OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-m68k/] [apollodma.h] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1276 phoenix
/* $Id: apollodma.h,v 1.1.1.1 2004-04-15 02:58:15 phoenix Exp $
2
 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3
 * Written by Hennus Bergman, 1992.
4
 * High DMA channel support & info by Hannu Savolainen
5
 * and John Boyd, Nov. 1992.
6
 */
7
 
8
#ifndef _ASM_APOLLO_DMA_H
9
#define _ASM_APOLLO_DMA_H
10
 
11
#include <asm/apollohw.h>               /* need byte IO */
12
#include <linux/spinlock.h>             /* And spinlocks */
13
#include <linux/delay.h>
14
 
15
 
16
#define dma_outb(val,addr) (*((volatile unsigned char *)(addr+IO_BASE)) = (val))
17
#define dma_inb(addr)      (*((volatile unsigned char *)(addr+IO_BASE)))
18
 
19
/*
20
 * NOTES about DMA transfers:
21
 *
22
 *  controller 1: channels 0-3, byte operations, ports 00-1F
23
 *  controller 2: channels 4-7, word operations, ports C0-DF
24
 *
25
 *  - ALL registers are 8 bits only, regardless of transfer size
26
 *  - channel 4 is not used - cascades 1 into 2.
27
 *  - channels 0-3 are byte - addresses/counts are for physical bytes
28
 *  - channels 5-7 are word - addresses/counts are for physical words
29
 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
30
 *  - transfer count loaded to registers is 1 less than actual count
31
 *  - controller 2 offsets are all even (2x offsets for controller 1)
32
 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
33
 *  - page registers for 0-3 use bit 0, represent 64K pages
34
 *
35
 * DMA transfers are limited to the lower 16MB of _physical_ memory.
36
 * Note that addresses loaded into registers must be _physical_ addresses,
37
 * not logical addresses (which may differ if paging is active).
38
 *
39
 *  Address mapping for channels 0-3:
40
 *
41
 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
42
 *    |  ...  |   |  ... |   |  ... |
43
 *    |  ...  |   |  ... |   |  ... |
44
 *    |  ...  |   |  ... |   |  ... |
45
 *   P7  ...  P0  A7 ... A0  A7 ... A0
46
 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
47
 *
48
 *  Address mapping for channels 5-7:
49
 *
50
 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
51
 *    |  ...  |   \   \   ... \  \  \  ... \  \
52
 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
53
 *    |  ...  |     \   \   ... \  \  \  ... \
54
 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
55
 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
56
 *
57
 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
58
 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
59
 * the hardware level, so odd-byte transfers aren't possible).
60
 *
61
 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
62
 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
63
 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
64
 *
65
 */
66
 
67
#define MAX_DMA_CHANNELS        8
68
 
69
/* The maximum address that we can perform a DMA transfer to on this platform */#define MAX_DMA_ADDRESS      (PAGE_OFFSET+0x1000000)
70
 
71
/* 8237 DMA controllers */
72
#define IO_DMA1_BASE    0x10C00 /* 8 bit slave DMA, channels 0..3 */
73
#define IO_DMA2_BASE    0x10D00 /* 16 bit master DMA, ch 4(=slave input)..7 */
74
 
75
/* DMA controller registers */
76
#define DMA1_CMD_REG            (IO_DMA1_BASE+0x08) /* command register (w) */
77
#define DMA1_STAT_REG           (IO_DMA1_BASE+0x08) /* status register (r) */
78
#define DMA1_REQ_REG            (IO_DMA1_BASE+0x09) /* request register (w) */
79
#define DMA1_MASK_REG           (IO_DMA1_BASE+0x0A) /* single-channel mask (w) */
80
#define DMA1_MODE_REG           (IO_DMA1_BASE+0x0B) /* mode register (w) */
81
#define DMA1_CLEAR_FF_REG       (IO_DMA1_BASE+0x0C) /* clear pointer flip-flop (w) */
82
#define DMA1_TEMP_REG           (IO_DMA1_BASE+0x0D) /* Temporary Register (r) */
83
#define DMA1_RESET_REG          (IO_DMA1_BASE+0x0D) /* Master Clear (w) */
84
#define DMA1_CLR_MASK_REG       (IO_DMA1_BASE+0x0E) /* Clear Mask */
85
#define DMA1_MASK_ALL_REG       (IO_DMA1_BASE+0x0F) /* all-channels mask (w) */
86
 
87
#define DMA2_CMD_REG            (IO_DMA2_BASE+0x10) /* command register (w) */
88
#define DMA2_STAT_REG           (IO_DMA2_BASE+0x10) /* status register (r) */
89
#define DMA2_REQ_REG            (IO_DMA2_BASE+0x12) /* request register (w) */
90
#define DMA2_MASK_REG           (IO_DMA2_BASE+0x14) /* single-channel mask (w) */
91
#define DMA2_MODE_REG           (IO_DMA2_BASE+0x16) /* mode register (w) */
92
#define DMA2_CLEAR_FF_REG       (IO_DMA2_BASE+0x18) /* clear pointer flip-flop (w) */
93
#define DMA2_TEMP_REG           (IO_DMA2_BASE+0x1A) /* Temporary Register (r) */
94
#define DMA2_RESET_REG          (IO_DMA2_BASE+0x1A) /* Master Clear (w) */
95
#define DMA2_CLR_MASK_REG       (IO_DMA2_BASE+0x1C) /* Clear Mask */
96
#define DMA2_MASK_ALL_REG       (IO_DMA2_BASE+0x1E) /* all-channels mask (w) */
97
 
