OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [fs/] [xfs/] [xfs_inode.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3
 *
4
 * This program is free software; you can redistribute it and/or modify it
5
 * under the terms of version 2 of the GNU General Public License as
6
 * published by the Free Software Foundation.
7
 *
8
 * This program is distributed in the hope that it would be useful, but
9
 * WITHOUT ANY WARRANTY; without even the implied warranty of
10
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11
 *
12
 * Further, this software is distributed without any warranty that it is
13
 * free of the rightful claim of any third person regarding infringement
14
 * or the like.  Any license provided herein, whether implied or
15
 * otherwise, applies only to this software file.  Patent licenses, if
16
 * any, provided herein do not apply to combinations of this program with
17
 * other software, or any other product whatsoever.
18
 *
19
 * You should have received a copy of the GNU General Public License along
20
 * with this program; if not, write the Free Software Foundation, Inc., 59
21
 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22
 *
23
 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24
 * Mountain View, CA  94043, or:
25
 *
26
 * http://www.sgi.com
27
 *
28
 * For further information regarding this notice, see:
29
 *
30
 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31
 */
32
 
33
#include "xfs.h"
34
#include "xfs_macros.h"
35
#include "xfs_types.h"
36
#include "xfs_inum.h"
37
#include "xfs_log.h"
38
#include "xfs_trans.h"
39
#include "xfs_trans_priv.h"
40
#include "xfs_sb.h"
41
#include "xfs_ag.h"
42
#include "xfs_dir.h"
43
#include "xfs_dir2.h"
44
#include "xfs_dmapi.h"
45
#include "xfs_mount.h"
46
#include "xfs_alloc_btree.h"
47
#include "xfs_bmap_btree.h"
48
#include "xfs_ialloc_btree.h"
49
#include "xfs_btree.h"
50
#include "xfs_imap.h"
51
#include "xfs_alloc.h"
52
#include "xfs_ialloc.h"
53
#include "xfs_attr_sf.h"
54
#include "xfs_dir_sf.h"
55
#include "xfs_dir2_sf.h"
56
#include "xfs_dinode.h"
57
#include "xfs_inode_item.h"
58
#include "xfs_inode.h"
59
#include "xfs_bmap.h"
60
#include "xfs_buf_item.h"
61
#include "xfs_rw.h"
62
#include "xfs_error.h"
63
#include "xfs_bit.h"
64
#include "xfs_utils.h"
65
#include "xfs_dir2_trace.h"
66
#include "xfs_quota.h"
67
#include "xfs_mac.h"
68
#include "xfs_acl.h"
69
 
70
 
71
kmem_zone_t *xfs_ifork_zone;
72
kmem_zone_t *xfs_inode_zone;
73
kmem_zone_t *xfs_chashlist_zone;
74
 
75
/*
76
 * Used in xfs_itruncate().  This is the maximum number of extents
77
 * freed from a file in a single transaction.
78
 */
79
#define XFS_ITRUNC_MAX_EXTENTS  2
80
 
81
STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
85
 
86
 
87
#ifdef DEBUG
88
/*
89
 * Make sure that the extents in the given memory buffer
90
 * are valid.
91
 */
92
STATIC void
93
xfs_validate_extents(
94
        xfs_bmbt_rec_t          *ep,
95
        int                     nrecs,
96
        int                     disk,
97
        xfs_exntfmt_t           fmt)
98
{
99
        xfs_bmbt_irec_t         irec;
100
        xfs_bmbt_rec_t          rec;
101
        int                     i;
102
 
103
        for (i = 0; i < nrecs; i++) {
104
                rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105
                rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106
                if (disk)
107
                        xfs_bmbt_disk_get_all(&rec, &irec);
108
                else
109
                        xfs_bmbt_get_all(&rec, &irec);
110
                if (fmt == XFS_EXTFMT_NOSTATE)
111
                        ASSERT(irec.br_state == XFS_EXT_NORM);
112
                ep++;
113
        }
114
}
115
#else /* DEBUG */
116
#define xfs_validate_extents(ep, nrecs, disk, fmt)
117
#endif /* DEBUG */
118
 
119
/*
120
 * Check that none of the inode's in the buffer have a next
121
 * unlinked field of 0.
122
 */
123
#if defined(DEBUG)
124
void
125
xfs_inobp_check(
126
        xfs_mount_t     *mp,
127
        xfs_buf_t       *bp)
128
{
129
        int             i;
130
        int             j;
131
        xfs_dinode_t    *dip;
132
 
133
        j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
134
 
135
        for (i = 0; i < j; i++) {
136
                dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137
                                        i * mp->m_sb.sb_inodesize);
138
                if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT))  {
139
                        xfs_fs_cmn_err(CE_ALERT, mp,
140
                                "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
141
                                bp);
142
                        ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
143
                }
144
        }
145
}
146
#endif
147
 
148
/*
149
 * called from bwrite on xfs inode buffers
150
 */
151
void
152
xfs_inobp_bwcheck(xfs_buf_t *bp)
153
{
154
        xfs_mount_t     *mp;
155
        int             i;
156
        int             j;
157
        xfs_dinode_t    *dip;
158
 
159
        ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL);
160
 
161
        mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
162
 
163
 
164
        j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
165
 
166
        for (i = 0; i < j; i++)  {
167
                dip = (xfs_dinode_t *) xfs_buf_offset(bp,
168
                                                i * mp->m_sb.sb_inodesize);
169
                if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
170
                        cmn_err(CE_WARN,
171
"Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x",
172
                                INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
173
                                (__uint64_t)(__psunsigned_t) bp,
174
                                (__int64_t) XFS_BUF_ADDR(bp),
175
                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
176
                        xfs_fs_cmn_err(CE_WARN, mp,
177
                                "corrupt, unmount and run xfs_repair");
178
                }
179
                if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT))  {
180
                        cmn_err(CE_WARN,
181
"Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x",
182
                                (__uint64_t)(__psunsigned_t) bp,
183
                                (__int64_t) XFS_BUF_ADDR(bp),
184
                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
185
                        xfs_fs_cmn_err(CE_WARN, mp,
186
                                "corrupt, unmount and run xfs_repair");
187
                }
188
        }
189
 
190
        return;
191
}
192
 
193
/*
194
 * This routine is called to map an inode number within a file
195
 * system to the buffer containing the on-disk version of the
196
 * inode.  It returns a pointer to the buffer containing the
197
 * on-disk inode in the bpp parameter, and in the dip parameter
198
 * it returns a pointer to the on-disk inode within that buffer.
199
 *
200
 * If a non-zero error is returned, then the contents of bpp and
201
 * dipp are undefined.
202
 *
203
 * Use xfs_imap() to determine the size and location of the
204
 * buffer to read from disk.
205
 */
206
int
207
xfs_inotobp(
208
        xfs_mount_t     *mp,
209
        xfs_trans_t     *tp,
210
        xfs_ino_t       ino,
211
        xfs_dinode_t    **dipp,
212
        xfs_buf_t       **bpp,
213
        int             *offset)
214
{
215
        int             di_ok;
216
        xfs_imap_t      imap;
217
        xfs_buf_t       *bp;
218
        int             error;
219
        xfs_dinode_t    *dip;
220
 
221
        /*
222
         * Call the space managment code to find the location of the
223
         * inode on disk.
224
         */
225
        imap.im_blkno = 0;
226
        error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
227
        if (error != 0) {
228
                cmn_err(CE_WARN,
229
        "xfs_inotobp: xfs_imap()  returned an "
230
        "error %d on %s.  Returning error.", error, mp->m_fsname);
231
                return error;
232
        }
233
 
234
        /*
235
         * If the inode number maps to a block outside the bounds of the
236
         * file system then return NULL rather than calling read_buf
237
         * and panicing when we get an error from the driver.
238
         */
239
        if ((imap.im_blkno + imap.im_len) >
240
            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
241
                cmn_err(CE_WARN,
242
        "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
243
        "of the file system %s.  Returning EINVAL.",
244
                        imap.im_blkno, imap.im_len,mp->m_fsname);
245
                return XFS_ERROR(EINVAL);
246
        }
247
 
248
        /*
249
         * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
250
         * default to just a read_buf() call.
251
         */
252
        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
253
                                   (int)imap.im_len, XFS_BUF_LOCK, &bp);
254
 
255
        if (error) {
256
                cmn_err(CE_WARN,
257
        "xfs_inotobp: xfs_trans_read_buf()  returned an "
258
        "error %d on %s.  Returning error.", error, mp->m_fsname);
259
                return error;
260
        }
261
        dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
262
        di_ok =
263
                INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
264
                XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
265
        if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
266
                        XFS_RANDOM_ITOBP_INOTOBP))) {
267
                XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
268
                xfs_trans_brelse(tp, bp);
269
                cmn_err(CE_WARN,
270
        "xfs_inotobp: XFS_TEST_ERROR()  returned an "
271
        "error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
272
                return XFS_ERROR(EFSCORRUPTED);
273
        }
274
 
275
        xfs_inobp_check(mp, bp);
276
 
277
        /*
278
         * Set *dipp to point to the on-disk inode in the buffer.
279
         */
280
        *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
281
        *bpp = bp;
282
        *offset = imap.im_boffset;
283
        return 0;
284
}
285
 
286
 
287
/*
288
 * This routine is called to map an inode to the buffer containing
289
 * the on-disk version of the inode.  It returns a pointer to the
290
 * buffer containing the on-disk inode in the bpp parameter, and in
291
 * the dip parameter it returns a pointer to the on-disk inode within
292
 * that buffer.
293
 *
294
 * If a non-zero error is returned, then the contents of bpp and
295
 * dipp are undefined.
296
 *
297
 * If the inode is new and has not yet been initialized, use xfs_imap()
298
 * to determine the size and location of the buffer to read from disk.
299
 * If the inode has already been mapped to its buffer and read in once,
300
 * then use the mapping information stored in the inode rather than
301
 * calling xfs_imap().  This allows us to avoid the overhead of looking
302
 * at the inode btree for small block file systems (see xfs_dilocate()).
303
 * We can tell whether the inode has been mapped in before by comparing
304
 * its disk block address to 0.  Only uninitialized inodes will have
305
 * 0 for the disk block address.
306
 */
307
int
308
xfs_itobp(
309
        xfs_mount_t     *mp,
310
        xfs_trans_t     *tp,
311
        xfs_inode_t     *ip,
312
        xfs_dinode_t    **dipp,
313
        xfs_buf_t       **bpp,
314
        xfs_daddr_t     bno)
315
{
316
        xfs_buf_t       *bp;
317
        int             error;
318
        xfs_imap_t      imap;
319
#ifdef __KERNEL__
320
        int             i;
321
        int             ni;
322
#endif
323
 
324
        if (ip->i_blkno == (xfs_daddr_t)0) {
325
                /*
326
                 * Call the space management code to find the location of the
327
                 * inode on disk.
328
                 */
329
                imap.im_blkno = bno;
330
                error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
331
                if (error != 0) {
332
                        return error;
333
                }
334
 
335
                /*
336
                 * If the inode number maps to a block outside the bounds
337
                 * of the file system then return NULL rather than calling
338
                 * read_buf and panicing when we get an error from the
339
                 * driver.
340
                 */
341
                if ((imap.im_blkno + imap.im_len) >
342
                    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
343
#ifdef DEBUG
344
                        xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
345
                                        "(imap.im_blkno (0x%llx) "
346
                                        "+ imap.im_len (0x%llx)) > "
347
                                        " XFS_FSB_TO_BB(mp, "
348
                                        "mp->m_sb.sb_dblocks) (0x%llx)",
349
                                        (unsigned long long) imap.im_blkno,
350
                                        (unsigned long long) imap.im_len,
351
                                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
352
#endif /* DEBUG */
353
                        return XFS_ERROR(EINVAL);
354
                }
355
 
356
                /*
357
                 * Fill in the fields in the inode that will be used to
358
                 * map the inode to its buffer from now on.
359
                 */
360
                ip->i_blkno = imap.im_blkno;
361
                ip->i_len = imap.im_len;
362
                ip->i_boffset = imap.im_boffset;
363
        } else {
364
                /*
365
                 * We've already mapped the inode once, so just use the
366
                 * mapping that we saved the first time.
367
                 */
368
                imap.im_blkno = ip->i_blkno;
369
                imap.im_len = ip->i_len;
370
                imap.im_boffset = ip->i_boffset;
371
        }
372
        ASSERT(bno == 0 || bno == imap.im_blkno);
373
 
374
        /*
375
         * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
376
         * default to just a read_buf() call.
377
         */
378
        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
379
                                   (int)imap.im_len, XFS_BUF_LOCK, &bp);
380
 
381
        if (error) {
382
#ifdef DEBUG
383
                xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
384
                                "xfs_trans_read_buf() returned error %d, "
385
                                "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
386
                                error, (unsigned long long) imap.im_blkno,
387
                                (unsigned long long) imap.im_len);
388
#endif /* DEBUG */
389
                return error;
390
        }
391
#ifdef __KERNEL__
392
        /*
393
         * Validate the magic number and version of every inode in the buffer
394
         * (if DEBUG kernel) or the first inode in the buffer, otherwise.
395
         */
396
#ifdef DEBUG
397
        ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
398
#else
399
        ni = 1;
400
#endif
401
        for (i = 0; i < ni; i++) {
402
                int             di_ok;
403
                xfs_dinode_t    *dip;
404
 
405
                dip = (xfs_dinode_t *)xfs_buf_offset(bp,
406
                                        (i << mp->m_sb.sb_inodelog));
407
                di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
408
                            XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
409
                if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
410
                                 XFS_RANDOM_ITOBP_INOTOBP))) {
411
#ifdef DEBUG
412
                        prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
413
                                mp->m_ddev_targp,
414
                                (unsigned long long)imap.im_blkno, i,
415
                                INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
416
#endif
417
                        XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
418
                                             mp, dip);
419
                        xfs_trans_brelse(tp, bp);
420
                        return XFS_ERROR(EFSCORRUPTED);
421
                }
422
        }
423
#endif  /* __KERNEL__ */
424
 
425
        xfs_inobp_check(mp, bp);
426
 
427
        /*
428
         * Mark the buffer as an inode buffer now that it looks good
429
         */
430
        XFS_BUF_SET_VTYPE(bp, B_FS_INO);
431
 
432
        /*
433
         * Set *dipp to point to the on-disk inode in the buffer.
434
         */
435
        *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
436
        *bpp = bp;
437
        return 0;
438
}
439
 
440
/*
441
 * Move inode type and inode format specific information from the
442
 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
443
 * this means set if_rdev to the proper value.  For files, directories,
444
 * and symlinks this means to bring in the in-line data or extent
445
 * pointers.  For a file in B-tree format, only the root is immediately
446
 * brought in-core.  The rest will be in-lined in if_extents when it
447
 * is first referenced (see xfs_iread_extents()).
448
 */
449
STATIC int
450
xfs_iformat(
451
        xfs_inode_t             *ip,
452
        xfs_dinode_t            *dip)
453
{
454
        xfs_attr_shortform_t    *atp;
455
        int                     size;
456
        int                     error;
457
        xfs_fsize_t             di_size;
458
        ip->i_df.if_ext_max =
459
                XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
460
        error = 0;
461
 
462
        if (unlikely(
463
            INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
464
                INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
465
            INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
466
                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
467
                        "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
468
                        "  Unmount and run xfs_repair.",
469
                        (unsigned long long)ip->i_ino,
470
                        (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
471
                            + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
472
                        (unsigned long long)
473
                        INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
474
                XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
475
                                     ip->i_mount, dip);
476
                return XFS_ERROR(EFSCORRUPTED);
477
        }
478
 
479
        if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
480
                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
481
                        "corrupt dinode %Lu, forkoff = 0x%x."
482
                        "  Unmount and run xfs_repair.",
483
                        (unsigned long long)ip->i_ino,
484
                        (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
485
                XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
486
                                     ip->i_mount, dip);
487
                return XFS_ERROR(EFSCORRUPTED);
488
        }
489
 
490
        switch (ip->i_d.di_mode & S_IFMT) {
491
        case S_IFIFO:
492
        case S_IFCHR:
493
        case S_IFBLK:
494
        case S_IFSOCK:
495
                if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
496
                        XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
497
                                              ip->i_mount, dip);
498
                        return XFS_ERROR(EFSCORRUPTED);
499
                }
500
                ip->i_d.di_size = 0;
501
                ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
502
                break;
503
 
