|
|
break;
|
3135 |
|
|
case XFS_IFLUSH_ASYNC:
|
3136 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
|
3137 |
|
|
flags = INT_ASYNC;
|
3138 |
|
|
break;
|
3139 |
|
|
case XFS_IFLUSH_DELWRI:
|
3140 |
|
|
flags = INT_DELWRI;
|
3141 |
|
|
break;
|
3142 |
|
|
default:
|
3143 |
|
|
ASSERT(0);
|
3144 |
|
|
flags = 0;
|
3145 |
|
|
break;
|
3146 |
|
|
}
|
3147 |
|
|
} else {
|
3148 |
|
|
switch (flags) {
|
3149 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_SYNC:
|
3150 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
|
3151 |
|
|
case XFS_IFLUSH_DELWRI:
|
3152 |
|
|
flags = INT_DELWRI;
|
3153 |
|
|
break;
|
3154 |
|
|
case XFS_IFLUSH_ASYNC:
|
3155 |
|
|
flags = INT_ASYNC;
|
3156 |
|
|
break;
|
3157 |
|
|
case XFS_IFLUSH_SYNC:
|
3158 |
|
|
flags = 0;
|
3159 |
|
|
break;
|
3160 |
|
|
default:
|
3161 |
|
|
ASSERT(0);
|
3162 |
|
|
flags = 0;
|
3163 |
|
|
break;
|
3164 |
|
|
}
|
3165 |
|
|
}
|
3166 |
|
|
|
3167 |
|
|
/*
|
3168 |
|
|
* First flush out the inode that xfs_iflush was called with.
|
3169 |
|
|
*/
|
3170 |
|
|
error = xfs_iflush_int(ip, bp);
|
3171 |
|
|
if (error) {
|
3172 |
|
|
goto corrupt_out;
|
3173 |
|
|
}
|
3174 |
|
|
|
3175 |
|
|
/*
|
3176 |
|
|
* inode clustering:
|
3177 |
|
|
* see if other inodes can be gathered into this write
|
3178 |
|
|
*/
|
3179 |
|
|
|
3180 |
|
|
ip->i_chash->chl_buf = bp;
|
3181 |
|
|
|
3182 |
|
|
ch = XFS_CHASH(mp, ip->i_blkno);
|
3183 |
|
|
s = mutex_spinlock(&ch->ch_lock);
|
3184 |
|
|
|
3185 |
|
|
clcount = 0;
|
3186 |
|
|
for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
|
3187 |
|
|
/*
|
3188 |
|
|
* Do an un-protected check to see if the inode is dirty and
|
3189 |
|
|
* is a candidate for flushing. These checks will be repeated
|
3190 |
|
|
* later after the appropriate locks are acquired.
|
3191 |
|
|
*/
|
3192 |
|
|
iip = iq->i_itemp;
|
3193 |
|
|
if ((iq->i_update_core == 0) &&
|
3194 |
|
|
((iip == NULL) ||
|
3195 |
|
|
!(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
|
3196 |
|
|
xfs_ipincount(iq) == 0) {
|
3197 |
|
|
continue;
|
3198 |
|
|
}
|
3199 |
|
|
|
3200 |
|
|
/*
|
3201 |
|
|
* Try to get locks. If any are unavailable,
|
3202 |
|
|
* then this inode cannot be flushed and is skipped.
|
3203 |
|
|
*/
|
3204 |
|
|
|
3205 |
|
|
/* get inode locks (just i_lock) */
|
3206 |
|
|
if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
|
3207 |
|
|
/* get inode flush lock */
|
3208 |
|
|
if (xfs_iflock_nowait(iq)) {
|
3209 |
|
|
/* check if pinned */
|
3210 |
|
|
if (xfs_ipincount(iq) == 0) {
|
3211 |
|
|
/* arriving here means that
|
3212 |
|
|
* this inode can be flushed.
