1 |
1276 |
phoenix |
#ifdef __KERNEL__
|
2 |
|
|
#ifndef _PPC_PGTABLE_H
|
3 |
|
|
#define _PPC_PGTABLE_H
|
4 |
|
|
|
5 |
|
|
#include <linux/config.h>
|
6 |
|
|
|
7 |
|
|
#ifndef __ASSEMBLY__
|
8 |
|
|
#include <linux/sched.h>
|
9 |
|
|
#include <linux/threads.h>
|
10 |
|
|
#include <asm/processor.h> /* For TASK_SIZE */
|
11 |
|
|
#include <asm/mmu.h>
|
12 |
|
|
#include <asm/page.h>
|
13 |
|
|
|
14 |
|
|
extern void _tlbie(unsigned long address);
|
15 |
|
|
extern void _tlbia(void);
|
16 |
|
|
|
17 |
|
|
#ifdef CONFIG_4xx
|
18 |
|
|
#ifdef CONFIG_PIN_TLB
|
19 |
|
|
/* When pinning entries on the 4xx, we have to use a software function
|
20 |
|
|
* to ensure we don't remove them since there isn't any hardware support
|
21 |
|
|
* for this.
|
22 |
|
|
*/
|
23 |
|
|
#define __tlbia() _tlbia()
|
24 |
|
|
#else
|
25 |
|
|
#define __tlbia() asm volatile ("tlbia; sync" : : : "memory")
|
26 |
|
|
#endif
|
27 |
|
|
|
28 |
|
|
static inline void local_flush_tlb_all(void)
|
29 |
|
|
{ __tlbia(); }
|
30 |
|
|
static inline void local_flush_tlb_mm(struct mm_struct *mm)
|
31 |
|
|
{ __tlbia(); }
|
32 |
|
|
static inline void local_flush_tlb_page(struct vm_area_struct *vma,
|
33 |
|
|
unsigned long vmaddr)
|
34 |
|
|
{ _tlbie(vmaddr); }
|
35 |
|
|
static inline void local_flush_tlb_range(struct mm_struct *mm,
|
36 |
|
|
unsigned long start, unsigned long end)
|
37 |
|
|
{ __tlbia(); }
|
38 |
|
|
#define update_mmu_cache(vma, addr, pte) do { } while (0)
|
39 |
|
|
|
40 |
|
|
#elif defined(CONFIG_8xx)
|
41 |
|
|
#define __tlbia() asm volatile ("tlbia; sync" : : : "memory")
|
42 |
|
|
|
43 |
|
|
static inline void local_flush_tlb_all(void)
|
44 |
|
|
{ __tlbia(); }
|
45 |
|
|
static inline void local_flush_tlb_mm(struct mm_struct *mm)
|
46 |
|
|
{ __tlbia(); }
|
47 |
|
|
static inline void local_flush_tlb_page(struct vm_area_struct *vma,
|
48 |
|
|
unsigned long vmaddr)
|
49 |
|
|
{ _tlbie(vmaddr); }
|
50 |
|
|
static inline void local_flush_tlb_range(struct mm_struct *mm,
|
51 |
|
|
unsigned long start, unsigned long end)
|
52 |
|
|
{ __tlbia(); }
|
53 |
|
|
#define update_mmu_cache(vma, addr, pte) do { } while (0)
|
54 |
|
|
|
55 |
|
|
#else /* 6xx, 7xx, 7xxx cpus */
|
56 |
|
|
struct mm_struct;
|
57 |
|
|
struct vm_area_struct;
|
58 |
|
|
extern void local_flush_tlb_all(void);
|
59 |
|
|
extern void local_flush_tlb_mm(struct mm_struct *mm);
|
60 |
|
|
extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
|
61 |
|
|
extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
|
62 |
|
|
unsigned long end);
|
63 |
|
|
|
64 |
|
|
/*
|
65 |
|
|
* This gets called at the end of handling a page fault, when
|
66 |
|
|
* the kernel has put a new PTE into the page table for the process.
|
67 |
|
|
* We use it to put a corresponding HPTE into the hash table
|
68 |
|
|
* ahead of time, instead of waiting for the inevitable extra
|
69 |
|
|
* hash-table miss exception.