504
        case S_IFREG:
505
        case S_IFLNK:
506
        case S_IFDIR:
507
                switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
508
                case XFS_DINODE_FMT_LOCAL:
509
                        /*
510
                         * no local regular files yet
511
                         */
512
                        if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
513
                                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
514
                                        "corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.",
515
                                        (unsigned long long) ip->i_ino);
516
                                XFS_CORRUPTION_ERROR("xfs_iformat(4)",
517
                                                     XFS_ERRLEVEL_LOW,
518
                                                     ip->i_mount, dip);
519
                                return XFS_ERROR(EFSCORRUPTED);
520
                        }
521
 
522
                        di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
523
                        if (unlikely(di_size >
524
                            XFS_DFORK_DSIZE_ARCH(dip, ip->i_mount, ARCH_CONVERT))) {
525
                                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
526
                                        "corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.",
527
                                        (unsigned long long) ip->i_ino,
528
                                        (long long) di_size);
529
                                XFS_CORRUPTION_ERROR("xfs_iformat(5)",
530
                                                     XFS_ERRLEVEL_LOW,
531
                                                     ip->i_mount, dip);
532
                                return XFS_ERROR(EFSCORRUPTED);
533
                        }
534
 
535
                        size = (int)di_size;
536
                        error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
537
                        break;
538
                case XFS_DINODE_FMT_EXTENTS:
539
                        error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
540
                        break;
541
                case XFS_DINODE_FMT_BTREE:
542
                        error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
543
                        break;
544
                default:
545
                        XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
546
                                         ip->i_mount);
547
                        return XFS_ERROR(EFSCORRUPTED);
548
                }
549
                break;
550
 
551
        default:
552
                XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
553
                return XFS_ERROR(EFSCORRUPTED);
554
        }
555
        if (error) {
556
                return error;
557
        }
558
        if (!XFS_DFORK_Q_ARCH(dip, ARCH_CONVERT))
559
                return 0;
560
        ASSERT(ip->i_afp == NULL);
561
        ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
562
        ip->i_afp->if_ext_max =
563
                XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
564
        switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
565
        case XFS_DINODE_FMT_LOCAL:
566
                atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR_ARCH(dip, ARCH_CONVERT);
567
                size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
568
                error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
569
                break;
570
        case XFS_DINODE_FMT_EXTENTS:
571
                error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
572
                break;
573
        case XFS_DINODE_FMT_BTREE:
574
                error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
575
                break;
576
        default:
577
                error = XFS_ERROR(EFSCORRUPTED);
578
                break;
579
        }
580
        if (error) {
581
                kmem_zone_free(xfs_ifork_zone, ip->i_afp);
582
                ip->i_afp = NULL;
583
                xfs_idestroy_fork(ip, XFS_DATA_FORK);
584
        }
585
        return error;
586
}
587
 
588
/*
589
 * The file is in-lined in the on-disk inode.
590
 * If it fits into if_inline_data, then copy
591
 * it there, otherwise allocate a buffer for it
592
 * and copy the data there.  Either way, set
593
 * if_data to point at the data.
594
 * If we allocate a buffer for the data, make
595
 * sure that its size is a multiple of 4 and
596
 * record the real size in i_real_bytes.
597
 */
598
STATIC int
599
xfs_iformat_local(
600
        xfs_inode_t     *ip,
601
        xfs_dinode_t    *dip,
602
        int             whichfork,
603
        int             size)
604
{
605
        xfs_ifork_t     *ifp;
606
        int             real_size;
607
 
608
        /*
609
         * If the size is unreasonable, then something
610
         * is wrong and we just bail out rather than crash in
611
         * kmem_alloc() or memcpy() below.
612
         */
613
        if (unlikely(size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
614
                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
615
                        "corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.",
616
                        (unsigned long long) ip->i_ino, size,
617
                        XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT));
618
                XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
619
                                     ip->i_mount, dip);
620
                return XFS_ERROR(EFSCORRUPTED);
621
        }
622
        ifp = XFS_IFORK_PTR(ip, whichfork);
623
        real_size = 0;
624
        if (size == 0)
625
                ifp->if_u1.if_data = NULL;
626
        else if (size <= sizeof(ifp->if_u2.if_inline_data))
627
                ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
628
        else {
629
                real_size = roundup(size, 4);
630
                ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
631
        }
632
        ifp->if_bytes = size;
633
        ifp->if_real_bytes = real_size;
634
        if (size)
635
                memcpy(ifp->if_u1.if_data,
636
                        XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT), size);
637
        ifp->if_flags &= ~XFS_IFEXTENTS;
638
        ifp->if_flags |= XFS_IFINLINE;
639
        return 0;
640
}
641
 
642
/*
643
 * The file consists of a set of extents all
644
 * of which fit into the on-disk inode.
645
 * If there are few enough extents to fit into
646
 * the if_inline_ext, then copy them there.
647
 * Otherwise allocate a buffer for them and copy
648
 * them into it.  Either way, set if_extents
649
 * to point at the extents.
650
 */
651
STATIC int
652
xfs_iformat_extents(
653
        xfs_inode_t     *ip,
654
        xfs_dinode_t    *dip,
655
        int             whichfork)
656
{
657
        xfs_bmbt_rec_t  *ep, *dp;
658
        xfs_ifork_t     *ifp;
659
        int             nex;
660
        int             real_size;
661
        int             size;
662
        int             i;
663
 
664
        ifp = XFS_IFORK_PTR(ip, whichfork);
665
        nex = XFS_DFORK_NEXTENTS_ARCH(dip, whichfork, ARCH_CONVERT);
666
        size = nex * (uint)sizeof(xfs_bmbt_rec_t);
667
 
668
        /*
669
         * If the number of extents is unreasonable, then something
670
         * is wrong and we just bail out rather than crash in
671
         * kmem_alloc() or memcpy() below.
672
         */
673
        if (unlikely(size < 0 || size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
674
                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
675
                        "corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.",
676
                        (unsigned long long) ip->i_ino, nex);
677
                XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
678
                                     ip->i_mount, dip);
679
                return XFS_ERROR(EFSCORRUPTED);
680
        }
681
 
682
        real_size = 0;
683
        if (nex == 0)
684
                ifp->if_u1.if_extents = NULL;
685
        else if (nex <= XFS_INLINE_EXTS)
686
                ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
687
        else {
688
                ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
689
                ASSERT(ifp->if_u1.if_extents != NULL);
690
                real_size = size;
691
        }
692
        ifp->if_bytes = size;
693
        ifp->if_real_bytes = real_size;
694
        if (size) {
695
                dp = (xfs_bmbt_rec_t *)
696
                        XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
697
                xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
698
                ep = ifp->if_u1.if_extents;
699
                for (i = 0; i < nex; i++, ep++, dp++) {
700
                        ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
701
                                                                ARCH_CONVERT);
702
                        ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
703
                                                                ARCH_CONVERT);
704
                }
705
                xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
706
                        whichfork);
707
                if (whichfork != XFS_DATA_FORK ||
708
                        XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
709
                                if (unlikely(xfs_check_nostate_extents(
710
                                    ifp->if_u1.if_extents, nex))) {
711
                                        XFS_ERROR_REPORT("xfs_iformat_extents(2)",
712
                                                         XFS_ERRLEVEL_LOW,
713
                                                         ip->i_mount);
714
                                        return XFS_ERROR(EFSCORRUPTED);
715
                                }
716
        }
717
        ifp->if_flags |= XFS_IFEXTENTS;
718
        return 0;
719
}
720
 
721
/*
722
 * The file has too many extents to fit into
723
 * the inode, so they are in B-tree format.
724
 * Allocate a buffer for the root of the B-tree
725
 * and copy the root into it.  The i_extents
726
 * field will remain NULL until all of the
727
 * extents are read in (when they are needed).
728
 */
729
STATIC int
730
xfs_iformat_btree(
731
        xfs_inode_t             *ip,
732
        xfs_dinode_t            *dip,
733
        int                     whichfork)
734
{
735
        xfs_bmdr_block_t        *dfp;
736
        xfs_ifork_t             *ifp;
737
        /* REFERENCED */
738
        int                     nrecs;
739
        int                     size;
740
 
741
        ifp = XFS_IFORK_PTR(ip, whichfork);
742
        dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
743
        size = XFS_BMAP_BROOT_SPACE(dfp);
744
        nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
745
 
746
        /*
747
         * blow out if -- fork has less extents than can fit in
748
         * fork (fork shouldn't be a btree format), root btree
749
         * block has more records than can fit into the fork,
750
         * or the number of extents is greater than the number of
751
         * blocks.
752
         */
753
        if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
754
            || XFS_BMDR_SPACE_CALC(nrecs) >
755
                        XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT)
756
            || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
757
                xfs_fs_cmn_err(CE_WARN, ip->i_mount,
758
                        "corrupt inode %Lu (btree).  Unmount and run xfs_repair.",
759
                        (unsigned long long) ip->i_ino);
760
                XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
761
                                 ip->i_mount);
762
                return XFS_ERROR(EFSCORRUPTED);
763
        }
764
 
765
        ifp->if_broot_bytes = size;
766
        ifp->if_broot = kmem_alloc(size, KM_SLEEP);
767
        ASSERT(ifp->if_broot != NULL);
768
        /*
769
         * Copy and convert from the on-disk structure
770
         * to the in-memory structure.
771
         */
772
        xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT),
773
                ifp->if_broot, size);
774
        ifp->if_flags &= ~XFS_IFEXTENTS;
775
        ifp->if_flags |= XFS_IFBROOT;
776
 
777
        return 0;
778
}
779
 
780
/*
781
 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
782
 * and native format
783
 *
784
 * buf  = on-disk representation
785
 * dip  = native representation
786
 * dir  = direction - +ve -> disk to native
787
 *                    -ve -> native to disk
788
 * arch = on-disk architecture
789
 */
790
void
791
xfs_xlate_dinode_core(
792
        xfs_caddr_t             buf,
793
        xfs_dinode_core_t       *dip,
794
        int                     dir,
795
        xfs_arch_t              arch)
796
{
797
        xfs_dinode_core_t       *buf_core = (xfs_dinode_core_t *)buf;
798
        xfs_dinode_core_t       *mem_core = (xfs_dinode_core_t *)dip;
799
 
800
        ASSERT(dir);
801
        if (arch == ARCH_NOCONVERT) {
802
                if (dir > 0) {
803
                        memcpy((xfs_caddr_t)mem_core, (xfs_caddr_t)buf_core,
804
                                sizeof(xfs_dinode_core_t));
805
                } else {
806
                        memcpy((xfs_caddr_t)buf_core, (xfs_caddr_t)mem_core,
807
                                sizeof(xfs_dinode_core_t));
808
                }
809
                return;
810
        }
811
 
812
        INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
813
        INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
814
        INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
815
        INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
816
        INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
817
        INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
818
        INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
819
        INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
820
        INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
821
 
822
        if (dir > 0) {
823
                memcpy(mem_core->di_pad, buf_core->di_pad,
824
                        sizeof(buf_core->di_pad));
825
        } else {
826
                memcpy(buf_core->di_pad, mem_core->di_pad,
827
                        sizeof(buf_core->di_pad));
828
        }
829
 
830
        INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
831
 
832
        INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
833
                        dir, arch);
834
        INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
835
                        dir, arch);
836
        INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
837
                        dir, arch);
838
        INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
839
                        dir, arch);
840
        INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
841
                        dir, arch);
842
        INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
843
                        dir, arch);
844
        INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
845
        INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
846
        INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
847
        INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
848
        INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
849
        INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
850
        INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
851
        INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
852
        INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
853
        INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
854
        INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
855
}
856
 
857
/*
858
 * Given a mount structure and an inode number, return a pointer
859
 * to a newly allocated in-core inode coresponding to the given
860
 * inode number.
861
 *
862
 * Initialize the inode's attributes and extent pointers if it
863
 * already has them (it will not if the inode has no links).
864
 */
865
int
866
xfs_iread(
867
        xfs_mount_t     *mp,
868
        xfs_trans_t     *tp,
869
        xfs_ino_t       ino,
870
        xfs_inode_t     **ipp,
871
        xfs_daddr_t     bno)
872
{
873
        xfs_buf_t       *bp;
874
        xfs_dinode_t    *dip;
875
        xfs_inode_t     *ip;
876
        int             error;
877
 
878
        ASSERT(xfs_inode_zone != NULL);
879
 
880
        ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
881
        ip->i_ino = ino;
882
        ip->i_mount = mp;
883
 
884
        /*
885
         * Get pointer's to the on-disk inode and the buffer containing it.
886
         * If the inode number refers to a block outside the file system
887
         * then xfs_itobp() will return NULL.  In this case we should
888
         * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
889
         * know that this is a new incore inode.
890
         */
891
        error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
892
 
893
        if (error != 0) {
894
                kmem_zone_free(xfs_inode_zone, ip);
895
                return error;
896
        }
897
 
898
        /*
899
         * Initialize inode's trace buffers.
900
         * Do this before xfs_iformat in case it adds entries.
901
         */
902
#ifdef XFS_BMAP_TRACE
903
        ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
904
#endif
905
#ifdef XFS_BMBT_TRACE
906
        ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
907
#endif
908
#ifdef XFS_RW_TRACE
909
        ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
910
#endif
911
#ifdef XFS_ILOCK_TRACE
912
        ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
913
#endif
914
#ifdef XFS_DIR2_TRACE
915
        ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
916
#endif
917
 
918
        /*
919
         * If we got something that isn't an inode it means someone
920
         * (nfs or dmi) has a stale handle.
921
         */
922
        if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
923
                kmem_zone_free(xfs_inode_zone, ip);
924
                xfs_trans_brelse(tp, bp);
925
#ifdef DEBUG
926
                xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
927
                                "dip->di_core.di_magic (0x%x) != "
928
                                "XFS_DINODE_MAGIC (0x%x)",
929
                                INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
930
                                XFS_DINODE_MAGIC);
931
#endif /* DEBUG */
932
                return XFS_ERROR(EINVAL);
933
        }
934
 
935
        /*
936
         * If the on-disk inode is already linked to a directory
937
         * entry, copy all of the inode into the in-core inode.
938
         * xfs_iformat() handles copying in the inode format
939
         * specific information.
940
         * Otherwise, just get the truly permanent information.
941
         */
942
        if (!INT_ISZERO(dip->di_core.di_mode, ARCH_CONVERT)) {
943
                xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
944
                     &(ip->i_d), 1, ARCH_CONVERT);
945
                error = xfs_iformat(ip, dip);
946
                if (error)  {
947
                        kmem_zone_free(xfs_inode_zone, ip);
948
                        xfs_trans_brelse(tp, bp);
949
#ifdef DEBUG
950
                        xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
951
                                        "xfs_iformat() returned error %d",
952
                                        error);
953
#endif /* DEBUG */
954
                        return error;
955
                }
956
        } else {
957
                ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
958
                ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
959
                ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
960
                ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
961
                /*
962
                 * Make sure to pull in the mode here as well in
963
                 * case the inode is released without being used.
964
                 * This ensures that xfs_inactive() will see that
965
                 * the inode is already free and not try to mess
966
                 * with the uninitialized part of it.
967
                 */
968
                ip->i_d.di_mode = 0;
969
                /*
970
                 * Initialize the per-fork minima and maxima for a new
971
                 * inode here.  xfs_iformat will do it for old inodes.
972
                 */
973
                ip->i_df.if_ext_max =
974
                        XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
975
        }
976
 
977
        INIT_LIST_HEAD(&ip->i_reclaim);
978
 
979
        /*
980
         * The inode format changed when we moved the link count and
981
         * made it 32 bits long.  If this is an old format inode,
982
         * convert it in memory to look like a new one.  If it gets
983
         * flushed to disk we will convert back before flushing or
984
         * logging it.  We zero out the new projid field and the old link
985
         * count field.  We'll handle clearing the pad field (the remains
986
         * of the old uuid field) when we actually convert the inode to
987
         * the new format. We don't change the version number so that we
988
         * can distinguish this from a real new format inode.
989
         */
990
        if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
991
                ip->i_d.di_nlink = ip->i_d.di_onlink;
992
                ip->i_d.di_onlink = 0;
993
                ip->i_d.di_projid = 0;
994
        }
995
 
996
        ip->i_delayed_blks = 0;
997
 
998
        /*
999
         * Mark the buffer containing the inode as something to keep
1000
         * around for a while.  This helps to keep recently accessed
1001
         * meta-data in-core longer.
1002
         */
1003
         XFS_BUF_SET_REF(bp, XFS_INO_REF);
1004
 