|
3213 |
|
|
* first re-check that it's
|
3214 |
|
|
* dirty
|
3215 |
|
|
*/
|
3216 |
|
|
iip = iq->i_itemp;
|
3217 |
|
|
if ((iq->i_update_core != 0)||
|
3218 |
|
|
((iip != NULL) &&
|
3219 |
|
|
(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
|
3220 |
|
|
clcount++;
|
3221 |
|
|
error = xfs_iflush_int(iq, bp);
|
3222 |
|
|
if (error) {
|
3223 |
|
|
xfs_iunlock(iq,
|
3224 |
|
|
XFS_ILOCK_SHARED);
|
3225 |
|
|
goto cluster_corrupt_out;
|
3226 |
|
|
}
|
3227 |
|
|
} else {
|
3228 |
|
|
xfs_ifunlock(iq);
|
3229 |
|
|
}
|
3230 |
|
|
} else {
|
3231 |
|
|
xfs_ifunlock(iq);
|
3232 |
|
|
}
|
3233 |
|
|
}
|
3234 |
|
|
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
3235 |
|
|
}
|
3236 |
|
|
}
|
3237 |
|
|
mutex_spinunlock(&ch->ch_lock, s);
|
3238 |
|
|
|
3239 |
|
|
if (clcount) {
|
3240 |
|
|
XFS_STATS_INC(xs_icluster_flushcnt);
|
3241 |
|
|
XFS_STATS_ADD(xs_icluster_flushinode, clcount);
|
3242 |
|
|
}
|
3243 |
|
|
|
3244 |
|
|
/*
|
3245 |
|
|
* If the buffer is pinned then push on the log so we won't
|
3246 |
|
|
* get stuck waiting in the write for too long.
|
3247 |
|
|
*/
|
3248 |
|
|
if (XFS_BUF_ISPINNED(bp)){
|
3249 |
|
|
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
|
3250 |
|
|
}
|
3251 |
|
|
|
3252 |
|
|
if (flags & INT_DELWRI) {
|
3253 |
|
|
xfs_bdwrite(mp, bp);
|
3254 |
|
|
} else if (flags & INT_ASYNC) {
|
3255 |
|
|
xfs_bawrite(mp, bp);
|
3256 |
|
|
} else {
|
3257 |
|
|
error = xfs_bwrite(mp, bp);
|
3258 |
|
|
}
|
3259 |
|
|
return error;
|
3260 |
|
|
|
3261 |
|
|
corrupt_out:
|
3262 |
|
|
xfs_buf_relse(bp);
|
3263 |
|
|
xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
|
3264 |
|
|
xfs_iflush_abort(ip);
|
3265 |
|
|
/*
|
3266 |
|
|
* Unlocks the flush lock
|
3267 |
|
|
*/
|
3268 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
3269 |
|
|
|
3270 |
|
|
cluster_corrupt_out:
|
3271 |
|
|
/* Corruption detected in the clustering loop. Invalidate the
|
3272 |
|
|
* inode buffer and shut down the filesystem.
|
3273 |
|
|
*/
|
3274 |
|
|
mutex_spinunlock(&ch->ch_lock, s);
|
3275 |
|
|
|
3276 |
|
|
/*
|
3277 |
|
|
* Clean up the buffer. If it was B_DELWRI, just release it --
|
3278 |
|
|
* brelse can handle it with no problems. If not, shut down the
|
3279 |
|
|
* filesystem before releasing the buffer.
|
3280 |
|
|
*/
|
3281 |
|
|
if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
|
3282 |
|
|
xfs_buf_relse(bp);
|
3283 |
|
|
}
|
3284 |
|
|
|
3285 |
|
|
xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
|
3286 |
|
|
|
3287 |
|
|
if(!bufwasdelwri) {
|
3288 |
|
|
/*
|
3289 |
|
|
* Just like incore_relse: if we have b_iodone functions,
|
3290 |
|
|
* mark the buffer as an error and call them. Otherwise
|
3291 |
|
|
* mark it as stale and brelse.
|
3292 |
|
|
*/
|
3293 |
|
|
if (XFS_BUF_IODONE_FUNC(bp)) {
|
3294 |
|
|
XFS_BUF_CLR_BDSTRAT_FUNC(bp);
|
3295 |
|
|
XFS_BUF_UNDONE(bp);
|
3296 |
|
|
XFS_BUF_STALE(bp);
|
3297 |
|
|
XFS_BUF_SHUT(bp);
|
3298 |
|
|
XFS_BUF_ERROR(bp,EIO);
|
3299 |
|
|
xfs_biodone(bp);
|
3300 |
|
|
} else {
|
3301 |
|
|
XFS_BUF_STALE(bp);
|
3302 |
|
|
xfs_buf_relse(bp);
|
3303 |
|
|
}
|
3304 |
|
|
}
|
3305 |
|
|
|
3306 |
|
|
xfs_iflush_abort(iq);
|
3307 |
|
|
/*
|
3308 |
|
|
* Unlocks the flush lock
|
3309 |
|
|
*/
|
3310 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
3311 |
|
|
}
|
3312 |
|
|
|
3313 |
|
|
|
3314 |
|
|
STATIC int
|
3315 |
|
|
xfs_iflush_int(
|
3316 |
|
|
xfs_inode_t *ip,
|
3317 |
|
|
xfs_buf_t *bp)
|
3318 |
|
|
{
|
3319 |
|
|
xfs_inode_log_item_t *iip;
|
3320 |
|
|
xfs_dinode_t *dip;
|
3321 |
|
|
xfs_mount_t *mp;
|
3322 |
|
|
#ifdef XFS_TRANS_DEBUG
|
3323 |
|
|
int first;
|
3324 |
|
|
#endif
|
3325 |
|
|
SPLDECL(s);
|
3326 |
|
|
|
3327 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
|
3328 |
|
|
ASSERT(valusema(&ip->i_flock) <= 0);
|
3329 |
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
3330 |
|
|
ip->i_d.di_nextents > ip->i_df.if_ext_max);
|
3331 |
|
|
|
3332 |
|
|
iip = ip->i_itemp;
|
3333 |
|
|
mp = ip->i_mount;
|
3334 |
|
|
|
3335 |
|
|
|
3336 |
|
|
/*
|
3337 |
|
|
* If the inode isn't dirty, then just release the inode
|
3338 |
|
|
* flush lock and do nothing.