|
70 |
|
|
*/
|
71 |
|
|
extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
|
72 |
|
|
#endif
|
73 |
|
|
|
74 |
|
|
#define flush_tlb_all local_flush_tlb_all
|
75 |
|
|
#define flush_tlb_mm local_flush_tlb_mm
|
76 |
|
|
#define flush_tlb_page local_flush_tlb_page
|
77 |
|
|
#define flush_tlb_range local_flush_tlb_range
|
78 |
|
|
|
79 |
|
|
/*
|
80 |
|
|
* This is called in munmap when we have freed up some page-table
|
81 |
|
|
* pages. We don't need to do anything here, there's nothing special
|
82 |
|
|
* about our page-table pages. -- paulus
|
83 |
|
|
*/
|
84 |
|
|
static inline void flush_tlb_pgtables(struct mm_struct *mm,
|
85 |
|
|
unsigned long start, unsigned long end)
|
86 |
|
|
{
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
/*
|
90 |
|
|
* No cache flushing is required when address mappings are
|
91 |
|
|
* changed, because the caches on PowerPCs are physically
|
92 |
|
|
* addressed. -- paulus
|
93 |
|
|
* Also, when SMP we use the coherency (M) bit of the
|
94 |
|
|
* BATs and PTEs. -- Cort
|
95 |
|
|
*/
|
96 |
|
|
#define flush_cache_all() do { } while (0)
|
97 |
|
|
#define flush_cache_mm(mm) do { } while (0)
|
98 |
|
|
#define flush_cache_range(mm, a, b) do { } while (0)
|
99 |
|
|
#define flush_cache_page(vma, p) do { } while (0)
|
100 |
|
|
#define flush_page_to_ram(page) do { } while (0)
|
101 |
|
|
|
102 |
|
|
extern void flush_icache_user_range(struct vm_area_struct *vma,
|
103 |
|
|
struct page *page, unsigned long addr, int len);
|
104 |
|
|
extern void flush_icache_range(unsigned long, unsigned long);
|
105 |
|
|
extern void __flush_dcache_icache(void *page_va);
|
106 |
|
|
extern void flush_dcache_page(struct page *page);
|
107 |
|
|
extern void flush_icache_page(struct vm_area_struct *vma, struct page *page);
|
108 |
|
|
|
109 |
|
|
extern unsigned long va_to_phys(unsigned long address);
|
110 |
|
|
extern pte_t *va_to_pte(unsigned long address);
|
111 |
|
|
extern unsigned long ioremap_bot, ioremap_base;
|
112 |
|
|
extern unsigned long vmalloc_start;
|
113 |
|
|
|
114 |
|
|
/* Start and end of the vmalloc area. */
|
115 |
|
|
#define VMALLOC_START vmalloc_start
|
116 |
|
|
#define VMALLOC_END ioremap_bot
|
117 |
|
|
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
118 |
|
|
|
119 |
|
|
#endif /* __ASSEMBLY__ */
|
120 |
|
|
|
121 |
|
|
/*
|
122 |
|
|
* The PowerPC MMU uses a hash table containing PTEs, together with
|
123 |
|
|
* a set of 16 segment registers (on 32-bit implementations), to define
|
124 |
|
|
* the virtual to physical address mapping.
|
125 |
|
|
*
|
126 |
|
|
* We use the hash table as an extended TLB, i.e. a cache of currently
|
127 |
|
|
* active mappings. We maintain a two-level page table tree, much
|
128 |
|
|
* like that used by the i386, for the sake of the Linux memory
|
129 |
|
|
* management code. Low-level assembler code in hashtable.S
|
130 |
|
|
* (procedure hash_page) is responsible for extracting ptes from the
|
131 |
|
|
* tree and putting them into the hash table when necessary, and
|
132 |
|
|
* updating the accessed and modified bits in the page table tree.
|
133 |
|
|
*/
|
134 |
|
|
|
135 |
|
|
/*
|
136 |
|
|
* The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
|
137 |
|
|
* We also use the two level tables, but we can put the real bits in them
|
138 |
|
|
* needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
|
139 |
|
|
* Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
|
140 |
|
|
* additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
|
141 |
|
|
* based upon user/super access. The TLB does not have accessed nor write
|
142 |
|
|
* protect. We assume that if the TLB get loaded with an entry it is
|
143 |
|
|
* accessed, and overload the changed bit for write protect. We use
|
144 |
|
|
* two bits in the software pte that are supposed to be set to zero in
|
145 |
|
|
* the TLB entry (24 and 25) for these indicators. Although the level 1
|
146 |
|
|
* descriptor contains the guarded and writethrough/copyback bits, we can
|
147 |
|
|
* set these at the page level since they get copied from the Mx_TWC
|
148 |
|
|
* register when the TLB entry is loaded. We will use bit 27 for guard, since
|
149 |
|
|
* that is where it exists in the MD_TWC, and bit 26 for writethrough.
