OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-ia64/] [bitops.h] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
#ifndef _ASM_IA64_BITOPS_H
2
#define _ASM_IA64_BITOPS_H
3
 
4
/*
5
 * Copyright (C) 1998-2003 Hewlett-Packard Co
6
 *      David Mosberger-Tang <davidm@hpl.hp.com>
7
 */
8
 
9
#include <linux/types.h>
10
 
11
#include <asm/intrinsics.h>
12
 
13
/**
14
 * set_bit - Atomically set a bit in memory
15
 * @nr: the bit to set
16
 * @addr: the address to start counting from
17
 *
18
 * This function is atomic and may not be reordered.  See __set_bit()
19
 * if you do not require the atomic guarantees.
20
 * Note that @nr may be almost arbitrarily large; this function is not
21
 * restricted to acting on a single-word quantity.
22
 *
23
 * The address must be (at least) "long" aligned.
24
 * Note that there are driver (e.g., eepro100) which use these operations to operate on
25
 * hw-defined data-structures, so we can't easily change these operations to force a
26
 * bigger alignment.
27
 *
28
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
29
 */
30
static __inline__ void
31
set_bit (int nr, volatile void *addr)
32
{
33
        __u32 bit, old, new;
34
        volatile __u32 *m;
35
        CMPXCHG_BUGCHECK_DECL
36
 
37
        m = (volatile __u32 *) addr + (nr >> 5);
38
        bit = 1 << (nr & 31);
39
        do {
40
                CMPXCHG_BUGCHECK(m);
41
                old = *m;
42
                new = old | bit;
43
        } while (cmpxchg_acq(m, old, new) != old);
44
}
45
 
46
/**
47
 * __set_bit - Set a bit in memory
48
 * @nr: the bit to set
49
 * @addr: the address to start counting from
50
 *
51
 * Unlike set_bit(), this function is non-atomic and may be reordered.
52
 * If it's called on the same region of memory simultaneously, the effect
53
 * may be that only one operation succeeds.
54
 */
55
static __inline__ void
56
__set_bit (int nr, volatile void *addr)
57
{
58
        *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
59
}
60
 
61
/*
62
 * clear_bit() has "acquire" semantics.
63
 */
64
#define smp_mb__before_clear_bit()      smp_mb()
65
#define smp_mb__after_clear_bit()       do { /* skip */; } while (0)
66
 
67
/**
68
 * clear_bit - Clears a bit in memory
69
 * @nr: Bit to clear
70
 * @addr: Address to start counting from
71
 *
72
 * clear_bit() is atomic and may not be reordered.  However, it does
73
 * not contain a memory barrier, so if it is used for locking purposes,
74
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
75
 * in order to ensure changes are visible on other processors.
76
 */
77
static __inline__ void
78
clear_bit (int nr, volatile void *addr)
79
{
80
        __u32 mask, old, new;
81
        volatile __u32 *m;
82
        CMPXCHG_BUGCHECK_DECL
83
 
84
        m = (volatile __u32 *) addr + (nr >> 5);
85
        mask = ~(1 << (nr & 31));
86
        do {
87
                CMPXCHG_BUGCHECK(m);
88
                old = *m;
89
                new = old & mask;
90
        } while (cmpxchg_acq(m, old, new) != old);
91
}
92
 
93
/**
94
 * change_bit - Toggle a bit in memory
95
 * @nr: Bit to clear
96
 * @addr: Address to start counting from
97
 *
98
 * change_bit() is atomic and may not be reordered.
99
 * Note that @nr may be almost arbitrarily large; this function is not
100
 * restricted to acting on a single-word quantity.
101
 */
102
static __inline__ void
103
change_bit (int nr, volatile void *addr)
104
{
105
        __u32 bit, old, new;
106
        volatile __u32 *m;
107
        CMPXCHG_BUGCHECK_DECL
108
 
109
        m = (volatile __u32 *) addr + (nr >> 5);
110
        bit = (1 << (nr & 31));
111
        do {
112
                CMPXCHG_BUGCHECK(m);
113
                old = *m;
114
                new = old ^ bit;
115
        } while (cmpxchg_acq(m, old, new) != old);
116
}
117
 
118
/**
119
 * __change_bit - Toggle a bit in memory
120
 * @nr: the bit to set
121
 * @addr: the address to start counting from
122
 *
123
 * Unlike change_bit(), this function is non-atomic and may be reordered.
124
 * If it's called on the same region of memory simultaneously, the effect
125
 * may be that only one operation succeeds.
126
 */
127
static __inline__ void
128
__change_bit (int nr, volatile void *addr)
129
{
130
        *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
131
}
132
 
