| 1 |
1275 |
phoenix |
/*
|
| 2 |
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
| 3 |
|
|
* License. See the file "COPYING" in the main directory of this archive
|
| 4 |
|
|
* for more details.
|
| 5 |
|
|
*
|
| 6 |
|
|
* Copyright (c) 1994, 95, 96, 97, 98, 99, 2000 Ralf Baechle
|
| 7 |
|
|
* Copyright (c) 1999, 2000 Silicon Graphics, Inc.
|
| 8 |
|
|
*/
|
| 9 |
|
|
#ifndef _ASM_BITOPS_H
|
| 10 |
|
|
#define _ASM_BITOPS_H
|
| 11 |
|
|
|
| 12 |
|
|
#include <linux/config.h>
|
| 13 |
|
|
#include <linux/types.h>
|
| 14 |
|
|
#include <asm/byteorder.h> /* sigh ... */
|
| 15 |
|
|
|
| 16 |
|
|
#if (_MIPS_SZLONG == 32)
|
| 17 |
|
|
#define SZLONG_LOG 5
|
| 18 |
|
|
#define SZLONG_MASK 31UL
|
| 19 |
|
|
#elif (_MIPS_SZLONG == 64)
|
| 20 |
|
|
#define SZLONG_LOG 6
|
| 21 |
|
|
#define SZLONG_MASK 63UL
|
| 22 |
|
|
#endif
|
| 23 |
|
|
|
| 24 |
|
|
#ifndef __KERNEL__
|
| 25 |
|
|
#error "Don't do this, sucker ..."
|
| 26 |
|
|
#endif
|
| 27 |
|
|
|
| 28 |
|
|
#include <asm/system.h>
|
| 29 |
|
|
#include <asm/sgidefs.h>
|
| 30 |
|
|
|
| 31 |
|
|
/*
|
| 32 |
|
|
* set_bit - Atomically set a bit in memory
|
| 33 |
|
|
* @nr: the bit to set
|
| 34 |
|
|
* @addr: the address to start counting from
|
| 35 |
|
|
*
|
| 36 |
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
| 37 |
|
|
* if you do not require the atomic guarantees.
|
| 38 |
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
| 39 |
|
|
* restricted to acting on a single-word quantity.
|
| 40 |
|
|
*/
|
| 41 |
|
|
static inline void set_bit(unsigned long nr, volatile void *addr)
|
| 42 |
|
|
{
|
| 43 |
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
|
| 44 |
|
|
unsigned long temp;
|
| 45 |
|
|
|
| 46 |
|
|
__asm__ __volatile__(
|
| 47 |
|
|
"1:\tlld\t%0, %1\t\t# set_bit\n\t"
|
| 48 |
|
|
"or\t%0, %2\n\t"
|
| 49 |
|
|
"scd\t%0, %1\n\t"
|
| 50 |
|
|
"beqz\t%0, 1b"
|
| 51 |
|
|
: "=&r" (temp), "=m" (*m)
|
| 52 |
|
|
: "ir" (1UL << (nr & 0x3f)), "m" (*m)
|
| 53 |
|
|
: "memory");
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
/*
|
| 57 |
|
|
* __set_bit - Set a bit in memory
|
| 58 |
|
|
* @nr: the bit to set
|
| 59 |
|
|
* @addr: the address to start counting from
|
| 60 |
|
|
*
|
| 61 |
|
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
| 62 |
|
|
* If it's called on the same region of memory simultaneously, the effect
|
| 63 |
|
|
* may be that only one operation succeeds.
|
| 64 |
|
|
*/
|
| 65 |
|
|
static inline void __set_bit(int nr, volatile void * addr)
|
| 66 |
|
|
{
|
| 67 |
|
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 6);
|
| 68 |
|
|
|
| 69 |
|
|
*m |= 1UL << (nr & 0x3f);
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
/*
|
| 73 |
|
|
* clear_bit - Clears a bit in memory
|
| 74 |
|
|
* @nr: Bit to clear
|
| 75 |
|
|
* @addr: Address to start counting from
|
| 76 |
|
|
*
|
| 77 |
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
| 78 |
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
| 79 |
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
| 80 |
|
|
* in order to ensure changes are visible on other processors.
