OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-ppc64/] [dma.h] - Blame information for rev 1275

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3
 * Written by Hennus Bergman, 1992.
4
 * High DMA channel support & info by Hannu Savolainen
5
 * and John Boyd, Nov. 1992.
6
 * Changes for ppc sound by Christoph Nadig
7
 *
8
 * This program is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU General Public License
10
 * as published by the Free Software Foundation; either version
11
 * 2 of the License, or (at your option) any later version.
12
 */
13
 
14
#ifndef _ASM_DMA_H
15
#define _ASM_DMA_H
16
 
17
#include <linux/config.h>
18
#include <asm/io.h>
19
#include <linux/spinlock.h>
20
#include <asm/system.h>
21
 
22
#ifndef MAX_DMA_CHANNELS
23
#define MAX_DMA_CHANNELS        8
24
#endif
25
 
26
/* The maximum address that we can perform a DMA transfer to on this platform */
27
/* Doesn't really apply... */
28
#define MAX_DMA_ADDRESS  (~0UL)
29
 
30
#define dma_outb        outb
31
#define dma_inb         inb
32
 
33
/*
34
 * NOTES about DMA transfers:
35
 *
36
 *  controller 1: channels 0-3, byte operations, ports 00-1F
37
 *  controller 2: channels 4-7, word operations, ports C0-DF
38
 *
39
 *  - ALL registers are 8 bits only, regardless of transfer size
40
 *  - channel 4 is not used - cascades 1 into 2.
41
 *  - channels 0-3 are byte - addresses/counts are for physical bytes
42
 *  - channels 5-7 are word - addresses/counts are for physical words
43
 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
44
 *  - transfer count loaded to registers is 1 less than actual count
45
 *  - controller 2 offsets are all even (2x offsets for controller 1)
46
 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
47
 *  - page registers for 0-3 use bit 0, represent 64K pages
48
 *
49
 * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
50
 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
51
 * Note that addresses loaded into registers must be _physical_ addresses,
52
 * not logical addresses (which may differ if paging is active).
53
 *
54
 *  Address mapping for channels 0-3:
55
 *
56
 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
57
 *    |  ...  |   |  ... |   |  ... |
58
 *    |  ...  |   |  ... |   |  ... |
59
 *    |  ...  |   |  ... |   |  ... |
60
 *   P7  ...  P0  A7 ... A0  A7 ... A0
61
 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
62
 *
63
 *  Address mapping for channels 5-7:
64
 *
65
 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
66
 *    |  ...  |   \   \   ... \  \  \  ... \  \
67
 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
68
 *    |  ...  |     \   \   ... \  \  \  ... \
69
 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
70
 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
71
 *
72
 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
73
 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
74
 * the hardware level, so odd-byte transfers aren't possible).
75
 *
76
 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
77
 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
78
 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
79
 *
80
 */
81
 
82
/* 8237 DMA controllers */
83
#define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
84
#define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
85
 
86
/* DMA controller registers */
87
#define DMA1_CMD_REG            0x08    /* command register (w) */
88
#define DMA1_STAT_REG           0x08    /* status register (r) */
89
#define DMA1_REQ_REG            0x09    /* request register (w) */
90
#define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
91
#define DMA1_MODE_REG           0x0B    /* mode register (w) */
92
#define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
93
#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
94
#define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
95
#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
96
#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
97
 
98
#define DMA2_CMD_REG            0xD0    /* command register (w) */
99
#define DMA2_STAT_REG           0xD0    /* status register (r) */
100
#define DMA2_REQ_REG            0xD2    /* request register (w) */
101
#define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
102
#define DMA2_MODE_REG           0xD6    /* mode register (w) */
103
#define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
104
#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
105
#define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
106
#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
107
#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
108
 