133
/**
134
 * test_and_set_bit - Set a bit and return its old value
135
 * @nr: Bit to set
136
 * @addr: Address to count from
137
 *
138
 * This operation is atomic and cannot be reordered.
139
 * It also implies a memory barrier.
140
 */
141
static __inline__ int
142
test_and_set_bit (int nr, volatile void *addr)
143
{
144
        __u32 bit, old, new;
145
        volatile __u32 *m;
146
        CMPXCHG_BUGCHECK_DECL
147
 
148
        m = (volatile __u32 *) addr + (nr >> 5);
149
        bit = 1 << (nr & 31);
150
        do {
151
                CMPXCHG_BUGCHECK(m);
152
                old = *m;
153
                new = old | bit;
154
        } while (cmpxchg_acq(m, old, new) != old);
155
        return (old & bit) != 0;
156
}
157
 
158
/**
159
 * __test_and_set_bit - Set a bit and return its old value
160
 * @nr: Bit to set
161
 * @addr: Address to count from
162
 *
163
 * This operation is non-atomic and can be reordered.
164
 * If two examples of this operation race, one can appear to succeed
165
 * but actually fail.  You must protect multiple accesses with a lock.
166
 */
167
static __inline__ int
168
__test_and_set_bit (int nr, volatile void *addr)
169
{
170
        __u32 *p = (__u32 *) addr + (nr >> 5);
171
        __u32 m = 1 << (nr & 31);
172
        int oldbitset = (*p & m) != 0;
173
 
174
        *p |= m;
175
        return oldbitset;
176
}
177
 
178
/**
179
 * test_and_clear_bit - Clear a bit and return its old value
180
 * @nr: Bit to set
181
 * @addr: Address to count from
182
 *
183
 * This operation is atomic and cannot be reordered.
184
 * It also implies a memory barrier.
185
 */
186
static __inline__ int
187
test_and_clear_bit (int nr, volatile void *addr)
188
{
189
        __u32 mask, old, new;
190
        volatile __u32 *m;
191
        CMPXCHG_BUGCHECK_DECL
192
 
193
        m = (volatile __u32 *) addr + (nr >> 5);
194
        mask = ~(1 << (nr & 31));
195
        do {
196
                CMPXCHG_BUGCHECK(m);
197
                old = *m;
198
                new = old & mask;
199
        } while (cmpxchg_acq(m, old, new) != old);
200
        return (old & ~mask) != 0;
201
}
202
 
203
/**
204
 * __test_and_clear_bit - Clear a bit and return its old value
205
 * @nr: Bit to set
206
 * @addr: Address to count from
207
 *
208
 * This operation is non-atomic and can be reordered.
209
 * If two examples of this operation race, one can appear to succeed
210
 * but actually fail.  You must protect multiple accesses with a lock.
211
 */
212
static __inline__ int
213
__test_and_clear_bit(int nr, volatile void * addr)
214
{
215
        __u32 *p = (__u32 *) addr + (nr >> 5);
216
        __u32 m = 1 << (nr & 31);
217
        int oldbitset = *p & m;
218
 
219
        *p &= ~m;
220
        return oldbitset;
221
}
222
 
223
/**
224
 * test_and_change_bit - Change a bit and return its new value
225
 * @nr: Bit to set
226
 * @addr: Address to count from
227
 *
228
 * This operation is atomic and cannot be reordered.
229
 * It also implies a memory barrier.
230
 */
231
static __inline__ int
232
test_and_change_bit (int nr, volatile void *addr)
233
{
234
        __u32 bit, old, new;
235
        volatile __u32 *m;
236
        CMPXCHG_BUGCHECK_DECL
237
 
238
        m = (volatile __u32 *) addr + (nr >> 5);
239
        bit = (1 << (nr & 31));
240
        do {
241
                CMPXCHG_BUGCHECK(m);
242
                old = *m;
243
                new = old ^ bit;
244
        } while (cmpxchg_acq(m, old, new) != old);
245
        return (old & bit) != 0;
246
}
247
 
248
/*
249
 * WARNING: non atomic version.
250
 */
251
static __inline__ int
252
__test_and_change_bit (int nr, void *addr)
253
{
254
        __u32 old, bit = (1 << (nr & 31));
255
        __u32 *m = (__u32 *) addr + (nr >> 5);
256
 
257
        old = *m;
258
        *m = old ^ bit;
259
        return (old & bit) != 0;
260
}
261
 
262
static __inline__ int
263
test_bit (int nr, const volatile void *addr)
264
{
265
        return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
266
}
267
 