|
150 |
|
|
* These will get masked from the level 2 descriptor at TLB load time, and
|
151 |
|
|
* copied to the MD_TWC before it gets loaded.
|
152 |
|
|
* Large page sizes added. We currently support two sizes, 4K and 8M.
|
153 |
|
|
* This also allows a TLB hander optimization because we can directly
|
154 |
|
|
* load the PMD into MD_TWC. The 8M pages are only used for kernel
|
155 |
|
|
* mapping of well known areas. The PMD (PGD) entries contain control
|
156 |
|
|
* flags in addition to the address, so care must be taken that the
|
157 |
|
|
* software no longer assumes these are only pointers.
|
158 |
|
|
*/
|
159 |
|
|
|
160 |
|
|
/*
|
161 |
|
|
* At present, all PowerPC 400-class processors share a similar TLB
|
162 |
|
|
* architecture. The instruction and data sides share a unified,
|
163 |
|
|
* 64-entry, fully-associative TLB which is maintained totally under
|
164 |
|
|
* software control. In addition, the instruction side has a
|
165 |
|
|
* hardware-managed, 4-entry, fully-associative TLB which serves as a
|
166 |
|
|
* first level to the shared TLB. These two TLBs are known as the UTLB
|
167 |
|
|
* and ITLB, respectively (see "mmu.h" for definitions).
|
168 |
|
|
*/
|
169 |
|
|
|
170 |
|
|
/*
|
171 |
|
|
* The normal case is that PTEs are 32-bits and we have a 1-page
|
172 |
|
|
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
|
173 |
|
|
*
|
174 |
|
|
* For any >32-bit physical address platform, we can use the following
|
175 |
|
|
* two level page table layout where the pgdir is 8KB and the MS 13 bits
|
176 |
|
|
* are an index to the second level table. The combined pgdir/pmd first
|
177 |
|
|
* level has 2048 entries and the second level has 512 64-bit PTE entries.
|
178 |
|
|
* -Matt
|
179 |
|
|
*/
|
180 |
|
|
/* PMD_SHIFT determines the size of the area mapped by the PTE pages */
|
181 |
|
|
#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT)
|
182 |
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
183 |
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
184 |
|
|
|
185 |
|
|
/* PGDIR_SHIFT determines what a top-level page table entry can map */
|
186 |
|
|
#define PGDIR_SHIFT PMD_SHIFT
|
187 |
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
188 |
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
189 |
|
|
|
190 |
|
|
/*
|
191 |
|
|
* entries per page directory level: our page-table tree is two-level, so
|
192 |
|
|
* we don't really have any PMD directory.
|
193 |
|
|
*/
|
194 |
|
|
#define PTRS_PER_PTE (1 << PTE_SHIFT)
|
195 |
|
|
#define PTRS_PER_PMD 1
|
196 |
|
|
#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
|
197 |
|
|
|
198 |
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
199 |
|
|
#define FIRST_USER_PGD_NR 0
|
200 |
|
|
|
201 |
|
|
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
|
202 |
|
|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
|
203 |
|
|
|
204 |
|
|
#define pte_ERROR(e) \
|
205 |
|
|
printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e))
|
206 |
|
|
#define pmd_ERROR(e) \
|
207 |
|
|
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
|
208 |
|
|
#define pgd_ERROR(e) \
|
209 |
|
|
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
210 |
|
|
|
211 |
|
|
/*
|
212 |
|
|
* Bits in a linux-style PTE. These match the bits in the
|
213 |
|
|
* (hardware-defined) PowerPC PTE as closely as possible.
|
214 |
|
|
*/
|
215 |
|
|
|
216 |
|
|
#if defined(CONFIG_40x)
|
217 |
|
|
|
218 |
|
|
/* There are several potential gotchas here. The 40x hardware TLBLO
|
219 |
|
|
field looks like this:
|
220 |
|
|
|
221 |
|
|
|
222 |
|
|
RPN..................... 0 0 EX WR ZSEL....... W I M G
|
223 |
|
|
|
224 |
|
|
Where possible we make the Linux PTE bits match up with this
|
225 |
|
|
|
226 |
|
|
- bits 20 and 21 must be cleared, because we use 4k pages (4xx can
|
227 |
|
|
support down to 1k pages), this is done in the TLBMiss exception
|
228 |
|
|
handler.