109
#define DMA_ADDR_0              0x00    /* DMA address registers */
110
#define DMA_ADDR_1              0x02
111
#define DMA_ADDR_2              0x04
112
#define DMA_ADDR_3              0x06
113
#define DMA_ADDR_4              0xC0
114
#define DMA_ADDR_5              0xC4
115
#define DMA_ADDR_6              0xC8
116
#define DMA_ADDR_7              0xCC
117
 
118
#define DMA_CNT_0               0x01    /* DMA count registers */
119
#define DMA_CNT_1               0x03
120
#define DMA_CNT_2               0x05
121
#define DMA_CNT_3               0x07
122
#define DMA_CNT_4               0xC2
123
#define DMA_CNT_5               0xC6
124
#define DMA_CNT_6               0xCA
125
#define DMA_CNT_7               0xCE
126
 
127
#define DMA_LO_PAGE_0              0x87    /* DMA page registers */
128
#define DMA_LO_PAGE_1              0x83
129
#define DMA_LO_PAGE_2              0x81
130
#define DMA_LO_PAGE_3              0x82
131
#define DMA_LO_PAGE_5              0x8B
132
#define DMA_LO_PAGE_6              0x89
133
#define DMA_LO_PAGE_7              0x8A
134
 
135
#define DMA_HI_PAGE_0              0x487    /* DMA page registers */
136
#define DMA_HI_PAGE_1              0x483
137
#define DMA_HI_PAGE_2              0x481
138
#define DMA_HI_PAGE_3              0x482
139
#define DMA_HI_PAGE_5              0x48B
140
#define DMA_HI_PAGE_6              0x489
141
#define DMA_HI_PAGE_7              0x48A
142
 
143
#define DMA1_EXT_REG               0x40B
144
#define DMA2_EXT_REG               0x4D6
145
 
146
#define DMA_MODE_READ   0x44    /* I/O to memory, no autoinit, increment, single mode */
147
#define DMA_MODE_WRITE  0x48    /* memory to I/O, no autoinit, increment, single mode */
148
#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
149
 
150
#define DMA_AUTOINIT     0x10
151
 
152
extern spinlock_t  dma_spin_lock;
153
 
154
static __inline__ unsigned long claim_dma_lock(void)
155
{
156
        unsigned long flags;
157
        spin_lock_irqsave(&dma_spin_lock, flags);
158
        return flags;
159
}
160
 
161
static __inline__ void release_dma_lock(unsigned long flags)
162
{
163
        spin_unlock_irqrestore(&dma_spin_lock, flags);
164
}
165
 
166
/* enable/disable a specific DMA channel */
167
static __inline__ void enable_dma(unsigned int dmanr)
168
{
169
        unsigned char ucDmaCmd=0x00;
170
 
171
        if (dmanr != 4)
172
        {
173
                dma_outb(0, DMA2_MASK_REG);  /* This may not be enabled */
174
                dma_outb(ucDmaCmd, DMA2_CMD_REG);  /* Enable group */
175
        }
176
        if (dmanr<=3)
177
        {
178
                dma_outb(dmanr,  DMA1_MASK_REG);
179
                dma_outb(ucDmaCmd, DMA1_CMD_REG);  /* Enable group */
180
        } else
181
        {
182
                dma_outb(dmanr & 3,  DMA2_MASK_REG);
183
        }
184
}
185
 
186
static __inline__ void disable_dma(unsigned int dmanr)
187
{
188
        if (dmanr<=3)
189
                dma_outb(dmanr | 4,  DMA1_MASK_REG);
190
        else
191
                dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
192
}
193
 
194
/* Clear the 'DMA Pointer Flip Flop'.
195
 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
196
 * Use this once to initialize the FF to a known state.
197
 * After that, keep track of it. :-)
198
 * --- In order to do that, the DMA routines below should ---
199
 * --- only be used while interrupts are disabled! ---
200
 */
201
static __inline__ void clear_dma_ff(unsigned int dmanr)
202
{
203
        if (dmanr<=3)
204
                dma_outb(0,  DMA1_CLEAR_FF_REG);
205
        else
206
                dma_outb(0,  DMA2_CLEAR_FF_REG);
207
}
208
 