1005
        /*
1006
         * Use xfs_trans_brelse() to release the buffer containing the
1007
         * on-disk inode, because it was acquired with xfs_trans_read_buf()
1008
         * in xfs_itobp() above.  If tp is NULL, this is just a normal
1009
         * brelse().  If we're within a transaction, then xfs_trans_brelse()
1010
         * will only release the buffer if it is not dirty within the
1011
         * transaction.  It will be OK to release the buffer in this case,
1012
         * because inodes on disk are never destroyed and we will be
1013
         * locking the new in-core inode before putting it in the hash
1014
         * table where other processes can find it.  Thus we don't have
1015
         * to worry about the inode being changed just because we released
1016
         * the buffer.
1017
         */
1018
        xfs_trans_brelse(tp, bp);
1019
        *ipp = ip;
1020
        return 0;
1021
}
1022
 
1023
/*
1024
 * Read in extents from a btree-format inode.
1025
 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1026
 */
1027
int
1028
xfs_iread_extents(
1029
        xfs_trans_t     *tp,
1030
        xfs_inode_t     *ip,
1031
        int             whichfork)
1032
{
1033
        int             error;
1034
        xfs_ifork_t     *ifp;
1035
        size_t          size;
1036
 
1037
        if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1038
                XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1039
                                 ip->i_mount);
1040
                return XFS_ERROR(EFSCORRUPTED);
1041
        }
1042
        size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1043
        ifp = XFS_IFORK_PTR(ip, whichfork);
1044
        /*
1045
         * We know that the size is valid (it's checked in iformat_btree)
1046
         */
1047
        ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1048
        ASSERT(ifp->if_u1.if_extents != NULL);
1049
        ifp->if_lastex = NULLEXTNUM;
1050
        ifp->if_bytes = ifp->if_real_bytes = (int)size;
1051
        ifp->if_flags |= XFS_IFEXTENTS;
1052
        error = xfs_bmap_read_extents(tp, ip, whichfork);
1053
        if (error) {
1054
                kmem_free(ifp->if_u1.if_extents, size);
1055
                ifp->if_u1.if_extents = NULL;
1056
                ifp->if_bytes = ifp->if_real_bytes = 0;
1057
                ifp->if_flags &= ~XFS_IFEXTENTS;
1058
                return error;
1059
        }
1060
        xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1061
                XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1062
        return 0;
1063
}
1064
 
1065
/*
1066
 * Allocate an inode on disk and return a copy of its in-core version.
1067
 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1068
 * appropriately within the inode.  The uid and gid for the inode are
1069
 * set according to the contents of the given cred structure.
1070
 *
1071
 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1072
 * has a free inode available, call xfs_iget()
1073
 * to obtain the in-core version of the allocated inode.  Finally,
1074
 * fill in the inode and log its initial contents.  In this case,
1075
 * ialloc_context would be set to NULL and call_again set to false.
1076
 *
1077
 * If xfs_dialloc() does not have an available inode,
1078
 * it will replenish its supply by doing an allocation. Since we can
1079
 * only do one allocation within a transaction without deadlocks, we
1080
 * must commit the current transaction before returning the inode itself.
1081
 * In this case, therefore, we will set call_again to true and return.
1082
 * The caller should then commit the current transaction, start a new
1083
 * transaction, and call xfs_ialloc() again to actually get the inode.
1084
 *
1085
 * To ensure that some other process does not grab the inode that
1086
 * was allocated during the first call to xfs_ialloc(), this routine
1087
 * also returns the [locked] bp pointing to the head of the freelist
1088
 * as ialloc_context.  The caller should hold this buffer across
1089
 * the commit and pass it back into this routine on the second call.
1090
 */
1091
int
1092
xfs_ialloc(
1093
        xfs_trans_t     *tp,
1094
        xfs_inode_t     *pip,
1095
        mode_t          mode,
1096
        nlink_t         nlink,
1097
        xfs_dev_t       rdev,
1098
        cred_t          *cr,
1099
        xfs_prid_t      prid,
1100
        int             okalloc,
1101
        xfs_buf_t       **ialloc_context,
1102
        boolean_t       *call_again,
1103
        xfs_inode_t     **ipp)
1104
{
1105
        xfs_ino_t       ino;
1106
        xfs_inode_t     *ip;
1107
        vnode_t         *vp;
1108
        uint            flags;
1109
        int             error;
1110
 
1111
        /*
1112
         * Call the space management code to pick
1113
         * the on-disk inode to be allocated.
1114
         */
1115
        ASSERT(pip != NULL);
1116
        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1117
                            ialloc_context, call_again, &ino);
1118
        if (error != 0) {
1119
                return error;
1120
        }
1121
        if (*call_again || ino == NULLFSINO) {
1122
                *ipp = NULL;
1123
                return 0;
1124
        }
1125
        ASSERT(*ialloc_context == NULL);
1126
 
1127
        /*
1128
         * Get the in-core inode with the lock held exclusively.
1129
         * This is because we're setting fields here we need
1130
         * to prevent others from looking at until we're done.
1131
         */
1132
        error = xfs_trans_iget(tp->t_mountp, tp, ino, XFS_ILOCK_EXCL, &ip);
1133
        if (error != 0) {
1134
                return error;
1135
        }
1136
        ASSERT(ip != NULL);
1137
 
1138
        vp = XFS_ITOV(ip);
1139
        vp->v_type = IFTOVT(mode);
1140
        ip->i_d.di_mode = (__uint16_t)mode;
1141
        ip->i_d.di_onlink = 0;
1142
        ip->i_d.di_nlink = nlink;
1143
        ASSERT(ip->i_d.di_nlink == nlink);
1144
        ip->i_d.di_uid = current_fsuid(cr);
1145
        ip->i_d.di_gid = current_fsgid(cr);
1146
        ip->i_d.di_projid = prid;
1147
        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1148
 
1149
        /*
1150
         * If the superblock version is up to where we support new format
1151
         * inodes and this is currently an old format inode, then change
1152
         * the inode version number now.  This way we only do the conversion
1153
         * here rather than here and in the flush/logging code.
1154
         */
1155
        if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1156
            ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1157
                ip->i_d.di_version = XFS_DINODE_VERSION_2;
1158
                /*
1159
                 * We've already zeroed the old link count, the projid field,
1160
                 * and the pad field.
1161
                 */
1162
        }
1163
 
1164
        /*
1165
         * Project ids won't be stored on disk if we are using a version 1 inode.
1166
         */
1167
        if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1168
                xfs_bump_ino_vers2(tp, ip);
1169
 
1170
        if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1171
                ip->i_d.di_gid = pip->i_d.di_gid;
1172
                if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1173
                        ip->i_d.di_mode |= S_ISGID;
1174
                }
1175
        }
1176
 
1177
        /*
1178
         * If the group ID of the new file does not match the effective group
1179
         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1180
         * (and only if the irix_sgid_inherit compatibility variable is set).
1181
         */
1182
        if ((irix_sgid_inherit) &&
1183
            (ip->i_d.di_mode & S_ISGID) &&
1184
            (!in_group_p((gid_t)ip->i_d.di_gid))) {
1185
                ip->i_d.di_mode &= ~S_ISGID;
1186
        }
1187
 
1188
        ip->i_d.di_size = 0;
1189
        ip->i_d.di_nextents = 0;
1190
        ASSERT(ip->i_d.di_nblocks == 0);
1191
        xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1192
        /*
1193
         * di_gen will have been taken care of in xfs_iread.
1194
         */
1195
        ip->i_d.di_extsize = 0;
1196
        ip->i_d.di_dmevmask = 0;
1197
        ip->i_d.di_dmstate = 0;
1198
        ip->i_d.di_flags = 0;
1199
        flags = XFS_ILOG_CORE;
1200
        switch (mode & S_IFMT) {
1201
        case S_IFIFO:
1202
        case S_IFCHR:
1203
        case S_IFBLK:
1204
        case S_IFSOCK:
1205
                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1206
                ip->i_df.if_u2.if_rdev = rdev;
1207
                ip->i_df.if_flags = 0;
1208
                flags |= XFS_ILOG_DEV;
1209
                break;
1210
        case S_IFREG:
1211
        case S_IFDIR:
1212
                if (pip->i_d.di_flags &
1213
                    (XFS_DIFLAG_NOATIME|XFS_DIFLAG_NODUMP|XFS_DIFLAG_SYNC)) {
1214
                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1215
                            xfs_inherit_noatime)
1216
                                ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
1217
                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1218
                            xfs_inherit_nodump)
1219
                                ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
1220
                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1221
                            xfs_inherit_sync)
1222
                                ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
1223
                }
1224
        case S_IFLNK:
1225
                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1226
                ip->i_df.if_flags = XFS_IFEXTENTS;
1227
                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1228
                ip->i_df.if_u1.if_extents = NULL;
1229
                break;
1230
        default:
1231
                ASSERT(0);
1232
        }
1233
        /*
1234
         * Attribute fork settings for new inode.
1235
         */
1236
        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1237
        ip->i_d.di_anextents = 0;
1238
 
1239
        /*
1240
         * Log the new values stuffed into the inode.
1241
         */
1242
        xfs_trans_log_inode(tp, ip, flags);
1243
 
1244
        /* now that we have a v_type we can set Linux inode ops (& unlock) */
1245
        VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1246
 
1247
        *ipp = ip;
1248
        return 0;
1249
}
1250
 
1251
/*
1252
 * Check to make sure that there are no blocks allocated to the
1253
 * file beyond the size of the file.  We don't check this for
1254
 * files with fixed size extents or real time extents, but we
1255
 * at least do it for regular files.
1256
 */
1257
#ifdef DEBUG
1258
void
1259
xfs_isize_check(
1260
        xfs_mount_t     *mp,
1261
        xfs_inode_t     *ip,
1262
        xfs_fsize_t     isize)
1263
{
1264
        xfs_fileoff_t   map_first;
1265
        int             nimaps;
1266
        xfs_bmbt_irec_t imaps[2];
1267
 
1268
        if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1269
                return;
1270
 
1271
        if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1272
                return;
1273
 
1274
        nimaps = 2;
1275
        map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1276
        /*
1277
         * The filesystem could be shutting down, so bmapi may return
1278
         * an error.
1279
         */
1280
        if (xfs_bmapi(NULL, ip, map_first,
1281
                         (XFS_B_TO_FSB(mp,
1282
                                       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1283
                          map_first),
1284
                         XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1285
                         NULL))
1286
            return;
1287
        ASSERT(nimaps == 1);
1288
        ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1289
}
1290
#endif  /* DEBUG */
1291
 
1292
/*
1293
 * Calculate the last possible buffered byte in a file.  This must
1294
 * include data that was buffered beyond the EOF by the write code.
1295
 * This also needs to deal with overflowing the xfs_fsize_t type
1296
 * which can happen for sizes near the limit.
1297
 *
1298
 * We also need to take into account any blocks beyond the EOF.  It
1299
 * may be the case that they were buffered by a write which failed.
1300
 * In that case the pages will still be in memory, but the inode size
1301
 * will never have been updated.
1302
 */
1303
xfs_fsize_t
1304
xfs_file_last_byte(
1305
        xfs_inode_t     *ip)
1306
{
1307
        xfs_mount_t     *mp;
1308
        xfs_fsize_t     last_byte;
1309
        xfs_fileoff_t   last_block;
1310
        xfs_fileoff_t   size_last_block;
1311
        int             error;
1312
 
1313
        ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1314
 
1315
        mp = ip->i_mount;
1316
        /*
1317
         * Only check for blocks beyond the EOF if the extents have
1318
         * been read in.  This eliminates the need for the inode lock,
1319
         * and it also saves us from looking when it really isn't
1320
         * necessary.
1321
         */
1322
        if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1323
                error = xfs_bmap_last_offset(NULL, ip, &last_block,
1324
                        XFS_DATA_FORK);
1325
                if (error) {
1326
                        last_block = 0;
1327
                }
1328
        } else {
1329
                last_block = 0;
1330
        }
1331
        size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1332
        last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1333
 
1334
        last_byte = XFS_FSB_TO_B(mp, last_block);
1335
        if (last_byte < 0) {
1336
                return XFS_MAXIOFFSET(mp);
1337
        }
1338
        last_byte += (1 << mp->m_writeio_log);
1339
        if (last_byte < 0) {
1340
                return XFS_MAXIOFFSET(mp);
1341
        }
1342
        return last_byte;
1343
}
1344
 
1345
#if defined(XFS_RW_TRACE)
1346
STATIC void
1347
xfs_itrunc_trace(
1348
        int             tag,
1349
        xfs_inode_t     *ip,
1350
        int             flag,
1351
        xfs_fsize_t     new_size,
1352
        xfs_off_t       toss_start,
1353
        xfs_off_t       toss_finish)
1354
{
1355
        if (ip->i_rwtrace == NULL) {
1356
                return;
1357
        }
1358
 
1359
        ktrace_enter(ip->i_rwtrace,
1360
                     (void*)((long)tag),
1361
                     (void*)ip,
1362
                     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1363
                     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1364
                     (void*)((long)flag),
1365
                     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1366
                     (void*)(unsigned long)(new_size & 0xffffffff),
1367
                     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1368
                     (void*)(unsigned long)(toss_start & 0xffffffff),
1369
                     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1370
                     (void*)(unsigned long)(toss_finish & 0xffffffff),
1371
                     (void*)(unsigned long)current_cpu(),
1372
                     (void*)0,
1373
                     (void*)0,
1374
                     (void*)0,
1375
                     (void*)0);
1376
}
1377
#else
1378
#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1379
#endif
1380
 
1381
/*
1382
 * Start the truncation of the file to new_size.  The new size
1383
 * must be smaller than the current size.  This routine will
1384
 * clear the buffer and page caches of file data in the removed
1385
 * range, and xfs_itruncate_finish() will remove the underlying
1386
 * disk blocks.
1387
 *
1388
 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1389
 * must NOT have the inode lock held at all.  This is because we're
1390
 * calling into the buffer/page cache code and we can't hold the
1391
 * inode lock when we do so.
1392
 *
1393
 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1394
 * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1395
 * in the case that the caller is locking things out of order and
1396
 * may not be able to call xfs_itruncate_finish() with the inode lock
1397
 * held without dropping the I/O lock.  If the caller must drop the
1398
 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1399
 * must be called again with all the same restrictions as the initial
1400
 * call.
1401
 */
1402
void
1403
xfs_itruncate_start(
1404
        xfs_inode_t     *ip,
1405
        uint            flags,
1406
        xfs_fsize_t     new_size)
1407
{
1408
        xfs_fsize_t     last_byte;
1409
        xfs_off_t       toss_start;
1410
        xfs_mount_t     *mp;
1411
        vnode_t         *vp;
1412
 
1413
        ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1414
        ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1415
        ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1416
               (flags == XFS_ITRUNC_MAYBE));
1417
 
1418
        mp = ip->i_mount;
1419
        vp = XFS_ITOV(ip);
1420
        /*
1421
         * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1422
         * overlapping the region being removed.  We have to use
1423
         * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1424
         * caller may not be able to finish the truncate without
1425
         * dropping the inode's I/O lock.  Make sure
1426
         * to catch any pages brought in by buffers overlapping
1427
         * the EOF by searching out beyond the isize by our
1428
         * block size. We round new_size up to a block boundary
1429
         * so that we don't toss things on the same block as
1430
         * new_size but before it.
1431
         *
1432
         * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1433
         * call remapf() over the same region if the file is mapped.
1434
         * This frees up mapped file references to the pages in the
1435
         * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1436
         * that we get the latest mapped changes flushed out.
1437
         */
1438
        toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1439
        toss_start = XFS_FSB_TO_B(mp, toss_start);
1440
        if (toss_start < 0) {
1441
                /*
1442
                 * The place to start tossing is beyond our maximum
1443
                 * file size, so there is no way that the data extended
1444
                 * out there.
1445
                 */
1446
                return;
1447
        }
1448
        last_byte = xfs_file_last_byte(ip);
1449
        xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1450
                         last_byte);
1451
        if (last_byte > toss_start) {
1452
                if (flags & XFS_ITRUNC_DEFINITE) {
1453
                        VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1454
                } else {
1455
                        VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1456
                }
1457
        }
1458
 
1459
#ifdef DEBUG
1460
        if (new_size == 0) {
1461
                ASSERT(VN_CACHED(vp) == 0);
1462
        }
1463
#endif
1464
}
1465
 