|
229 |
|
|
- We use only zones 0 (for kernel pages) and 1 (for user pages)
|
230 |
|
|
of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
|
231 |
|
|
miss handler. Bit 27 is PAGE_USER, thus selecting the correct
|
232 |
|
|
zone.
|
233 |
|
|
- PRESENT *must* be in the bottom two bits because swap cache
|
234 |
|
|
entries use the top 30 bits. Because 4xx doesn't support SMP
|
235 |
|
|
anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
|
236 |
|
|
is cleared in the TLB miss handler before the TLB entry is loaded.
|
237 |
|
|
- All other bits of the PTE are loaded into TLBLO without
|
238 |
|
|
modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
|
239 |
|
|
software PTE bits. We actually use use bits 21, 24, 25, and
|
240 |
|
|
30 respectively for the software bits: ACCESSED, DIRTY, RW, and
|
241 |
|
|
PRESENT.
|
242 |
|
|
*/
|
243 |
|
|
|
244 |
|
|
/* Definitions for 4xx embedded chips. */
|
245 |
|
|
#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
|
246 |
|
|
#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
|
247 |
|
|
#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
|
248 |
|
|
#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
|
249 |
|
|
#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
|
250 |
|
|
#define _PAGE_RW 0x040 /* software: Writes permitted */
|
251 |
|
|
#define _PAGE_DIRTY 0x080 /* software: dirty page */
|
252 |
|
|
#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
|
253 |
|
|
#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
|
254 |
|
|
#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
|
255 |
|
|
#define _PMD_PRESENT PAGE_MASK
|
256 |
|
|
|
257 |
|
|
#elif defined(CONFIG_44x)
|
258 |
|
|
/*
|
259 |
|
|
* Definitions for PPC44x
|
260 |
|
|
*
|
261 |
|
|
* Because of the 3 word TLB entries to support 36-bit addressing,
|
262 |
|
|
* the attribute are difficult to map in such a fashion that they
|
263 |
|
|
* are easily loaded during exception processing. I decided to
|
264 |
|
|
* organize the entry so the ERPN is the only portion in the
|
265 |
|
|
* upper word of the PTE and the attribute bits below are packed
|
266 |
|
|
* in as sensibly as they can be in the area below a 4KB page size
|
267 |
|
|
* oriented RPN. This at least makes it easy to load the RPN and
|
268 |
|
|
* ERPN fields in the TLB. -Matt
|
269 |
|
|
*
|
270 |
|
|
* Note that these bits preclude future use of a page size
|
271 |
|
|
* less than 4KB.
|
272 |
|
|
*/
|
273 |
|
|
#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
|
274 |
|
|
#define _PAGE_RW 0x00000002 /* S: Write permission */
|
275 |
|
|
#define _PAGE_DIRTY 0x00000004 /* S: Page dirty */
|
276 |
|
|
#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
|
277 |
|
|
#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */
|
278 |
|
|
#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */
|
279 |
|
|
#define _PAGE_USER 0x00000040 /* S: User page */
|
280 |
|
|
#define _PAGE_ENDIAN 0x00000080 /* H: E bit */
|
281 |
|
|
#define _PAGE_GUARDED 0x00000100 /* H: G bit */
|
282 |
|
|
#define _PAGE_COHERENT 0x00000200 /* H: M bit */
|
283 |
|
|
#define _PAGE_FILE 0x00000400 /* S: nonlinear file mapping */
|
284 |
|
|
#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
|
285 |
|
|
#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
|
286 |
|
|
|
287 |
|
|
/* TODO: Add large page lowmem mapping support */
|
288 |
|
|
#define _PMD_PRESENT PAGE_MASK
|
289 |
|
|
#define _PMD_PRESENT_MASK (PAGE_MASK)
|
290 |
|
|
#define _PMD_BAD (~PAGE_MASK)
|
291 |
|
|
|
292 |
|
|
/* ERPN in a PTE never gets cleared, ignore it */
|
293 |
|
|
#define _PTE_NONE_MASK 0xffffffff00000000ULL
|
294 |
|
|
|
295 |
|
|
#elif defined(CONFIG_8xx)
|
296 |
|
|
/* Definitions for 8xx embedded chips. */
|
297 |
|
|
#define _PAGE_PRESENT 0x0001 /* Page is valid */
|
298 |
|
|
#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
|
299 |
|
|
#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
|
300 |
|
|
|
301 |
|
|
/* These five software bits must be masked out when the entry is loaded
|
302 |
|
|
* into the TLB.