|
3339 |
|
|
*/
|
3340 |
|
|
if ((ip->i_update_core == 0) &&
|
3341 |
|
|
((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
|
3342 |
|
|
xfs_ifunlock(ip);
|
3343 |
|
|
return 0;
|
3344 |
|
|
}
|
3345 |
|
|
|
3346 |
|
|
/* set *dip = inode's place in the buffer */
|
3347 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
|
3348 |
|
|
|
3349 |
|
|
/*
|
3350 |
|
|
* Clear i_update_core before copying out the data.
|
3351 |
|
|
* This is for coordination with our timestamp updates
|
3352 |
|
|
* that don't hold the inode lock. They will always
|
3353 |
|
|
* update the timestamps BEFORE setting i_update_core,
|
3354 |
|
|
* so if we clear i_update_core after they set it we
|
3355 |
|
|
* are guaranteed to see their updates to the timestamps.
|
3356 |
|
|
* I believe that this depends on strongly ordered memory
|
3357 |
|
|
* semantics, but we have that. We use the SYNCHRONIZE
|
3358 |
|
|
* macro to make sure that the compiler does not reorder
|
3359 |
|
|
* the i_update_core access below the data copy below.
|
3360 |
|
|
*/
|
3361 |
|
|
ip->i_update_core = 0;
|
3362 |
|
|
SYNCHRONIZE();
|
3363 |
|
|
|
3364 |
|
|
if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
|
3365 |
|
|
mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
|
3366 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3367 |
|
|
"xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
|
3368 |
|
|
ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
|
3369 |
|
|
goto corrupt_out;
|
3370 |
|
|
}
|
3371 |
|
|
if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
|
3372 |
|
|
mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
|
3373 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3374 |
|
|
"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
|
3375 |
|
|
ip->i_ino, ip, ip->i_d.di_magic);
|
3376 |
|
|
goto corrupt_out;
|
3377 |
|
|
}
|
3378 |
|
|
if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
|
3379 |
|
|
if (XFS_TEST_ERROR(
|
3380 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
3381 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
|
3382 |
|
|
mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
|
3383 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3384 |
|
|
"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
|
3385 |
|
|
ip->i_ino, ip);
|
3386 |
|
|
goto corrupt_out;
|
3387 |
|
|
}
|
3388 |
|
|
} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
|
3389 |
|
|
if (XFS_TEST_ERROR(
|
3390 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
3391 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
3392 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
|
3393 |
|
|
mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
|
3394 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3395 |
|
|
"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
|
3396 |
|
|
ip->i_ino, ip);
|
3397 |
|
|
goto corrupt_out;
|
3398 |
|
|
}
|
3399 |
|
|
}
|
3400 |
|
|
if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
|
3401 |
|
|
ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
|
3402 |
|
|
XFS_RANDOM_IFLUSH_5)) {
|
3403 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3404 |
|
|
"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
|
3405 |
|
|
ip->i_ino,
|
3406 |
|
|
ip->i_d.di_nextents + ip->i_d.di_anextents,
|
3407 |
|
|
ip->i_d.di_nblocks,
|
3408 |
|
|
ip);
|
3409 |
|
|
goto corrupt_out;
|
3410 |
|
|
}
|
3411 |
|
|
if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
|
3412 |
|
|
mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
|
3413 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3414 |
|
|
"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
|
3415 |
|
|
ip->i_ino, ip->i_d.di_forkoff, ip);
|
3416 |
|
|
goto corrupt_out;
|
3417 |
|
|
}
|
3418 |
|
|
/*
|
3419 |
|
|
* bump the flush iteration count, used to detect flushes which
|
3420 |
|
|
* postdate a log record during recovery.