1466
/*
1467
 * Shrink the file to the given new_size.  The new
1468
 * size must be smaller than the current size.
1469
 * This will free up the underlying blocks
1470
 * in the removed range after a call to xfs_itruncate_start()
1471
 * or xfs_atruncate_start().
1472
 *
1473
 * The transaction passed to this routine must have made
1474
 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1475
 * This routine may commit the given transaction and
1476
 * start new ones, so make sure everything involved in
1477
 * the transaction is tidy before calling here.
1478
 * Some transaction will be returned to the caller to be
1479
 * committed.  The incoming transaction must already include
1480
 * the inode, and both inode locks must be held exclusively.
1481
 * The inode must also be "held" within the transaction.  On
1482
 * return the inode will be "held" within the returned transaction.
1483
 * This routine does NOT require any disk space to be reserved
1484
 * for it within the transaction.
1485
 *
1486
 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1487
 * and it indicates the fork which is to be truncated.  For the
1488
 * attribute fork we only support truncation to size 0.
1489
 *
1490
 * We use the sync parameter to indicate whether or not the first
1491
 * transaction we perform might have to be synchronous.  For the attr fork,
1492
 * it needs to be so if the unlink of the inode is not yet known to be
1493
 * permanent in the log.  This keeps us from freeing and reusing the
1494
 * blocks of the attribute fork before the unlink of the inode becomes
1495
 * permanent.
1496
 *
1497
 * For the data fork, we normally have to run synchronously if we're
1498
 * being called out of the inactive path or we're being called
1499
 * out of the create path where we're truncating an existing file.
1500
 * Either way, the truncate needs to be sync so blocks don't reappear
1501
 * in the file with altered data in case of a crash.  wsync filesystems
1502
 * can run the first case async because anything that shrinks the inode
1503
 * has to run sync so by the time we're called here from inactive, the
1504
 * inode size is permanently set to 0.
1505
 *
1506
 * Calls from the truncate path always need to be sync unless we're
1507
 * in a wsync filesystem and the file has already been unlinked.
1508
 *
1509
 * The caller is responsible for correctly setting the sync parameter.
1510
 * It gets too hard for us to guess here which path we're being called
1511
 * out of just based on inode state.
1512
 */
1513
int
1514
xfs_itruncate_finish(
1515
        xfs_trans_t     **tp,
1516
        xfs_inode_t     *ip,
1517
        xfs_fsize_t     new_size,
1518
        int             fork,
1519
        int             sync)
1520
{
1521
        xfs_fsblock_t   first_block;
1522
        xfs_fileoff_t   first_unmap_block;
1523
        xfs_fileoff_t   last_block;
1524
        xfs_filblks_t   unmap_len=0;
1525
        xfs_mount_t     *mp;
1526
        xfs_trans_t     *ntp;
1527
        int             done;
1528
        int             committed;
1529
        xfs_bmap_free_t free_list;
1530
        int             error;
1531
 
1532
        ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1533
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1534
        ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1535
        ASSERT(*tp != NULL);
1536
        ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1537
        ASSERT(ip->i_transp == *tp);
1538
        ASSERT(ip->i_itemp != NULL);
1539
        ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1540
 
1541
 
1542
        ntp = *tp;
1543
        mp = (ntp)->t_mountp;
1544
        ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1545
 
1546
        /*
1547
         * We only support truncating the entire attribute fork.
1548
         */
1549
        if (fork == XFS_ATTR_FORK) {
1550
                new_size = 0LL;
1551
        }
1552
        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1553
        xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1554
        /*
1555
         * The first thing we do is set the size to new_size permanently
1556
         * on disk.  This way we don't have to worry about anyone ever
1557
         * being able to look at the data being freed even in the face
1558
         * of a crash.  What we're getting around here is the case where
1559
         * we free a block, it is allocated to another file, it is written
1560
         * to, and then we crash.  If the new data gets written to the
1561
         * file but the log buffers containing the free and reallocation
1562
         * don't, then we'd end up with garbage in the blocks being freed.
1563
         * As long as we make the new_size permanent before actually
1564
         * freeing any blocks it doesn't matter if they get writtten to.
1565
         *
1566
         * The callers must signal into us whether or not the size
1567
         * setting here must be synchronous.  There are a few cases
1568
         * where it doesn't have to be synchronous.  Those cases
1569
         * occur if the file is unlinked and we know the unlink is
1570
         * permanent or if the blocks being truncated are guaranteed
1571
         * to be beyond the inode eof (regardless of the link count)
1572
         * and the eof value is permanent.  Both of these cases occur
1573
         * only on wsync-mounted filesystems.  In those cases, we're
1574
         * guaranteed that no user will ever see the data in the blocks
1575
         * that are being truncated so the truncate can run async.
1576
         * In the free beyond eof case, the file may wind up with
1577
         * more blocks allocated to it than it needs if we crash
1578
         * and that won't get fixed until the next time the file
1579
         * is re-opened and closed but that's ok as that shouldn't
1580
         * be too many blocks.
1581
         *
1582
         * However, we can't just make all wsync xactions run async
1583
         * because there's one call out of the create path that needs
1584
         * to run sync where it's truncating an existing file to size
1585
         * 0 whose size is > 0.
1586
         *
1587
         * It's probably possible to come up with a test in this
1588
         * routine that would correctly distinguish all the above
1589
         * cases from the values of the function parameters and the
1590
         * inode state but for sanity's sake, I've decided to let the
1591
         * layers above just tell us.  It's simpler to correctly figure
1592
         * out in the layer above exactly under what conditions we
1593
         * can run async and I think it's easier for others read and
1594
         * follow the logic in case something has to be changed.
1595
         * cscope is your friend -- rcc.
1596
         *
1597
         * The attribute fork is much simpler.
1598
         *
1599
         * For the attribute fork we allow the caller to tell us whether
1600
         * the unlink of the inode that led to this call is yet permanent
1601
         * in the on disk log.  If it is not and we will be freeing extents
1602
         * in this inode then we make the first transaction synchronous
1603
         * to make sure that the unlink is permanent by the time we free
1604
         * the blocks.
1605
         */
1606
        if (fork == XFS_DATA_FORK) {
1607
                if (ip->i_d.di_nextents > 0) {
1608
                        ip->i_d.di_size = new_size;
1609
                        xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1610
                }
1611
        } else if (sync) {
1612
                ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1613
                if (ip->i_d.di_anextents > 0)
1614
                        xfs_trans_set_sync(ntp);
1615
        }
1616
        ASSERT(fork == XFS_DATA_FORK ||
1617
                (fork == XFS_ATTR_FORK &&
1618
                        ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1619
                         (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1620
 
1621
        /*
1622
         * Since it is possible for space to become allocated beyond
1623
         * the end of the file (in a crash where the space is allocated
1624
         * but the inode size is not yet updated), simply remove any
1625
         * blocks which show up between the new EOF and the maximum
1626
         * possible file size.  If the first block to be removed is
1627
         * beyond the maximum file size (ie it is the same as last_block),
1628
         * then there is nothing to do.
1629
         */
1630
        last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1631
        ASSERT(first_unmap_block <= last_block);
1632
        done = 0;
1633
        if (last_block == first_unmap_block) {
1634
                done = 1;
1635
        } else {
1636
                unmap_len = last_block - first_unmap_block + 1;
1637
        }
1638
        while (!done) {
1639
                /*
1640
                 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1641
                 * will tell us whether it freed the entire range or
1642
                 * not.  If this is a synchronous mount (wsync),
1643
                 * then we can tell bunmapi to keep all the
1644
                 * transactions asynchronous since the unlink
1645
                 * transaction that made this inode inactive has
1646
                 * already hit the disk.  There's no danger of
1647
                 * the freed blocks being reused, there being a
1648
                 * crash, and the reused blocks suddenly reappearing
1649
                 * in this file with garbage in them once recovery
1650
                 * runs.
1651
                 */
1652
                XFS_BMAP_INIT(&free_list, &first_block);
1653
                error = xfs_bunmapi(ntp, ip, first_unmap_block,
1654
                                    unmap_len,
1655
                                    XFS_BMAPI_AFLAG(fork) |
1656
                                      (sync ? 0 : XFS_BMAPI_ASYNC),
1657
                                    XFS_ITRUNC_MAX_EXTENTS,
1658
                                    &first_block, &free_list, &done);
1659
                if (error) {
1660
                        /*
1661
                         * If the bunmapi call encounters an error,
1662
                         * return to the caller where the transaction
1663
                         * can be properly aborted.  We just need to
1664
                         * make sure we're not holding any resources
1665
                         * that we were not when we came in.
1666
                         */
1667
                        xfs_bmap_cancel(&free_list);
1668
                        return error;
1669
                }
1670
 
1671
                /*
1672
                 * Duplicate the transaction that has the permanent
1673
                 * reservation and commit the old transaction.
1674
                 */
1675
                error = xfs_bmap_finish(tp, &free_list, first_block,
1676
                                        &committed);
1677
                ntp = *tp;
1678
                if (error) {
1679
                        /*
1680
                         * If the bmap finish call encounters an error,
1681
                         * return to the caller where the transaction
1682
                         * can be properly aborted.  We just need to
1683
                         * make sure we're not holding any resources
1684
                         * that we were not when we came in.
1685
                         *
1686
                         * Aborting from this point might lose some
1687
                         * blocks in the file system, but oh well.
1688
                         */
1689
                        xfs_bmap_cancel(&free_list);
1690
                        if (committed) {
1691
                                /*
1692
                                 * If the passed in transaction committed
1693
                                 * in xfs_bmap_finish(), then we want to
1694
                                 * add the inode to this one before returning.
1695
                                 * This keeps things simple for the higher
1696
                                 * level code, because it always knows that
1697
                                 * the inode is locked and held in the
1698
                                 * transaction that returns to it whether
1699
                                 * errors occur or not.  We don't mark the
1700
                                 * inode dirty so that this transaction can
1701
                                 * be easily aborted if possible.
1702
                                 */
1703
                                xfs_trans_ijoin(ntp, ip,
1704
                                        XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1705
                                xfs_trans_ihold(ntp, ip);
1706
                        }
1707
                        return error;
1708
                }
1709
 
1710
                if (committed) {
1711
                        /*
1712
                         * The first xact was committed,
1713
                         * so add the inode to the new one.
1714
                         * Mark it dirty so it will be logged
1715
                         * and moved forward in the log as
1716
                         * part of every commit.
1717
                         */
1718
                        xfs_trans_ijoin(ntp, ip,
1719
                                        XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1720
                        xfs_trans_ihold(ntp, ip);
1721
                        xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1722
                }
1723
                ntp = xfs_trans_dup(ntp);
1724
                (void) xfs_trans_commit(*tp, 0, NULL);
1725
                *tp = ntp;
1726
                error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1727
                                          XFS_TRANS_PERM_LOG_RES,
1728
                                          XFS_ITRUNCATE_LOG_COUNT);
1729
                /*
1730
                 * Add the inode being truncated to the next chained
1731
                 * transaction.
1732
                 */
1733
                xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1734
                xfs_trans_ihold(ntp, ip);
1735
                if (error)
1736
                        return (error);
1737
        }
1738
        /*
1739
         * Only update the size in the case of the data fork, but
1740
         * always re-log the inode so that our permanent transaction
1741
         * can keep on rolling it forward in the log.
1742
         */
1743
        if (fork == XFS_DATA_FORK) {
1744
                xfs_isize_check(mp, ip, new_size);
1745
                ip->i_d.di_size = new_size;
1746
        }
1747
        xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1748
        ASSERT((new_size != 0) ||
1749
               (fork == XFS_ATTR_FORK) ||
1750
               (ip->i_delayed_blks == 0));
1751
        ASSERT((new_size != 0) ||
1752
               (fork == XFS_ATTR_FORK) ||
1753
               (ip->i_d.di_nextents == 0));
1754
        xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1755
        return 0;
1756
}
1757
 
1758
 
1759
/*
1760
 * xfs_igrow_start
1761
 *
1762
 * Do the first part of growing a file: zero any data in the last
1763
 * block that is beyond the old EOF.  We need to do this before
1764
 * the inode is joined to the transaction to modify the i_size.
1765
 * That way we can drop the inode lock and call into the buffer
1766
 * cache to get the buffer mapping the EOF.
1767
 */
1768
int
1769
xfs_igrow_start(
1770
        xfs_inode_t     *ip,
1771
        xfs_fsize_t     new_size,
1772
        cred_t          *credp)
1773
{
1774
        xfs_fsize_t     isize;
1775
        int             error;
1776
 
1777
        ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1778
        ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1779
        ASSERT(new_size > ip->i_d.di_size);
1780
 
1781
        error = 0;
1782
        isize = ip->i_d.di_size;
1783
        /*
1784
         * Zero any pages that may have been created by
1785
         * xfs_write_file() beyond the end of the file
1786
         * and any blocks between the old and new file sizes.
1787
         */
1788
        error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1789
                                new_size);
1790
        return error;
1791
}
1792
 
1793
/*
1794
 * xfs_igrow_finish
1795
 *
1796
 * This routine is called to extend the size of a file.
1797
 * The inode must have both the iolock and the ilock locked
1798
 * for update and it must be a part of the current transaction.
1799
 * The xfs_igrow_start() function must have been called previously.
1800
 * If the change_flag is not zero, the inode change timestamp will
1801
 * be updated.
1802
 */
1803
void
1804
xfs_igrow_finish(
1805
        xfs_trans_t     *tp,
1806
        xfs_inode_t     *ip,
1807
        xfs_fsize_t     new_size,
1808
        int             change_flag)
1809
{
1810
        ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1811
        ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1812
        ASSERT(ip->i_transp == tp);
1813
        ASSERT(new_size > ip->i_d.di_size);
1814
 
1815
        /*
1816
         * Update the file size.  Update the inode change timestamp
1817
         * if change_flag set.
1818
         */
1819
        ip->i_d.di_size = new_size;
1820
        if (change_flag)
1821
                xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1822
        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1823
 
1824
}
1825
 
1826
 
1827
/*
1828
 * This is called when the inode's link count goes to 0.
1829
 * We place the on-disk inode on a list in the AGI.  It
1830
 * will be pulled from this list when the inode is freed.
1831
 */
1832
int
1833
xfs_iunlink(
1834
        xfs_trans_t     *tp,
1835
        xfs_inode_t     *ip)
1836
{
1837
        xfs_mount_t     *mp;
1838
        xfs_agi_t       *agi;
1839
        xfs_dinode_t    *dip;
1840
        xfs_buf_t       *agibp;
1841
        xfs_buf_t       *ibp;
1842
        xfs_agnumber_t  agno;
1843
        xfs_daddr_t     agdaddr;
1844
        xfs_agino_t     agino;
1845
        short           bucket_index;
1846
        int             offset;
1847
        int             error;
1848
        int             agi_ok;
1849
 
1850
        ASSERT(ip->i_d.di_nlink == 0);
1851
        ASSERT(ip->i_d.di_mode != 0);
1852
        ASSERT(ip->i_transp == tp);
1853
 
1854
        mp = tp->t_mountp;
1855
 
1856
        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1857
        agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1858
 
1859
        /*
1860
         * Get the agi buffer first.  It ensures lock ordering
1861
         * on the list.
1862
         */
1863
        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1864
                                   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1865
        if (error) {
1866
                return error;
1867
        }
1868
        /*
1869
         * Validate the magic number of the agi block.
1870
         */
1871
        agi = XFS_BUF_TO_AGI(agibp);
1872
        agi_ok =
1873
                INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1874
                XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1875
        if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1876
                        XFS_RANDOM_IUNLINK))) {
1877
                XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1878
                xfs_trans_brelse(tp, agibp);
1879
                return XFS_ERROR(EFSCORRUPTED);
1880
        }
1881
        /*
1882
         * Get the index into the agi hash table for the
1883
         * list this inode will go on.
1884
         */
1885
        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1886
        ASSERT(agino != 0);
1887
        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1888
        ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
1889
        ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1890
 
1891
        if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1892
                /*
1893
                 * There is already another inode in the bucket we need
1894
                 * to add ourselves to.  Add us at the front of the list.
1895
                 * Here we put the head pointer into our next pointer,
1896
                 * and then we fall through to point the head at us.
1897
                 */
1898
                error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1899
                if (error) {
1900
                        return error;
1901
                }
1902
                ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1903
                ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
1904
                /* both on-disk, don't endian flip twice */
1905
                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1906
                offset = ip->i_boffset +
1907
                        offsetof(xfs_dinode_t, di_next_unlinked);
1908
                xfs_trans_inode_buf(tp, ibp);
1909
                xfs_trans_log_buf(tp, ibp, offset,
1910
                                  (offset + sizeof(xfs_agino_t) - 1));
1911
                xfs_inobp_check(mp, ibp);
1912
        }
1913
 
1914
        /*
1915
         * Point the bucket head pointer at the inode being inserted.
1916
         */
1917
        ASSERT(agino != 0);
1918
        INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1919
        offset = offsetof(xfs_agi_t, agi_unlinked) +
1920
                (sizeof(xfs_agino_t) * bucket_index);
1921
        xfs_trans_log_buf(tp, agibp, offset,
1922
                          (offset + sizeof(xfs_agino_t) - 1));
1923
        return 0;
1924
}
1925
 