|
303 |
|
|
*/
|
304 |
|
|
#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
|
305 |
|
|
#define _PAGE_GUARDED 0x0010 /* software: guarded access */
|
306 |
|
|
#define _PAGE_DIRTY 0x0020 /* software: page changed */
|
307 |
|
|
#define _PAGE_RW 0x0040 /* software: user write access allowed */
|
308 |
|
|
#define _PAGE_ACCESSED 0x0080 /* software: page referenced */
|
309 |
|
|
|
310 |
|
|
/* Setting any bits in the nibble with the follow two controls will
|
311 |
|
|
* require a TLB exception handler change. It is assumed unused bits
|
312 |
|
|
* are always zero.
|
313 |
|
|
*/
|
314 |
|
|
#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
|
315 |
|
|
#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
|
316 |
|
|
|
317 |
|
|
#define _PMD_PRESENT PAGE_MASK
|
318 |
|
|
#define _PMD_PAGE_MASK 0x000c
|
319 |
|
|
#define _PMD_PAGE_8M 0x000c
|
320 |
|
|
|
321 |
|
|
/*
|
322 |
|
|
* The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE
|
323 |
|
|
* for an address even if _PAGE_PRESENT is not set, as a performance
|
324 |
|
|
* optimization. This is a bug if you ever want to use swap unless
|
325 |
|
|
* _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific
|
326 |
|
|
* definitions for __swp_entry etc. below, which would be gross.
|
327 |
|
|
* -- paulus
|
328 |
|
|
*/
|
329 |
|
|
#define _PTE_NONE_MASK _PAGE_ACCESSED
|
330 |
|
|
|
331 |
|
|
#else /* CONFIG_6xx */
|
332 |
|
|
/* Definitions for 60x, 740/750, etc. */
|
333 |
|
|
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
|
334 |
|
|
#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
|
335 |
|
|
#define _PAGE_USER 0x004 /* usermode access allowed */
|
336 |
|
|
#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
|
337 |
|
|
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
|
338 |
|
|
#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
|
339 |
|
|
#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
|
340 |
|
|
#define _PAGE_DIRTY 0x080 /* C: page changed */
|
341 |
|
|
#define _PAGE_ACCESSED 0x100 /* R: page referenced */
|
342 |
|
|
#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
|
343 |
|
|
#define _PAGE_RW 0x400 /* software: user write access allowed */
|
344 |
|
|
#define _PMD_PRESENT PAGE_MASK
|
345 |
|
|
|
346 |
|
|
#define _PTE_NONE_MASK _PAGE_HASHPTE
|
347 |
|
|
|
348 |
|
|
#endif
|
349 |
|
|
|
350 |
|
|
/*
|
351 |
|
|
* Some bits are only used on some cpu families...
|
352 |
|
|
*/
|
353 |
|
|
#ifndef _PAGE_HASHPTE
|
354 |
|
|
#define _PAGE_HASHPTE 0
|
355 |
|
|
#endif
|
356 |
|
|
#ifndef _PTE_NONE_MASK
|
357 |
|
|
#define _PTE_NONE_MASK 0
|
358 |
|
|
#endif
|
359 |
|
|
#ifndef _PAGE_SHARED
|
360 |
|
|
#define _PAGE_SHARED 0
|
361 |
|
|
#endif
|
362 |
|
|
#ifndef _PAGE_HWWRITE
|
363 |
|
|
#define _PAGE_HWWRITE 0
|
364 |
|
|
#endif
|
365 |
|
|
#ifndef _PAGE_HWEXEC
|
366 |
|
|
#define _PAGE_HWEXEC 0
|
367 |
|
|
#endif
|
368 |
|
|
#ifndef _PAGE_EXEC
|
369 |
|
|
#define _PAGE_EXEC 0
|
370 |
|
|
#endif
|
371 |
|
|
|
372 |
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
373 |
|
|
|
374 |
|
|
/*
|
375 |
|
|
* Note: the _PAGE_COHERENT bit automatically gets set in the hardware
|
376 |
|
|
* PTE if CONFIG_SMP is defined (hash_page does this); there is no need
|
377 |
|
|
* to have it in the Linux PTE, and in fact the bit could be reused for
|
378 |
|
|
* another purpose. -- paulus.
|
379 |
|
|
*/
|
380 |
|
|
#define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED
|
381 |
|
|
#define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE
|
382 |
|
|
|
383 |
|
|
/*
|
384 |
|
|
* 44x wants _PAGE_GUARDED on all kernel pages for various reasons.