|
| 81 |
|
|
*/
|
| 82 |
|
|
static inline void clear_bit(unsigned long nr, volatile void *addr)
|
| 83 |
|
|
{
|
| 84 |
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
|
| 85 |
|
|
unsigned long temp;
|
| 86 |
|
|
|
| 87 |
|
|
__asm__ __volatile__(
|
| 88 |
|
|
"1:\tlld\t%0, %1\t\t# clear_bit\n\t"
|
| 89 |
|
|
"and\t%0, %2\n\t"
|
| 90 |
|
|
"scd\t%0, %1\n\t"
|
| 91 |
|
|
"beqz\t%0, 1b\n\t"
|
| 92 |
|
|
: "=&r" (temp), "=m" (*m)
|
| 93 |
|
|
: "ir" (~(1UL << (nr & 0x3f))), "m" (*m));
|
| 94 |
|
|
}
|
| 95 |
|
|
|
| 96 |
|
|
#define smp_mb__before_clear_bit() smp_mb()
|
| 97 |
|
|
#define smp_mb__after_clear_bit() smp_mb()
|
| 98 |
|
|
|
| 99 |
|
|
/*
|
| 100 |
|
|
* change_bit - Toggle a bit in memory
|
| 101 |
|
|
* @nr: Bit to change
|
| 102 |
|
|
* @addr: Address to start counting from
|
| 103 |
|
|
*
|
| 104 |
|
|
* change_bit() is atomic and may not be reordered.
|
| 105 |
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
| 106 |
|
|
* restricted to acting on a single-word quantity.
|
| 107 |
|
|
*/
|
| 108 |
|
|
static inline void change_bit(unsigned long nr, volatile void *addr)
|
| 109 |
|
|
{
|
| 110 |
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
|
| 111 |
|
|
unsigned long temp;
|
| 112 |
|
|
|
| 113 |
|
|
__asm__ __volatile__(
|
| 114 |
|
|
"1:\tlld\t%0, %1\t\t# change_bit\n\t"
|
| 115 |
|
|
"xor\t%0, %2\n\t"
|
| 116 |
|
|
"scd\t%0, %1\n\t"
|
| 117 |
|
|
"beqz\t%0, 1b"
|
| 118 |
|
|
:"=&r" (temp), "=m" (*m)
|
| 119 |
|
|
:"ir" (1UL << (nr & 0x3f)), "m" (*m));
|
| 120 |
|
|
}
|
| 121 |
|
|
|
| 122 |
|
|
/*
|
| 123 |
|
|
* __change_bit - Toggle a bit in memory
|
| 124 |
|
|
* @nr: the bit to change
|
| 125 |
|
|
* @addr: the address to start counting from
|
| 126 |
|
|
*
|
| 127 |
|
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
| 128 |
|
|
* If it's called on the same region of memory simultaneously, the effect
|
| 129 |
|
|
* may be that only one operation succeeds.
|
| 130 |
|
|
*/
|
| 131 |
|
|
static inline void __change_bit(int nr, volatile void * addr)
|
| 132 |
|
|
{
|
| 133 |
|
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 6);
|
| 134 |
|
|
|
| 135 |
|
|
*m ^= 1UL << (nr & 0x3f);
|
| 136 |
|
|
}
|
| 137 |
|
|
|
| 138 |
|
|
/*
|
| 139 |
|
|
* test_and_set_bit - Set a bit and return its old value
|
| 140 |
|
|
* @nr: Bit to set
|
| 141 |
|
|
* @addr: Address to count from
|
| 142 |
|
|
*
|
| 143 |
|
|
* This operation is atomic and cannot be reordered.
|
| 144 |
|
|
* It also implies a memory barrier.