1926
/*
1927
 * Pull the on-disk inode from the AGI unlinked list.
1928
 */
1929
STATIC int
1930
xfs_iunlink_remove(
1931
        xfs_trans_t     *tp,
1932
        xfs_inode_t     *ip)
1933
{
1934
        xfs_ino_t       next_ino;
1935
        xfs_mount_t     *mp;
1936
        xfs_agi_t       *agi;
1937
        xfs_dinode_t    *dip;
1938
        xfs_buf_t       *agibp;
1939
        xfs_buf_t       *ibp;
1940
        xfs_agnumber_t  agno;
1941
        xfs_daddr_t     agdaddr;
1942
        xfs_agino_t     agino;
1943
        xfs_agino_t     next_agino;
1944
        xfs_buf_t       *last_ibp;
1945
        xfs_dinode_t    *last_dip;
1946
        short           bucket_index;
1947
        int             offset, last_offset;
1948
        int             error;
1949
        int             agi_ok;
1950
 
1951
        /*
1952
         * First pull the on-disk inode from the AGI unlinked list.
1953
         */
1954
        mp = tp->t_mountp;
1955
 
1956
        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1957
        agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1958
 
1959
        /*
1960
         * Get the agi buffer first.  It ensures lock ordering
1961
         * on the list.
1962
         */
1963
        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1964
                                   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1965
        if (error) {
1966
                cmn_err(CE_WARN,
1967
                        "xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1968
                        error, mp->m_fsname);
1969
                return error;
1970
        }
1971
        /*
1972
         * Validate the magic number of the agi block.
1973
         */
1974
        agi = XFS_BUF_TO_AGI(agibp);
1975
        agi_ok =
1976
                INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1977
                XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1978
        if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1979
                        XFS_RANDOM_IUNLINK_REMOVE))) {
1980
                XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1981
                                     mp, agi);
1982
                xfs_trans_brelse(tp, agibp);
1983
                cmn_err(CE_WARN,
1984
                        "xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1985
                         mp->m_fsname);
1986
                return XFS_ERROR(EFSCORRUPTED);
1987
        }
1988
        /*
1989
         * Get the index into the agi hash table for the
1990
         * list this inode will go on.
1991
         */
1992
        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1993
        ASSERT(agino != 0);
1994
        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1995
        ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
1996
        ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
1997
 
1998
        if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
1999
                /*
2000
                 * We're at the head of the list.  Get the inode's
2001
                 * on-disk buffer to see if there is anyone after us
2002
                 * on the list.  Only modify our next pointer if it
2003
                 * is not already NULLAGINO.  This saves us the overhead
2004
                 * of dealing with the buffer when there is no need to
2005
                 * change it.
2006
                 */
2007
                error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2008
                if (error) {
2009
                        cmn_err(CE_WARN,
2010
                                "xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2011
                                error, mp->m_fsname);
2012
                        return error;
2013
                }
2014
                next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2015
                ASSERT(next_agino != 0);
2016
                if (next_agino != NULLAGINO) {
2017
                        INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2018
                        offset = ip->i_boffset +
2019
                                offsetof(xfs_dinode_t, di_next_unlinked);
2020
                        xfs_trans_inode_buf(tp, ibp);
2021
                        xfs_trans_log_buf(tp, ibp, offset,
2022
                                          (offset + sizeof(xfs_agino_t) - 1));
2023
                        xfs_inobp_check(mp, ibp);
2024
                } else {
2025
                        xfs_trans_brelse(tp, ibp);
2026
                }
2027
                /*
2028
                 * Point the bucket head pointer at the next inode.
2029
                 */
2030
                ASSERT(next_agino != 0);
2031
                ASSERT(next_agino != agino);
2032
                INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2033
                offset = offsetof(xfs_agi_t, agi_unlinked) +
2034
                        (sizeof(xfs_agino_t) * bucket_index);
2035
                xfs_trans_log_buf(tp, agibp, offset,
2036
                                  (offset + sizeof(xfs_agino_t) - 1));
2037
        } else {
2038
                /*
2039
                 * We need to search the list for the inode being freed.
2040
                 */
2041
                next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2042
                last_ibp = NULL;
2043
                while (next_agino != agino) {
2044
                        /*
2045
                         * If the last inode wasn't the one pointing to
2046
                         * us, then release its buffer since we're not
2047
                         * going to do anything with it.
2048
                         */
2049
                        if (last_ibp != NULL) {
2050
                                xfs_trans_brelse(tp, last_ibp);
2051
                        }
2052
                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2053
                        error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2054
                                            &last_ibp, &last_offset);
2055
                        if (error) {
2056
                                cmn_err(CE_WARN,
2057
                        "xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2058
                                        error, mp->m_fsname);
2059
                                return error;
2060
                        }
2061
                        next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2062
                        ASSERT(next_agino != NULLAGINO);
2063
                        ASSERT(next_agino != 0);
2064
                }
2065
                /*
2066
                 * Now last_ibp points to the buffer previous to us on
2067
                 * the unlinked list.  Pull us from the list.
2068
                 */
2069
                error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2070
                if (error) {
2071
                        cmn_err(CE_WARN,
2072
                                "xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2073
                                error, mp->m_fsname);
2074
                        return error;
2075
                }
2076
                next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2077
                ASSERT(next_agino != 0);
2078
                ASSERT(next_agino != agino);
2079
                if (next_agino != NULLAGINO) {
2080
                        INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2081
                        offset = ip->i_boffset +
2082
                                offsetof(xfs_dinode_t, di_next_unlinked);
2083
                        xfs_trans_inode_buf(tp, ibp);
2084
                        xfs_trans_log_buf(tp, ibp, offset,
2085
                                          (offset + sizeof(xfs_agino_t) - 1));
2086
                        xfs_inobp_check(mp, ibp);
2087
                } else {
2088
                        xfs_trans_brelse(tp, ibp);
2089
                }
2090
                /*
2091
                 * Point the previous inode on the list to the next inode.
2092
                 */
2093
                INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2094
                ASSERT(next_agino != 0);
2095
                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2096
                xfs_trans_inode_buf(tp, last_ibp);
2097
                xfs_trans_log_buf(tp, last_ibp, offset,
2098
                                  (offset + sizeof(xfs_agino_t) - 1));
2099
                xfs_inobp_check(mp, last_ibp);
2100
        }
2101
        return 0;
2102
}
2103
 
2104
static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2105
{
2106
        return (((ip->i_itemp == NULL) ||
2107
                !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2108
                (ip->i_update_core == 0));
2109
}
2110
 
2111
void
2112
xfs_ifree_cluster(
2113
        xfs_inode_t     *free_ip,
2114
        xfs_trans_t     *tp,
2115
        xfs_ino_t       inum)
2116
{
2117
        xfs_mount_t             *mp = free_ip->i_mount;
2118
        int                     blks_per_cluster;
2119
        int                     nbufs;
2120
        int                     ninodes;
2121
        int                     i, j, found, pre_flushed;
2122
        xfs_daddr_t             blkno;
2123
        xfs_buf_t               *bp;
2124
        xfs_ihash_t             *ih;
2125
        xfs_inode_t             *ip, **ip_found;
2126
        xfs_inode_log_item_t    *iip;
2127
        xfs_log_item_t          *lip;
2128
        SPLDECL(s);
2129
 
2130
        if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2131
                blks_per_cluster = 1;
2132
                ninodes = mp->m_sb.sb_inopblock;
2133
                nbufs = XFS_IALLOC_BLOCKS(mp);
2134
        } else {
2135
                blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2136
                                        mp->m_sb.sb_blocksize;
2137
                ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2138
                nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2139
        }
2140
 
2141
        ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2142
 
2143
        for (j = 0; j < nbufs; j++, inum += ninodes) {
2144
                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2145
                                         XFS_INO_TO_AGBNO(mp, inum));
2146
 
2147
 
2148
                /*
2149
                 * Look for each inode in memory and attempt to lock it,
2150
                 * we can be racing with flush and tail pushing here.
2151
                 * any inode we get the locks on, add to an array of
2152
                 * inode items to process later.
2153
                 *
2154
                 * The get the buffer lock, we could beat a flush
2155
                 * or tail pushing thread to the lock here, in which
2156
                 * case they will go looking for the inode buffer
2157
                 * and fail, we need some other form of interlock
2158
                 * here.
2159
                 */
2160
                found = 0;
2161
                for (i = 0; i < ninodes; i++) {
2162
                        ih = XFS_IHASH(mp, inum + i);
2163
                        read_lock(&ih->ih_lock);
2164
                        for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2165
                                if (ip->i_ino == inum + i)
2166
                                        break;
2167
                        }
2168
 
2169
                        /* Inode not in memory or we found it already,
2170
                         * nothing to do
2171
                         */
2172
                        if (!ip || (ip->i_flags & XFS_ISTALE)) {
2173
                                read_unlock(&ih->ih_lock);
2174
                                continue;
2175
                        }
2176
 
2177
                        if (xfs_inode_clean(ip)) {
2178
                                read_unlock(&ih->ih_lock);
2179
                                continue;
2180
                        }
2181
 
2182
                        /* If we can get the locks then add it to the
2183
                         * list, otherwise by the time we get the bp lock
2184
                         * below it will already be attached to the
2185
                         * inode buffer.
2186
                         */
2187
 
2188
                        /* This inode will already be locked - by us, lets
2189
                         * keep it that way.
2190
                         */
2191
 
2192
                        if (ip == free_ip) {
2193
                                if (xfs_iflock_nowait(ip)) {
2194
                                        ip->i_flags |= XFS_ISTALE;
2195
 
2196
                                        if (xfs_inode_clean(ip)) {
2197
                                                xfs_ifunlock(ip);
2198
                                        } else {
2199
                                                ip_found[found++] = ip;
2200
                                        }
2201
                                }
2202
                                read_unlock(&ih->ih_lock);
2203
                                continue;
2204
                        }
2205
 
2206
                        if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2207
                                if (xfs_iflock_nowait(ip)) {
2208
                                        ip->i_flags |= XFS_ISTALE;
2209
 
2210
                                        if (xfs_inode_clean(ip)) {
2211
                                                xfs_ifunlock(ip);
2212
                                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2213
                                        } else {
2214
                                                ip_found[found++] = ip;
2215
                                        }
2216
                                } else {
2217
                                        xfs_iunlock(ip, XFS_ILOCK_EXCL);
2218
                                }
2219
                        }
2220
 
2221
                        read_unlock(&ih->ih_lock);
2222
                }
2223
 
2224
                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2225
                                        mp->m_bsize * blks_per_cluster,
2226
                                        XFS_BUF_LOCK);
2227
 
2228
                pre_flushed = 0;
2229
                lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2230
                while (lip) {
2231
                        if (lip->li_type == XFS_LI_INODE) {
2232
                                iip = (xfs_inode_log_item_t *)lip;
2233
                                ASSERT(iip->ili_logged == 1);
2234
                                lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2235
                                AIL_LOCK(mp,s);
2236
                                iip->ili_flush_lsn = iip->ili_item.li_lsn;
2237
                                AIL_UNLOCK(mp, s);
2238
                                iip->ili_inode->i_flags |= XFS_ISTALE;
2239
                                pre_flushed++;
2240
                        }
2241
                        lip = lip->li_bio_list;
2242
                }
2243
 
2244
                for (i = 0; i < found; i++) {
2245
                        ip = ip_found[i];
2246
                        iip = ip->i_itemp;
2247
 
2248
                        if (!iip) {
2249
                                ip->i_update_core = 0;
2250
                                xfs_ifunlock(ip);
2251
                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2252
                                continue;
2253
                        }
2254
 
2255
                        iip->ili_last_fields = iip->ili_format.ilf_fields;
2256
                        iip->ili_format.ilf_fields = 0;
2257
                        iip->ili_logged = 1;
2258
                        AIL_LOCK(mp,s);
2259
                        iip->ili_flush_lsn = iip->ili_item.li_lsn;
2260
                        AIL_UNLOCK(mp, s);
2261
 
2262
                        xfs_buf_attach_iodone(bp,
2263
                                (void(*)(xfs_buf_t*,xfs_log_item_t*))
2264
                                xfs_istale_done, (xfs_log_item_t *)iip);
2265
                        if (ip != free_ip) {
2266
                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2267
                        }
2268
                }
2269
 
2270
                if (found || pre_flushed)
2271
                        xfs_trans_stale_inode_buf(tp, bp);
2272
                xfs_trans_binval(tp, bp);
2273
        }
2274
 
2275
        kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2276
}
2277
 
2278
/*
2279
 * This is called to return an inode to the inode free list.
2280
 * The inode should already be truncated to 0 length and have
2281
 * no pages associated with it.  This routine also assumes that
2282
 * the inode is already a part of the transaction.
2283
 *
2284
 * The on-disk copy of the inode will have been added to the list
2285
 * of unlinked inodes in the AGI. We need to remove the inode from
2286
 * that list atomically with respect to freeing it here.
2287
 */
2288
int
2289
xfs_ifree(
2290
        xfs_trans_t     *tp,
2291
        xfs_inode_t     *ip,
2292
        xfs_bmap_free_t *flist)
2293
{
2294
        int                     error;
2295
        int                     delete;
2296
        xfs_ino_t               first_ino;
2297
 
2298
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2299
        ASSERT(ip->i_transp == tp);
2300
        ASSERT(ip->i_d.di_nlink == 0);
2301
        ASSERT(ip->i_d.di_nextents == 0);
2302
        ASSERT(ip->i_d.di_anextents == 0);
2303
        ASSERT((ip->i_d.di_size == 0) ||
2304
               ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2305
        ASSERT(ip->i_d.di_nblocks == 0);
2306
 
2307
        /*
2308
         * Pull the on-disk inode from the AGI unlinked list.
2309
         */
2310
        error = xfs_iunlink_remove(tp, ip);
2311
        if (error != 0) {
2312
                return error;
2313
        }
2314
 
2315
        error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2316
        if (error != 0) {
2317
                return error;
2318
        }
2319
        ip->i_d.di_mode = 0;             /* mark incore inode as free */
2320
        ip->i_d.di_flags = 0;
2321
        ip->i_d.di_dmevmask = 0;
2322
        ip->i_d.di_forkoff = 0;          /* mark the attr fork not in use */
2323
        ip->i_df.if_ext_max =
2324
                XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2325
        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2326
        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2327
        /*
2328
         * Bump the generation count so no one will be confused
2329
         * by reincarnations of this inode.
2330
         */
2331
        ip->i_d.di_gen++;
2332
        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2333
 
2334
        if (delete) {
2335
                xfs_ifree_cluster(ip, tp, first_ino);
2336
        }
2337
 
2338
        return 0;
2339
}
2340
 
2341
/*
2342
 * Reallocate the space for if_broot based on the number of records
2343
 * being added or deleted as indicated in rec_diff.  Move the records
2344
 * and pointers in if_broot to fit the new size.  When shrinking this
2345
 * will eliminate holes between the records and pointers created by
2346
 * the caller.  When growing this will create holes to be filled in
2347
 * by the caller.
2348
 *
2349
 * The caller must not request to add more records than would fit in
2350
 * the on-disk inode root.  If the if_broot is currently NULL, then
2351
 * if we adding records one will be allocated.  The caller must also
2352
 * not request that the number of records go below zero, although
2353
 * it can go to zero.
2354
 *
2355
 * ip -- the inode whose if_broot area is changing
2356
 * ext_diff -- the change in the number of records, positive or negative,
2357
 *       requested for the if_broot array.
2358
 */
2359
void
2360
xfs_iroot_realloc(
2361
        xfs_inode_t             *ip,
2362
        int                     rec_diff,
2363
        int                     whichfork)
2364
{
2365
        int                     cur_max;
2366
        xfs_ifork_t             *ifp;
2367
        xfs_bmbt_block_t        *new_broot;
2368
        int                     new_max;
2369
        size_t                  new_size;
2370
        char                    *np;
2371
        char                    *op;
2372
 
2373
        /*
2374
         * Handle the degenerate case quietly.
2375
         */
2376
        if (rec_diff == 0) {
2377
                return;
2378
        }
2379
 
2380
        ifp = XFS_IFORK_PTR(ip, whichfork);
2381
        if (rec_diff > 0) {
2382
                /*
2383
                 * If there wasn't any memory allocated before, just
2384
                 * allocate it now and get out.
2385
                 */
2386
                if (ifp->if_broot_bytes == 0) {
2387
                        new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2388
                        ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2389
                                                                     KM_SLEEP);
2390
                        ifp->if_broot_bytes = (int)new_size;
2391
                        return;
2392
                }
2393
 