268
/**
269
 * ffz - find the first zero bit in a memory region
270
 * @x: The address to start the search at
271
 *
272
 * Returns the bit-number (0..63) of the first (least significant) zero bit, not
273
 * the number of the byte containing a bit.  Undefined if no zero exists, so
274
 * code should check against ~0UL first...
275
 */
276
static inline unsigned long
277
ffz (unsigned long x)
278
{
279
        unsigned long result;
280
 
281
        __asm__ ("popcnt %0=%1" : "=r" (result) : "r" (x & (~x - 1)));
282
        return result;
283
}
284
 
285
/**
286
 * __ffs - find first bit in word.
287
 * @x: The word to search
288
 *
289
 * Undefined if no bit exists, so code should check against 0 first.
290
 */
291
static __inline__ unsigned long
292
__ffs (unsigned long x)
293
{
294
        unsigned long result;
295
 
296
        __asm__ ("popcnt %0=%1" : "=r" (result) : "r" ((x - 1) & ~x));
297
        return result;
298
}
299
 
300
#ifdef __KERNEL__
301
 
302
/*
303
 * find_last_zero_bit - find the last zero bit in a 64 bit quantity
304
 * @x: The value to search
305
 */
306
static inline unsigned long
307
ia64_fls (unsigned long x)
308
{
309
        long double d = x;
310
        long exp;
311
 
312
        __asm__ ("getf.exp %0=%1" : "=r"(exp) : "f"(d));
313
        return exp - 0xffff;
314
}
315
 
316
/*
317
 * ffs: find first bit set. This is defined the same way as the libc and compiler builtin
318
 * ffs routines, therefore differs in spirit from the above ffz (man ffs): it operates on
319
 * "int" values only and the result value is the bit number + 1.  ffs(0) is defined to
320
 * return zero.
321
 */
322
#define ffs(x)  __builtin_ffs(x)
323
 
324
/*
325
 * hweightN: returns the hamming weight (i.e. the number
326
 * of bits set) of a N-bit word
327
 */
328
static __inline__ unsigned long
329
hweight64 (unsigned long x)
330
{
331
        unsigned long result;
332
        __asm__ ("popcnt %0=%1" : "=r" (result) : "r" (x));
333
        return result;
334
}
335
 
336
#define hweight32(x) hweight64 ((x) & 0xfffffffful)
337
#define hweight16(x) hweight64 ((x) & 0xfffful)
338
#define hweight8(x)  hweight64 ((x) & 0xfful)
339
 
340
#endif /* __KERNEL__ */
341
 
342
/*
343
 * Find next zero bit in a bitmap reasonably efficiently..
344
 */
345
static inline unsigned long
346
find_next_zero_bit (void *addr, unsigned long size, unsigned long offset)
347
{
348
        unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
349
        unsigned long result = offset & ~63UL;
350
        unsigned long tmp;
351
 
352
        if (offset >= size)
353
                return size;
354
        size -= result;
355
        offset &= 63UL;
356
        if (offset) {
357
                tmp = *(p++);
358
                tmp |= ~0UL >> (64-offset);
359
                if (size < 64)
360
                        goto found_first;
361
                if (~tmp)
362
                        goto found_middle;
363
                size -= 64;
364
                result += 64;
365
        }
366
        while (size & ~63UL) {
367
                if (~(tmp = *(p++)))
368
                        goto found_middle;
369
                result += 64;
370
                size -= 64;
371
        }
372
        if (!size)
373
                return result;
374
        tmp = *p;
375
found_first:
376
        tmp |= ~0UL << size;
377
        if (tmp == ~0UL)                /* any bits zero? */
378
                return result + size;   /* nope */
379
found_middle:
380
        return result + ffz(tmp);
381
}
382
 
383
/*
384
 * The optimizer actually does good code for this case..
385
 */
386
#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
387
 
388
#ifdef __KERNEL__
389
 
390
#define ext2_set_bit                 test_and_set_bit
391
#define ext2_clear_bit               test_and_clear_bit
392
#define ext2_test_bit                test_bit
393
#define ext2_find_first_zero_bit     find_first_zero_bit
394
#define ext2_find_next_zero_bit      find_next_zero_bit
395
 
396
/* Bitmap functions for the minix filesystem.  */
397
#define minix_test_and_set_bit(nr,addr)         test_and_set_bit(nr,addr)
398
#define minix_set_bit(nr,addr)                  set_bit(nr,addr)
399
#define minix_test_and_clear_bit(nr,addr)       test_and_clear_bit(nr,addr)
400
#define minix_test_bit(nr,addr)                 test_bit(nr,addr)
401
#define minix_find_first_zero_bit(addr,size)    find_first_zero_bit(addr,size)
402
 
403
#endif /* __KERNEL__ */
404
 
405
#endif /* _ASM_IA64_BITOPS_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.