|
| 145 |
|
|
*/
|
| 146 |
|
|
static inline unsigned long test_and_set_bit(unsigned long nr,
|
| 147 |
|
|
volatile void *addr)
|
| 148 |
|
|
{
|
| 149 |
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
|
| 150 |
|
|
unsigned long temp, res;
|
| 151 |
|
|
|
| 152 |
|
|
__asm__ __volatile__(
|
| 153 |
|
|
".set\tnoreorder\t\t# test_and_set_bit\n"
|
| 154 |
|
|
"1:\tlld\t%0, %1\n\t"
|
| 155 |
|
|
"or\t%2, %0, %3\n\t"
|
| 156 |
|
|
"scd\t%2, %1\n\t"
|
| 157 |
|
|
"beqz\t%2, 1b\n\t"
|
| 158 |
|
|
" and\t%2, %0, %3\n\t"
|
| 159 |
|
|
#ifdef CONFIG_SMP
|
| 160 |
|
|
"sync\n\t"
|
| 161 |
|
|
#endif
|
| 162 |
|
|
".set\treorder"
|
| 163 |
|
|
: "=&r" (temp), "=m" (*m), "=&r" (res)
|
| 164 |
|
|
: "r" (1UL << (nr & 0x3f)), "m" (*m)
|
| 165 |
|
|
: "memory");
|
| 166 |
|
|
|
| 167 |
|
|
return res != 0;
|
| 168 |
|
|
}
|
| 169 |
|
|
|
| 170 |
|
|
/*
|
| 171 |
|
|
* __test_and_set_bit - Set a bit and return its old value
|
| 172 |
|
|
* @nr: Bit to set
|
| 173 |
|
|
* @addr: Address to count from
|
| 174 |
|
|
*
|
| 175 |
|
|
* This operation is non-atomic and can be reordered.
|
| 176 |
|
|
* If two examples of this operation race, one can appear to succeed
|
| 177 |
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
| 178 |
|
|
*/
|
| 179 |
|
|
static inline int __test_and_set_bit(int nr, volatile void *addr)
|
| 180 |
|
|
{
|
| 181 |
|
|
unsigned long mask, retval;
|
| 182 |
|
|
long *a = (unsigned long *) addr;
|
| 183 |
|
|
|
| 184 |
|
|
a += (nr >> 6);
|
| 185 |
|
|
mask = 1UL << (nr & 0x3f);
|
| 186 |
|
|
retval = ((mask & *a) != 0);
|
| 187 |
|
|
*a |= mask;
|
| 188 |
|
|
|
| 189 |
|
|
return retval;
|
| 190 |
|
|
}
|
| 191 |
|
|
|
| 192 |
|
|
/*
|
| 193 |
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
| 194 |
|
|
* @nr: Bit to clear
|
| 195 |
|
|
* @addr: Address to count from
|
| 196 |
|
|
*
|
| 197 |
|
|
* This operation is atomic and cannot be reordered.
|
| 198 |
|
|
* It also implies a memory barrier.
|
| 199 |
|
|
*/
|
| 200 |
|
|
static inline unsigned long test_and_clear_bit(unsigned long nr,
|
| 201 |
|
|
volatile void *addr)
|
| 202 |
|
|
{
|
| 203 |
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
|
| 204 |
|
|
unsigned long temp, res;
|
| 205 |
|
|
|
| 206 |
|
|
__asm__ __volatile__(
|
| 207 |
|
|
".set\tnoreorder\t\t# test_and_clear_bit\n"
|
| 208 |
|
|
"1:\tlld\t%0, %1\n\t"
|
| 209 |
|
|
"or\t%2, %0, %3\n\t"
|
| 210 |
|
|
"xor\t%2, %3\n\t"
|
| 211 |
|
|
"scd\t%2, %1\n\t"
|
| 212 |
|
|
"beqz\t%2, 1b\n\t"
|
| 213 |
|
|
" and\t%2, %0, %3\n\t"
|
| 214 |
|
|
#ifdef CONFIG_SMP
|
| 215 |
|
|
"sync\n\t"
|
| 216 |
|
|
#endif
|
| 217 |
|
|
".set\treorder"
|
| 218 |
|
|
: "=&r" (temp), "=m" (*m), "=&r" (res)
|
| 219 |
|
|
: "r" (1UL << (nr & 0x3f)), "m" (*m)
|
| 220 |
|
|
: "memory");
|
| 221 |
|
|
|
| 222 |
|
|
return res != 0;
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
/*
|
| 226 |
|
|
* __test_and_clear_bit - Clear a bit and return its old value
|
| 227 |
|
|
* @nr: Bit to clear
|
| 228 |
|
|
* @addr: Address to count from
|
| 229 |
|
|
*
|
| 230 |
|
|
* This operation is non-atomic and can be reordered.