2394
                /*
2395
                 * If there is already an existing if_broot, then we need
2396
                 * to realloc() it and shift the pointers to their new
2397
                 * location.  The records don't change location because
2398
                 * they are kept butted up against the btree block header.
2399
                 */
2400
                cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2401
                new_max = cur_max + rec_diff;
2402
                new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2403
                ifp->if_broot = (xfs_bmbt_block_t *)
2404
                  kmem_realloc(ifp->if_broot,
2405
                                new_size,
2406
                                (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2407
                                KM_SLEEP);
2408
                op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2409
                                                      ifp->if_broot_bytes);
2410
                np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2411
                                                      (int)new_size);
2412
                ifp->if_broot_bytes = (int)new_size;
2413
                ASSERT(ifp->if_broot_bytes <=
2414
                        XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2415
                memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2416
                return;
2417
        }
2418
 
2419
        /*
2420
         * rec_diff is less than 0.  In this case, we are shrinking the
2421
         * if_broot buffer.  It must already exist.  If we go to zero
2422
         * records, just get rid of the root and clear the status bit.
2423
         */
2424
        ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2425
        cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2426
        new_max = cur_max + rec_diff;
2427
        ASSERT(new_max >= 0);
2428
        if (new_max > 0)
2429
                new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2430
        else
2431
                new_size = 0;
2432
        if (new_size > 0) {
2433
                new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2434
                /*
2435
                 * First copy over the btree block header.
2436
                 */
2437
                memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2438
        } else {
2439
                new_broot = NULL;
2440
                ifp->if_flags &= ~XFS_IFBROOT;
2441
        }
2442
 
2443
        /*
2444
         * Only copy the records and pointers if there are any.
2445
         */
2446
        if (new_max > 0) {
2447
                /*
2448
                 * First copy the records.
2449
                 */
2450
                op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2451
                                                     ifp->if_broot_bytes);
2452
                np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2453
                                                     (int)new_size);
2454
                memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2455
 
2456
                /*
2457
                 * Then copy the pointers.
2458
                 */
2459
                op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2460
                                                     ifp->if_broot_bytes);
2461
                np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2462
                                                     (int)new_size);
2463
                memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2464
        }
2465
        kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2466
        ifp->if_broot = new_broot;
2467
        ifp->if_broot_bytes = (int)new_size;
2468
        ASSERT(ifp->if_broot_bytes <=
2469
                XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2470
        return;
2471
}
2472
 
2473
 
2474
/*
2475
 * This is called when the amount of space needed for if_extents
2476
 * is increased or decreased.  The change in size is indicated by
2477
 * the number of extents that need to be added or deleted in the
2478
 * ext_diff parameter.
2479
 *
2480
 * If the amount of space needed has decreased below the size of the
2481
 * inline buffer, then switch to using the inline buffer.  Otherwise,
2482
 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2483
 * to what is needed.
2484
 *
2485
 * ip -- the inode whose if_extents area is changing
2486
 * ext_diff -- the change in the number of extents, positive or negative,
2487
 *       requested for the if_extents array.
2488
 */
2489
void
2490
xfs_iext_realloc(
2491
        xfs_inode_t     *ip,
2492
        int             ext_diff,
2493
        int             whichfork)
2494
{
2495
        int             byte_diff;
2496
        xfs_ifork_t     *ifp;
2497
        int             new_size;
2498
        uint            rnew_size;
2499
 
2500
        if (ext_diff == 0) {
2501
                return;
2502
        }
2503
 
2504
        ifp = XFS_IFORK_PTR(ip, whichfork);
2505
        byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2506
        new_size = (int)ifp->if_bytes + byte_diff;
2507
        ASSERT(new_size >= 0);
2508
 
2509
        if (new_size == 0) {
2510
                if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2511
                        ASSERT(ifp->if_real_bytes != 0);
2512
                        kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2513
                }
2514
                ifp->if_u1.if_extents = NULL;
2515
                rnew_size = 0;
2516
        } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2517
                /*
2518
                 * If the valid extents can fit in if_inline_ext,
2519
                 * copy them from the malloc'd vector and free it.
2520
                 */
2521
                if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2522
                        /*
2523
                         * For now, empty files are format EXTENTS,
2524
                         * so the if_extents pointer is null.
2525
                         */
2526
                        if (ifp->if_u1.if_extents) {
2527
                                memcpy(ifp->if_u2.if_inline_ext,
2528
                                        ifp->if_u1.if_extents, new_size);
2529
                                kmem_free(ifp->if_u1.if_extents,
2530
                                          ifp->if_real_bytes);
2531
                        }
2532
                        ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2533
                }
2534
                rnew_size = 0;
2535
        } else {
2536
                rnew_size = new_size;
2537
                if ((rnew_size & (rnew_size - 1)) != 0)
2538
                        rnew_size = xfs_iroundup(rnew_size);
2539
                /*
2540
                 * Stuck with malloc/realloc.
2541
                 */
2542
                if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2543
                        ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2544
                                kmem_alloc(rnew_size, KM_SLEEP);
2545
                        memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2546
                              sizeof(ifp->if_u2.if_inline_ext));
2547
                } else if (rnew_size != ifp->if_real_bytes) {
2548
                        ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2549
                          kmem_realloc(ifp->if_u1.if_extents,
2550
                                        rnew_size,
2551
                                        ifp->if_real_bytes,
2552
                                        KM_NOFS);
2553
                }
2554
        }
2555
        ifp->if_real_bytes = rnew_size;
2556
        ifp->if_bytes = new_size;
2557
}
2558
 
2559
 
2560
/*
2561
 * This is called when the amount of space needed for if_data
2562
 * is increased or decreased.  The change in size is indicated by
2563
 * the number of bytes that need to be added or deleted in the
2564
 * byte_diff parameter.
2565
 *
2566
 * If the amount of space needed has decreased below the size of the
2567
 * inline buffer, then switch to using the inline buffer.  Otherwise,
2568
 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2569
 * to what is needed.
2570
 *
2571
 * ip -- the inode whose if_data area is changing
2572
 * byte_diff -- the change in the number of bytes, positive or negative,
2573
 *       requested for the if_data array.
2574
 */
2575
void
2576
xfs_idata_realloc(
2577
        xfs_inode_t     *ip,
2578
        int             byte_diff,
2579
        int             whichfork)
2580
{
2581
        xfs_ifork_t     *ifp;
2582
        int             new_size;
2583
        int             real_size;
2584
 
2585
        if (byte_diff == 0) {
2586
                return;
2587
        }
2588
 
2589
        ifp = XFS_IFORK_PTR(ip, whichfork);
2590
        new_size = (int)ifp->if_bytes + byte_diff;
2591
        ASSERT(new_size >= 0);
2592
 
2593
        if (new_size == 0) {
2594
                if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2595
                        kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2596
                }
2597
                ifp->if_u1.if_data = NULL;
2598
                real_size = 0;
2599
        } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2600
                /*
2601
                 * If the valid extents/data can fit in if_inline_ext/data,
2602
                 * copy them from the malloc'd vector and free it.
2603
                 */
2604
                if (ifp->if_u1.if_data == NULL) {
2605
                        ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2606
                } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2607
                        ASSERT(ifp->if_real_bytes != 0);
2608
                        memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2609
                              new_size);
2610
                        kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2611
                        ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2612
                }
2613
                real_size = 0;
2614
        } else {
2615
                /*
2616
                 * Stuck with malloc/realloc.
2617
                 * For inline data, the underlying buffer must be
2618
                 * a multiple of 4 bytes in size so that it can be
2619
                 * logged and stay on word boundaries.  We enforce
2620
                 * that here.
2621
                 */
2622
                real_size = roundup(new_size, 4);
2623
                if (ifp->if_u1.if_data == NULL) {
2624
                        ASSERT(ifp->if_real_bytes == 0);
2625
                        ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2626
                } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2627
                        /*
2628
                         * Only do the realloc if the underlying size
2629
                         * is really changing.
2630
                         */
2631
                        if (ifp->if_real_bytes != real_size) {
2632
                                ifp->if_u1.if_data =
2633
                                        kmem_realloc(ifp->if_u1.if_data,
2634
                                                        real_size,
2635
                                                        ifp->if_real_bytes,
2636
                                                        KM_SLEEP);
2637
                        }
2638
                } else {
2639
                        ASSERT(ifp->if_real_bytes == 0);
2640
                        ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2641
                        memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2642
                                ifp->if_bytes);
2643
                }
2644
        }
2645
        ifp->if_real_bytes = real_size;
2646
        ifp->if_bytes = new_size;
2647
        ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2648
}
2649
 
2650
 
2651
 
2652
 
2653
/*
2654
 * Map inode to disk block and offset.
2655
 *
2656
 * mp -- the mount point structure for the current file system
2657
 * tp -- the current transaction
2658
 * ino -- the inode number of the inode to be located
2659
 * imap -- this structure is filled in with the information necessary
2660
 *       to retrieve the given inode from disk
2661
 * flags -- flags to pass to xfs_dilocate indicating whether or not
2662
 *       lookups in the inode btree were OK or not
2663
 */
2664
int
2665
xfs_imap(
2666
        xfs_mount_t     *mp,
2667
        xfs_trans_t     *tp,
2668
        xfs_ino_t       ino,
2669
        xfs_imap_t      *imap,
2670
        uint            flags)
2671
{
2672
        xfs_fsblock_t   fsbno;
2673
        int             len;
2674
        int             off;
2675
        int             error;
2676
 
2677
        fsbno = imap->im_blkno ?
2678
                XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2679
        error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2680
        if (error != 0) {
2681
                return error;
2682
        }
2683
        imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2684
        imap->im_len = XFS_FSB_TO_BB(mp, len);
2685
        imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2686
        imap->im_ioffset = (ushort)off;
2687
        imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2688
        return 0;
2689
}
2690
 
2691
void
2692
xfs_idestroy_fork(
2693
        xfs_inode_t     *ip,
2694
        int             whichfork)
2695
{
2696
        xfs_ifork_t     *ifp;
2697
 
2698
        ifp = XFS_IFORK_PTR(ip, whichfork);
2699
        if (ifp->if_broot != NULL) {
2700
                kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2701
                ifp->if_broot = NULL;
2702
        }
2703
 
2704
        /*
2705
         * If the format is local, then we can't have an extents
2706
         * array so just look for an inline data array.  If we're
2707
         * not local then we may or may not have an extents list,
2708
         * so check and free it up if we do.
2709
         */
2710
        if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2711
                if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2712
                    (ifp->if_u1.if_data != NULL)) {
2713
                        ASSERT(ifp->if_real_bytes != 0);
2714
                        kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2715
                        ifp->if_u1.if_data = NULL;
2716
                        ifp->if_real_bytes = 0;
2717
                }
2718
        } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2719
                   (ifp->if_u1.if_extents != NULL) &&
2720
                   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2721
                ASSERT(ifp->if_real_bytes != 0);
2722
                kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2723
                ifp->if_u1.if_extents = NULL;
2724
                ifp->if_real_bytes = 0;
2725
        }
2726
        ASSERT(ifp->if_u1.if_extents == NULL ||
2727
               ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2728
        ASSERT(ifp->if_real_bytes == 0);
2729
        if (whichfork == XFS_ATTR_FORK) {
2730
                kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2731
                ip->i_afp = NULL;
2732
        }
2733
}
2734
 
2735
/*
2736
 * This is called free all the memory associated with an inode.
2737
 * It must free the inode itself and any buffers allocated for
2738
 * if_extents/if_data and if_broot.  It must also free the lock
2739
 * associated with the inode.
2740
 */
2741
void
2742
xfs_idestroy(
2743
        xfs_inode_t     *ip)
2744
{
2745
 
2746
        switch (ip->i_d.di_mode & S_IFMT) {
2747
        case S_IFREG:
2748
        case S_IFDIR:
2749
        case S_IFLNK:
2750
                xfs_idestroy_fork(ip, XFS_DATA_FORK);
2751
                break;
2752
        }
2753
        if (ip->i_afp)
2754
                xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2755
        mrfree(&ip->i_lock);
2756
        mrfree(&ip->i_iolock);
2757
        freesema(&ip->i_flock);
2758
#ifdef XFS_BMAP_TRACE
2759
        ktrace_free(ip->i_xtrace);
2760
#endif
2761
#ifdef XFS_BMBT_TRACE
2762
        ktrace_free(ip->i_btrace);
2763
#endif
2764
#ifdef XFS_RW_TRACE
2765
        ktrace_free(ip->i_rwtrace);
2766
#endif
2767
#ifdef XFS_ILOCK_TRACE
2768
        ktrace_free(ip->i_lock_trace);
2769
#endif
2770
#ifdef XFS_DIR2_TRACE
2771
        ktrace_free(ip->i_dir_trace);
2772
#endif
2773
        if (ip->i_itemp) {
2774
                /* XXXdpd should be able to assert this but shutdown
2775
                 * is leaving the AIL behind. */
2776
                ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2777
                       XFS_FORCED_SHUTDOWN(ip->i_mount));
2778
                xfs_inode_item_destroy(ip);
2779
        }
2780
        kmem_zone_free(xfs_inode_zone, ip);
2781
}
2782
 
2783
 
2784
/*
2785
 * Increment the pin count of the given buffer.
2786
 * This value is protected by ipinlock spinlock in the mount structure.
2787
 */
2788
void
2789
xfs_ipin(
2790
        xfs_inode_t     *ip)
2791
{
2792
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2793
 
2794
        atomic_inc(&ip->i_pincount);
2795
}
2796
 
2797
/*
2798
 * Decrement the pin count of the given inode, and wake up
2799
 * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2800
 * inode must have been previoulsy pinned with a call to xfs_ipin().
2801
 */
2802
void
2803
xfs_iunpin(
2804
        xfs_inode_t     *ip)
2805
{
2806
        ASSERT(atomic_read(&ip->i_pincount) > 0);
2807
 
2808
        if (atomic_dec_and_test(&ip->i_pincount)) {
2809
                vnode_t *vp = XFS_ITOV_NULL(ip);
2810
 
2811
                /* make sync come back and flush this inode */
2812
                if (vp) {
2813
                        struct inode    *inode = LINVFS_GET_IP(vp);
2814
 
2815
                        if (!(inode->i_state & I_NEW))
2816
                                mark_inode_dirty_sync(inode);
2817
                }
2818
 
2819
                wake_up(&ip->i_ipin_wait);
2820
        }
2821
}
2822
 
2823
/*
2824
 * This is called to wait for the given inode to be unpinned.
2825
 * It will sleep until this happens.  The caller must have the
2826
 * inode locked in at least shared mode so that the buffer cannot
2827
 * be subsequently pinned once someone is waiting for it to be
2828
 * unpinned.
2829
 */
2830
void
2831
xfs_iunpin_wait(
2832
        xfs_inode_t     *ip)
2833
{
2834
        xfs_inode_log_item_t    *iip;
2835
        xfs_lsn_t       lsn;
2836
 
2837
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2838
 
2839
        if (atomic_read(&ip->i_pincount) == 0) {
2840
                return;
2841
        }
2842
 
2843
        iip = ip->i_itemp;
2844
        if (iip && iip->ili_last_lsn) {
2845
                lsn = iip->ili_last_lsn;
2846
        } else {
2847
                lsn = (xfs_lsn_t)0;
2848
        }
2849
 
2850
        /*
2851
         * Give the log a push so we don't wait here too long.
2852
         */
2853
        xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2854
 
2855
        wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2856
}
2857
 
2858
 
2859
/*
2860
 * xfs_iextents_copy()
2861
 *
2862
 * This is called to copy the REAL extents (as opposed to the delayed
2863
 * allocation extents) from the inode into the given buffer.  It
2864
 * returns the number of bytes copied into the buffer.
2865
 *
2866
 * If there are no delayed allocation extents, then we can just
2867
 * memcpy() the extents into the buffer.  Otherwise, we need to
2868
 * examine each extent in turn and skip those which are delayed.
2869
 */
2870
int
2871
xfs_iextents_copy(
2872
        xfs_inode_t             *ip,
2873
        xfs_bmbt_rec_t          *buffer,
2874
        int                     whichfork)
2875
{
2876
        int                     copied;
2877
        xfs_bmbt_rec_t          *dest_ep;
2878
        xfs_bmbt_rec_t          *ep;
2879
#ifdef XFS_BMAP_TRACE
2880
        static char             fname[] = "xfs_iextents_copy";
2881
#endif
2882
        int                     i;
2883
        xfs_ifork_t             *ifp;
2884
        int                     nrecs;
2885
        xfs_fsblock_t           start_block;
2886
 