|
385 |
|
|
* Allegedly that doesn't hurt performance. -- paulus
|
386 |
|
|
*/
|
387 |
|
|
#ifdef CONFIG_44x
|
388 |
|
|
#define _PAGE_KERNEL _PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC | _PAGE_GUARDED
|
389 |
|
|
#else
|
390 |
|
|
#define _PAGE_KERNEL _PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC
|
391 |
|
|
#endif
|
392 |
|
|
|
393 |
|
|
#define _PAGE_IO _PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED
|
394 |
|
|
|
395 |
|
|
#define PAGE_NONE __pgprot(_PAGE_BASE)
|
396 |
|
|
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
|
397 |
|
|
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
398 |
|
|
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
|
399 |
|
|
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
|
400 |
|
|
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
|
401 |
|
|
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
402 |
|
|
|
403 |
|
|
#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
|
404 |
|
|
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
|
405 |
|
|
#define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
|
406 |
|
|
|
407 |
|
|
/*
|
408 |
|
|
* The PowerPC can only do execute protection on a segment (256MB) basis,
|
409 |
|
|
* not on a page basis. So we consider execute permission the same as read.
|
410 |
|
|
* Also, write permissions imply read permissions.
|
411 |
|
|
* This is the closest we can get..
|
412 |
|
|
*/
|
413 |
|
|
#define __P000 PAGE_NONE
|
414 |
|
|
#define __P001 PAGE_READONLY_X
|
415 |
|
|
#define __P010 PAGE_COPY
|
416 |
|
|
#define __P011 PAGE_COPY_X
|
417 |
|
|
#define __P100 PAGE_READONLY
|
418 |
|
|
#define __P101 PAGE_READONLY_X
|
419 |
|
|
#define __P110 PAGE_COPY
|
420 |
|
|
#define __P111 PAGE_COPY_X
|
421 |
|
|
|
422 |
|
|
#define __S000 PAGE_NONE
|
423 |
|
|
#define __S001 PAGE_READONLY_X
|
424 |
|
|
#define __S010 PAGE_SHARED
|
425 |
|
|
#define __S011 PAGE_SHARED_X
|
426 |
|
|
#define __S100 PAGE_READONLY
|
427 |
|
|
#define __S101 PAGE_READONLY_X
|
428 |
|
|
#define __S110 PAGE_SHARED
|
429 |
|
|
#define __S111 PAGE_SHARED_X
|
430 |
|
|
|
431 |
|
|
#ifndef __ASSEMBLY__
|
432 |
|
|
/*
|
433 |
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
434 |
|
|
* for zero-mapped memory areas etc..
|
435 |
|
|
*/
|
436 |
|
|
extern unsigned long empty_zero_page[1024];
|
437 |
|
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
438 |
|
|
|
439 |
|
|
#endif /* __ASSEMBLY__ */
|
440 |
|
|
|
441 |
|
|
#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
|
442 |
|
|
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
|
443 |
|
|
#define pte_clear(ptep) do { set_pte((ptep), __pte(0)); } while (0)
|
444 |
|
|
|
445 |
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
446 |
|
|
#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
|
447 |
|
|
#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
|
448 |
|
|
#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
|
449 |
|
|
|
450 |
|
|
#define pte_page(x) (mem_map+(unsigned long)((pte_val(x)-PPC_MEMSTART) >> PAGE_SHIFT))
|
451 |
|
|
|
452 |
|
|
#ifndef __ASSEMBLY__
|
453 |
|
|
/*
|
454 |
|
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
455 |
|
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
456 |
|
|
* into the pgd entry)
|
457 |
|
|
*/
|
458 |
|
|
static inline int pgd_none(pgd_t pgd) { return 0; }
|
459 |
|
|
static inline int pgd_bad(pgd_t pgd) { return 0; }
|
460 |
|
|
static inline int pgd_present(pgd_t pgd) { return 1; }
|
461 |
|
|
#define pgd_clear(xp) do { } while (0)
|
462 |
|
|
#define pgd_page(pgd) \
|
463 |
|
|
((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
|
464 |
|
|
|
465 |
|
|
/*
|
466 |
|
|
* The following only work if pte_present() is true.
|
467 |
|
|
* Undefined behaviour if not..