|
| 231 |
|
|
* If two examples of this operation race, one can appear to succeed
|
| 232 |
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
| 233 |
|
|
*/
|
| 234 |
|
|
static inline int __test_and_clear_bit(int nr, volatile void * addr)
|
| 235 |
|
|
{
|
| 236 |
|
|
unsigned long mask, retval;
|
| 237 |
|
|
unsigned long *a = (unsigned long *) addr;
|
| 238 |
|
|
|
| 239 |
|
|
a += (nr >> 6);
|
| 240 |
|
|
mask = 1UL << (nr & 0x3f);
|
| 241 |
|
|
retval = ((mask & *a) != 0);
|
| 242 |
|
|
*a &= ~mask;
|
| 243 |
|
|
|
| 244 |
|
|
return retval;
|
| 245 |
|
|
}
|
| 246 |
|
|
|
| 247 |
|
|
/*
|
| 248 |
|
|
* test_and_change_bit - Change a bit and return its new value
|
| 249 |
|
|
* @nr: Bit to change
|
| 250 |
|
|
* @addr: Address to count from
|
| 251 |
|
|
*
|
| 252 |
|
|
* This operation is atomic and cannot be reordered.
|
| 253 |
|
|
* It also implies a memory barrier.
|
| 254 |
|
|
*/
|
| 255 |
|
|
static inline unsigned long test_and_change_bit(unsigned long nr,
|
| 256 |
|
|
volatile void *addr)
|
| 257 |
|
|
{
|
| 258 |
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
|
| 259 |
|
|
unsigned long temp, res;
|
| 260 |
|
|
|
| 261 |
|
|
__asm__ __volatile__(
|
| 262 |
|
|
".set\tnoreorder\t\t# test_and_change_bit\n"
|
| 263 |
|
|
"1:\tlld\t%0, %1\n\t"
|
| 264 |
|
|
"xor\t%2, %0, %3\n\t"
|
| 265 |
|
|
"scd\t%2, %1\n\t"
|
| 266 |
|
|
"beqz\t%2, 1b\n\t"
|
| 267 |
|
|
" and\t%2, %0, %3\n\t"
|
| 268 |
|
|
#ifdef CONFIG_SMP
|
| 269 |
|
|
"sync\n\t"
|
| 270 |
|
|
#endif
|
| 271 |
|
|
".set\treorder"
|
| 272 |
|
|
: "=&r" (temp), "=m" (*m), "=&r" (res)
|
| 273 |
|
|
: "r" (1UL << (nr & 0x3f)), "m" (*m)
|
| 274 |
|
|
: "memory");
|
| 275 |
|
|
|
| 276 |
|
|
return res != 0;
|
| 277 |
|
|
}
|
| 278 |
|
|
|
| 279 |
|
|
/*
|
| 280 |
|
|
* __test_and_change_bit - Change a bit and return its old value
|
| 281 |
|
|
* @nr: Bit to change
|
| 282 |
|
|
* @addr: Address to count from
|
| 283 |
|
|
*
|
| 284 |
|
|
* This operation is non-atomic and can be reordered.