2887
        ifp = XFS_IFORK_PTR(ip, whichfork);
2888
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2889
        ASSERT(ifp->if_bytes > 0);
2890
 
2891
        nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2892
        xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2893
        ASSERT(nrecs > 0);
2894
 
2895
        /*
2896
         * There are some delayed allocation extents in the
2897
         * inode, so copy the extents one at a time and skip
2898
         * the delayed ones.  There must be at least one
2899
         * non-delayed extent.
2900
         */
2901
        ep = ifp->if_u1.if_extents;
2902
        dest_ep = buffer;
2903
        copied = 0;
2904
        for (i = 0; i < nrecs; i++) {
2905
                start_block = xfs_bmbt_get_startblock(ep);
2906
                if (ISNULLSTARTBLOCK(start_block)) {
2907
                        /*
2908
                         * It's a delayed allocation extent, so skip it.
2909
                         */
2910
                        ep++;
2911
                        continue;
2912
                }
2913
 
2914
                /* Translate to on disk format */
2915
                put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2916
                              (__uint64_t*)&dest_ep->l0);
2917
                put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2918
                              (__uint64_t*)&dest_ep->l1);
2919
                dest_ep++;
2920
                ep++;
2921
                copied++;
2922
        }
2923
        ASSERT(copied != 0);
2924
        xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2925
 
2926
        return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2927
}
2928
 
2929
/*
2930
 * Each of the following cases stores data into the same region
2931
 * of the on-disk inode, so only one of them can be valid at
2932
 * any given time. While it is possible to have conflicting formats
2933
 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2934
 * in EXTENTS format, this can only happen when the fork has
2935
 * changed formats after being modified but before being flushed.
2936
 * In these cases, the format always takes precedence, because the
2937
 * format indicates the current state of the fork.
2938
 */
2939
/*ARGSUSED*/
2940
STATIC int
2941
xfs_iflush_fork(
2942
        xfs_inode_t             *ip,
2943
        xfs_dinode_t            *dip,
2944
        xfs_inode_log_item_t    *iip,
2945
        int                     whichfork,
2946
        xfs_buf_t               *bp)
2947
{
2948
        char                    *cp;
2949
        xfs_ifork_t             *ifp;
2950
        xfs_mount_t             *mp;
2951
#ifdef XFS_TRANS_DEBUG
2952
        int                     first;
2953
#endif
2954
        static const short      brootflag[2] =
2955
                { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2956
        static const short      dataflag[2] =
2957
                { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2958
        static const short      extflag[2] =
2959
                { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2960
 
2961
        if (iip == NULL)
2962
                return 0;
2963
        ifp = XFS_IFORK_PTR(ip, whichfork);
2964
        /*
2965
         * This can happen if we gave up in iformat in an error path,
2966
         * for the attribute fork.
2967
         */
2968
        if (ifp == NULL) {
2969
                ASSERT(whichfork == XFS_ATTR_FORK);
2970
                return 0;
2971
        }
2972
        cp = XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
2973
        mp = ip->i_mount;
2974
        switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2975
        case XFS_DINODE_FMT_LOCAL:
2976
                if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2977
                    (ifp->if_bytes > 0)) {
2978
                        ASSERT(ifp->if_u1.if_data != NULL);
2979
                        ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2980
                        memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2981
                }
2982
                if (whichfork == XFS_DATA_FORK) {
2983
                        if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2984
                                XFS_ERROR_REPORT("xfs_iflush_fork",
2985
                                                 XFS_ERRLEVEL_LOW, mp);
2986
                                return XFS_ERROR(EFSCORRUPTED);
2987
                        }
2988
                }
2989
                break;
2990
 
2991
        case XFS_DINODE_FMT_EXTENTS:
2992
                ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2993
                       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2994
                ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
2995
                ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
2996
                if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2997
                    (ifp->if_bytes > 0)) {
2998
                        ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2999
                        (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3000
                                whichfork);
3001
                }
3002
                break;
3003
 
3004
        case XFS_DINODE_FMT_BTREE:
3005
                if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3006
                    (ifp->if_broot_bytes > 0)) {
3007
                        ASSERT(ifp->if_broot != NULL);
3008
                        ASSERT(ifp->if_broot_bytes <=
3009
                               (XFS_IFORK_SIZE(ip, whichfork) +
3010
                                XFS_BROOT_SIZE_ADJ));
3011
                        xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3012
                                (xfs_bmdr_block_t *)cp,
3013
                                XFS_DFORK_SIZE_ARCH(dip, mp, whichfork, ARCH_CONVERT));
3014
                }
3015
                break;
3016
 
3017
        case XFS_DINODE_FMT_DEV:
3018
                if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3019
                        ASSERT(whichfork == XFS_DATA_FORK);
3020
                        INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3021
                }
3022
                break;
3023
 
3024
        case XFS_DINODE_FMT_UUID:
3025
                if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3026
                        ASSERT(whichfork == XFS_DATA_FORK);
3027
                        memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3028
                                sizeof(uuid_t));
3029
                }
3030
                break;
3031
 
3032
        default:
3033
                ASSERT(0);
3034
                break;
3035
        }
3036
 
3037
        return 0;
3038
}
3039
 
3040
/*
3041
 * xfs_iflush() will write a modified inode's changes out to the
3042
 * inode's on disk home.  The caller must have the inode lock held
3043
 * in at least shared mode and the inode flush semaphore must be
3044
 * held as well.  The inode lock will still be held upon return from
3045
 * the call and the caller is free to unlock it.
3046
 * The inode flush lock will be unlocked when the inode reaches the disk.
3047
 * The flags indicate how the inode's buffer should be written out.
3048
 */
3049
int
3050
xfs_iflush(
3051
        xfs_inode_t             *ip,
3052
        uint                    flags)
3053
{
3054
        xfs_inode_log_item_t    *iip;
3055
        xfs_buf_t               *bp;
3056
        xfs_dinode_t            *dip;
3057
        xfs_mount_t             *mp;
3058
        int                     error;
3059
        /* REFERENCED */
3060
        xfs_chash_t             *ch;
3061
        xfs_inode_t             *iq;
3062
        int                     clcount;        /* count of inodes clustered */
3063
        int                     bufwasdelwri;
3064
        enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3065
        SPLDECL(s);
3066
 
3067
        XFS_STATS_INC(xs_iflush_count);
3068
 
3069
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3070
        ASSERT(valusema(&ip->i_flock) <= 0);
3071
        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3072
               ip->i_d.di_nextents > ip->i_df.if_ext_max);
3073
 
3074
        iip = ip->i_itemp;
3075
        mp = ip->i_mount;
3076
 
3077
        /*
3078
         * If the inode isn't dirty, then just release the inode
3079
         * flush lock and do nothing.
3080
         */
3081
        if ((ip->i_update_core == 0) &&
3082
            ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3083
                ASSERT((iip != NULL) ?
3084
                         !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3085
                xfs_ifunlock(ip);
3086
                return 0;
3087
        }
3088
 
3089
        /*
3090
         * We can't flush the inode until it is unpinned, so
3091
         * wait for it.  We know noone new can pin it, because
3092
         * we are holding the inode lock shared and you need
3093
         * to hold it exclusively to pin the inode.
3094
         */
3095
        xfs_iunpin_wait(ip);
3096
 
3097
        /*
3098
         * This may have been unpinned because the filesystem is shutting
3099
         * down forcibly. If that's the case we must not write this inode
3100
         * to disk, because the log record didn't make it to disk!
3101
         */
3102
        if (XFS_FORCED_SHUTDOWN(mp)) {
3103
                ip->i_update_core = 0;
3104
                if (iip)
3105
                        iip->ili_format.ilf_fields = 0;
3106
                xfs_ifunlock(ip);
3107
                return XFS_ERROR(EIO);
3108
        }
3109
 
3110
        /*
3111
         * Get the buffer containing the on-disk inode.
3112
         */
3113
        error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3114
        if (error != 0) {
3115
                xfs_ifunlock(ip);
3116
                return error;
3117
        }
3118
 
3119
        /*
3120
         * Decide how buffer will be flushed out.  This is done before
3121
         * the call to xfs_iflush_int because this field is zeroed by it.
3122
         */
3123
        if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3124
                /*
3125
                 * Flush out the inode buffer according to the directions
3126
                 * of the caller.  In the cases where the caller has given
3127
                 * us a choice choose the non-delwri case.  This is because
3128
                 * the inode is in the AIL and we need to get it out soon.
3129
                 */
3130
                switch (flags) {
3131
                case XFS_IFLUSH_SYNC:
3132
                case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3133
                        flags = 0;
3134
                        break;
3135
                case XFS_IFLUSH_ASYNC:
3136
                case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3137
                        flags = INT_ASYNC;
3138
                        break;
3139
                case XFS_IFLUSH_DELWRI:
3140
                        flags = INT_DELWRI;
3141
                        break;
3142
                default:
3143
                        ASSERT(0);
3144
                        flags = 0;
3145
                        break;
3146
                }
3147
        } else {
3148
                switch (flags) {
3149
                case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3150
                case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3151
                case XFS_IFLUSH_DELWRI:
3152
                        flags = INT_DELWRI;
3153
                        break;
3154
                case XFS_IFLUSH_ASYNC:
3155
                        flags = INT_ASYNC;
3156
                        break;
3157
                case XFS_IFLUSH_SYNC:
3158
                        flags = 0;
3159
                        break;
3160
                default:
3161
                        ASSERT(0);
3162
                        flags = 0;
3163
                        break;
3164
                }
3165
        }
3166
 
3167
        /*
3168
         * First flush out the inode that xfs_iflush was called with.
3169
         */
3170
        error = xfs_iflush_int(ip, bp);
3171
        if (error) {
3172
                goto corrupt_out;
3173
        }
3174
 
3175
        /*
3176
         * inode clustering:
3177
         * see if other inodes can be gathered into this write
3178
         */
3179
 
3180
        ip->i_chash->chl_buf = bp;
3181
 
3182
        ch = XFS_CHASH(mp, ip->i_blkno);
3183
        s = mutex_spinlock(&ch->ch_lock);
3184
 
3185
        clcount = 0;
3186
        for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3187
                /*
3188
                 * Do an un-protected check to see if the inode is dirty and
3189
                 * is a candidate for flushing.  These checks will be repeated
3190
                 * later after the appropriate locks are acquired.
3191
                 */
3192
                iip = iq->i_itemp;
3193
                if ((iq->i_update_core == 0) &&
3194
                    ((iip == NULL) ||
3195
                     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3196
                      xfs_ipincount(iq) == 0) {
3197
                        continue;
3198
                }
3199
 
3200
                /*
3201
                 * Try to get locks.  If any are unavailable,
3202
                 * then this inode cannot be flushed and is skipped.
3203
                 */
3204
 
3205
                /* get inode locks (just i_lock) */
3206
                if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3207
                        /* get inode flush lock */
3208
                        if (xfs_iflock_nowait(iq)) {
3209
                                /* check if pinned */
3210
                                if (xfs_ipincount(iq) == 0) {
3211
                                        /* arriving here means that
3212
                                         * this inode can be flushed.
3213
                                         * first re-check that it's
3214
                                         * dirty
3215
                                         */
3216
                                        iip = iq->i_itemp;
3217
                                        if ((iq->i_update_core != 0)||
3218
                                            ((iip != NULL) &&
3219
                                             (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3220
                                                clcount++;
3221
                                                error = xfs_iflush_int(iq, bp);
3222
                                                if (error) {
3223
                                                        xfs_iunlock(iq,
3224
                                                                    XFS_ILOCK_SHARED);
3225
                                                        goto cluster_corrupt_out;
3226
                                                }
3227
                                        } else {
3228
                                                xfs_ifunlock(iq);
3229
                                        }
3230
                                } else {
3231
                                        xfs_ifunlock(iq);
3232
                                }
3233
                        }
3234
                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
3235
                }
3236
        }
3237
        mutex_spinunlock(&ch->ch_lock, s);
3238
 
3239
        if (clcount) {
3240
                XFS_STATS_INC(xs_icluster_flushcnt);
3241
                XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3242
        }
3243
 
3244
        /*
3245
         * If the buffer is pinned then push on the log so we won't
3246
         * get stuck waiting in the write for too long.
3247
         */
3248
        if (XFS_BUF_ISPINNED(bp)){
3249
                xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3250
        }
3251
 
3252
        if (flags & INT_DELWRI) {
3253
                xfs_bdwrite(mp, bp);
3254
        } else if (flags & INT_ASYNC) {
3255
                xfs_bawrite(mp, bp);
3256
        } else {
3257
                error = xfs_bwrite(mp, bp);
3258
        }
3259
        return error;
3260
 
3261
corrupt_out:
3262
        xfs_buf_relse(bp);
3263
        xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3264
        xfs_iflush_abort(ip);
3265
        /*
3266
         * Unlocks the flush lock
3267
         */
3268
        return XFS_ERROR(EFSCORRUPTED);
3269
 
3270
cluster_corrupt_out:
3271
        /* Corruption detected in the clustering loop.  Invalidate the
3272
         * inode buffer and shut down the filesystem.
3273
         */
3274
        mutex_spinunlock(&ch->ch_lock, s);
3275
 
3276
        /*
3277
         * Clean up the buffer.  If it was B_DELWRI, just release it --
3278
         * brelse can handle it with no problems.  If not, shut down the
3279
         * filesystem before releasing the buffer.
3280
         */
3281
        if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3282
                xfs_buf_relse(bp);
3283
        }
3284
 
3285
        xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3286
 
3287
        if(!bufwasdelwri)  {
3288
                /*
3289
                 * Just like incore_relse: if we have b_iodone functions,
3290
                 * mark the buffer as an error and call them.  Otherwise
3291
                 * mark it as stale and brelse.
3292
                 */
3293
                if (XFS_BUF_IODONE_FUNC(bp)) {
3294
                        XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3295
                        XFS_BUF_UNDONE(bp);
3296
                        XFS_BUF_STALE(bp);
3297
                        XFS_BUF_SHUT(bp);
3298
                        XFS_BUF_ERROR(bp,EIO);
3299
                        xfs_biodone(bp);
3300
                } else {
3301
                        XFS_BUF_STALE(bp);
3302
                        xfs_buf_relse(bp);
3303
                }
3304
        }
3305
 
3306
        xfs_iflush_abort(iq);
3307
        /*
3308
         * Unlocks the flush lock
3309
         */
3310
        return XFS_ERROR(EFSCORRUPTED);
3311
}
3312
 
3313
 
3314
STATIC int
3315
xfs_iflush_int(
3316
        xfs_inode_t             *ip,
3317
        xfs_buf_t               *bp)
3318
{
3319
        xfs_inode_log_item_t    *iip;
3320
        xfs_dinode_t            *dip;
3321
        xfs_mount_t             *mp;
3322
#ifdef XFS_TRANS_DEBUG
3323
        int                     first;
3324
#endif
3325
        SPLDECL(s);
3326
 
3327
        ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3328
        ASSERT(valusema(&ip->i_flock) <= 0);
3329
        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3330
               ip->i_d.di_nextents > ip->i_df.if_ext_max);
3331
 
3332
        iip = ip->i_itemp;
3333
        mp = ip->i_mount;
3334
 
3335
 
3336
        /*
3337
         * If the inode isn't dirty, then just release the inode
3338
         * flush lock and do nothing.
3339
         */
3340
        if ((ip->i_update_core == 0) &&
3341
            ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3342
                xfs_ifunlock(ip);
3343
                return 0;
3344
        }
3345
 
3346
        /* set *dip = inode's place in the buffer */
3347
        dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3348
 
3349
        /*
3350
         * Clear i_update_core before copying out the data.
3351
         * This is for coordination with our timestamp updates
3352
         * that don't hold the inode lock. They will always
3353
         * update the timestamps BEFORE setting i_update_core,
3354
         * so if we clear i_update_core after they set it we
3355
         * are guaranteed to see their updates to the timestamps.
3356
         * I believe that this depends on strongly ordered memory
3357
         * semantics, but we have that.  We use the SYNCHRONIZE
3358
         * macro to make sure that the compiler does not reorder
3359
         * the i_update_core access below the data copy below.
3360
         */
3361
        ip->i_update_core = 0;
3362
        SYNCHRONIZE();
3363
 