|
468 |
|
|
*/
|
469 |
|
|
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
470 |
|
|
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
471 |
|
|
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
|
472 |
|
|
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
473 |
|
|
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
474 |
|
|
|
475 |
|
|
static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
|
476 |
|
|
static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
|
477 |
|
|
|
478 |
|
|
static inline pte_t pte_rdprotect(pte_t pte) {
|
479 |
|
|
pte_val(pte) &= ~_PAGE_USER; return pte; }
|
480 |
|
|
static inline pte_t pte_wrprotect(pte_t pte) {
|
481 |
|
|
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
|
482 |
|
|
static inline pte_t pte_exprotect(pte_t pte) {
|
483 |
|
|
pte_val(pte) &= ~_PAGE_EXEC; return pte; }
|
484 |
|
|
static inline pte_t pte_mkclean(pte_t pte) {
|
485 |
|
|
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
|
486 |
|
|
static inline pte_t pte_mkold(pte_t pte) {
|
487 |
|
|
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
488 |
|
|
|
489 |
|
|
static inline pte_t pte_mkread(pte_t pte) {
|
490 |
|
|
pte_val(pte) |= _PAGE_USER; return pte; }
|
491 |
|
|
static inline pte_t pte_mkexec(pte_t pte) {
|
492 |
|
|
pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
|
493 |
|
|
static inline pte_t pte_mkwrite(pte_t pte) {
|
494 |
|
|
pte_val(pte) |= _PAGE_RW; return pte; }
|
495 |
|
|
static inline pte_t pte_mkdirty(pte_t pte) {
|
496 |
|
|
pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
497 |
|
|
static inline pte_t pte_mkyoung(pte_t pte) {
|
498 |
|
|
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
499 |
|
|
|
500 |
|
|
/*
|
501 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
502 |
|
|
* and a page entry and page directory to the page they refer to.
|
503 |
|
|
*/
|
504 |
|
|
|
505 |
|
|
static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
|
506 |
|
|
{
|
507 |
|
|
pte_t pte;
|
508 |
|
|
pte_val(pte) = physpage | pgprot_val(pgprot);
|
509 |
|
|
return pte;
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
#define mk_pte(page,pgprot) \
|
513 |
|
|
({ \
|
514 |
|
|
pte_t pte; \
|
515 |
|
|
pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + PPC_MEMSTART) | pgprot_val(pgprot); \
|
516 |
|
|
pte; \
|
517 |
|
|
})
|
518 |
|
|
|
519 |
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
520 |
|
|
{
|
521 |
|
|
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
522 |
|
|
return pte;
|
523 |
|
|
}
|
524 |
|
|
|
525 |
|
|
/*
|
526 |
|
|
* Atomic PTE updates.
|
527 |
|
|
*
|
528 |
|
|
* pte_update clears and sets bit atomically, and returns
|
529 |
|
|
* the old pte value.
|
530 |
|
|
* The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
|
531 |
|
|
* 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
|
532 |
|
|
*/
|
533 |
|
|
static inline unsigned long pte_update(pte_t *p, unsigned long clr,
|
534 |
|
|
unsigned long set)
|
535 |
|
|
{
|
536 |
|
|
unsigned long old, tmp;
|
537 |
|
|
|
538 |
|
|
__asm__ __volatile__("\
|
539 |
|
|
1: lwarx %0,0,%3\n\
|
540 |
|
|
andc %1,%0,%4\n\
|
541 |
|
|
or %1,%1,%5\n"
|
542 |
|
|
PPC405_ERR77(0,%3)
|
543 |
|
|
" stwcx. %1,0,%3\n\
|
544 |
|
|
bne- 1b"
|
545 |
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*p)
|
546 |
|
|
: "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p)
|
547 |
|
|
: "cc" );
|
548 |
|
|
return old;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/*
|
552 |
|
|
* set_pte stores a linux PTE into the linux page table.
|
553 |
|
|
* On machines which use an MMU hash table we avoid changing the
|
554 |
|
|
* _PAGE_HASHPTE bit.