|
| 285 |
|
|
* If two examples of this operation race, one can appear to succeed
|
| 286 |
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
| 287 |
|
|
*/
|
| 288 |
|
|
static inline int __test_and_change_bit(int nr, volatile void *addr)
|
| 289 |
|
|
{
|
| 290 |
|
|
unsigned long mask, retval;
|
| 291 |
|
|
unsigned long *a = (unsigned long *) addr;
|
| 292 |
|
|
|
| 293 |
|
|
a += (nr >> 6);
|
| 294 |
|
|
mask = 1UL << (nr & 0x3f);
|
| 295 |
|
|
retval = ((mask & *a) != 0);
|
| 296 |
|
|
*a ^= mask;
|
| 297 |
|
|
|
| 298 |
|
|
return retval;
|
| 299 |
|
|
}
|
| 300 |
|
|
/*
|
| 301 |
|
|
* test_bit - Determine whether a bit is set
|
| 302 |
|
|
* @nr: bit number to test
|
| 303 |
|
|
* @addr: Address to start counting from
|
| 304 |
|
|
*/
|
| 305 |
|
|
static inline int test_bit(int nr, volatile void * addr)
|
| 306 |
|
|
{
|
| 307 |
|
|
return 1UL & (((const volatile unsigned long *) addr)[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK));
|
| 308 |
|
|
}
|
| 309 |
|
|
|
| 310 |
|
|
/*
|
| 311 |
|
|
* ffz - find first zero in word.
|
| 312 |
|
|
* @word: The word to search
|
| 313 |
|
|
*
|
| 314 |
|
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
| 315 |
|
|
*/
|
| 316 |
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
| 317 |
|
|
{
|
| 318 |
|
|
int b = 0, s;
|
| 319 |
|
|
|
| 320 |
|
|
word = ~word;
|
| 321 |
|
|
s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s;
|
| 322 |
|
|
s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s;
|
| 323 |
|
|
s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s;
|
| 324 |
|
|
s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s;
|
| 325 |
|
|
s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s;
|
| 326 |
|
|
s = 1; if (word << 63 != 0) s = 0; b += s;
|
| 327 |
|
|
|
| 328 |
|
|
return b;
|
| 329 |
|
|
}
|
| 330 |
|
|
|
| 331 |
|
|
/*
|
| 332 |
|
|
* find_next_zero_bit - find the first zero bit in a memory region
|
| 333 |
|
|
* @addr: The address to base the search on
|
| 334 |
|
|
* @offset: The bitnumber to start searching at
|
| 335 |
|
|
* @size: The maximum size to search
|
| 336 |
|
|
*/
|
| 337 |
|
|
static inline unsigned long find_next_zero_bit(void *addr, unsigned long size,
|
| 338 |
|
|
unsigned long offset)
|
| 339 |
|
|
{
|
| 340 |
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG);
|
| 341 |
|
|
unsigned long result = offset & ~SZLONG_MASK;
|
| 342 |
|
|
unsigned long tmp;
|
| 343 |
|
|
|
| 344 |
|
|
if (offset >= size)
|
| 345 |
|
|
return size;
|
| 346 |
|
|
size -= result;
|
| 347 |
|
|
offset &= SZLONG_MASK;
|
| 348 |
|
|
if (offset) {
|
| 349 |
|
|
tmp = *(p++);
|
| 350 |
|
|
tmp |= ~0UL >> (_MIPS_SZLONG-offset);
|
| 351 |
|
|
if (size < _MIPS_SZLONG)
|
| 352 |
|
|
goto found_first;
|
| 353 |
|
|
if (~tmp)
|
| 354 |
|
|
goto found_middle;
|
| 355 |
|
|
size -= _MIPS_SZLONG;
|
| 356 |
|
|
result += _MIPS_SZLONG;
|
| 357 |
|
|
}
|
| 358 |
|
|
while (size & ~SZLONG_MASK) {
|
| 359 |
|
|
if (~(tmp = *(p++)))
|
| 360 |
|
|
goto found_middle;
|
| 361 |
|
|
result += _MIPS_SZLONG;
|
| 362 |
|
|
size -= _MIPS_SZLONG;
|
| 363 |
|
|
}
|
| 364 |
|
|
if (!size)
|
| 365 |
|
|
return result;
|
| 366 |
|
|
tmp = *p;
|
| 367 |
|
|
|
| 368 |
|
|
found_first:
|
| 369 |
|
|
tmp |= ~0UL << size;
|
| 370 |
|
|
if (tmp == ~0UL) /* Are any bits zero? */
|
| 371 |
|
|
return result + size; /* Nope. */
|
| 372 |
|
|
found_middle:
|
| 373 |
|
|
return result + ffz(tmp);
|
| 374 |
|
|
}
|
| 375 |
|
|
|
| 376 |
|
|
#define find_first_zero_bit(addr, size) \
|
| 377 |
|
|
find_next_zero_bit((addr), (size), 0)
|
| 378 |
|
|
|
| 379 |
|
|
#ifdef __KERNEL__
|
| 380 |
|
|
|
| 381 |
|
|
/*
|
| 382 |
|
|
* ffs - find first bit set
|
| 383 |
|
|
* @x: the word to search
|
| 384 |
|
|
*
|
| 385 |
|
|
* This is defined the same way as
|
| 386 |
|
|
* the libc and compiler builtin ffs routines, therefore
|
| 387 |
|
|
* differs in spirit from the above ffz (man ffs).