|
3421 |
|
|
*/
|
3422 |
|
|
|
3423 |
|
|
ip->i_d.di_flushiter++;
|
3424 |
|
|
|
3425 |
|
|
/*
|
3426 |
|
|
* Copy the dirty parts of the inode into the on-disk
|
3427 |
|
|
* inode. We always copy out the core of the inode,
|
3428 |
|
|
* because if the inode is dirty at all the core must
|
3429 |
|
|
* be.
|
3430 |
|
|
*/
|
3431 |
|
|
xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d),
|
3432 |
|
|
-1, ARCH_CONVERT);
|
3433 |
|
|
|
3434 |
|
|
/* Wrap, we never let the log put out DI_MAX_FLUSH */
|
3435 |
|
|
if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
|
3436 |
|
|
ip->i_d.di_flushiter = 0;
|
3437 |
|
|
|
3438 |
|
|
/*
|
3439 |
|
|
* If this is really an old format inode and the superblock version
|
3440 |
|
|
* has not been updated to support only new format inodes, then
|
3441 |
|
|
* convert back to the old inode format. If the superblock version
|
3442 |
|
|
* has been updated, then make the conversion permanent.
|
3443 |
|
|
*/
|
3444 |
|
|
ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
|
3445 |
|
|
XFS_SB_VERSION_HASNLINK(&mp->m_sb));
|
3446 |
|
|
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
3447 |
|
|
if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
|
3448 |
|
|
/*
|
3449 |
|
|
* Convert it back.
|
3450 |
|
|
*/
|
3451 |
|
|
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
|
3452 |
|
|
INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
|
3453 |
|
|
} else {
|
3454 |
|
|
/*
|
3455 |
|
|
* The superblock version has already been bumped,
|
3456 |
|
|
* so just make the conversion to the new inode
|
3457 |
|
|
* format permanent.
|
3458 |
|
|
*/
|
3459 |
|
|
ip->i_d.di_version = XFS_DINODE_VERSION_2;
|
3460 |
|
|
INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
|
3461 |
|
|
ip->i_d.di_onlink = 0;
|
3462 |
|
|
INT_ZERO(dip->di_core.di_onlink, ARCH_CONVERT);
|
3463 |
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
3464 |
|
|
memset(&(dip->di_core.di_pad[0]), 0,
|
3465 |
|
|
sizeof(dip->di_core.di_pad));
|
3466 |
|
|
ASSERT(ip->i_d.di_projid == 0);
|
3467 |
|
|
}
|
3468 |
|
|
}
|
3469 |
|
|
|
3470 |
|
|
if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
|
3471 |
|
|
goto corrupt_out;
|
3472 |
|
|
}
|
3473 |
|
|
|
3474 |
|
|
if (XFS_IFORK_Q(ip)) {
|
3475 |
|
|
/*
|
3476 |
|
|
* The only error from xfs_iflush_fork is on the data fork.
|
3477 |
|
|
*/
|
3478 |
|
|
(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
|
3479 |
|
|
}
|
3480 |
|
|
xfs_inobp_check(mp, bp);
|
3481 |
|
|
|
3482 |
|
|
/*
|
3483 |
|
|
* We've recorded everything logged in the inode, so we'd
|
3484 |
|
|
* like to clear the ilf_fields bits so we don't log and
|
3485 |
|
|
* flush things unnecessarily. However, we can't stop
|
3486 |
|
|
* logging all this information until the data we've copied
|
3487 |
|
|
* into the disk buffer is written to disk. If we did we might
|
3488 |
|
|
* overwrite the copy of the inode in the log with all the
|
3489 |
|
|
* data after re-logging only part of it, and in the face of
|
3490 |
|
|
* a crash we wouldn't have all the data we need to recover.
|
3491 |
|
|
*
|
3492 |
|
|
* What we do is move the bits to the ili_last_fields field.
|
3493 |
|
|
* When logging the inode, these bits are moved back to the
|
3494 |
|
|
* ilf_fields field. In the xfs_iflush_done() routine we
|
3495 |
|
|
* clear ili_last_fields, since we know that the information
|
3496 |
|
|
* those bits represent is permanently on disk. As long as
|
3497 |
|
|
* the flush completes before the inode is logged again, then
|
3498 |
|
|
* both ilf_fields and ili_last_fields will be cleared.
|
3499 |
|
|
*
|
3500 |
|
|
* We can play with the ilf_fields bits here, because the inode
|
3501 |
|
|
* lock must be held exclusively in order to set bits there
|
3502 |
|
|
* and the flush lock protects the ili_last_fields bits.
|
3503 |
|
|
* Set ili_logged so the flush done
|
3504 |
|
|
* routine can tell whether or not to look in the AIL.