209
/* set mode (above) for a specific DMA channel */
210
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
211
{
212
        if (dmanr<=3)
213
                dma_outb(mode | dmanr,  DMA1_MODE_REG);
214
        else
215
                dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
216
}
217
 
218
/* Set only the page register bits of the transfer address.
219
 * This is used for successive transfers when we know the contents of
220
 * the lower 16 bits of the DMA current address register, but a 64k boundary
221
 * may have been crossed.
222
 */
223
static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
224
{
225
        switch(dmanr) {
226
                case 0:
227
                        dma_outb(pagenr, DMA_LO_PAGE_0);
228
                        dma_outb(pagenr>>8, DMA_HI_PAGE_0);
229
                        break;
230
                case 1:
231
                        dma_outb(pagenr, DMA_LO_PAGE_1);
232
                        dma_outb(pagenr>>8, DMA_HI_PAGE_1);
233
                        break;
234
                case 2:
235
                        dma_outb(pagenr, DMA_LO_PAGE_2);
236
                        dma_outb(pagenr>>8, DMA_HI_PAGE_2);
237
                        break;
238
                case 3:
239
                        dma_outb(pagenr, DMA_LO_PAGE_3);
240
                        dma_outb(pagenr>>8, DMA_HI_PAGE_3);
241
                        break;
242
                case 5:
243
                        dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
244
                        dma_outb(pagenr>>8, DMA_HI_PAGE_5);
245
                        break;
246
                case 6:
247
                        dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
248
                        dma_outb(pagenr>>8, DMA_HI_PAGE_6);
249
                        break;
250
                case 7:
251
                        dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
252
                        dma_outb(pagenr>>8, DMA_HI_PAGE_7);
253
                  break;
254
        }
255
}
256
 
257
 
258
/* Set transfer address & page bits for specific DMA channel.
259
 * Assumes dma flipflop is clear.
260
 */
261
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
262
{
263
        if (dmanr <= 3)  {
264
            dma_outb( phys & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
265
            dma_outb( (phys>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
266
        }  else  {
267
            dma_outb( (phys>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
268
            dma_outb( (phys>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
269
        }
270
        set_dma_page(dmanr, phys>>16);
271
}
272
 
273
 
274
/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
275
 * a specific DMA channel.
276
 * You must ensure the parameters are valid.
277
 * NOTE: from a manual: "the number of transfers is one more
278
 * than the initial word count"! This is taken into account.
279
 * Assumes dma flip-flop is clear.
280
 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
281
 */
282
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
283
{
284
        count--;
285
        if (dmanr <= 3)  {
286
            dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
287
            dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
288
        } else {
289
            dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
290
            dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
291
        }
292
}
293
 
294
 
295
/* Get DMA residue count. After a DMA transfer, this
296
 * should return zero. Reading this while a DMA transfer is
297
 * still in progress will return unpredictable results.
298
 * If called before the channel has been used, it may return 1.
299
 * Otherwise, it returns the number of _bytes_ left to transfer.
300
 *
301
 * Assumes DMA flip-flop is clear.
302
 */
303
static __inline__ int get_dma_residue(unsigned int dmanr)
304
{
305
        unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
306
                                         : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
307
 
308
        /* using short to get 16-bit wrap around */
309
        unsigned short count;
310
 
311
        count = 1 + dma_inb(io_port);
312
        count += dma_inb(io_port) << 8;
313
 
314
        return (dmanr <= 3)? count : (count<<1);
315
}
316
 
317
/* These are in kernel/dma.c: */
318
extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
319
extern void free_dma(unsigned int dmanr);       /* release it again */
320
 
321
#ifdef CONFIG_PCI
322
extern int isa_dma_bridge_buggy;
323
#else                                                         
324
#define isa_dma_bridge_buggy   (0)
325
#endif
326
#endif /* _ASM_DMA_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.