|
| 388 |
|
|
*/
|
| 389 |
|
|
|
| 390 |
|
|
#define ffs(x) generic_ffs(x)
|
| 391 |
|
|
|
| 392 |
|
|
/*
|
| 393 |
|
|
* hweightN - returns the hamming weight of a N-bit word
|
| 394 |
|
|
* @x: the word to weigh
|
| 395 |
|
|
*
|
| 396 |
|
|
* The Hamming Weight of a number is the total number of bits set in it.
|
| 397 |
|
|
*/
|
| 398 |
|
|
|
| 399 |
|
|
#define hweight32(x) generic_hweight32(x)
|
| 400 |
|
|
#define hweight16(x) generic_hweight16(x)
|
| 401 |
|
|
#define hweight8(x) generic_hweight8(x)
|
| 402 |
|
|
|
| 403 |
|
|
static inline int __test_and_set_le_bit(unsigned long nr, void * addr)
|
| 404 |
|
|
{
|
| 405 |
|
|
unsigned char *ADDR = (unsigned char *) addr;
|
| 406 |
|
|
int mask, retval;
|
| 407 |
|
|
|
| 408 |
|
|
ADDR += nr >> 3;
|
| 409 |
|
|
mask = 1 << (nr & 0x07);
|
| 410 |
|
|
retval = (mask & *ADDR) != 0;
|
| 411 |
|
|
*ADDR |= mask;
|
| 412 |
|
|
|
| 413 |
|
|
return retval;
|
| 414 |
|
|
}
|
| 415 |
|
|
|
| 416 |
|
|
static inline int __test_and_clear_le_bit(unsigned long nr, void * addr)
|
| 417 |
|
|
{
|
| 418 |
|
|
unsigned char *ADDR = (unsigned char *) addr;
|
| 419 |
|
|
int mask, retval;
|
| 420 |
|
|
|
| 421 |
|
|
ADDR += nr >> 3;
|
| 422 |
|
|
mask = 1 << (nr & 0x07);
|
| 423 |
|
|
retval = (mask & *ADDR) != 0;
|
| 424 |
|
|
*ADDR &= ~mask;
|
| 425 |
|
|
|
| 426 |
|
|
return retval;
|
| 427 |
|
|
}
|
| 428 |
|
|
|
| 429 |
|
|
static inline int test_le_bit(unsigned long nr, const void * addr)
|
| 430 |
|
|
{
|
| 431 |
|
|
const unsigned char *ADDR = (const unsigned char *) addr;
|
| 432 |
|
|
int mask;
|
| 433 |
|
|
|
| 434 |
|
|
ADDR += nr >> 3;
|
| 435 |
|
|
mask = 1 << (nr & 0x07);
|
| 436 |
|
|
|
| 437 |
|
|
return ((mask & *ADDR) != 0);
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
static inline unsigned long ext2_ffz(unsigned int word)
|
| 441 |
|
|
{
|
| 442 |
|
|
int b = 0, s;
|
| 443 |
|
|
|
| 444 |
|
|
word = ~word;
|
| 445 |
|
|
s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s;
|
| 446 |
|
|
s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s;
|
| 447 |
|
|
s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s;
|
| 448 |
|
|
s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s;
|
| 449 |
|
|
s = 1; if (word << 31 != 0) s = 0; b += s;
|
| 450 |
|
|
|
| 451 |
|
|
return b;
|
| 452 |
|
|
}
|
| 453 |
|
|
|
| 454 |
|
|
static inline unsigned long find_next_zero_le_bit(void *addr,
|
| 455 |