|
3505 |
|
|
* Also, store the current LSN of the inode so that we can tell
|
3506 |
|
|
* whether the item has moved in the AIL from xfs_iflush_done().
|
3507 |
|
|
* In order to read the lsn we need the AIL lock, because
|
3508 |
|
|
* it is a 64 bit value that cannot be read atomically.
|
3509 |
|
|
*/
|
3510 |
|
|
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
|
3511 |
|
|
iip->ili_last_fields = iip->ili_format.ilf_fields;
|
3512 |
|
|
iip->ili_format.ilf_fields = 0;
|
3513 |
|
|
iip->ili_logged = 1;
|
3514 |
|
|
|
3515 |
|
|
ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
|
3516 |
|
|
AIL_LOCK(mp,s);
|
3517 |
|
|
iip->ili_flush_lsn = iip->ili_item.li_lsn;
|
3518 |
|
|
AIL_UNLOCK(mp, s);
|
3519 |
|
|
|
3520 |
|
|
/*
|
3521 |
|
|
* Attach the function xfs_iflush_done to the inode's
|
3522 |
|
|
* buffer. This will remove the inode from the AIL
|
3523 |
|
|
* and unlock the inode's flush lock when the inode is
|
3524 |
|
|
* completely written to disk.
|
3525 |
|
|
*/
|
3526 |
|
|
xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
|
3527 |
|
|
xfs_iflush_done, (xfs_log_item_t *)iip);
|
3528 |
|
|
|
3529 |
|
|
ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
|
3530 |
|
|
ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
|
3531 |
|
|
} else {
|
3532 |
|
|
/*
|
3533 |
|
|
* We're flushing an inode which is not in the AIL and has
|
3534 |
|
|
* not been logged but has i_update_core set. For this
|
3535 |
|
|
* case we can use a B_DELWRI flush and immediately drop
|
3536 |
|
|
* the inode flush lock because we can avoid the whole
|
3537 |
|
|
* AIL state thing. It's OK to drop the flush lock now,
|
3538 |
|
|
* because we've already locked the buffer and to do anything
|
3539 |
|
|
* you really need both.
|
3540 |
|
|
*/
|
3541 |
|
|
if (iip != NULL) {
|
3542 |
|
|
ASSERT(iip->ili_logged == 0);
|
3543 |
|
|
ASSERT(iip->ili_last_fields == 0);
|
3544 |
|
|
ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
|
3545 |
|
|
}
|
3546 |
|
|
xfs_ifunlock(ip);
|
3547 |
|
|
}
|
3548 |
|
|
|
3549 |
|
|
return 0;
|
3550 |
|
|
|
3551 |
|
|
corrupt_out:
|
3552 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
3553 |
|
|
}
|
3554 |
|
|
|
3555 |
|
|
/*
|
3556 |
|
|
* Flush all inactive inodes in mp. Return true if no user references
|
3557 |
|
|
* were found, false otherwise.
|
3558 |
|
|
*/
|
3559 |
|
|
int
|
3560 |
|
|
xfs_iflush_all(
|
3561 |
|
|
xfs_mount_t *mp,
|
3562 |
|
|
int flag)
|
3563 |
|
|
{
|
3564 |
|
|
int busy;
|
3565 |
|
|
int done;
|
3566 |
|
|
int purged;
|
3567 |
|
|
xfs_inode_t *ip;
|
3568 |
|
|
vmap_t vmap;
|
3569 |
|
|
vnode_t *vp;
|
3570 |
|
|
|
3571 |
|
|
busy = done = 0;
|
3572 |
|
|
while (!done) {
|
3573 |
|
|
purged = 0;
|
3574 |
|
|
XFS_MOUNT_ILOCK(mp);
|
3575 |
|
|
ip = mp->m_inodes;
|
3576 |
|
|
if (ip == NULL) {
|
3577 |
|
|
break;
|
3578 |
|
|
}
|
3579 |
|
|
do {
|
3580 |
|
|
/* Make sure we skip markers inserted by sync */
|
3581 |
|
|
if (ip->i_mount == NULL) {
|
3582 |
|
|
ip = ip->i_mnext;
|
3583 |
|
|
continue;
|
3584 |
|
|
}
|
3585 |
|
|
|
3586 |
|
|
/*
|
3587 |
|
|
* It's up to our caller to purge the root
|
3588 |
|
|
* and quota vnodes later.