|
555 |
|
|
*/
|
556 |
|
|
static inline void set_pte(pte_t *ptep, pte_t pte)
|
557 |
|
|
{
|
558 |
|
|
#if _PAGE_HASHPTE != 0
|
559 |
|
|
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
|
560 |
|
|
#else
|
561 |
|
|
*ptep = pte;
|
562 |
|
|
#endif
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
static inline int ptep_test_and_clear_young(pte_t *ptep)
|
566 |
|
|
{
|
567 |
|
|
return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
static inline int ptep_test_and_clear_dirty(pte_t *ptep)
|
571 |
|
|
{
|
572 |
|
|
return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
static inline pte_t ptep_get_and_clear(pte_t *ptep)
|
576 |
|
|
{
|
577 |
|
|
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
static inline void ptep_set_wrprotect(pte_t *ptep)
|
581 |
|
|
{
|
582 |
|
|
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
static inline void ptep_mkdirty(pte_t *ptep)
|
586 |
|
|
{
|
587 |
|
|
pte_update(ptep, 0, _PAGE_DIRTY);
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
|
591 |
|
|
|
592 |
|
|
#define pmd_page(pmd) (pmd_val(pmd) & PAGE_MASK)
|
593 |
|
|
|
594 |
|
|
/* to find an entry in a kernel page-table-directory */
|
595 |
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
596 |
|
|
|
597 |
|
|
/* to find an entry in a page-table-directory */
|
598 |
|
|
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
|
599 |
|
|
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
|
600 |
|
|
|
601 |
|
|
/* Find an entry in the second-level page table.. */
|
602 |
|
|
static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
|
603 |
|
|
{
|
604 |
|
|
return (pmd_t *) dir;
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* Find an entry in the third-level page table.. */
|
608 |
|
|
static inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
|
609 |
|
|
{
|
610 |
|
|
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
614 |
|
|
|
615 |
|
|
extern void paging_init(void);
|
616 |
|
|
|
617 |
|
|
/*
|
618 |
|
|
* When flushing the tlb entry for a page, we also need to flush the hash
|
619 |
|
|
* table entry. flush_hash_page is assembler (for speed) in hashtable.S.
|
620 |
|
|
*/
|
621 |
|
|
extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep);
|
622 |
|
|
|
623 |
|
|
/* Add an HPTE to the hash table */
|
624 |
|
|
extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep);
|
625 |
|
|
|
626 |
|
|
/*
|
627 |
|
|
* Encode and decode a swap entry.
|
628 |
|
|
* Note that the bits we use in a PTE for representing a swap entry
|
629 |
|
|
* must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
|
630 |
|
|
* (if used). -- paulus
|
631 |
|
|
*/
|
632 |
|
|
#define SWP_TYPE(entry) ((entry).val & 0x3f)
|
633 |
|
|
#define SWP_OFFSET(entry) ((entry).val >> 6)
|
634 |
|
|
#define SWP_ENTRY(type, offset) ((swp_entry_t) { (type) | ((offset) << 6) })
|
635 |
|
|
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
|
636 |
|
|
#define swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
|
637 |
|
|
|
638 |
|
|
/* CONFIG_APUS */
|
639 |
|
|
/* For virtual address to physical address conversion */
|
640 |
|
|
extern void cache_clear(__u32 addr, int length);
|
641 |
|
|
extern void cache_push(__u32 addr, int length);
|
642 |
|
|
extern int mm_end_of_chunk (unsigned long addr, int len);
|
643 |
|
|
extern unsigned long iopa(unsigned long addr);
|
644 |
|
|
extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
|
645 |
|
|
|
646 |
|
|
/* Values for nocacheflag and cmode */
|
647 |
|
|
/* These are not used by the APUS kernel_map, but prevents
|
648 |
|
|
compilation errors. */
|
649 |
|
|
#define IOMAP_FULL_CACHING 0
|
650 |
|
|
#define IOMAP_NOCACHE_SER 1
|
651 |
|
|
#define IOMAP_NOCACHE_NONSER 2
|
652 |
|
|
#define IOMAP_NO_COPYBACK 3
|
653 |
|
|
|
654 |
|
|
/*
|
655 |
|
|
* Map some physical address range into the kernel address space.
|
656 |
|
|
*/
|
657 |
|
|
extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
|
658 |
|
|
int nocacheflag, unsigned long *memavailp );
|
659 |
|
|
|
660 |
|
|
/*
|
661 |
|
|
* Set cache mode of (kernel space) address range.
|
662 |
|
|
*/
|
663 |
|
|
extern void kernel_set_cachemode (unsigned long address, unsigned long size,
|
664 |
|
|
unsigned int cmode);
|
665 |
|
|
|
666 |
|
|
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
|
667 |
|
|
#define kern_addr_valid(addr) (1)
|
668 |
|
|
|
669 |
|
|
#define io_remap_page_range remap_page_range
|
670 |
|
|
|
671 |
|
|
/*
|
672 |
|
|
* No page table caches to initialise
|
673 |
|
|
*/
|
674 |
|
|
#define pgtable_cache_init() do { } while (0)
|
675 |
|
|
|
676 |
|
|
#endif /* __ASSEMBLY__ */
|
677 |
|
|
#endif /* _PPC_PGTABLE_H */
|
678 |
|
|
#endif /* __KERNEL__ */
|