|
|
unsigned long size, unsigned long offset)
|
| 456 |
|
|
{
|
| 457 |
|
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
| 458 |
|
|
unsigned int result = offset & ~31;
|
| 459 |
|
|
unsigned int tmp;
|
| 460 |
|
|
|
| 461 |
|
|
if (offset >= size)
|
| 462 |
|
|
return size;
|
| 463 |
|
|
|
| 464 |
|
|
size -= result;
|
| 465 |
|
|
offset &= 31;
|
| 466 |
|
|
if (offset) {
|
| 467 |
|
|
tmp = cpu_to_le32p(p++);
|
| 468 |
|
|
tmp |= ~0U >> (32-offset); /* bug or feature ? */
|
| 469 |
|
|
if (size < 32)
|
| 470 |
|
|
goto found_first;
|
| 471 |
|
|
if (tmp != ~0U)
|
| 472 |
|
|
goto found_middle;
|
| 473 |
|
|
size -= 32;
|
| 474 |
|
|
result += 32;
|
| 475 |
|
|
}
|
| 476 |
|
|
while (size >= 32) {
|
| 477 |
|
|
if ((tmp = cpu_to_le32p(p++)) != ~0U)
|
| 478 |
|
|
goto found_middle;
|
| 479 |
|
|
result += 32;
|
| 480 |
|
|
size -= 32;
|
| 481 |
|
|
}
|
| 482 |
|
|
if (!size)
|
| 483 |
|
|
return result;
|
| 484 |
|
|
|
| 485 |
|
|
tmp = cpu_to_le32p(p);
|
| 486 |
|
|
found_first:
|
| 487 |
|
|
tmp |= ~0 << size;
|
| 488 |
|
|
if (tmp == ~0U) /* Are any bits zero? */
|
| 489 |
|
|
return result + size; /* Nope. */
|
| 490 |
|
|
|
| 491 |
|
|
found_middle:
|
| 492 |
|
|
return result + ext2_ffz(tmp);
|
| 493 |
|
|
}
|
| 494 |
|
|
|
| 495 |
|
|
#define find_first_zero_le_bit(addr, size) \
|
| 496 |
|
|
find_next_zero_le_bit((addr), (size), 0)
|
| 497 |
|
|
|
| 498 |
|
|
#define ext2_set_bit __test_and_set_le_bit
|
| 499 |
|
|
#define ext2_clear_bit __test_and_clear_le_bit
|
| 500 |
|
|
#define ext2_test_bit test_le_bit
|
| 501 |
|
|
#define ext2_find_first_zero_bit find_first_zero_le_bit
|
| 502 |
|
|
#define ext2_find_next_zero_bit find_next_zero_le_bit
|
| 503 |
|
|
|
| 504 |
|
|
/*
|
| 505 |
|
|
* Bitmap functions for the minix filesystem.
|
| 506 |
|
|
*
|
| 507 |
|
|
* FIXME: These assume that Minix uses the native byte/bitorder.
|
| 508 |
|
|
* This limits the Minix filesystem's value for data exchange very much.
|
| 509 |
|
|
*/
|
| 510 |
|
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
| 511 |
|
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
| 512 |
|
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
| 513 |
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
| 514 |
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
| 515 |
|
|
|
| 516 |
|
|
#endif /* __KERNEL__ */
|
| 517 |
|
|
|
| 518 |
|
|
#endif /* _ASM_BITOPS_H */
|