|
3589 |
|
|
*/
|
3590 |
|
|
vp = XFS_ITOV_NULL(ip);
|
3591 |
|
|
|
3592 |
|
|
if (!vp) {
|
3593 |
|
|
XFS_MOUNT_IUNLOCK(mp);
|
3594 |
|
|
xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
|
3595 |
|
|
purged = 1;
|
3596 |
|
|
break;
|
3597 |
|
|
}
|
3598 |
|
|
|
3599 |
|
|
if (vn_count(vp) != 0) {
|
3600 |
|
|
if (vn_count(vp) == 1 &&
|
3601 |
|
|
(ip == mp->m_rootip ||
|
3602 |
|
|
(mp->m_quotainfo &&
|
3603 |
|
|
(ip->i_ino == mp->m_sb.sb_uquotino ||
|
3604 |
|
|
ip->i_ino == mp->m_sb.sb_gquotino)))) {
|
3605 |
|
|
|
3606 |
|
|
ip = ip->i_mnext;
|
3607 |
|
|
continue;
|
3608 |
|
|
}
|
3609 |
|
|
if (!(flag & XFS_FLUSH_ALL)) {
|
3610 |
|
|
ASSERT(0);
|
3611 |
|
|
busy = 1;
|
3612 |
|
|
done = 1;
|
3613 |
|
|
break;
|
3614 |
|
|
}
|
3615 |
|
|
/*
|
3616 |
|
|
* Ignore busy inodes but continue flushing
|
3617 |
|
|
* others.
|
3618 |
|
|
*/
|
3619 |
|
|
ip = ip->i_mnext;
|
3620 |
|
|
continue;
|
3621 |
|
|
}
|
3622 |
|
|
/*
|
3623 |
|
|
* Sample vp mapping while holding mp locked on MP
|
3624 |
|
|
* systems, so we don't purge a reclaimed or
|
3625 |
|
|
* nonexistent vnode. We break from the loop
|
3626 |
|
|
* since we know that we modify
|
3627 |
|
|
* it by pulling ourselves from it in xfs_reclaim()
|
3628 |
|
|
* called via vn_purge() below. Set ip to the next
|
3629 |
|
|
* entry in the list anyway so we'll know below
|
3630 |
|
|
* whether we reached the end or not.
|
3631 |
|
|
*/
|
3632 |
|
|
VMAP(vp, vmap);
|
3633 |
|
|
XFS_MOUNT_IUNLOCK(mp);
|
3634 |
|
|
|
3635 |
|
|
vn_purge(vp, &vmap);
|
3636 |
|
|
|
3637 |
|
|
purged = 1;
|
3638 |
|
|
break;
|
3639 |
|
|
} while (ip != mp->m_inodes);
|
3640 |
|
|
/*
|
3641 |
|
|
* We need to distinguish between when we exit the loop
|
3642 |
|
|
* after a purge and when we simply hit the end of the
|
3643 |
|
|
* list. We can't use the (ip == mp->m_inodes) test,
|
3644 |
|
|
* because when we purge an inode at the start of the list
|
3645 |
|
|
* the next inode on the list becomes mp->m_inodes. That
|
3646 |
|
|
* would cause such a test to bail out early. The purged
|
3647 |
|
|
* variable tells us how we got out of the loop.
|
3648 |
|
|
*/
|
3649 |
|
|
if (!purged) {
|
3650 |
|
|
done = 1;
|
3651 |
|
|
}
|
3652 |
|
|
}
|
3653 |
|
|
XFS_MOUNT_IUNLOCK(mp);
|
3654 |
|
|
return !busy;
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
|
3658 |
|
|
/*
|
3659 |
|
|
* xfs_iaccess: check accessibility of inode for mode.
|
3660 |
|
|
*/
|
3661 |
|
|
int
|
3662 |
|
|
xfs_iaccess(
|
3663 |
|
|
xfs_inode_t *ip,
|
3664 |
|
|
mode_t mode,
|
3665 |
|
|
cred_t *cr)
|
3666 |
|
|
{
|
3667 |
|
|
int error;
|
3668 |
|
|
mode_t orgmode = mode;
|
3669 |
|
|
struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
|
3670 |
|
|
|
3671 |
|
|
/*
|
3672 |
|
|
* Verify that the MAC policy allows the requested access.
|
3673 |
|
|
*/
|
3674 |
|
|
if ((error = _MAC_XFS_IACCESS(ip, mode, cr)))
|
3675 |
|
|
return XFS_ERROR(error);
|
3676 |
|
|
|
3677 |
|
|
if (mode & S_IWUSR) {
|
3678 |
|
|
umode_t imode = inode->i_mode;
|
3679 |
|
|
|
3680 |
|
|
if (IS_RDONLY(inode) &&
|
3681 |
|
|
(S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
|
3682 |
|
|
return XFS_ERROR(EROFS);
|
3683 |
|
|
|
3684 |
|
|
if (IS_IMMUTABLE(inode))
|
3685 |
|
|
return XFS_ERROR(EACCES);
|
3686 |
|
|
}
|
3687 |
|
|
|
3688 |
|
|
/*
|
3689 |
|
|
* If there's an Access Control List it's used instead of
|
3690 |
|
|
* the mode bits.