3364
        if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3365
                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3366
                xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3367
                    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3368
                        ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3369
                goto corrupt_out;
3370
        }
3371
        if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3372
                                mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3373
                xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3374
                        "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3375
                        ip->i_ino, ip, ip->i_d.di_magic);
3376
                goto corrupt_out;
3377
        }
3378
        if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3379
                if (XFS_TEST_ERROR(
3380
                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3381
                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3382
                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3383
                        xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3384
                                "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3385
                                ip->i_ino, ip);
3386
                        goto corrupt_out;
3387
                }
3388
        } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3389
                if (XFS_TEST_ERROR(
3390
                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3391
                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3392
                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3393
                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3394
                        xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3395
                                "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3396
                                ip->i_ino, ip);
3397
                        goto corrupt_out;
3398
                }
3399
        }
3400
        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3401
                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3402
                                XFS_RANDOM_IFLUSH_5)) {
3403
                xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3404
                        "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3405
                        ip->i_ino,
3406
                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3407
                        ip->i_d.di_nblocks,
3408
                        ip);
3409
                goto corrupt_out;
3410
        }
3411
        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3412
                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3413
                xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3414
                        "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3415
                        ip->i_ino, ip->i_d.di_forkoff, ip);
3416
                goto corrupt_out;
3417
        }
3418
        /*
3419
         * bump the flush iteration count, used to detect flushes which
3420
         * postdate a log record during recovery.
3421
         */
3422
 
3423
        ip->i_d.di_flushiter++;
3424
 
3425
        /*
3426
         * Copy the dirty parts of the inode into the on-disk
3427
         * inode.  We always copy out the core of the inode,
3428
         * because if the inode is dirty at all the core must
3429
         * be.
3430
         */
3431
        xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d),
3432
                -1, ARCH_CONVERT);
3433
 
3434
        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3435
        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3436
                ip->i_d.di_flushiter = 0;
3437
 
3438
        /*
3439
         * If this is really an old format inode and the superblock version
3440
         * has not been updated to support only new format inodes, then
3441
         * convert back to the old inode format.  If the superblock version
3442
         * has been updated, then make the conversion permanent.
3443
         */
3444
        ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3445
               XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3446
        if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3447
                if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3448
                        /*
3449
                         * Convert it back.
3450
                         */
3451
                        ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3452
                        INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3453
                } else {
3454
                        /*
3455
                         * The superblock version has already been bumped,
3456
                         * so just make the conversion to the new inode
3457
                         * format permanent.
3458
                         */
3459
                        ip->i_d.di_version = XFS_DINODE_VERSION_2;
3460
                        INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3461
                        ip->i_d.di_onlink = 0;
3462
                        INT_ZERO(dip->di_core.di_onlink, ARCH_CONVERT);
3463
                        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3464
                        memset(&(dip->di_core.di_pad[0]), 0,
3465
                              sizeof(dip->di_core.di_pad));
3466
                        ASSERT(ip->i_d.di_projid == 0);
3467
                }
3468
        }
3469
 
3470
        if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3471
                goto corrupt_out;
3472
        }
3473
 
3474
        if (XFS_IFORK_Q(ip)) {
3475
                /*
3476
                 * The only error from xfs_iflush_fork is on the data fork.
3477
                 */
3478
                (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3479
        }
3480
        xfs_inobp_check(mp, bp);
3481
 
3482
        /*
3483
         * We've recorded everything logged in the inode, so we'd
3484
         * like to clear the ilf_fields bits so we don't log and
3485
         * flush things unnecessarily.  However, we can't stop
3486
         * logging all this information until the data we've copied
3487
         * into the disk buffer is written to disk.  If we did we might
3488
         * overwrite the copy of the inode in the log with all the
3489
         * data after re-logging only part of it, and in the face of
3490
         * a crash we wouldn't have all the data we need to recover.
3491
         *
3492
         * What we do is move the bits to the ili_last_fields field.
3493
         * When logging the inode, these bits are moved back to the
3494
         * ilf_fields field.  In the xfs_iflush_done() routine we
3495
         * clear ili_last_fields, since we know that the information
3496
         * those bits represent is permanently on disk.  As long as
3497
         * the flush completes before the inode is logged again, then
3498
         * both ilf_fields and ili_last_fields will be cleared.
3499
         *
3500
         * We can play with the ilf_fields bits here, because the inode
3501
         * lock must be held exclusively in order to set bits there
3502
         * and the flush lock protects the ili_last_fields bits.
3503
         * Set ili_logged so the flush done
3504
         * routine can tell whether or not to look in the AIL.
3505
         * Also, store the current LSN of the inode so that we can tell
3506
         * whether the item has moved in the AIL from xfs_iflush_done().
3507
         * In order to read the lsn we need the AIL lock, because
3508
         * it is a 64 bit value that cannot be read atomically.
3509
         */
3510
        if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3511
                iip->ili_last_fields = iip->ili_format.ilf_fields;
3512
                iip->ili_format.ilf_fields = 0;
3513
                iip->ili_logged = 1;
3514
 
3515
                ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3516
                AIL_LOCK(mp,s);
3517
                iip->ili_flush_lsn = iip->ili_item.li_lsn;
3518
                AIL_UNLOCK(mp, s);
3519
 
3520
                /*
3521
                 * Attach the function xfs_iflush_done to the inode's
3522
                 * buffer.  This will remove the inode from the AIL
3523
                 * and unlock the inode's flush lock when the inode is
3524
                 * completely written to disk.
3525
                 */
3526
                xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3527
                                      xfs_iflush_done, (xfs_log_item_t *)iip);
3528
 
3529
                ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3530
                ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3531
        } else {
3532
                /*
3533
                 * We're flushing an inode which is not in the AIL and has
3534
                 * not been logged but has i_update_core set.  For this
3535
                 * case we can use a B_DELWRI flush and immediately drop
3536
                 * the inode flush lock because we can avoid the whole
3537
                 * AIL state thing.  It's OK to drop the flush lock now,
3538
                 * because we've already locked the buffer and to do anything
3539
                 * you really need both.
3540
                 */
3541
                if (iip != NULL) {
3542
                        ASSERT(iip->ili_logged == 0);
3543
                        ASSERT(iip->ili_last_fields == 0);
3544
                        ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3545
                }
3546
                xfs_ifunlock(ip);
3547
        }
3548
 
3549
        return 0;
3550
 
3551
corrupt_out:
3552
        return XFS_ERROR(EFSCORRUPTED);
3553
}
3554
 
3555
/*
3556
 * Flush all inactive inodes in mp.  Return true if no user references
3557
 * were found, false otherwise.
3558
 */
3559
int
3560
xfs_iflush_all(
3561
        xfs_mount_t     *mp,
3562
        int             flag)
3563
{
3564
        int             busy;
3565
        int             done;
3566
        int             purged;
3567
        xfs_inode_t     *ip;
3568
        vmap_t          vmap;
3569
        vnode_t         *vp;
3570
 
3571
        busy = done = 0;
3572
        while (!done) {
3573
                purged = 0;
3574
                XFS_MOUNT_ILOCK(mp);
3575
                ip = mp->m_inodes;
3576
                if (ip == NULL) {
3577
                        break;
3578
                }
3579
                do {
3580
                        /* Make sure we skip markers inserted by sync */
3581
                        if (ip->i_mount == NULL) {
3582
                                ip = ip->i_mnext;
3583
                                continue;
3584
                        }
3585
 
3586
                        /*
3587
                         * It's up to our caller to purge the root
3588
                         * and quota vnodes later.
3589
                         */
3590
                        vp = XFS_ITOV_NULL(ip);
3591
 
3592
                        if (!vp) {
3593
                                XFS_MOUNT_IUNLOCK(mp);
3594
                                xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3595
                                purged = 1;
3596
                                break;
3597
                        }
3598
 
3599
                        if (vn_count(vp) != 0) {
3600
                                if (vn_count(vp) == 1 &&
3601
                                    (ip == mp->m_rootip ||
3602
                                     (mp->m_quotainfo &&
3603
                                      (ip->i_ino == mp->m_sb.sb_uquotino ||
3604
                                       ip->i_ino == mp->m_sb.sb_gquotino)))) {
3605
 
3606
                                        ip = ip->i_mnext;
3607
                                        continue;
3608
                                }
3609
                                if (!(flag & XFS_FLUSH_ALL)) {
3610
                                        ASSERT(0);
3611
                                        busy = 1;
3612
                                        done = 1;
3613
                                        break;
3614
                                }
3615
                                /*
3616
                                 * Ignore busy inodes but continue flushing
3617
                                 * others.
3618
                                 */
3619
                                ip = ip->i_mnext;
3620
                                continue;
3621
                        }
3622
                        /*
3623
                         * Sample vp mapping while holding mp locked on MP
3624
                         * systems, so we don't purge a reclaimed or
3625
                         * nonexistent vnode.  We break from the loop
3626
                         * since we know that we modify
3627
                         * it by pulling ourselves from it in xfs_reclaim()
3628
                         * called via vn_purge() below.  Set ip to the next
3629
                         * entry in the list anyway so we'll know below
3630
                         * whether we reached the end or not.
3631
                         */
3632
                        VMAP(vp, vmap);
3633
                        XFS_MOUNT_IUNLOCK(mp);
3634
 
3635
                        vn_purge(vp, &vmap);
3636
 
3637
                        purged = 1;
3638
                        break;
3639
                } while (ip != mp->m_inodes);
3640
                /*
3641
                 * We need to distinguish between when we exit the loop
3642
                 * after a purge and when we simply hit the end of the
3643
                 * list.  We can't use the (ip == mp->m_inodes) test,
3644
                 * because when we purge an inode at the start of the list
3645
                 * the next inode on the list becomes mp->m_inodes.  That
3646
                 * would cause such a test to bail out early.  The purged
3647
                 * variable tells us how we got out of the loop.
3648
                 */
3649
                if (!purged) {
3650
                        done = 1;
3651
                }
3652
        }
3653
        XFS_MOUNT_IUNLOCK(mp);
3654
        return !busy;
3655
}
3656
 
3657
 
3658
/*
3659
 * xfs_iaccess: check accessibility of inode for mode.
3660
 */
3661
int
3662
xfs_iaccess(
3663
        xfs_inode_t     *ip,
3664
        mode_t          mode,
3665
        cred_t          *cr)
3666
{
3667
        int             error;
3668
        mode_t          orgmode = mode;
3669
        struct inode    *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3670
 
3671
        /*
3672
         * Verify that the MAC policy allows the requested access.
3673
         */
3674
        if ((error = _MAC_XFS_IACCESS(ip, mode, cr)))
3675
                return XFS_ERROR(error);
3676
 
3677
        if (mode & S_IWUSR) {
3678
                umode_t         imode = inode->i_mode;
3679
 
3680
                if (IS_RDONLY(inode) &&
3681
                    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3682
                        return XFS_ERROR(EROFS);
3683
 
3684
                if (IS_IMMUTABLE(inode))
3685
                        return XFS_ERROR(EACCES);
3686
        }
3687
 
3688
        /*
3689
         * If there's an Access Control List it's used instead of
3690
         * the mode bits.
3691
         */
3692
        if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3693
                return error ? XFS_ERROR(error) : 0;
3694
 
3695
        if (current_fsuid(cr) != ip->i_d.di_uid) {
3696
                mode >>= 3;
3697
                if (!in_group_p((gid_t)ip->i_d.di_gid))
3698
                        mode >>= 3;
3699
        }
3700
 
3701
        /*
3702
         * If the DACs are ok we don't need any capability check.
3703
         */
3704
        if ((ip->i_d.di_mode & mode) == mode)
3705
                return 0;
3706
        /*
3707
         * Read/write DACs are always overridable.
3708
         * Executable DACs are overridable if at least one exec bit is set.
3709
         */
3710
        if (!(orgmode & S_IXUSR) ||
3711
            (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3712
                if (capable_cred(cr, CAP_DAC_OVERRIDE))
3713
                        return 0;
3714
 
3715
        if ((orgmode == S_IRUSR) ||
3716
            (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3717
                if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3718
                        return 0;
3719
#ifdef  NOISE
3720
                cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3721
#endif  /* NOISE */
3722
                return XFS_ERROR(EACCES);
3723
        }
3724
        return XFS_ERROR(EACCES);
3725
}
3726
 
3727
/*
3728
 * Return whether or not it is OK to swap to the given file in the
3729
 * given range.  Return 0 for OK and otherwise return the error.
3730
 *
3731
 * It is only OK to swap to a file if it has no holes, and all
3732
 * extents have been initialized.
3733
 *
3734
 * We use the vnode behavior chain prevent and allow primitives
3735
 * to ensure that the vnode chain stays coherent while we do this.
3736
 * This allows us to walk the chain down to the bottom where XFS
3737
 * lives without worrying about it changing out from under us.
3738
 */
3739
int
3740
xfs_swappable(
3741
        bhv_desc_t      *bdp)
3742
{
3743
        xfs_inode_t     *ip;
3744
 
3745
        ip = XFS_BHVTOI(bdp);
3746
        /*
3747
         * Verify that the file does not have any
3748
         * holes or unwritten exents.
3749
         */
3750
        return xfs_bmap_check_swappable(ip);
3751
}
3752
 
3753
/*
3754
 * xfs_iroundup: round up argument to next power of two
3755
 */
3756
uint
3757
xfs_iroundup(
3758
        uint    v)
3759
{
3760
        int i;
3761
        uint m;
3762
 
3763
        if ((v & (v - 1)) == 0)
3764
                return v;
3765
        ASSERT((v & 0x80000000) == 0);
3766
        if ((v & (v + 1)) == 0)
3767
                return v + 1;
3768
        for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3769
                if (v & m)
3770
                        continue;
3771
                v |= m;
3772
                if ((v & (v + 1)) == 0)
3773
                        return v + 1;
3774
        }
3775
        ASSERT(0);
3776
        return( 0 );
3777
}
3778
 
3779
/*
3780
 * Change the requested timestamp in the given inode.
3781
 * We don't lock across timestamp updates, and we don't log them but
3782
 * we do record the fact that there is dirty information in core.
3783
 *
3784
 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3785
 *              with XFS_ICHGTIME_ACC to be sure that access time
3786
 *              update will take.  Calling first with XFS_ICHGTIME_ACC
3787
 *              and then XFS_ICHGTIME_MOD may fail to modify the access
3788
 *              timestamp if the filesystem is mounted noacctm.
3789
 */
3790
void
3791
xfs_ichgtime(xfs_inode_t *ip,
3792
             int flags)
3793
{
3794
        timespec_t      tv;
3795
        vnode_t         *vp = XFS_ITOV(ip);
3796
        struct inode    *inode = LINVFS_GET_IP(vp);
3797
 
3798
        /*
3799
         * We're not supposed to change timestamps in readonly-mounted
3800
         * filesystems.  Throw it away if anyone asks us.
3801
         */
3802
        if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3803
                return;
3804
 
3805
        /*
3806
         * Don't update access timestamps on reads if mounted "noatime"
3807
         * Throw it away if anyone asks us.
3808
         */
3809
        if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3810
            ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3811
                        == XFS_ICHGTIME_ACC))
3812
                return;
3813
 
3814
        nanotime(&tv);
3815
        if (flags & XFS_ICHGTIME_MOD) {
3816
                VN_MTIMESET(vp, &tv);
3817
                ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3818
                ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3819
        }
3820
        if (flags & XFS_ICHGTIME_ACC) {
3821
                VN_ATIMESET(vp, &tv);
3822
                ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3823
                ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3824
        }
3825
        if (flags & XFS_ICHGTIME_CHG) {
3826
                VN_CTIMESET(vp, &tv);
3827
                ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3828
                ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3829
        }
3830
 
3831
        /*
3832
         * We update the i_update_core field _after_ changing
3833
         * the timestamps in order to coordinate properly with
3834
         * xfs_iflush() so that we don't lose timestamp updates.
3835
         * This keeps us from having to hold the inode lock
3836
         * while doing this.  We use the SYNCHRONIZE macro to
3837
         * ensure that the compiler does not reorder the update
3838
         * of i_update_core above the timestamp updates above.
3839
         */
3840
        SYNCHRONIZE();
3841
        ip->i_update_core = 1;
3842
        if (!(inode->i_state & I_LOCK))
3843
                mark_inode_dirty_sync(inode);
3844
}
3845
 
3846
#ifdef XFS_ILOCK_TRACE
3847
ktrace_t        *xfs_ilock_trace_buf;
3848
 
3849
void
3850
xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3851
{
3852
        ktrace_enter(ip->i_lock_trace,
3853
                     (void *)ip,
3854
                     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3855
                     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3856
                     (void *)ra,                /* caller of ilock */
3857
                     (void *)(unsigned long)current_cpu(),
3858
                     (void *)(unsigned long)current_pid(),
3859
                     0,0,0,0,0,0,0,0,0,0);
3860
}
3861
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.