98
#define DMA_ADDR_0              (IO_DMA1_BASE+0x00) /* DMA address registers */
99
#define DMA_ADDR_1              (IO_DMA1_BASE+0x02)
100
#define DMA_ADDR_2              (IO_DMA1_BASE+0x04)
101
#define DMA_ADDR_3              (IO_DMA1_BASE+0x06)
102
#define DMA_ADDR_4              (IO_DMA2_BASE+0x00)
103
#define DMA_ADDR_5              (IO_DMA2_BASE+0x04)
104
#define DMA_ADDR_6              (IO_DMA2_BASE+0x08)
105
#define DMA_ADDR_7              (IO_DMA2_BASE+0x0C)
106
 
107
#define DMA_CNT_0               (IO_DMA1_BASE+0x01)   /* DMA count registers */
108
#define DMA_CNT_1               (IO_DMA1_BASE+0x03)
109
#define DMA_CNT_2               (IO_DMA1_BASE+0x05)
110
#define DMA_CNT_3               (IO_DMA1_BASE+0x07)
111
#define DMA_CNT_4               (IO_DMA2_BASE+0x02)
112
#define DMA_CNT_5               (IO_DMA2_BASE+0x06)
113
#define DMA_CNT_6               (IO_DMA2_BASE+0x0A)
114
#define DMA_CNT_7               (IO_DMA2_BASE+0x0E)
115
 
116
#define DMA_MODE_READ   0x44    /* I/O to memory, no autoinit, increment, single mode */
117
#define DMA_MODE_WRITE  0x48    /* memory to I/O, no autoinit, increment, single mode */
118
#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
119
 
120
#define DMA_AUTOINIT    0x10
121
 
122
#define DMA_8BIT 0
123
#define DMA_16BIT 1
124
#define DMA_BUSMASTER 2
125
 
126
extern spinlock_t  dma_spin_lock;
127
 
128
static __inline__ unsigned long claim_dma_lock(void)
129
{
130
        unsigned long flags;
131
        spin_lock_irqsave(&dma_spin_lock, flags);
132
        return flags;
133
}
134
 
135
static __inline__ void release_dma_lock(unsigned long flags)
136
{
137
        spin_unlock_irqrestore(&dma_spin_lock, flags);
138
}
139
 
140
/* enable/disable a specific DMA channel */
141
static __inline__ void enable_dma(unsigned int dmanr)
142
{
143
        if (dmanr<=3)
144
                dma_outb(dmanr,  DMA1_MASK_REG);
145
        else
146
                dma_outb(dmanr & 3,  DMA2_MASK_REG);
147
}
148
 
149
static __inline__ void disable_dma(unsigned int dmanr)
150
{
151
        if (dmanr<=3)
152
                dma_outb(dmanr | 4,  DMA1_MASK_REG);
153
        else
154
                dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
155
}
156
 
157
/* Clear the 'DMA Pointer Flip Flop'.
158
 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
159
 * Use this once to initialize the FF to a known state.
160
 * After that, keep track of it. :-)
161
 * --- In order to do that, the DMA routines below should ---
162
 * --- only be used while holding the DMA lock ! ---
163
 */
164
static __inline__ void clear_dma_ff(unsigned int dmanr)
165
{
166
        if (dmanr<=3)
167
                dma_outb(0,  DMA1_CLEAR_FF_REG);
168
        else
169
                dma_outb(0,  DMA2_CLEAR_FF_REG);
170
}
171
 
172
/* set mode (above) for a specific DMA channel */
173
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
174
{
175
        if (dmanr<=3)
176
                dma_outb(mode | dmanr,  DMA1_MODE_REG);
177
        else
178
                dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
179
}
180
 
181
/* Set transfer address & page bits for specific DMA channel.
182
 * Assumes dma flipflop is clear.
183
 */
184
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
185
{
186
        if (dmanr <= 3)  {
187
            dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
188
            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
189
        }  else  {
190
            dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
191
            dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
192
        }
193
}
194
 
195
 
196
/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
197
 * a specific DMA channel.
198
 * You must ensure the parameters are valid.
199
 * NOTE: from a manual: "the number of transfers is one more
200
 * than the initial word count"! This is taken into account.
201
 * Assumes dma flip-flop is clear.
202
 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
203
 */
204
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
205
{
206
        count--;
207
        if (dmanr <= 3)  {
208
            dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
209
            dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
210
        } else {
211
            dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
212
            dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
213
        }
214
}
215
 
216
 
217
/* Get DMA residue count. After a DMA transfer, this
218
 * should return zero. Reading this while a DMA transfer is
219
 * still in progress will return unpredictable results.
220
 * If called before the channel has been used, it may return 1.
221
 * Otherwise, it returns the number of _bytes_ left to transfer.
222
 *
223
 * Assumes DMA flip-flop is clear.
224
 */
225
static __inline__ int get_dma_residue(unsigned int dmanr)
226
{
227
        unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
228
                                         : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
229
 
230
        /* using short to get 16-bit wrap around */
231
        unsigned short count;
232
 
233
        count = 1 + dma_inb(io_port);
234
        count += dma_inb(io_port) << 8;
235
 
236
        return (dmanr<=3)? count : (count<<1);
237
}
238
 
239
 
240
/* These are in kernel/dma.c: */
241
extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
242
extern void free_dma(unsigned int dmanr);       /* release it again */
243
 
244
/* These are in arch/m68k/apollo/dma.c: */
245
extern unsigned short dma_map_page(unsigned long phys_addr,int count,int type);
246
extern void dma_unmap_page(unsigned short dma_addr);
247
 
248
#endif /* _ASM_APOLLO_DMA_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.