|
3691 |
|
|
*/
|
3692 |
|
|
if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
|
3693 |
|
|
return error ? XFS_ERROR(error) : 0;
|
3694 |
|
|
|
3695 |
|
|
if (current_fsuid(cr) != ip->i_d.di_uid) {
|
3696 |
|
|
mode >>= 3;
|
3697 |
|
|
if (!in_group_p((gid_t)ip->i_d.di_gid))
|
3698 |
|
|
mode >>= 3;
|
3699 |
|
|
}
|
3700 |
|
|
|
3701 |
|
|
/*
|
3702 |
|
|
* If the DACs are ok we don't need any capability check.
|
3703 |
|
|
*/
|
3704 |
|
|
if ((ip->i_d.di_mode & mode) == mode)
|
3705 |
|
|
return 0;
|
3706 |
|
|
/*
|
3707 |
|
|
* Read/write DACs are always overridable.
|
3708 |
|
|
* Executable DACs are overridable if at least one exec bit is set.
|
3709 |
|
|
*/
|
3710 |
|
|
if (!(orgmode & S_IXUSR) ||
|
3711 |
|
|
(inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
|
3712 |
|
|
if (capable_cred(cr, CAP_DAC_OVERRIDE))
|
3713 |
|
|
return 0;
|
3714 |
|
|
|
3715 |
|
|
if ((orgmode == S_IRUSR) ||
|
3716 |
|
|
(S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
|
3717 |
|
|
if (capable_cred(cr, CAP_DAC_READ_SEARCH))
|
3718 |
|
|
return 0;
|
3719 |
|
|
#ifdef NOISE
|
3720 |
|
|
cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
|
3721 |
|
|
#endif /* NOISE */
|
3722 |
|
|
return XFS_ERROR(EACCES);
|
3723 |
|
|
}
|
3724 |
|
|
return XFS_ERROR(EACCES);
|
3725 |
|
|
}
|
3726 |
|
|
|
3727 |
|
|
/*
|
3728 |
|
|
* Return whether or not it is OK to swap to the given file in the
|
3729 |
|
|
* given range. Return 0 for OK and otherwise return the error.
|
3730 |
|
|
*
|
3731 |
|
|
* It is only OK to swap to a file if it has no holes, and all
|
3732 |
|
|
* extents have been initialized.
|
3733 |
|
|
*
|
3734 |
|
|
* We use the vnode behavior chain prevent and allow primitives
|
3735 |
|
|
* to ensure that the vnode chain stays coherent while we do this.
|
3736 |
|
|
* This allows us to walk the chain down to the bottom where XFS
|
3737 |
|
|
* lives without worrying about it changing out from under us.
|
3738 |
|
|
*/
|
3739 |
|
|
int
|
3740 |
|
|
xfs_swappable(
|
3741 |
|
|
bhv_desc_t *bdp)
|
3742 |
|
|
{
|
3743 |
|
|
xfs_inode_t *ip;
|
3744 |
|
|
|
3745 |
|
|
ip = XFS_BHVTOI(bdp);
|
3746 |
|
|
/*
|
3747 |
|
|
* Verify that the file does not have any
|
3748 |
|
|
* holes or unwritten exents.
|
3749 |
|
|
*/
|
3750 |
|
|
return xfs_bmap_check_swappable(ip);
|
3751 |
|
|
}
|
3752 |
|
|
|
3753 |
|
|
/*
|
3754 |
|
|
* xfs_iroundup: round up argument to next power of two
|
3755 |
|
|
*/
|
3756 |
|
|
uint
|
3757 |
|
|
xfs_iroundup(
|
3758 |
|
|
uint v)
|
3759 |
|
|
{
|
3760 |
|
|
int i;
|
3761 |
|
|
uint m;
|
3762 |
|
|
|
3763 |
|
|
if ((v & (v - 1)) == 0)
|
3764 |
|
|
return v;
|
3765 |
|
|
ASSERT((v & 0x80000000) == 0);
|
3766 |
|
|
if ((v & (v + 1)) == 0)
|
3767 |
|
|
return v + 1;
|
3768 |
|
|
for (i = 0, m = 1; i < 31; i++, m <<= 1) {
|
3769 |
|
|
if (v & m)
|
3770 |
|
|
continue;
|
3771 |
|
|
v |= m;
|
3772 |
|
|
if ((v & (v + 1)) == 0)
|
3773 |
|
|
return v + 1;
|
3774 |
|
|
}
|
3775 |
|
|
ASSERT(0);
|
3776 |
|
|
return( 0 );
|
3777 |
|
|
}
|
3778 |
|
|
|
3779 |
|
|
/*
|
3780 |
|
|
* Change the requested timestamp in the given inode.
|
3781 |
|
|
* We don't lock across timestamp updates, and we don't log them but
|
3782 |
|
|
* we do record the fact that there is dirty information in core.
|
3783 |
|
|
*
|
3784 |
|
|
* NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
|
3785 |
|
|
* with XFS_ICHGTIME_ACC to be sure that access time
|
3786 |
|
|
* update will take. Calling first with XFS_ICHGTIME_ACC
|
3787 |
|
|
* and then XFS_ICHGTIME_MOD may fail to modify the access
|
3788 |
|
|
* timestamp if the filesystem is mounted noacctm.
|
3789 |
|
|
*/
|
3790 |
|
|
void
|
3791 |
|
|
xfs_ichgtime(xfs_inode_t *ip,
|
3792 |
|
|
int flags)
|
3793 |
|
|
{
|
3794 |
|
|
timespec_t tv;
|
3795 |
|
|
vnode_t *vp = XFS_ITOV(ip);
|
3796 |
|
|
struct inode *inode = LINVFS_GET_IP(vp);
|
3797 |
|
|
|
3798 |
|
|
/*
|
3799 |
|
|
* We're not supposed to change timestamps in readonly-mounted
|
3800 |
|
|
* filesystems. Throw it away if anyone asks us.
|
3801 |
|
|
*/
|
3802 |
|
|
if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
|
3803 |
|
|
return;
|
3804 |
|
|
|
3805 |
|
|
/*
|
3806 |
|
|
* Don't update access timestamps on reads if mounted "noatime"
|
3807 |
|
|
* Throw it away if anyone asks us.
|
3808 |
|
|
*/
|
3809 |
|
|
if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
|
3810 |
|
|
((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
|
3811 |
|
|
== XFS_ICHGTIME_ACC))
|
3812 |
|
|
return;
|
3813 |
|
|
|
3814 |
|
|
nanotime(&tv);
|
3815 |
|
|
if (flags & XFS_ICHGTIME_MOD) {
|
3816 |
|
|
VN_MTIMESET(vp, &tv);
|
3817 |
|
|
ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
|
3818 |
|
|
ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
|
3819 |
|
|
}
|
3820 |
|
|
if (flags & XFS_ICHGTIME_ACC) {
|
3821 |
|
|
VN_ATIMESET(vp, &tv);
|
3822 |
|
|
ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
|
3823 |
|
|
ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
|
3824 |
|
|
}
|
3825 |
|
|
if (flags & XFS_ICHGTIME_CHG) {
|
3826 |
|
|
VN_CTIMESET(vp, &tv);
|
3827 |
|
|
ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
|
3828 |
|
|
ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
|
3829 |
|
|
}
|
3830 |
|
|
|
3831 |
|
|
/*
|
3832 |
|
|
* We update the i_update_core field _after_ changing
|
3833 |
|
|
* the timestamps in order to coordinate properly with
|
3834 |
|
|
* xfs_iflush() so that we don't lose timestamp updates.
|
3835 |
|
|
* This keeps us from having to hold the inode lock
|
3836 |
|
|
* while doing this. We use the SYNCHRONIZE macro to
|
3837 |
|
|
* ensure that the compiler does not reorder the update
|
3838 |
|
|
* of i_update_core above the timestamp updates above.
|
3839 |
|
|
*/
|
3840 |
|
|
SYNCHRONIZE();
|
3841 |
|
|
ip->i_update_core = 1;
|
3842 |
|
|
if (!(inode->i_state & I_LOCK))
|
3843 |
|
|
mark_inode_dirty_sync(inode);
|
3844 |
|
|
}
|
3845 |
|
|
|
3846 |
|
|
#ifdef XFS_ILOCK_TRACE
|
3847 |
|
|
ktrace_t *xfs_ilock_trace_buf;
|
3848 |
|
|
|
3849 |
|
|
void
|
3850 |
|
|
xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
|
3851 |
|
|
{
|
3852 |
|
|
ktrace_enter(ip->i_lock_trace,
|
3853 |
|
|
(void *)ip,
|
3854 |
|
|
(void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
|
3855 |
|
|
(void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
|
3856 |
|
|
(void *)ra, /* caller of ilock */
|
3857 |
|
|
(void *)(unsigned long)current_cpu(),
|
3858 |
|
|
(void *)(unsigned long)current_pid(),
|
3859 |
|
|
0,0,0,0,0,0,0,0,0,0);
|
3860 |
|
|
}
|
3861 |
|
|
#endif
|